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Abstract. The design and implementation of behaviors for robots op-
erating in dynamic and complex environments are becoming mandatory
in nowadays applications. Reinforcement learning is consistently showing
remarkable results in learning effective action policies and in achieving
super-human performance in various tasks – without exploiting prior
knowledge. However, in robotics, the use of purely learning-based tech-
niques is still subject to strong limitations. Foremost, sample efficiency.
Such techniques, in fact, are known to require large training datasets,
and long training sessions, in order to develop effective action policies.
Hence in this paper, to alleviate such constraint, and to allow learning in
such robotic scenarios, we introduce SErP (Sample Efficient robot Poli-
cies), an iterative algorithm to improve the sample-efficiency of learning
algorithms. SErP exploits a sub-optimal planner (here implemented with
a monitor-replanning algorithm) to lead the exploration of the learning
agent through its initial iterations. Intuitively, SErP exploits the planner
as an expert in order to enable focused exploration and to avoid portions
of the search space that are not effective to solve the task of the robot.
Finally, to confirm our insights and to show the improvements that SErP
carries with, we report the results obtained in two different robotic sce-
narios: (1) a cartpole scenario and (2) a soccer-robots scenario within
the RoboCup@Soccer SPL environment.

Keywords: Automated Planning, Reinforcement Learning, Decision-
making

1 Introduction

Nowadays, robots can operate in very challenging scenarios such as healthcare,
security, industry, and domestic aid [3]. These contexts are highly dynamic,
not structured, and characterized by unpredictable events [22]. Consequently,
the deployment of robots with predefined decision-making processes or static
behavioral rules is not recommended and often not effective. Instead, they must
be provided with the capability of (1) learning through continuous interaction
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with their environment; (2) adapting to an unexpected situation; (3) recovering
from faults; and (4) generalize their behavior to a new situation.

In the literature, proposed solutions can be coarsely categorized into two
main classes: planning-based [12] and learning-based [16] approaches. In the for-
mer case, the robot behavior can be explicitly formalized over a model of the
environment, which results in immediate solutions and robust action policies.
Nevertheless, planning-based techniques usually lack generalization to similar
states and could require expert domain knowledge to be correctly designed. In-
stead, the latter category aims to learn an optimal action policy through continu-
ous interaction with the environment. In particular, reinforcement learning (RL)
techniques have been widely adopted to determine robust action policies that
can generalize to unknown situations. However, learning approaches are sample
inefficient, and to converge to competitive policies, they require a tremendous
amount of iterations and training samples [2], which make their use less appeal-
ing in robotics.

In this paper, we attack the problem of sample efficiency by combining the
main advantages both of planning and learning paradigms for obtaining a robust
decision-making process. We introduce SErP (Sample Efficient Robot Policies),
which is specifically designed to enable and support the focused exploration of
learning algorithms by exploiting a sub-optimal planner. In particular, SErP is
an iterative algorithm that uses a sub-optimal planner based on an incomplete
transition model as an expert for (1) initializing the robot policy; and for (2)
preventing the exploration of state-action space portions that do not contribute
to task completion. SErP is configured to follow the planner policy throughout
its first iterations, accumulate training samples, and then gradually switch to the
action policy learned at training time. Importantly, the planner remains active
during the entire learning routine, and it is exploited to maintain a focused and
safe exploration. Such a configuration allows the robot to achieve competitive
performance with a reduced number of training samples and to avoid the choice
of actions that are not focused on the current task.

The goal of this work is to introduce a novel methodology in robot learning
that improves sample efficiency, making learning approaches more practical and
safe in robotics. In Figure 1 is shown the selection mechanism of the planner,
which marks with utilities the possible future actions, assigning low utilities to
potentially useless ones (highlighted in red) and with good ones the promising
useful actions (highlighted in blue). Another key feature of this algorithm is
assigning the lowest possible utilities to actions that could negatively impact
robot safety. To confirm this feature we assign extremely negative reward signals
to actions that can impact the robot’s safety, in order to have an high impact of
such actions in the overall collected reward. It is important to remember that we
consider robot safety during learning as the learner’s ability to ensure research
space configurations that do not damage the robot embodiment, the environment
and nearby people. In fact the planner contains information that regulates the
behavior of the robot to prevent these situations. We validate SErP in two
different robotic scenarios: a cart-pole task and robot soccer task. In the first
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(a) (b)

Fig. 1. The figure shows SErP sample efficiency that avoids the exploration of red
actions and promotes portions of the state space that are meaningful to the task (blue).

scenario, the algorithm is used to balance the cart-pole within a reduced number
of iterations. In the second scenario, the proposed approach is exploited to learn
a defender robot’s action policy when opposing an attacker. The proposed tasks
have been learned using simulated environments; however, the action policy has
also been deployed in real settings in the RoboCup scenario.

2 Related work

SErP relies on both planning and learning approaches. Accordingly, we sur-
vey existing literature, and we focus on approaches that use RL or Automated
Planning to face decision-making problems for robots.

Automated planning techniques have been widely used in the recent years
to implement articulated decision-making processes; for example, in [8], authors
formalize all the robot behaviors are by defining the tuple of static axioms, ef-
fect axioms, action preconditions, and initial state. Due to such a formalization,
the authors can promptly trace the entire robot behavior and recover from the
planners’ failures. In a different context, [13] propose a formal language KL to
express planning domains with incomplete knowledge and to generate plans in
partially observable environments. Also, in the context of soccer robots, there
are some planning-based solutions for robot behaviors; in [20] authors propose
a work based on the exploration of future states. They introduce a method for
fast decision-making. The outcome of each possible action is simulated based on
the estimated state of the situation. The simulation of a single action is split
into several simple deterministic simulations, considering the uncertainties of
the action model’s estimated state. However, planning-based approaches cannot
generalize to unknown situations, and the contributions mentioned above all rely
on solid domain expertise to define the planning procedure. On the other hand,
learning-based approaches are receiving increasing interest in the last years. Sev-
eral steps have been taken in this direction in robotics, although, due to demand-
ing computational requirements, many RL solutions cannot be easily adopted
in robotics [25]. To alleviate computational constraints, learning algorithm are
used for system identification of high-dimensional problems [29] and learning
control policies in dynamic environments [5]; advanced manipulation [26]; and
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optimizing robot behaviors [23]. Moreover, several model-based RL techniques
for decision making have been used over time, such as [9] and [6]. However, these
applications require a complete model of the environment to be provided to the
learning algorithm. Even for soccer robots, a lot of work has been done using
reinforcement learning for learning players’ skills. In [1] authors discuss an im-
itation learning [27] system. The agent has to learn the dribble and searching
skills, imitating the motion of the Striker agent (model-based) of the former
world champions of the RoboCup@Soccer SPL competition. However, this ap-
proach still suffers the requirement of a previously modeled and efficient player
to imitate. The dribble with the ball problem is also addressed in [19]. The pa-
per describes and compares several hierarchical learning strategies for designing
robot skills. However, the results show that there is a trade-off between sample
efficiency and the final performance of the model. More closely related to our
approach, exploiting both planning and learning approaches, [18] propose DAR-
LING, a method that uses planning to bound the agent’s behavior to reasonable
choices during reinforcement learning to adapt it to the environment. However,
DARLING does not evaluate the actions of the planner during training. Thus,
the learner agent can explore undesired portions of the state-action space and
does not preserve a focused exploration. Differently, [14] introduces TMP-RL
to integrate Task Motion Planning TMP and RL, while [10] exploits a planning
algorithm to model the rewards function of a learning algorithm in a multi-agent
system. However, these contributions’ focus is to improve policy generalization
and not to guarantee sample efficiency. [4] present R-Max, a model-based RL
algorithm that learns a complete transition model of the environment that can
be used to define planning algorithms. However, differently from our solution,
R-Max is randomly initialized, and thus, does not guarantee a focused and safe
exploration since the first iterations. The problem of learning from sub-optimal
teachers has been addressed in several recent works. In [17], authors present a
learning algorithm that uses an ensemble of sub-optimal teachers. The robot suc-
cessfully manages to outperform the teacher performances and to complete the
task. Nevertheless, in this work, the teachers are meant to solve part of the prob-
lem. In our work, the teacher cannot solve any part of the problem itself, but it
is only used for deciding which action to avoid or to explore in the initial part of
the training phase. This allows the teacher to be way simpler to model both with
a handcrafted or a learning-based technique. Similarly, in [15], the authors intro-
duce a residual method to correct the robot control performed by a sub-optimal
controller using an RL-based approach. In this case, the method differs strongly
from the one that we propose. The cited work, in fact, acts on the correction of
a continuous control signal, which is not applicable to a decision-making process
like the ones addressed in this paper. In [7] a method that alternates Imitation
Learning phases to Reinforcement Learning ones starting the imitation from a
sub-optimal teacher is introduced. This work manages to outperform the teacher
performances and speed up the RL algorithm’s learning process. Differently, our
work also introduces a method for avoiding actions that are risky for robot safety
keeping the planner always active in the background.
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Summarizing, several procedures for efficient decision-making processes have
been created using automated planning and reinforcement learning, and com-
petitive results can be achieved with both. This work investigates the use of
both planning and learning to improve sample efficiency by exploiting a planner
for guaranteeing focused exploration of the state-action space. Hence, the con-
tribution of SErP is to generate competitive action policies already since the
first iterations of the algorithm using just a partial model of the environment,
then use this to prevent the learner from exploring invalid portions of the search
space.

3 SErP

In order to iteratively refine an action policy, SErP relies upon two main build-
ing blocks: a planner and a learner. These two components are used to achieve
focused search-space exploration and to learn effective action policies with a
reduced number of training samples. To formalize SErP we adopt the MDP
notation, where decision-making is expressed as a tuple

MDP = (S,A, T , R, γ), (1)

where S and A represent the set of states and actions respectively, T : S ×A×
S → [0, 1] is a stochastic transition model from state s ∈ S to s′ ∈ S, when
taking action a ∈ A, R : S ×A→ R is the reward function, and γ is a discount
factor in [0, 1). At each iteration, the output of the algorithm is a policy πi that
is used to determine the next action to perform.

3.1 Algorithm

During the first phase of the algorithm, SErP achieves sample efficiency by ex-
ploiting a planner, as an expert, to collect training samples. In fact, the planner
is used to explore the search-space with a sub-optimal action policy and pro-
vide prior knowledge to the learner, which is refined at each time a state-action
transition is observed. During in the initial phase, the agent only considers the
planner’s actions and disregards the learner’s output. Afterward, once enough
samples are collected, the agent’s focus gradually shifts toward the learner policy.
To guarantee safety during the learning process the planner is always active and
available to validate the learner’s choices. It is worth noting that the concept of
safety expressed in this paper refers to the robot embodiment, the environment,
and the people involved in the task.

In particular, SErP follows the policy generated by the planner in its first
iterations. In fact, the planner guarantees that the learner collects only training
samples from useful portions of the search space. This is especially important
during policy initialization since the majority of learning algorithms require de-
manding exploration phases. Then, with a ρ probability, increasing over time,
selects actions in accordance with the policy π of the learner. Algorithm 1 re-
ports the SErP procedure: (1) policy π0 with a random dataset d0; (2) sample
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Algorithm 1: SErP.

Input: D0 dataset of random state-action pairs, πP planner policy
Output: πI learner policy
Data: I number of iterations, ρ learner probability, ∆ρ learner probability

increment, Rmin reward minimum value
begin

1[ Train π0 on D0

for i = 1 to I do
p← UniformRandom(0, 1)

2[ if p > ρ then
Get action a from πP (st−1).

end
else

Get action a from πi−1(st−1).
s′ ←T(a, st−1)

3[ if R(s′) < Rmin then
4[ Get action a from πP (st−1).

end

end
s′ ←τ(a, st−1)
r ←R(s’)

5[ D0:i ← {s, a, r, s′} ∪D0:i−1

6[ Train πi on D0:i

ρ ←ρ + ∆ρ

end

return πI

end

an action from the learner or the planner according to a probability ρ; (3) if the
action is sampled from the learner, it is evaluated with the minimum reward
threshold Rmin; (4) if it is lower than Rmin, then the action is selected from the
planner policy; (5) upon action completion, a new sample is generated and ag-
gregated to the dataset; (6) finally the learner policy is updated with a gradient
descent algorithm and the ρ probability is increased. It is important to highlight
that SErP is agnostic to the planner and the learner implementation. This is
an important feature that allows an effective instantiation to various domains
that require specific planners and/or learners. Here, we provide a description
of SErP when the planner and the learner are instantiated with a monitor
replanning algorithm [24] and with DQN [21] respectively.

3.2 Planner

On-line planning techniques have demonstrated satisfactory results when phys-
ical agents are deployed in dynamic and unpredictable environments. In the
literature, monitor-replanning (MrP) [24] has shown promising results being re-
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sponsive and easy to configure. MrP algorithms replan the agent actions at each
iteration and after each action is executed. This guarantees that each action of
the agent is informed, and the plan is generated by observing the current state
of the environment. The MrP algorithm implemented in SErP executes four
steps at each iteration: (1) monitors the environment to get the current state;
(2) expands the planning graph in accordance to predefined actions effects, and
preconditions; (3) visits the graph to select the path that maximizes the reward
of the agent R – usually defined by an expert of the domain; (4) executes the
first action of the path. It is important to highlight that we define a planning
graph as a structure in which nodes represent states of the environment, and
edges represent actions that transition from a state to another.

3.3 Learner

Deep RL has shown super-human performance in various applications demon-
strating remarkable generalization capability and competitive action policies. In
this work, we take advantage of the success of such approaches, and we im-
plement the learner of SErP with a basic Deep RL algorithm – DQN [21]. In
this work, we formalize the state of the agent as a feature vector characteriz-
ing meaningful landmarks of the search space. While the output of the learner
is a policy π that is refined iteratively. The DQN algorithm implemented exe-
cutes the following three steps: (1) aggregates training samples to the original
dataset (a reply-buffer) each time a transition is observed; (2) randomly samples
state-action pairs from the dataset to compose mini-batches of i.i.d samples; (3)
updates the learner policy by minimizing the loss function. Such a loss function
is defined as the mean squared error (MSE) between the Q-value obtained by
the Bellman equation and the network output (Equation 2).

L (θi) = Es,(·)

[
(yi −Q (s, a; θi))

2
]

(2)

where θ is the set of parameters of the approximator and yi us defined as in
Equation 3.

yi =

{
RT for terminal state sT
Rt+1 + γmaxa′ Q (st+1, a

′) for non-terminal state st
(3)

4 Experimental Evaluation

In this section, we aim to demonstrate the performances of the SErP algorithm
in terms of sample efficiency. Hence, we configured two applications: a cart-pole
robot environment and a RoboCup@Soccer environment. In both experiments,
the learner is implemented as DQN. The training is configured with an Adam
optimizer with learning rate = 0.001 and decay factor = 0.9. The ε for the DQN
ε − greedy policy is set to 0.3. The learner probability ρ takes values in (0, 1],
and increase at each iteration by a ∆ρ selected depending on the application. In
this evaluation, the CartPole scenario is configured with ∆ρ = 0.01 ,the robot
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soccer environment ∆ρ = 0.1 this is given by the different amount of samples
that the two environments have. To validate SErP, we compare its performance
with vanilla-MrP and vanilla-DQN algorithms, as well as PPO, which represent
a state-of-the-art baseline [28,11].

4.1 CartPole

The CartPole scenario is composed of an under-actuated platform made by a
pole with an un-actuated joint attached to a cart that moves over a track (see
Figure 1, bottom). The robot can execute two actions: Left and Right. The
former applies a force to the cart pushing it to the left while the latter to the
right. The pendulum starts upright, and the goal is to prevent it from falling. An
episode ends when (1) the distance between the pole and its upright position is
greater than 15 degrees or (2) when the cart is pushed beyond a certain limit on
the track. To formalize the cartpole scenario as a planning problem, we define
the planner’s state as a tuple of four elements: pole position, pole velocity, cart
position, and cart velocity.

In this scenario, SErP is compared with OpenAI baselines1 of the vanilla-
DQN and PPO and with a vanilla-MrP implementation. All algorithms are let
run for 1000 episodes, and the cumulative average reward of each episode is
reported in Figure 2(a). On the y-axis, the average cumulative reward value
while on the x-axis the training iterations. The solid line represents the average
value, while the light area represents their standard deviation. The figure shows
that the prior knowledge allows SErP to rapidly increase during the time, due
to the exploration of meaningful portions of the search space. In fact, PPO
and DQN (that are initialized randomly) require a larger amount of training
samples and result to be sample inefficient. Moreover, DQN standard deviation is
considerably larger, which suggests that random factors in the initial exploration
can significantly affect the action policy’s overall performance and accuracy. The
plot confirms our insights and shows that SErP converges to competitive results
with a reduced number of training samples being extremely sample efficient.
Moreover, it is worth noticing that the reward signal never decays also in the
first iterations that confirms that the planner prevents the learner from exploring
not useful portions of the search space.

4.2 Soccer Defender

RoboCup@Soccer is a challenging test-bed for decision-making algorithms due
to unpredictability, partial observability, unstructured environments, and highly
dynamic events. In this experimental evaluation, we validate sample efficiency
and confirm that SErP is practical in complex robotic environments such as
multi-robot adversarial setting. Specifically, we task SErP to learn a defensive
robot’s behavior in fighting for the ball with an opponent attacker. Hence, the
experiment configures two robots, a defender that runs SErP, and an attacker

1 https://github.com/openai/baselines

https://github.com/openai/baselines
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(a) (b)

Fig. 2. a) Training results on CartPole. (b) Training results on Robocup@Soccer. Full
line: average, Dull area: Standard deviation

that plays-out a predefined action policy. The goal of the defender is to contrast
the attacker and to prevent it from scoring. We configured three possible actions
that the defender can perform, and we let SErP decide which is the appropriate
depending on the current state of the environment. Namely, in order to block
the attacker, the defender can: cover the goal not allowing the opponent to
move towards or kick (Figure 3)(a); advance and push the ball on the side of
the attacker (Figure 3)(b); make a frontal contrast (Figure 3)(c). In order to
configure the planner in this scenario, the state is represented as a tuple of 3
elements: robot pose, ball position, and opponent pose. It is important to notice
that in this environment, some robot actions could damage the platforms. For
example, while learning, the robot could learn to kick other robots to prevent
them from scoring. Conversely, the SErP planner not only guarantees focused
exploration but also prevents the learner from exploring such actions.

In this scenario, SErP and baseline algorithms are compared in different
games lasting ten minutes. A training episode is started each time the agent
robot and the nearest opponent enter within a radius of 70 centimeters of the
ball. It is considered finished when at least one of the robots exits such an area,
or the ball is secured by the defender, or the attacker scores. Each episode is
then given a cumulative reward depending on: (1) the robots’ positions with
respect to the ball, (2) the coverage of the goal, and (3) the final outcome of the
contrast. To best simulate learning on a real robot, the simulations have been run
in real-time. Each training cycle is set to last 28 games. Thus, the time required
to complete a training session of about 280 minutes. Algorithms are tested by
repeating the training session five times and reporting their cumulative average
rewards and standard deviation. Due to PPO long training time, the algorithm
proved itself to be not a practical solution in such scenarios, and therefore it has
been not included in this evaluation.

As for the cartpole scenario, Figure 2(b) reports the cumulative average re-
ward of the soccer scenario. A similar analysis can also be conducted in this
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(a) (b)

(c)

Fig. 3. a) Goal cover action, (b) Side advance action (c) Frontal contrast action

experiment. SErP outperforms both vanilla-MrP and vanilla-DQN algorithms
since first iterations and demonstrates to be a more practical solution that easily
generates competitive action policies. In the end, both models converge on sim-
ilar cumulative reward values even though SErP is more sample-efficient. The
avoidance of execution of critical actions for the robot’s safety in this scenario
is also confirmed by the obtained results in terms of cumulative reward, in fact,
very negative rewards have been assigned to this type of situations.

5 Conclusion

In this work, we introduce SErP, a new methodology for performing robot
behavior learning using a partial model. The SErP algorithm is based on the
use of a model-free RL algorithm and a model-based planning one. To realize the
required online planner, only a basic model of the environment is needed; in fact,
the planner itself does not need to completely solve the problem. This implies
that it is not required the figure of an expert to define the transition model
of this kind of planning system. With this simple shaping in the initial action
selection, we can significantly improve the sample efficiency of the model-free
DQN algorithm. Also, using elementary modeling of harmful actions for robot
safety, it is possible to avoid selecting them and preventing potential damages
on robots.

There are several directions to extend the work presented in this paper. One
overall is to scale this algorithm over different behaviors and demonstrate its
applicability to several environments and situations. For example, in the soccer
domain, different situations can benefit from the use of our approach. Corner kick
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situations, in fact, can be easily addressed with SErP. Differently, another way
to extend the proposed approach is to generalize it to a hierarchical problem
formulation. In this way, the problem can be divided, and the learner can be
challenged to learn smaller tasks in a more efficient way.

References
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