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1. Introduction

One of the most striking features of phase separation is the generation of long range
correlations confined to the interfacial region. This fact has been first established within
the framework of inhomogeneous fluids in a seminal paper by Wertheim [1]; we refer to
[2] for a historical account on these aspects and to [3–11] for reviews on interfaces
and wetting phenomena. Descriptions based on the capillary wave model [12] have
been proposed as effective frameworks for the characterization of correlations within
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the interfacial region [13, 14]. Further elaborations of these models have been devel-
oped in order to provide accurate descriptions of realistic systems [15, 16] and have
been flanked by accurate full scale numerical studies based on molecular dynamics
simulations [17].

The manifestation of long range correlations at the interface separating coexisting
bulk phases is generally investigated in momentum space through the notion of inter-
face structure factor [15, 16, 18, 19]. This tendency is actually triggered by the fact that
results obtained from scattering experiments—either with neutrons or x-rays—probe
correlations in momentum space; see e.g. [17] and references therein. Although effec-
tive descriptions relying on the notion of interface—such as capillary wave models and
refinements thereof [13, 14]—can be used in order to find correlation in real space, the
first-principle derivation of the exact analytic form of these correlations from the under-
lying field theory has been obtained in [20]. More recently, exact results for n-point
correlation functions in two-dimensional systems exhibiting phase separation have been
obtained in [21].

The two-dimensional case turns out to be very interesting because the scenario is
dominated by strong thermal fluctuations and non-perturbative techniques can be used
in order to find exact results. Among these findings, a central importance is played
by those obtained by exploiting the exact solvability of the Ising model on the lattice
with boundary conditions leading to phase separation [22]. In more recent times, it
has been possible to formulate an exact field theory of phase separation [23] which
encompasses a wide range of universality classes in two dimensions. The language of
field theory proved to be successful in describing multifaceted aspects of interfacial
phenomena in near-critical systems ranging from interface structure [23], interfacial
wetting transition [24], wetting transition on flat walls [25], wedge willing transitions
[26, 27], interface localization [28], interfacial correlations [20, 21], and the interplay of
geometry on correlations [29, 30].

The verification of theoretical predictions by means of Monte Carlo (MC) simulations
is an invaluable test bench for the theory [31]. The structure of single interfaces [23] and
the occurrence of interfacial adsorption predicted in [24] has been confirmed in [32].
We refer to [33, 34] for recently obtained analytical and numerical results about phase
separation in three dimensions4. This paper presents the comparison between theoretical
and numerical results for interfacial correlations in the two dimensional Ising model. To
be definite, we consider the near-critical regime of the two-dimensional Ising model at
phase coexistence. The system is studied on the two-dimensional strip of width R much
larger than the bulk correlation length ξ. The observables considered in this paper are:
magnetization and energy density profiles, two- and three-point correlation functions of
the order parameter field and the passage probability of the off-critical interface. For all
the aforementioned quantities we provide closed-form analytic expressions which then
we test through high-quality MC simulations.

This outline of this paper is as follows. In section 2, we set up the calculation of the
energy density profile across an interface and we also recall the main ideas involved in the
probabilistic interpretation of fluctuating interfaces, which include the notions of pas-
sage probability and interface structure. We then compare the theoretical predictions for

4 See [35] for the extension of the theory to topological defect lines and to [36] for comparison with numerical simulations.
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the energy density profile with MC simulations. Next, we consider the order parameter
profile and its leading and first subleading finite-size corrections. At leading order, the
order parameter profile is extracted from an exact probabilistic interpretation [23]. The
first subleading correction, which occurs at order ξ/R, is borrowed from [21]. Both the
quantities are found to be in agreement with the numerical results. We conclude section 2
by showing the comparison between theory and numerics for the passage probability,
the latter is directly extracted by sampling interface crossings on the lattice. Analytic
expressions and numerical results for two- and three-point correlation functions of the
order parameter field are presented in sections 3 and 4, respectively. Conclusive remarks
are summarized in section 5. Appendix A summarizes various mathematical details
involved in the calculation of two- and three-point correlation functions. Appendix B
shows how Bürmann series can be fruitfully applied in order to characterize the asymp-
totic behavior of certain three-point correlation functions. Appendix C collects results
about mixed three-point correlation functions involving two order parameter fields and
one energy density field.

2. Theory of phase separation on the strip

In this section, we review the exact field theoretical approach to phase separation and
interfacial phenomena in two dimensions [23]. Our presentation follows closely the one
outlined in [24], however, instead of presenting the field-theoretical calculation of the
magnetization profile, we focus on the energy density profile. The reason for such a
viewpoint relies on the fact that, as we are going to show, energy density correlation
functions are proportional to the passage probability, a notion which completely char-
acterizes the statistics of interfacial fluctuations. Anticipating some results, exact order
parameter profiles and correlation functions involving the spin field will be computed
within a probabilistic interpretation based on the passage probability extracted from
energy density correlations [21, 23]. Although several conclusions which we will drawn
are valid for several universality classes in two dimensions, we will focus both the theory
and the numerics to the Ising model.

As a warmup and in order to set the notations, we begin by recalling the lattice
Hamiltonian of the Ising model

H = −J
∑
〈i,j〉

sisj, (2.1)

with spins si ∈ {±1} and the sum is restricted to nearest neighboring sites of a square
lattice. The global Z2 symmetry corresponding to sign reversal of all spins is sponta-
neously broken below the critical temperature Tc/J = 2/ log(1 +

√
2) = 2.269 185 . . . , in

correspondence of which the model exhibits a second order phase transition [37].
In this paper, we consider the two-dimensional Ising model along the phase coexis-

tence line5 close enough to the critical temperature. The scaling limit of the lattice model

5 The phase coexistence line is defined by the set of points in the phase diagram in which H = 0 and T < T c, where H is the bulk
magnetic field.
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Figure 1. The strip geometry with −+ boundary conditions.

in the closeness of T c is described by a Euclidean field theory in the two-dimensional
plane with coordinates x and y. The aforementioned Euclidean field theory can be
regarded as the analytic continuation to imaginary time t = iy of a relativistic field the-
ory in a (1 + 1)-dimensional space time. Elementary excitations in 1 + 1 dimensions are
stable kink states |K−+(θ)〉 which interpolate between two different vacua, denoted |Ω−〉
and |Ω+〉, and analogously for |K+−(θ)〉. These topological excitations are relativistic
particles with energy–momentum

(e, p) = m (cosh θ, sinh θ) , (2.2)

where θ is the rapidity and m is the kink mass. In the Ising field theory there are only
two degenerate vacua, the latter correspond respectively to pure phases in which the
system is translationally invariant and ferromagnetically ordered. Pure phases can be
selected by fixing the spins on a finite boundary and then by taking the thermodynamic
limit in which the boundary is sent to infinity.

We study phase separation on a strip of width R with fixed boundary conditions such
that the boundary spins take the value −1 on the left side (x < 0) and the value +1 on
the right side (x > 0); see figure 1. These boundary conditions lead to the emergence of
phase separation when R becomes much larger than the bulk correlation length ξ. The
bulk correlation length describes the large-distance exponential decay of the connected
spin-spin correlation function in pure phases [38–40], i.e.6

〈σ(0, 0)σ(x, y)〉c± ∼ e−r/ξ, r =
√
x2 + y2. (2.3)

The kink mass m turns out to be inversely proportional to the bulk correlation length;
ξ = 1/(2m) in the low-temperature phase and ξ = 1/m in the high-temperature phase.

The switching of boundary condition from − to + at x = x0 and time t is imple-
mented through the boundary state |B−+(x0 ; t)〉, the latter can be decomposed over the
complete basis of states of the bulk theory (the kinks states). Since the states entering
in the aforementioned decomposition have to interpolate between the phases − and +,

6 For large distances the exponential decay is multiplied by a power law which is not essential to recall here.
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we have

|B−+(x0 ; t)〉 = e−itH+ix0P

[∫
R

dθ

2π
f−+(θ)|K−+(θ)〉+ . . .

]
, (2.4)

where H and P are the energy and momentum operators of the (1 + 1)-dimensional
quantum field theory. The ellipses correspond to multi-kink states with total mass larger
than m. The lightest term appearing in the ellipses corresponds to the emission of
a three-kink excitation |K−+(θ1)K+−(θ2)K−+(θ3)〉 which interpolates between the two
vacua. In general, an arbitrary multi-kink state compatible with the topological charge
imposed by the boundary must involve an odd number of kinks.

Within the one-kink approximation, which suffices in order to describe phase sepa-
ration for large R/ξ, the partition function for the strip with −+ boundary conditions
of figure 1 reads

Z−+(R) = 〈B−+(x0 ; iR/2)|B+−(x0 ;−iR/2)〉,

�
∫
R

dθ

2π
|f−+(θ)|2e−mR cosh θ.

(2.5)

The symbol � stands for the omission of subleading terms stemming from heavier states.
The normalization of kinks 〈Kab(θ)|Ka′b′(θ

′)〉 = 2πδaa′δbb′δ(θ − θ′) has been used in (2.5).
The limit of large R/ξ we are interested in amounts to project the integrand at small
rapidities; hence, a standard saddle-point calculation yields

Z−+(R) � |f−+(0)|2
e−mR

√
2πmR

. (2.6)

The occurrence of phase separation can be detected by a local measurement of the
spin field, the latter amounts to compute the order parameter profile 〈σ(x, y)〉−+. The
magnetization profile 〈σ(x, y)〉−+ interpolates between the asymptotic values −M and
+M where M is the (absolute value of the) spontaneous magnetization of bulk phases
in the far left and right regions, respectively. The jump of order parameter across the
interface is accompanied by an increase of the energy density, which we are going to
compute. The energy density for the Ising model on the lattice can be defined by εi =
−

∑
j∼i σiσj , where the sum runs over nearest neighbors of site i and the overall factor

−1 is purely conventional. Contrary to the order parameter—which corresponds to an
extended spin field configuration—the energy density profile is localized in the sense that
it exhibits a nontrivial dependence through the coordinates only within the interfacial
region, while away from the interface it attains the bulk value 〈ε〉 in both phases.

The energy density profile is defined as follows

〈ε(x, y)〉−+ =
〈B−+(0 ; iR/2)|ε(x, y)|B+−(0 ;−iR/2)〉

〈B−+(0 ; iR/2)|B+−(0 ;−iR/2)〉 . (2.7)

The field entering in (2.7) can be translated to the origin thanks to

ε(x, y) = eixP+yHε(0, 0)e−ixP−yH , (2.8)

https://doi.org/10.1088/1742-5468/ac1407 6
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by using the boundary state (2.4) the one-point correlation function (2.7) reads

〈ε(x, y)〉−+ =
1

Z−+(R)

∫
R2

dθ1dθ2
(2π)2

f∗
−+(θ1)f−+(θ2)

× 〈K−+(θ1)|e(−R/2+y)Hε(x, 0)e−(R/2+y)H |K−+(θ2)〉+ . . . , (2.9)

with |y| < R/2. In analogy with (2.4), the ellipses denote terms coming from multi-kink
states whose contribution is subleading with respect to the term shown in (2.9). Thus,
we have

〈ε(x, y)〉−+ � 1

Z−+(R)

∫
R2

dθ1dθ2
(2π)2

f∗
−+(θ1)f−+(θ2)Mε

−+(θ1|θ2)O(θ1, θ2), (2.10)

where O(θ1, θ2) = exp [−M− cosh θ1 −M+ cosh θ2 + imx(sinh θ1 − sinh θ2)], M± =
m(R/2± y), and

Mε
−+(θ1|θ2) = 〈K−+(θ1)|ε(0, 0)|K−+(θ2)〉. (2.11)

The matrix element (2.11) can be decomposed into a connected part and a disconnected
one; thus,

Mε
−+(θ1|θ2) = Fε(θ12 + iπ) + 2π〈ε〉δ(θ12), (2.12)

where θ12 ≡ θ1 − θ2, and Fε(θ12 + iπ) is the two-particle form factor of the energy den-
sity field [41]. Since the large mR asymptotic behavior projects the integrand at small
rapidities, the leading asymptotic behavior of the integral is encoded in the infrared (low-
energy) properties of the bulk and boundary form factors, respectively Fε(θ12 + iπ) and
f−+(θ).

By virtue of reflection symmetry the boundary amplitude satisfies f−+(θ) =
f+−(−θ). Moreover, since the phases − and + play a symmetric role, there is invari-
ance under exchange of labels, i.e. f−+(θ) = f+−(θ). These observation imply the low-
rapidity behavior f−+(θ) = f0 + f2θ

2 +O(θ4) with f0 ≡ f−+(0) [23]. We recall that the
energy density field is proportional to the trace of the stress tensor field Θ(x, y), i.e.
Θ(x, y) ∝ mε(x, y). Furthermore, the form factor of the stress tensor satisfies the normal-
ization FΘ(iπ) = 2πm2 [42] and, without loss of generality, we can set the normalization
of the energy density form factor to be

Fε(iπ) = Cεm, (2.13)

where Cε is a proportionality constant which depends on the specific normalization of
the energy density field and its implementation on the lattice. By inserting (2.12) into
(2.10) the leading-order term in the low-rapidity expansion yields

〈ε(x, y)〉−+ � 〈ε〉+ Fε(iπ)|f0|2e−mR

Z−+(R)

∫
R2

dθ1dθ2
(2π)2

e−M−θ21/2−M+θ
2
2/2+imxθ12 , (2.14)

the symbol � stands for the omission of terms at order O(R−3/2), which are thus sub-

leading with respect to the O(R−1/2) term displayed in (2.14). The calculation of the fac-
torized Gaussian integrals appearing in (2.14) is immediate. The connected correlation

https://doi.org/10.1088/1742-5468/ac1407 7
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function

Gc
ε(x, y) = 〈ε(x, y)〉−+ − 〈ε〉 (2.15)

reads

Gc
ε(x, y) = Cε

e−χ2

√
πκλ

; (2.16)

the dependence through the coordinates x and y is encoded in the variables χ and κ
defined by

χ =
η

κ
, κ =

√
1− τ 2, τ = 2y/R, (2.17)

in the above, η = x/λ is the rescaled horizontal coordinate and λ =
√

R/(2m) =
√
Rξ.

Far away from the interfacial region, i.e. |x| � λ, the energy density profile
〈ε(x, y)〉−+ approaches the bulk value 〈ε〉. On the other hand, in the closeness of the
interfacial region, i.e. |x| 
 λ, the energy density exhibits a deviation from the bulk
value. The deviation is due to local increase of the disorder in the region where the
two coexisting bulk phases come in touch. The deviation along the x-axis reaches its
maximum at x = 0 and is given by

Gc
ε(0, y) =

Cε√
πRξ

√
1− (2y/R)2

. (2.18)

We notice that (2.18) diverges upon approaching the pinning points (0,±R/2). It is
worth observing that the total excess energy on the strip is finite and it is given by∫

R

dx

∫ R/2

−R/2

dy Gc
ε(x, y) = CεR. (2.19)

We stress that (2.19) is valid in the near-critical region where the field-theoretical for-
malism applies. The right-hand side of (2.19) is positive due to our normalization of the
energy density field; see section 2.1. Rigorous results obtained from low-temperature
expansions show that the integrated energy density correlation function is proportional
to −dΣ/dβ, where β = 1/T and Σ is the surface tension of the ab interface [43]. It is
straightforward to realize that the quantity −dΣ/dβ is positive in the closeness of the
critical temperature. This can be realized by recalling that Σ is related to the kink
mass via Σ = m [23] and in the near-critical region Σ ∼ (Tc − T )μ (clearly, with a posi-
tive pre-factor). Moreover, m ∝ 1/ξ and ξ ∼ (Tc − T )−ν, with ν = 1 for the Ising model.
By combining the above, we find μ = 1, which is compatible with Widom’s hyperscal-
ing relation μ = (d− 1)ν [3] in d = 2. Of course, μ = 1 emerges also from the exact
expression for the surface tension [22].

2.1. Numerical results

We can now present the comparison between theory and numerics. We have performed
MC simulations on a finite rectangle with horizontal length L and temperature T such

https://doi.org/10.1088/1742-5468/ac1407 8
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Table 1. Summary of data sets used in the MC simulations.

that ξ 
 R. As an effective criterion for the sizing of the simulation box, we take
(L/2)/λ � 6 for the analysis of profiles and correlation functions as function of x. This
requirement is satisfied by all data sets considered in this paper and summarized in
table 1, with the sole exception of T = 2.15, R = 101, 151 for which (L/2)/λ is approx-
imately 4.4 and 5.4, respectively. The latter data sets, however, are used only for the
investigation of the slope of the magnetization profile in x = 0 for which the finiteness
of L is already well tamed by the weaker requirement (L/2)/λ � 4.

Without loss of generality, we set J = 1 in simulations. Our hybrid MC scheme (see,
e.g. [44]) combines the standard Metropolis algorithm and the Wolff cluster algorithm
[45]. The minimum number of MC steps per site is 107. Parallelization was obtained by
independently and simultaneously simulating up to 128 Ising lattices on a parallel com-
puter. An appropriately seeded family of dedicated, very large period, Mersenne Twister
random number generators [46], in the MT2203 implementation of the Intel Math Kernel
Library, was used in order to simultaneously generate independent sequences of random
number to be used for the MC updates of the lattices.

The theory predicts that the maximum of the energy density Gc
ε(0, 0) (with respect

to x) scales as R−1/2 at fixed temperature, while for fixed R the maximum of the energy

density depends on the temperature through ξ−1/2. The above scaling behaviors are con-
firmed by the numerical results in the log-log of figure 2, where straight lines correspond
to the scaling with R−1/2. Minute discrepancies between theory at leading order—the
result (2.16)—and MC data are due to the omission of further subleading effects char-
acterized by a power law ∝R−a with a > 1/2. Anticipating some results which follows,
while these subleading effects weakly affect the plot of figure 2, they turn out to play
a major role at the level of the slope of magnetization profile, which is presented in
figure 5. The temperature dependence shown in figure 2 is due to the bulk correlation
length via the factor ξ−1/2. For the planar Ising model in the low-temperature phase

ξ = (4K − 4K�)−1, (2.20)

with the dual coupling K� defined by means of exp(−2K�) = tanh K with K = J/T
[22].

In figure 3 we test the theoretical prediction (2.16) for the spatial dependence of the
energy density profile. Figure 3(a) provides the comparison for the full profile 〈ε(x, 0)〉−+

while in figure 3(b) the connected part is considered. From the profiles 〈ε(x, 0)〉−+

https://doi.org/10.1088/1742-5468/ac1407 9
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Figure 2. Maximum of the energy density as a function of R in log–log plot. Sym-
bols indicate different temperatures: T = 2.00 (�), T = 2.10 (©), T = 2.15 ( ); the
values of L are indicated in table 1. Straight dashed lines correspond to the scaling
behavior ∝R−1/2 predicted by (2.18).

Figure 3. Energy density profiles obtained in simulations (symbols) and theoretical
results (red curves). (a) The full energy density profile along the horizontal axis,
〈ε(x, 0)〉−+. (b) The subtracted energy density profile 〈ε(x, 0)〉−+ − 〈ε〉 divided by
its value in the origin. Numerical data are obtained for the following data sets: T =
2.00, R = 201, L = 352 (�), T = 2.10, R = 81, L = 252 (©), T = 2.15, R = 301,
L = 602 ( ).

obtained within numerical simulations, we read the offset value 〈ε〉 attained for large η
in figure 3(a), which is the quantity we subtract in (2.15). We observe that 〈ε〉 obtained
in our simulations perfectly agrees with the theoretical value known in the literature 7

[39]. From the numerical simulations, we extract the overall (non universal) amplitude
Cε = 8.02± 0.07. Since Cε is positive, the energy density increases upon approaching the

7Notice that our definition of the energy density differs from the one given in [39] due to a different convention relative to the
summation of neighboring sites; in our case the sum runs over the coordination number of the square lattice, which is 4.

https://doi.org/10.1088/1742-5468/ac1407 10

https://doi.org/10.1088/1742-5468/ac1407


J.S
tat.

M
ech.

(2021)
083209

Correlations and structure of interfaces in the Ising model: theory and numerics

interfacial region. This expected feature indicates a local increase of disorder with respect
to the bulk phases, as we anticipated. Thanks to a rescaling of the horizontal coordinate,
via η = x/λ, numerical results at different temperatures and lattice sizes collapse onto

a single scaling curve given by Gc
ε(x, 0)/Gc

ε(0, 0) = e−η2 , which is the continuous curve
plotted in figure 3(b).

As a matter of fact, the subtraction of the bulk energy density 〈ε〉 in the plot of
figure 3(a) isolates the noisy data characterizing the tails of figure 3(b). The presence of
subleading finite-size effects as those discussed in connection with figure 2 manifest as
an additional term in (2.16) through a combination proportional to R−aE(η) (for y = 0),
with E(η) a scaling profile whose actual calculation goes beyond the scope of the present
analysis. Nonetheless, the numerical data shown in figure 3(b) are well reproduced by
the leading-order form of the theoretical result in absence of free parameters.

2.2. Probabilistic interpretation

We can reconstruct the energy density profile by adapting the probabilistic approach
described in [23]. Regarding the interface as a sharp line separating the left and right
phases, we stipulate that it crosses the interval (x, x+ dx) at ordinate y with proba-
bility P 1(x, y)dx. The expectation value of the energy density field can be obtained by
weighting the energy density profile

ε(x|u) = 〈ε〉+ A(0)
ε δ(x− u) + . . . (2.21)

with the passage probability P 1(x, y). The energy density profile ε(x|u) gives the energy
density at the point (x, y) when the interface crosses the interval (u, u+ du) at ordi-
nate y. Since the energy density takes the same value in both phases, the expansion
(2.21) starts with the bulk expectation value 〈ε〉. As a result, the sum over interfacial
configurations reads

〈ε(x, y)〉−+ =

∫
R

duP1(u, y)ε(x|u). (2.22)

By matching the field-theoretical calculation (2.15) with the averaging procedure implied
by (2.22), we extract the passage probability

P1(x, y) =
e−χ2

√
πκλ

, (2.23)

and the structure amplitude

A(0)
ε =

Fε(iπ)

m
= Cε. (2.24)

Subsequent corrections can be determined in a systematic fashion by taking into account
further terms in the low-energy expansion of bulk and boundary form factors in the field-
theoretic calculation which lead us to the leading order result (2.15). Being P 1(x, y) a
probability density, it is normalized as follows

∫
R
dxP1(x, y) = 1.

The probability density (2.23) is the one of a Brownian bridge in which the time
is identified with the y coordinate. The endpoints x = 0, y = ±R/2 of the Brownian
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bridge correspond to the points in which the interface is pinned on the boundaries. In
particular, (2.23) implies that midpoint fluctuations of the interface grow as the square
root of the separation between pinning points; such an observation has been rigorously
proved for low temperatures [47]. The convergence of interface fluctuations towards the
Brownian bridge has been proved for the Ising model [48] and for the q-state Potts
model [49]. However, field theory implies that the occurrence of Brownian bridges is a
more general feature which emerges naturally in a larger variety of universality classes
[23, 24].

Once we have extracted the passage probability, the probabilistic formulation allows
us to reconstruct the magnetization profile by following the same guidelines which lead
us to the energy density profile. Thus, the magnetization profile is given by

〈σ(x, y)〉−+ =

∫ +∞

−∞
duP1(u ; y)σ−+(x|u) (2.25)

with the sharp magnetization profile

σ−+(x|u) = −Mθ(u− x) +Mθ(x− u) + . . . (2.26)

and θ(x) is Heaviside step function [23].
The calculation of the magnetization profile within the field-theoretical approach

can be refined in order to take into account the first subleading correction in a large-R
expansion. Focusing on the midline y = 0, the result for the profile reads [21]

〈σ (x, 0)〉−+/M = erf(η) +
bB(η)
mR

+O(R−2), (2.27)

where erf(· · ·) is the error function [50] and M is the spontaneous magnetization, which
for the two-dimensional Ising model on the square lattice is given by [39, 51]

M =
(
1− (sinh(2K))−4

)1/8
, (2.28)

where K = 1/T (since J = 1) and T is the temperature. The subleading correction at

order R−1 occurs via the scaling function for the branching profile B(η) = π−1/2η e−η2 .
The overall amplitude is b = (2/3) + 4f2. From the low-rapidity expansion of the
boundary form factor [52], we find f2 = 3/8 and b = 13/6.

In figure 4, we compare the numerical results obtained within MC simulations with
the analytic result (2.27) at leading order. Data sets obtained at different temperatures
T and lattice width R collapse onto the scaling function given in (2.27) with remarkably
good accuracy, and without free parameters. For this plot, statistical errors are smaller
than symbol size.

In order to test the expression (2.27) for the magnetization profile, we extract the
slope of the profile at x = 0 and compare it against the theoretical prediction implied
by (2.27). The slope in the origin is given by

∂x〈σ(x, 0)〉−+/M |x=0 =
2√
πRξ

(
1 +

bξ

R

)
+O(R−5/2)

≡ S(R,T ).

(2.29)
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Figure 4. Scaling function for the magnetization profile. Symbols correspond to
the data sets T = 2.00, R = 121 (×), T = 2.00, R = 201 (�), T = 2.10, R = 161
(©), T = 2.10, R = 301 (�), T = 2.10, R = 321 (�), T = 2.15, R = 301 ( ); the
values of L are indicated in table 1. The solid red curve corresponds to the scaling
function erf(η).

The theoretical result (2.29) is compared with the numerical data in figure 5. The power-

law behavior ∝R−1/2 for large R is visible in the log–log plot of figure 5. Statistical errors
are again smaller than symbol size and thus they do not explain the observed discrepancy
between MC data and straight lines. In fact, the truncation of (2.29) at the leading-

order term ∝R−1/2 (straight lines in figure 5) introduces a systematic error which is at
the origin of the observed discrepancy. The latter is drastically suppressed when the
MC data are compared against the expression (2.29) which includes also the corrective

term at order R−3/2. This term is crucial in order to establish a quantitative agreement
between theory and numerics. As a further check, we have also fitted the numerical data
for the slope with the right-hand side of (2.29) with an unknown b and found the optimal
value b = 2.17, which is remarkably close to the theoretical one b = 13/6 = 2.16̄.

We can now push the comparison of the subleading profile B(η) for x �= 0. To this
end, we subtract from the numerical data the leading order form of the magnetization
profile given by erf(η) in (2.27), the result is then multiplied by mR. The numerical
result obtained within this procedure is then compared against the theoretical predic-
tion, which is the profile bB(η). The subtraction of the leading-order profile and the
multiplication by the factor mR increases the statistical noise, as one can clearly see by
inspection of figure 6. Nonetheless, a good data collapse is observed for several values
of T and R.

Even in this case we can regard b as unknown and seek for the best fit of the numerical
data with the theoretical prediction of the subleading profile. We have tested several
data sets obtained at temperatures T = 2.0, T = 2.1, and T = 2.15 with the values of R
summarized in figure 6. The fit obtained from the data sets of figure 6 yields b = 2.169,
in agreement with the analysis of the slope in x = 0.
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Figure 5. Slope S(R,T ) as function of R for various T . Results extracted from
numerical simulations are illustrated with symbols: T = 2.00 (�), T = 2.10 (©),
T = 2.15 ( ); the values of L are indicated in table 1. Dashed lines indicate the
leading-order behavior ∝R−1/2 given by (2.29) with b = 0. Solid curves correspond
to the result (2.29) including the subleading correction with b = 13/6.

Figure 6. Subleading correction of the magnetization profile. Numerical data:
T = 2.0, R = 41 (×), T = 2.0, R = 81 (�), T = 2.1, R = 41 (◦), T = 2.1, R = 61
(�), T = 2.1, R = 81 (�), T = 2.1, R = 301 ( ), T = 2.15, R = 101 ( ), T = 2.15,
R = 301 (�); the values of L are indicated in table 1. The theoretical result is
indicated with the solid black line.
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The subtraction of the leading order profile erf(η) (the red curve in figure 4) from
the MC data of figure 4, and the successive multiplication by mR—de facto—, amplifies
the statistical errors and causes a lower-quality plot when compared to figure 4. On top
of statistical errors, we emphasize how the comparison between the subtracted data in
figure 6 and the leading form of the subleading scaling profile ∝B(η) is also affected
by further subleading effects arising from the low-energy expansion of matrix elements.
These corrections are expected to produce, on top of the O(R−1) correction propor-
tional to the profile B(η), a correction of order R−2. The presence of this last correction
inevitably affects the comparison of the subtracted data in figure 6 with the branch-
ing profile B(η). Although statistical and systematic errors are visible, the quantitative
agreement between theory and simulations is observed although its overall quality is
clearly lower than the one which characterizes the leading-order profile of figure 4.

2.3. Interface tracing on the lattice

The remarkable agreement between theoretical and numerical results for spin and
energy density profiles provides an indirect validation of the probabilistic interpreta-
tion. Although the Brownian bridge property is known from rigorous results, finding
passage probabilities in a direct fashion is an interesting problem on its own, especially
for those circumstances in which exact results are not yet available. We will provide
further remarks on this point in the concluding section. The idea of extracting passage
probabilities for extended objects has been already successfully employed in the study
of critical interfaces by means of the Schramm–Loewner Evolution, in investigations of
critical spin clusters, and geometrical properties of percolative observables; see [53–55]
and references therein. Since we are interested in the strictly subcritical regime, we
will provide a direct measurement of the passage probability for off-critical interfaces
by means of numerical simulations. The recipe we are going to discuss applies to the
critical case too.

The line of separation between two coexisting phases in the Ising model is a well
defined observable on the lattice [56]. For the square lattice, which is the one we are using
in our simulations, the interface is constructed on the dual lattice by those dual bonds
which cross real bonds connecting opposite spins; see figure 7(a). We can also regard the
interface as the result of an exploration process originated in the lower pinning point
(x = 0, y = −R/2) and propagated towards the upper pinning point (x = 0, y = +R/2).
Within this construction, the interface proceeds straight in vertical direction, turn left
or turn right, as illustrated in the elementary plaquettes of figures 8(a)–(c), respectively.

On the square lattice, however, the occurrence of the plaquette of figure 8(d) does not
lead to a precise definition of the interface. One can certainly prescribe a way to resolve
the ambiguity, e.g. by going straight. The standard way to circumvent the ambiguity
is to pass on the medial lattice [53]. Interfaces on the medial lattice are constructed as
follows: we draw a square lattice rotated by 45 degrees with respect to the original one
and assign a clockwise pattern of arrows to the medial bonds surrounding real lattice
sites, the interface segments are then drawn by following the arrows with the prescription
that the interface does not cross real bonds connecting identical spins; see figure 7(b).
By construction, interfaces on the medial lattice are always unambiguously defined.
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Figure 7. Construction of the interface on the square lattice (a) and on the medial
lattice (b).

Figure 8. Construction of the interface on square plaquettes. In (a)–(d) the pair
of spins on the bottom defines a vertically oriented interface segment on the dual
lattice. The interface then proceeds vertically in (a), turns left in (b), and turns
right in (c). Plaquette (d) leads to an ambiguity in the definition of the interface.

The passage probability P 1(x, y = 0) is thus extracted by sampling interfacial cross-
ings along the line y = 0 over a statistically adequate sample of MC snapshots. According
to (2.23), data sets at different temperatures and system size collapse onto a Gaussian
curve in a plot of λP 1(x, 0) as function of x/λ = η; this is precisely what we observe in
figure 9. For the data sets in figure 9 at the temperatures T = 2, T = 2.1, and T = 2.15,
we have sampled, respectively, 190 513, 54 636, and 62 001 single crossings on the x-
axis. The Gaussian fluctuations exhibited by the interface are well reproduced by our
data obtained for a sample of single crossings. It is important to mention that multiple
crossings are inevitably observed on the lattice, while they do not appear in the proba-
bilistic formulation. Multiple crossings are responsible for the occurrence of overhangs,
as depicted in figure 7(b). It is actually possible either to restrict the sampling to those
configurations with no multiple crossings, or to specify a certain rule for the treatment
of multiple crossings. Different rules can be formulated; for instance, one can take the
arithmetic average of the crossings abscissas. Once we have stipulated the sampling
rule, we proceed with the construction of histograms which then we compare with the
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Figure 9. Passage probability in rescaled units. Symbols correspond to the data
sets: T = 2, R = 161, L = 302 (orange ©), T = 2, R = 201, L = 352 (brown �),
T = 2.1, R = 321, L = 602 (blue �), T = 2.15, R = 301, L = 602 (green �). The
black curve is the function π−1/2e−(x/λ)2 given by (2.23).

theoretical prediction (2.23). For the data sets of figure 9 the statistics over configura-
tions with either single or multiple crossings do not produce significant variations on
the variance when comparing the theoretical prediction of (2.23).

We conclude this section with some observations concerning the discrepancies
between theory and numerics observed in figure 9. Strictly speaking, the convergence
of MC data towards the Gaussian passage probability density is expected in the
limit mR→∞, which cannot be reached in simulations. For the data of figure 9 the
parameter mR ranges between 14 and 44. In order to estimate the errors, we have
measured the standard deviation from the MC data (σnum) and compared it against

the theoretical result σth =
(∫

R
duu2P1(u, 0)

)1/2
= λ/

√
2. We have observed that for

large mR the relative error δ = (σth − σnum)/σth is well approximated by δ = C/(mR)
with C ≈ 1. This observation implies that the error is algebraically suppressed as R
increases.

3. Two-point correlation functions

The investigation carried out in the previous section is extended to pair correlation
functions. In section 3.1, we compute the two-point correlation function of the energy
density field within the exact field-theoretical approach. In section 3.2, we show how
the probabilistic interpretation can be extended in order to take into account energy
density correlations. We then extract the passage probability which allows us to find
exact expressions for the spin–spin correlation function. The results obtained within the
probabilistic approach are identical to those obtained by means of the field-theoretic
calculation of [20], as consistency requires.
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3.1. Energy density correlators

We begin by computing the pair correlation function of the energy density field. The
quantity we are interested in is defined by

〈ε(x1, y1)ε(x2, y2)〉−+ =
〈B−+(0 ; iR/2)|ε(x1, y1)ε(x2, y2)|B+−(0 ;−iR/2)〉

〈B−+(0 ; iR/2)|B+−(0 ;−iR/2)〉 , (3.1)

with −R/2 < y2 < y1 < R/2. In practice, we take ξ 
 y1 − y2 
 R and the distance
of the two fields from the boundaries to be large compared to ξ. Within these limits,
the expansion of the boundary state and the insertion of a complete set of multi-kink
states between the two energy density fields is dominated by the single-kink state. The
calculation proceeds as follows

〈ε(x1, y1)ε(x2, y2)〉−+ =
1

Z−+(R)

∫
R2

dθ1 dθ2 dθ3
(2π)3

f∗
−+(θ1)f−+(θ3)

×Mε
−+(θ1|θ2)Mε

−+(θ2|θ3)× U(θ1, θ2, θ3), (3.2)

where

U(θ1, θ2, θ3) = exp [−m(R/2− y1) cosh θ1 −m(y1 − y2) cosh θ2

−m(R/2 + y2) cosh θ3 + imx(sinh θ1 − sinh θ2)

+ imx(sinh θ2 − sinh θ3)] . (3.3)

For both matrix elements of the energy density field, we apply the decomposition
(2.12) which entails a fully connected part (c), two partially connected ones and a
fully disconnected one. The calculation gives

〈ε(x1, y1)ε(x2, y2)〉−+ = 〈ε(x1, y1)ε(x2, y2)〉c−+ + 〈ε(x1, y1)〉c−+〈ε〉
+ 〈ε(x2, y2)〉c−+〈ε〉+ 〈ε〉2, (3.4)

where 〈ε(xj, yj)〉c−+ = 〈ε(xj, yj)〉−+ − 〈ε〉 is the connected part of the energy density pro-
file. The connected component of the two-point correlation function is obtained from
the product of form factors Fε(θ12 + iπ)Fε(θ23 + iπ). A straightforward saddle-point
calculation gives, at leading order,

〈ε(x1, y1)ε(x2, y2)〉c−+ =
F 2
ε (iπ)

m2
P2(x1, y1 ; x2, y2), (3.5)

where P 2 is the function

P2(x1, y1 ; x2, y2) =
e
− η21

2(1−τ1)
− η22

2(1+τ2)
− (η1−η2)

2

2(τ1−τ2)

πλ2
√
2(1− τ1)(τ1 − τ2)(1 + τ2)

. (3.6)

We note that 〈ε(xj, yj)〉c−+ = O(R−1/2) at leading order and the next correction comes

at order O(R−3/2). The first term on the right-hand side of (3.4) is proportional to R−1

(see (3.6)). It is then easy to check that the next correction in (3.5) comes at order R−2.
Summarizing, the energy density correlation function given in (3.4) is correct up to
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O(R−3/2). Collecting the results obtained so far, the energy density correlation function
including corrections at order R−1 reads

〈ε(x1, y1)ε(x2, y2)〉−+ =
F 2
ε (iπ)

m2
P2(x1, y1 ; x2, y2) + 〈ε〉Fε(iπ)

m

[
P1(x1, y1)

+ P1(x2, y2)

]
+ 〈ε〉2. (3.7)

We observe that (3.7) satisfies the clustering properties

lim
x1→±∞

〈ε(x1, y1)ε(x2, y2)〉−+ = 〈ε〉〈ε(x2, y2)〉−+,

lim
x2→±∞

〈ε(x1, y1)ε(x2, y2)〉−+ = 〈ε〉〈ε(x1, y1)〉−+.
(3.8)

In analogy with the energy density profile (2.15), energy density correlations show a non-
trivial dependence on the coordinates only in the proximity of the interfacial region. This
dependence is completely codified by (3.7).

The extension of the probabilistic interpretation to pair correlation functions reads

〈ε(x1, y1)ε(x2, y2)〉−+ =

∫
R2

du1 du2 ε(x1|u1)ε(x2|u2)P2(u1, y1 ;u2, y2), (3.9)

where P 2(u1, y1 ;u2, y2) is the two-interval joint passage probability density. The quantity
P 2(u1, y1 ;u2, y2)du1du2 is the net probability for the sharp interface to pass through the
intervals (u1, u1 + du1) at ordinate y1 and (u2, u2 + du2) at ordinate y2. It is indeed
simple to show that (3.9) reproduces (3.4) with the passage probability density given
by (3.6). Since P 2 is a joint probability distribution, by integrating over x2 we obtain
the marginal probability density

P1(x1, y1) =

∫
R

dx2 P2(x1, y1 ;x2, y2) (3.10)

given by (2.23); an analogous relation follows by taking the marginal with respect to
the other variable. A further integration leads to the normalization, i.e.∫

R2

dx1 dx2 P2(x1, y1 ;x2, y2) = 1. (3.11)

3.2. Spin correlators

We address the calculation of the spin–spin correlation function along the same lines
outlined in section 2. The probabilistic reconstruction gives

〈σ(x1, y1)σ(x2, y2)〉−+ =

∫
R2

du1 du2 σ−+(x1|u1)σ−+(x2|u2)P2(u1, y1 ;u2, y2), (3.12)

where σ(xj|uj) is the sharp magnetization profile given by (2.26). Focusing on the
leading-order term in the large-R expansion, ignoring thus subleading terms coming
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from the interface structure, the twofold integral in (3.12) can be expressed in terms
of cumulative distributions functions of the Gaussian distribution. To this end it is
convenient to introduce the normal bivariate distribution

Π2(x1, x2|ρ) =
e
− x21+x22−2ρx1x2

2(1−ρ2)

2π
√
1− ρ2

, (3.13)

where ρ ∈ [0, 1) is the correlation coefficient, i.e.

E[xixj] =

∫
R2

dx1 dx2 xixjΠ2(x1, x2|ρ) = δij + (1− δij)ρ i, j ∈ {1, 2}. (3.14)

The cumulative distribution function is therefore

Φ2(x1, x2|ρ) =
∫ x1

−∞
du1

∫ x2

−∞
du2 Π2(u1, u2|ρ). (3.15)

The passage probability can be expressed in terms of the normal bivariate distribution

P2(x1, y1 ; x2, y2) =
2

κ1κ2λ2
Π2(

√
2χ1,

√
2χ2|ρ) (3.16)

with χj = ηj/κj, κj =
√

1− τ 2
j , τ j = 2yj/R, ηj = xj/λ, while the correlation coefficient

reads

ρ =

√
1− τ1
1 + τ1

1 + τ2
1− τ2

. (3.17)

It is worth noticing that the special limits ρ→ 0 (absence of correlations) and ρ→ 1
(perfect correlations) are never realized within the limits of validity of the field theoret-
ical derivation because the two spin fields are both far from each other and far from the
boundaries [20].

Thanks to the notions introduced above, the two-point correlation function (3.12)
admits the following representation

〈σ(x1, y1)σ(x2, y2)〉−+/M
2 = 4Φ2(

√
2χ1,

√
2χ2|ρ)− 2Φ1(

√
2χ1)− 2Φ1(

√
2χ2) + 1, (3.18)

up to corrections due to interface structure which are computed in [20]. Analogously,
the one-point correlation function of the spin field can be written as follows

〈σ(x, y)〉−+/M = 2Φ1(
√
2χ) − 1, (3.19)

where Φ1(x) is the cumulative distribution of the standardized Gaussian probability
distribution, i.e.

Φ1(x) =

∫ x

−∞
duΠ1(u) =

1 + erf(x/
√
2)

2
, (3.20)

with

Π1(x) =
e−x2/2

√
2π

. (3.21)
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In fact, (3.19) with y = 0 is nothing but the leading order term in (2.27).
By using the following properties of cumulative distribution functions

lim
x1→−∞

Φ2(x1, x2|ρ) = 0,

lim
x2→−∞

Φ2(x1, x2|ρ) = 0,

lim
x1→+∞

Φ1(x1, x2|ρ) = Φ1(x2),

lim
x2→+∞

Φ2(x1, x2|ρ) = Φ1(x1),

(3.22)

we can derive the following clustering properties of the spin–spin correlation function

lim
x1→±∞

〈σ(x1, y1)σ(x2, y2)〉−+ = ±M〈σ(x2, y2)〉−+,

lim
x2→±∞

〈σ(x1, y1)σ(x2, y2)〉−+ = ±M〈σ(x1, y1)〉−+,
(3.23)

which are actually a particular case of equation (3.18) in [20].

3.3. Numerical results

In the following, we specialize the general result (3.18) to a certain class of configurations
in which the spin fields are arranged in a symmetric fashion. The configurations we are
going to examine are those depicted in figure 10.

As illustrated in [20], the formal result provided by (3.18) admits a more explicit
formulation in terms of Owen’s T -function [57, 58], whose definition and main proper-
ties are collected in appendix A. The analytic expressions of the spin–spin correlation
functions for the correlators illustrated in figure 10 are given by:

Gσσ
v (x, y) = 〈σ(x, y)σ(x,−y)〉−+/M

2 = 1− 8T (
√
2χ,

√
τ),

Gσσ
t (x, y) = 〈σ(x, y)σ(−x,−y)〉−+/M

2 = 8T (
√
2χ, 1/

√
τ)− 1,

Gσσ
i (y1, y2) = 〈σ(0, y1)σ(0, y2)〉−+/M

2 =
2

π
tan−1

√
(1− τ1)(1 + τ2)

2(τ1 − τ2)
,

(3.24)

corresponding respectively to the vertical alignment (v), tilted alignment (t), and
alignment along the interface support (i). In the above, χ = η/

√
1− τ 2, η = x/λ, and

τ = 2y/R.
We now provide the comparison between the analytical results (3.24) and the numer-

ical simulations we performed. The correlation function Gσσ
v (x, y) is plotted in figure 11

as a function of x for several values of y. We have restricted the plot to positive values
of x because Gσσ

v (x, y) is an even function of x. Far away from the interfacial region,
i.e. |η| = |x|/λ � 1, the correlation function approaches the square of the spontaneous
magnetization, as required by the clustering properties; thus, Gσσ

v (x→ +∞, y)→ +1.
Within the probabilistic interpretation, the configurations in which the interface

reaches the two spin fields occur rarely when |x| � λ. Then, from the sharp profile
(2.26) it follows that each spin field ‘carries’ a factor M , thus Gσσ

v approaches 1. In
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Figure 10. The spin-spin correlation functions considered in the text: vertical
alignment (a), tilted alignment (b), alignment along the interface (c).

Figure 11. Vertical correlation function Gσσ
v (x, y) as a function of x for the values

of y indicated in the inset. Numerical data are obtained from MC simulations with
T = 2.15, R = 301, L = 602. Solid curves correspond to the analytic result given in
(3.24).

the closeness of the interfacial region instead the correlation is less than M 2; thus,
0 < Gσσ

v < 1. The occurrence of such a feature is easily interpreted within the proba-
bilistic picture. Configurations in which the sharp interface passes between the two spin
fields are weighted with the negative factor equal to −M 2; it thus follows how the cor-
relation decreases with respect to the far right/left regions. Analogously, the increase
of the correlation function upon decreasing y at x = 0 can be interpreted by reasoning
along the same lines. For small y the two spin fields come closer and configurations in
which the interface passes through them are less probable, consequently, the correlation
increases. All of the features described above are reproduced by numerical data and are
captured by the analytic result, as illustrated in figure 11.

The numerical results for the tilted correlation function Gσσ
t (x, y) are provided in

figure 12 together with the analytic results. Even in this case the correlation function
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Figure 12. Tilted correlation function Gσσ
t (x, y) as a function of x for the values of

y indicated in the inset. Numerical data are obtained from MC simulations with
T = 2.15, R = 301, L = 602. Solid curves correspond to the analytic result given in
(3.24).

is an even function of x. The asymptotic behavior is again straightforwardly inter-
preted within the probabilistic picture. Far away from the interface the two spin fields
probe two opposite phases, therefore the correlation function approaches −M 2, cor-
respondingly Gσσ

t →−1. In the limit x→ 0 the tilted and the vertical configurations
degenerate onto the same one; hence, the interpretation followed for the vertical con-
figuration applies also to the tilted one. Surprisingly enough, the numerical data follow
rather accurately the analytical result also in the limit τ → 0 (ρ→ 1) which is not cov-
ered by the domain of validity of the theory for small x. Such a limit corresponds to
horizontally aligned spins in positions (−x, 0) and (0, x). For this special limit the cor-
relation simplifies as follows: Gσσ

t (x, y → 0)→ 1− 2 erf(|η|); see the solid purple line in
figure 12.

In figure 13, we compare the numerical and analytical results for the correlation
function along the interface with spins fields equally spaced with respect to the x axis,
i.e. Gσσ

i (y,−y). For such a specific configuration, y = y1 = −y2, and the analytic result
gives8

Gσσ
i (y,−y) =

2

π
tan−1 1− τ

2
√
τ
,

= 1− 4

π
tan−1

√
τ ,

=
2

π
sin−1 1− τ

1 + τ
.

(3.25)

8We recall the identity (A.5).
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Figure 13. Correlation function along the interface Gσσ
i (y,−y). Numerical data

(green dots) are obtained from MC simulations with T = 2, R = 201, L = 352. The
solid black line corresponds to the analytic result (3.25).

The long-range form of interfacial correlations can be visualized in a direct fashion by
expanding (3.25) for small τ = 2y/R; hence,

Gσσ
i (y,−y) = 1− 4

√
2y

πR
+O((y/R)3/2). (3.26)

The power law behavior proportional to
√

y/R is the signature of long range correlations
mediated by the interface.

We found instructive to expand the discussion about systematic errors in quite some
detail even without entering the technicalities of the calculations. For this reason, we
consider the explicit example of figure 13 in which the discrepancy between theory and
numerics is visible and is due to the concomitance of two types of systematic errors. For
such a plot we have estimated the statistical error by using the bootstrap resampling9

and found that the typical error is much smaller than the symbol size. Figure 13 provides
the MC data decorated with error bars. An inset magnifies a portion of the data and
shows how error bars are actually small. Still focusing on figure 13, we observe a good
agreement between theory and numerics within the error bars provided the separation
between spin fields is sufficiently large. Discrepancies start to become appreciable when
the separation between spin fields is small in the sense that 2y/R � 0.5. Deviations
become well developed for even smaller values of 2y/R.

The discrepancy is caused by the fact that MC data are compared with the leading-
order result of the field-theoretic calculation, which is indeed valid for separations much
larger than the bulk correlation length and for large R/ξ. As a matter of fact, analytic
results are formulated as spectral expansions. This means that the single-particle term,

9 See e.g. [59].
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as the one shown in the boundary state (2.4), and (2.9) for the magnetization profile,
dominates the asymptotic behavior of the correlation function for large separations
such that y1 − y2 � ξ (in the symmetric case, y1 = y = −y2). The successive correction
beyond this picture is due to a multi-kink state which involves the propagation of three
intermediate particles between spin fields. This correction, which is proportional to
exp(−(y1 − y2)/ξ), as well as to R−α with some10 α > 0, is definitely negligible when
y1 − y2 � ξ but it cannot be neglected otherwise. Although the contribution of the
multi-particle term is exponentially small when y1 − y2 � ξ—and therefore negligible
for large separations—the single-particle term given by (3.26) and plotted in figure 13
receives further algebraic corrections which—for the Ising model—are proportional to
1/R. These corrections become relevant even when the effects of the multi-particle term
are small and, as a result, algebraic corrections definitely contribute to the observed
discrepancies at intermediate values of 2y/R. For y ∼ ξ both the algebraic corrections
of the single-particle term, as well as the contribution stemming from multi-particle
terms are expected to play a role.

Summarizing, the systematic error is thus due to truncation effects which do not take
into account the algebraic correction of order O(1/R) and the exponentially small cor-
rection of order O(exp(−2y/ξ)). This discussion applies also to the comparison between
theory and numerics presented in section 4.

4. Three-point correlation functions

In the previous sections, we have showed how one- and two-point correlation functions of
both the spin and energy density fields can be obtained within a probabilistic formulation
in which the passage probability follows from the field-theoretical calculation of energy
density correlations. The results obtained for one- and two-point correlation functions
of the spin field agree with those obtained directly from field theory, respectively in
[23] for magnetization profiles and in [20] for spin–spin correlation functions. The logic
discussed above applies to the three-point correlation functions discussed in this section,
and more generally to arbitrary n-point correlation functions [21]. In particular, the fully
connected part of energy density correlations is proportional to the passage probability,
a feature that we have shown explicitly for n = 1 and n = 2. By following the strategy
summarized above, we compute three-point correlation functions of the spin field in
various arrangements. The occurrence of long range interfacial correlations and their
explicit form is also examined.

4.1. Energy density correlators

By following the guidelines outlined in sections 2 and 3, we commence by comput-
ing the three-point energy density correlation function. The object of our interest is

10 The exact value of α can be computed but its knowledge is unnecessary in this discussion.
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thus

〈ε(x1, y1)ε(x2, y2)ε(x3, y3)〉−+

=
〈B−+(0 ; iR/2)|ε(x1, y1)ε(x2, y2)ε(x3, y3)|B+−(0 ;−iR/2)〉

〈B−+(0 ; iR/2)|B+−(0 ;−iR/2)〉 , (4.1)

with the ordering y1 > y2 > y3 and large separation between fields and boundaries is
also assumed. Since the calculation of (4.1) follows precisely the same path detailed
in section 3, we can skip some intermediate steps and present the final result for the
connected part of (4.1), which reads

〈ε(x1, y1)ε(x2, y2)ε(x3, y3)〉c−+ =
F 3
ε (iπ)

m3
P3(x1, y1 ;x2, y2 ;x3, y3), (4.2)

with P 3 the three-intervals joint passage probability density. The contributions stem-
ming from the disconnected pieces can be taken into account by extending the arguments
of section 3. Analogously to the two-interval case, P 3 can be expressed in terms of the
trivariate normal distribution Π3(u1, u2, u3|ρ12, ρ13, ρ23), therefore

P3(x1, y1 ; x2, y2 ;x3, y3) =
23/2

κ1κ2κ3λ3
Π3(

√
2χ1,

√
2χ2,

√
2χ3|ρ12, ρ13, ρ23), (4.3)

with correlation coefficients

ρij =

√
1− τi
1 + τi

1 + τj
1− τj

(4.4)

for i < j. Notice that only two of the above coefficients are independent by virtue of the
Markov property ρ13 = ρ12ρ23.

4.2. Spin field correlators

Once we have determined the passage probability, we can apply the probabilistic frame-
work in order to compute the three-point correlation function of the spin field. We have

〈σ(x1, y1)σ(x2, y2)σ(x3, y3)〉−+ =

∫
R3

du1 du2 du3 P3(u1, y1 ;u2, y2 ;u3, y3)

×
3∏

j=1

σ−+(xj|uj), (4.5)

with sharp profiles given by (2.26). The calculation of (4.5) follows from a simple
extension of (3.18) which, for the case at hand, it reads

〈σ(x1, y1)σ(x2, y2)σ(x3, y3)〉−+/M
3 = 8Φ3(

√
2χ1,

√
2χ2,

√
2χ3|ρ12, ρ13, ρ23)

− 4Φ2(
√
2χ1,

√
2χ2|ρ12)

− 4Φ2(
√
2χ1,

√
2χ3|ρ13)
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− 4Φ2(
√
2χ2,

√
2χ3|ρ23) + 2Φ1(

√
2χ1)

+ 2Φ1(
√
2χ2)+

+ 2Φ1(
√
2χ3)− 1, (4.6)

where

Φ3(x1, x2, x3|ρ12, ρ13, ρ23) =
∫ x1

−∞
du1

∫ x2

−∞
du2

∫ x3

−∞
du3 Π3(u1, u2, u3|ρ12, ρ13, ρ23) (4.7)

is the cumulative distribution of the trivariate normal distribution Π3, whose explicit
expression is supplied in (A.1).

It is instructive to comment on some general properties of (4.6) before passing to a
detailed examination of specific results. Firstly, we observe the clustering property

lim
x3→±∞

〈σ(x1, y1)σ(x2, y2)σ(x3, y3)〉−+ = ±M〈σ(x1, y1)σ(x2, y2)〉−+, (4.8)

and the analogous relations in which either x1 or x2 are sent to infinity. The relation (4.8)
is a direct consequence of the asymptotic properties satisfied by cumulative distribution
functions. Analogously, upon sending the three spin fields towards±∞ with their relative
separation kept fixed, (4.5) gives ±M 3. Of course, the above fact follows because (4.5)
contains the interfacial contribution of the three-point correlation function. The bulk
contributions originate subleading corrections because they involve a higher number of
intermediate states [20].

It is also interesting to observe how the three-point correlation function (4.6) vanishes
when the three spin fields are placed along the straight line which joins the pinning
points; along such a line, x1 = x2 = x3 = 0. In order to prove this result it is enough to
recall the quadrant probability, i.e. the probability of having x1 < 0 and x2 < 0 for the
bivariate normal distribution (3.13)

Φ2(0, 0|ρ ij) =
1

4
+

1

2π
sin−1 ρij, (4.9)

and the orthant probability for the trivariate normal distribution

Φ3(0, 0, 0|ρ12, ρ13, ρ23) =
1

8
+

1

4π

(
sin−1 ρ12 + sin−1 ρ13 + sin−1 ρ23

)
. (4.10)

By plugging (4.9) and (4.10) into (4.6), we find

〈σ(0, y1)σ(0, y2)σ(0, y3)〉−+ = 0, (4.11)

thus the correlation function vanishes irrespectively of y1, y2, and y3. It is also possible
to show how the three-point correlation function with spin fields arranged with a central
symmetry has to vanish, i.e. 〈σ(x, y)σ(0, 0)σ(−x,−y)〉−+ = 0 for any x and y.

4.3. Symmetric configurations

We specialize the general result (4.6) to the symmetric configurations in which the three
spin fields are arranged as depicted in figure 14. The three-point correlation functions
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Figure 14. The three point correlation functions of the spin field considered in the
paper.

summarized in figure 14 are defined by:

Gσσσ
A (x, y) = 〈σ(0, y)σ(x, 0)σ(0,−y)〉−+/M

3

Gσσσ
B (x, y) = 〈σ(x, y)σ(0, 0)σ(x,−y)〉−+/M

3

Gσσσ
C (x, y) = 〈σ(x, y)σ(x, 0)σ(x,−y)〉−+/M

3. (4.12)

The manipulations which allowed us to express the two-point correlation function
(3.18) into the form (3.24) can be applied—mutatis mutandis—to the three-point cor-
relation functions (4.12). It is indeed possible to express the cumulative distribution Φ3

of the trivariate normal Gaussian in terms of Owen’s T [58] and Steck’s S functions
[60]. Leaving in appendix A the technicalities involved in such manipulations, here we
simply quote the final results for the correlators of figure 14 and their comparison with
MC simulations.

4.3.1. Configuration A. For the configurations showed in figure 14 the correlation
coefficients are given by ρ12 = ρ23 =

√
ρ13 =

√
(1− τ)/(1 + τ) ≡ �, with τ = 2y/R. The

analytic expression for the correlation function reads

Gσσσ
A (x, y) =

2√
π

∫ η

0

du erf 2(ru)e−u2 , (4.13)

with

r =
�√

1− �2
=

√
1− τ

2τ
. (4.14)

The symmetry property Gσσσ
A (x, y) = −Gσσσ

A (−x, y) is manifest. This property is required
by the anti-symmetry under parity, i.e. reversing the sign of x corresponds to swap the
+ and − boundary conditions.

Let us discuss some general properties of (4.13). For fixed y the correlator Gσσσ
A (x, y)

is a monotonically increasing function of x. The asymptotic value attained for x→±∞
follows from the clustering property

lim
x→±∞

Gσσσ
A (x, y) = ±Gσσ

i (y,−y), (4.15)
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Figure 15. The correlation function Gσσσ
A (x, y) for T = 2, R = 201, L = 352. Data

points are denoted with symbols and correspond to the values of y collected in the
inset. Solid black curves correspond to the analytic result (4.13).

with the right-hand side given by the two-point correlation function along the interface;
see (3.24). In order to check (4.15) it is useful to use the following identities

2√
π

∫ ∞

0

du erf 2(ru)e−u2 = −1 +
4

π
tan−1

√
1 + 2r2

=
2

π
sin−1 1− τ

1 + τ
, (4.16)

which, thanks to (3.25), establishes the clustering identity (4.15).
For arbitrary values of τ the integral in (4.13) cannot be expressed in terms of

elementary functions. However, for τ = 1/3, corresponding to y = R/6, we have r = 1
and the integral (4.13) can be computed in closed form and the corresponding result
reads

Gσσσ
A (x,R/6) =

erf 3(η)

3
. (4.17)

In figure 15, we compare the numerical data of MC simulations obtained for R = 201
and T = 2 with the analytic result (4.13). A remarkable agreement is observed for a
wide spectrum of y ranging from y = 5 (τ ≈ 0.05) to y = 60 (τ ≈ 0.60). The horizontal
asymptotes in figure 15 are given by (3.25), meaning that the clustering property (4.15)
is confirmed by the simulations.

The occurrence of long range interfacial correlations can be tested in an explicit fash-
ion by examining the decay of correlations upon increasing y for fixed x. In figure 16,
we show the correlation function Gσσσ

A (x, y) as function of τ for several values of η.
In order to appreciate the long-range character exhibited by correlations along the
interface, we compare the numerical results with the small-τ asymptotic expansion of
the correlation function Gσσσ

A (x, y). Such a task is better achieved by examining the
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Figure 16. The correlation function Gσσσ
A (x, y) as function of τ = 2y/R for the

values of η = x/λ indicated in the inset and T = 2, R = 201, L = 352. Numerical
results are indicated with colored data points, the analytic result (4.13) is shown
with solid lines with the same color code of numerical data. Empty gray circles
indicate the approximation obtained by truncating the Bürmann series of the error
function including the term proportional to b3; see appendix B for further details.

integral representation provided by (4.13). A rather simple expression obtained in the
regime in which τ is small and η�C

√
τ , with C = O(1) (see appendix B), reads

Gσσσ
A (x, y) ≈ erf(η)− 2

√
2

π

1

r(τ)
,

= erf(η)− 4

π

√
τ .

(4.18)

The term proportional to
√
τ =

√
2y/R indicates the occurrence of long range correla-

tions. A rather more elaborate asymptotic expansion is needed in order to encompass the
full interfacial region, which includes also η → 0. A very accurate description is provided
by the following series representation

Gσσσ
A (x, y) = erf(η)−

∞∑
n=1

Bn
erf(

√
1 + nr2η)√
1 + nr2

, r =

√
1− τ

2τ
, (4.19)

which we derive in appendix B. The coefficients Bn can be extracted in a systematic
fashion from the Bürmann series of the error function. The series representation (4.19)
is so accurate that it is enough to truncate the Bürmann series up to the third-order
term in order to achieve a perfect superposition between the series representation and
the analytic result (4.13); see the empty circles in figure 16.

It has to be noticed that the correlation function Gσσσ
A (x, y) exhibits a cubic behavior

in the closeness of x = 0. This property is manifestly evident for y = R/6 thanks to
(4.17). From the series representation (4.19), we can actually appreciate that such a
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feature is valid for any y. Furthermore, the vanishing of Gσσσ
A (x, y) for large values

of y follows by observing that r → 0 in such a limit; thus, (4.13) tends to zero. It is
also possible to verify such a limiting behavior by inspecting the alternative expression
provided by (4.19). In this case one needs to take r → 0 and use the property

∑∞
n=1Bn = 1

proved in appendix B.

4.3.2. Configuration B. The analytic expression for the correlator is given by

Gσσσ
B (x, y) = −2 erf(χ) + 16S−

(√
2χ,

�√
1− �2

,
1

�

)

+ 16S−

(
√
2χ,

√
1− �2

1 + �2
,

2�

1− �2

)

= −1 + 8T

(
√
2χ,

√
1− �2

1 + �2

)
+

2√
π

∫ 0

−∞
du e−u2erf2

(
χ− �u√
1− �2

)
, (4.20)

where S− is the function defined by (A.14).
The expression in the upper line follows from the relationship between the cumula-

tive distribution Φ3 and the functions T and S. The expression in the second line can be
obtained in a more direct route by carrying out the integrals with respect to x1 and x3

in (4.5), while the integral on x2 remains in the implicit form shown in (4.20). Reflection
symmetry implies that Gσσσ

B (x, y) is odd with respect to x for fixed y. The vanishing of
(4.20) for x = 0 is consistent with the general properties discussed in section 4.2; see
e.g. (4.11). Although the second expression may be advantageous for numerical imple-
mentations, the above symmetries are not manifest. On the other hand, the expression
in the first line shows the required symmetries explicitly.

Upon taking the limit |x| →∞, we find the clustering property 〈σ(x, y)σ(0, 0)
σ(x,−y)〉−+ → 〈σ(0, 0)〉−+〈σ(x, y)σ(x,−y)〉−+ = 0, thus (4.20) tends to zero for large
|x|. The agreement between the analytic result (4.20) and MC simulations is shown in
figure 17.

4.3.3. Configuration C. The analytic expression for the correlator is given by

Gσσσ
C (x, y) = erf(η) + 2 erf(χ)− 16S−

(
√
2χ,

�
√
1− �2

1 + �2
,
1

�

)

− 16S−

(
√
2η,

√
1− �2

2�
, 1

)
. (4.21)

The correlation function Gσσσ
C (x, y) is odd with respect to x→−x. This symmetry is

manifest in (4.21). Thanks to the identities satisfied by the function S− (see appendix A),
we can establish the clustering property 〈σ(x, y)σ(x, 0)σ(x,−y)〉−+ →±M 3 for x→±∞;
or, equivalently, Gσσσ

C (x→±∞, y)→±1. Of course, the above writing refers only to the
degrees of freedom coupled to the interface and not to the bulk three-point function, as
already stressed.
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Figure 17. The correlation function Gσσσ
B (x, y) for T = 2, R = 201, L = 352. Data

points are indicated with dots and the values of y are indicated in the inset. Solid
black curves correspond to the analytic result (4.20).

Figure 18. The correlation function Gσσσ
C (x, y)× a(y) for T = 2, R = 201, L = 352.

Circles refer to numerical data and solid black curves are computed from the ana-
lytic result (4.21). The inset indicates the values of y and the multiplicative factor
a(y) used in order to displace the curves.

The excellent agreement between theory and numerics is confirmed in figure 18.
Since the y-dependence of (4.21) turns out to be rather weak, curves corresponding to
different values of y result very close to each other. In order to better visualize all the
data sets, both the numerical and analytical results in figure 18 are multiplied by a
coefficient a(y) which takes different values for those values of y sampled in figure 18.
For each data set, we indicate the coefficient a(y) into a square bracket.
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5. Conclusions

In this paper we have tested several predictions of the exact theory of phase separa-
tion against high-quality MC simulations for the Ising model with boundary conditions
enforcing an interface on the strip. An excellent agreement between theory and numer-
ics is observed for order parameter correlation functions at the leading order in finite
size corrections. For the magnetization profile, we have isolated the leading finite-size
correction obtained from the numerical data and found a good agreement when tested
against the theoretical prediction. We have shown how to extract the passage proba-
bility density for off-critical interfaces directly from numerical simulations. Albeit the
Gaussian nature of off-critical interfacial fluctuation is a well-established result11, the
methodology employed in this paper can be applied to the study of those universality
classes in certain geometries for which exact results are not yet available. As a specific
example in which exact results are available, the aforementioned technique has been
recently employed in the study of correlation functions in the presence of a wall [29, 30].

Lastly, the long-range character of interfacial correlations has been established by
means of explicit calculations of both two- and three-point correlation functions of
the order parameter field for several spatial arrangements of spin fields. The numer-
ical result are again in excellent agreement with the theory in absence of adjustable
parameters. Although in this paper we have considered n = 1, 2 and 3 point-correlation
functions for the Ising model, computer simulation studies and closed-form expressions
can be obtained also for four-point correlation functions. These results will appear in a
companion paper [62].
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Appendix A. Computational toolbox

The cumulative distribution functions for the Gaussian bivariate and trivariate distri-
butions, respectively Φ2 and Φ3, can be expressed in terms of a certain class of special
functions known as Owen’s T and Steck’s S functions. For the sake of convenience, we
report the most relevant mathematical properties of the functions T and S which are
useful in the manipulations of the correlation functions (3.24) and (4.12). We refer the
interested reader to [58] for a thorough exposition on cumulative distribution functions
of Gaussian distributions.

11 See [47–49] for rigorous results and [61] for heuristic arguments.
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A.1. Owen’s T and Steck’s S functions

We begin by recalling the expression of the trivariate normal distribution

Π3(u1, u2, u3|ρ12, ρ13, ρ23) =
e−v/Δ

(2π)3/2
√
Δ
, (A.1)

with

Δ = 1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23, (A.2)

and

v = (1− ρ223)u
2
1 + (1− ρ213)u

2
2 + (1− ρ212)u

2
3 − 2(ρ12 − ρ13ρ23)u1u2

− 2(ρ13 − ρ12ρ23)u1u3 − 2(ρ23 − ρ12ρ13)u2u3. (A.3)

Being (A.1) a standardized distribution, one has E[uj] = 0 and E[u2
j ] = 1 for j = 1, 2, 3,

while E[uiuj] = ρij for i �= j.
Owen T -function is defined by the integral

T (h, a) =
1

2π

∫ a

0

dx
e−(1+x2)h2/2

1 + x2
. (A.4)

The function T (h, a) satisfies the symmetry properties T (h, a) = T (−h, a) = −T (h,−a)
and T (h, 0) = T (±∞, 0) = 0. For special values of its arguments, T (h, a) reduces to

T (0, a) =
1

2π
tan−1a, (A.5)

T (
√
2h, 1) =

1− erf2(h)

8
=

1

8
erfc(h)erfc(−h), (A.6)

T (
√
2h,±∞) = ±1

4
erfc(|h|), (A.7)

where erf(x) = (2/
√
π)

∫ x

0
du exp(−u2) is the error function and erfc(x) = 1− erf(x) is

the complementary error function.
Steck S-function can be defined by the integral

S(h, a, b) =
1√
2π

∫ h

−∞
dxT (ax, b)e−x2/2. (A.8)

There exist a number of equivalent integral representation of S(h, a, b) which are
convenient for numerical implementations, for instance

S(h, a, b) =
1

2π

∫ b

0

dx
Φ1(h

√
1 + a2 + a2x2)

(1 + x2)
√
1 + a2 + a2x2

, (A.9)

with Φ1(x) the cumulative distribution of the univariate normal Gaussian; see (3.20)
and (3.21). The function S(h, a, b) satisfies the following properties:

S(−∞, a, b) = S(h,±∞, b) = 0 (A.10)
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S(+∞, a, b) = 2S(0, a, b) =
1

2π
tan−1 b√

1 + a2 + a2b2
(A.11)

S(−h, a, b) = S(+∞, a, b)− S(h, a, b) (A.12)

S(h,−a, b) = S(h, a, b) = −S(h, a,−b). (A.13)

For the purpose of further elaborations, we decompose S(h, a, b) in terms of its even and
odd parts with respect to the variable h, i.e. S(h, a, b) = S+(h, a, b) + S−(h, a, b), with
the even and odd parts given by S±(h, a, b) = (1/2) (S(h, a, b)± S(−h, a, b). Thanks to
(A.11) and (A.12), it follows that S+(h, a, b) = S(0, a, b); thus, the even part does not
depend on h. The odd part instead can be written as follows

S−(h, a, b) =
1√
2π

∫ h

0

dxT (ax, b)e−x2/2, (A.14)

which is manifestly odd with respect to h. It thus follows that S−(0, a, b) = 0 and

S−(±∞, a, b) = ±S(0, a, b), (A.15)

while the symmetries with respect to a and b are the same of S(h, a, b). We also quote
the following identity

∂hS−(
√
2h, a, 1) =

1− erf2(ah)

8
√
π

e−h2 , (A.16)

which is useful in order to prove (4.13).

A.2. Three-point correlation function in configurations A, B, and C

Establishing (4.13), (4.20), and (4.21) is a straightforward (although rather tedious)
calculation which can be done by using equation (3.7) of [58], the latter expresses Φ3

in terms of T and S. The symmetric arrangements A, B and C are realized by special
values of the correlation coefficients (ρ12 = ρ23 =

√
ρ13), the latter are responsible for

drastic simplifications in equation (3.7) of [58].
Let us begin with configuration A. By expressing Φ3 in terms of T and S functions

[58], the general result (4.6) for the spin fields in configuration A gives

Gσσσ
A (x, y) = 〈σ(0, y)σ(x, 0)σ(0,−y)〉−+/M

3,

= 1 + erf(η)− 2

π
sin−1 �2 − 16S

(√
2η,

�√
1− �2

, 1

)
.

(A.17)

By bringing in the even and odd parts of S(h, a, b) and using the following relationship

S

(
0,

�√
1− �2

, 1

)
=

1

16
− 1

8π
sin−1 �2, (A.18)

the correlation function Gσσσ
A (x, y) becomes

Gσσσ
A (x, y) = erf(η)− 16S−

(√
2η, r, 1

)
, r =

�√
1− �2

, (A.19)
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where S− is the function defined in (A.14). Quite interestingly, the first derivative of
Gσσσ
A (x, y) with respect to η admits a remarkably simple expression. Thanks to the

identity (A.16)

∂ηGσσσ
A (x, y) =

2√
π
erf 2(rη)e−η2 , (A.20)

therefore, integrating with respect to η and using the known value in the origin, we find
the integral representation (4.13), which is equivalent to (A.19).

For the configuration B an analogous calculation leads us to

Gσσσ
B (x, y) = 〈σ(x, y)σ(0, 0)σ(x,−y)〉−+/M

3,

= 16S

(√
2χ,

�√
1− �2

,
1

�

)
+ 16S

(
√
2χ,

√
1− �2

1 + �2
,

2�

1− �2

)

− 2 erf(χ)− 2. (A.21)

We observe the following property

S

(
0,

�√
1− �2

,
1

�

)
+ S

(
0,

√
1− �2

1 + �2
,

2�

1− �2

)
=

1

8
. (A.22)

By using the decomposition of S into even and odd parts, we find a vanishing even part.
The result is thus the odd function given in (4.20).

Lastly, we consider the configuration C. By following the same guidelines outlined
for cases A and B, we find

Gσσσ
C (x, y) = 〈σ(x, y)σ(x, 0)σ(x,−y)〉−+/M

3,

= 2 + erf(η) + 2 erf(χ)− 16S

(
√
2χ,

�
√
1− �2

1 + �2
,
1

�

)

− 16S

(
√
2η,

√
1− �2

2�
, 1

)
.

(A.23)

Although it might not be obvious from (A.23), the profile Gσσσ
C (x, y) is an odd function

of x which interpolates between ±1, the latter are the asymptotic values reached for
x→±∞. In order to exhibit such a symmetry in a manifest fashion, it is convenient to
express S in terms of its even and odd parts. Thanks to the property

S

(
0,

�
√
1− �2

1 + �2
,
1

�

)
+ S

(
0,

√
1− �2

2�
, 1

)
=

1

8
(A.24)

it is immediate to find (4.21).
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Appendix B. Bürmann series representations

The correlation function for spin fields in configuration A can be written in the following
form

Gσσσ
A (x, y) = erf(η)− 2√

π

∫ η

0

du
(
1− erf2(ru)

)
e−u2 , (B.1)

where r = r(τ) is given by (4.19). Thanks to Bürmann theorem [63, 64], the error
function can be expressed in terms of the following series

erf(x) =
2√
π
sign(x)

√
1− e−x2

[
1 +

∞∑
n=1

bn

(
1− e−x2

)n
]
, (B.2)

which converges rapidly to the error function for any real value of x. The first Bürmann
coefficients are given by b1 = −1/12, b2 = −7/480, b3 = −5/896, b4 = −787/276 480. We
mention also the following alternative representation

erf(x) =
2√
π

sign(x)
√
1− e−x2

∞∑
n=0

cne
−nx2, c0 =

√
π/2, (B.3)

which is particularly suited for numerical evaluations. The truncation of the afore-
mentioned series to the first two exponentials with coefficients c1 = cnum1 = 31/200 and
c2 = cnum2 = −341/8000 provides a very accurate representation of the error function for
numerical purposes [64]. Thanks to the binomial theorem we can pass from the series
representation (B.2) to (B.3) and identify the exact relationship between coefficients bn
and cn

c0 =

∞∑
n=0

bn,

c1 = −
∞∑
n=1

nbn,

c2 =
1

2

∞∑
n=2

n(n− 1)bn,

c3 = −1

6

∞∑
n=3

n(n− 1)(n− 2)bn,

(B.4)

or, by induction, for n � 0 we can infer

cn = (−1)n
∞∑
j=n

(
j

n

)
bj, b0 = 1. (B.5)

Coming back to the evaluation of (B.1), the form of both series (B.2) and (B.3) is
not particularly adapt for the calculation of the integral. We thus consider the following
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rearrangement

1− erf2(x) =
∞∑
n=1

Bne
−nx2. (B.6)

In order to find the relationship between the coefficients Bn and the coefficients bn,
we equate the series (B.6) and the Bürmann series (B.2), and identify term by term.

The procedure is actually facilitated by working with the variable z = 1− e−x2 . The
identification thus implies

1− 4

π
z

( ∞∑
n=0

bnz
n

)2

=
∞∑
n=1

Bn(1− z)n. (B.7)

By plugging z = 1 the right-hand side vanishes and also the left one does because∑∞
n=0bn =

√
π/2, with b0 = 1; this last identity follows by taking x→ +∞ in (B.2).

Subsequent Bn({bn}) can be extracted by further Taylor expanding around z = 1. On
the other hand, bn({Bn}) can be determined by the Taylor expansion around z = 0.
Another way of extracting Bn({bn}) is by matching (B.6) with the square of (B.2) term
by term. A direct evaluation yields

B1 = 1− 2c1

B2 = 2c1 − c21 − 2c2

B3 = c21 + 2c2 − 2c1c2 − 2c3

B4 = 2c1c2 + 2c3 − 2c1c3 − c22 (B.8)

with cn({bn}) given by (B.5). Once we have extracted the coefficients Bn, by plugging
(B.6) into (B.1), a simple calculation entails

Gσσσ
A (x, y) = erf(η)−

∞∑
n=1

Bn
erf(

√
1 + nr2η)√
1 + nr2

, (B.9)

which is the result (4.19) given in the main body of the paper.
We further comment on two limiting behaviors. Notice that by setting x = 0 in

(B.6) we obtain the condition12
∑∞

n=1Bn = 1. Then, in the limit of large vertical separa-
tion between spin fields the correlation function vanishes. Such a feature can be easily
established by observing that for τ → 1 we have r → 0 and both terms in (B.9) become
identical by virtue of the property

∑∞
n=1Bn = 1. Secondly, the plot of Gσσσ

A (x, y) versus
x is characterized by a vanishing slope for x = 0. This feature, which is evident from
(B.1), follows from (B.9) thanks to the aforementioned property that the sum of the
Bn’s is one.

Let us consider now the limit of small vertical separation between spin fields, so
τ → 0 and r → +∞. If the rescaled abscissa of the two spin fields is η > 0, then the

12 Series of the form
∑∞

n=1n
sBn with s ∈ N can be evaluated by differentiating (B.6) with respect to x at x = 0. Series of the form∑∞

n=1n
−s−1/2Bn and

∑∞
n=1n

−sBn instead follow by taking moments of (B.6) for x ∈ (−∞, +∞) or x ∈ (0, +∞).

https://doi.org/10.1088/1742-5468/ac1407 38

https://doi.org/10.1088/1742-5468/ac1407


J.S
tat.

M
ech.

(2021)
083209

Correlations and structure of interfaces in the Ising model: theory and numerics

smallest argument in the error functions appearing in (B.9) is
√
1 + r2η ≈ η/

√
2τ . Pro-

vided η/
√
2τ is large in the sense that erf(η/

√
2τ) > 1− ε, with ε > 0 a small parameter,

then it follows that all error functions in (B.9) are bounded from below by 1− ε. The
expression (B.9) can be bounded with

Gσσσ
A (x, y) < erf(η)− (1− ε)

∞∑
n=1

Bn√
1 + nr2

. (B.10)

In the limit of large r and small ε, which is the one we are interested in, the above can
be approximated as follows

Gσσσ
A (x, y) ≈ erf(η)− 1

r

∞∑
n=1

Bn√
n
. (B.11)

The series appearing in the above can be evaluated in closed form and reads as follows

∞∑
n=1

Bn√
n
=

2
√
2

π
, (B.12)

the above identity follows straightforwardly upon integrating (B.6) with respect to
x from −∞ to +∞. By inserting (B.12) into (B.11), we obtain (4.18). It has to be
emphasized that the condition erf(η/

√
2τ) > 1− ε translates into

η > C(ε)
√
τ , (B.13)

where C(ε) = erf−1(1− ε), where erf−1 is the inverse of the error function. For instance,
if we set ε = 0.01, corresponding to erf(η/

√
2τ) > 0.99, then we find C(ε) ≈ 1.821. Thus,

for reasonably small values of ε, the constant C(ε) is of order 1. The condition (B.13)
sets the domain of validity of the approximation (B.11).

Checking the clustering to the asymptotic value for η → +∞ requires additional
efforts. From (B.9), we find

lim
η→+∞

Gσσσ
A (x, y) = 1−

∞∑
n=1

Bn√
1 + nr2

, (B.14)

thanks to the identity

∞∑
n=1

Bn√
1 + nr2

= 2− 4

π
tan−1

√
1 + 2r2, (B.15)

we obtain

lim
η→+∞

Gσσσ
A (x, y) = −1 +

4

π
tan−1

√
1 + 2r2, (B.16)

which coincides with the clustering relation (4.16).
For the sake of completeness, we observe how the identity (B.15) contains the

property
∑∞

n=1Bn = 1 as a special case. The above can be used in order to evaluate
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series of the form
∑∞

n=1n
kBn with k ∈ N by expanding in powers series of r both sides of

(B.15) and equating order by order in powers of r. This procedure is actually analogous
to the recursive scheme which follows by evaluating derivatives with respect to x at
x = 0 for the series representation (B.6).

Appendix C. Mixed three-point correlation functions

Exact results for mixed correlation function involving two spin fields and one energy
density field can be obtained in a straightforward fashion within the probabilistic inter-
pretation [20]. Focusing on the arrangements illustrated in figure 19, the results for the

above mentioned mixed correlation functions including corrections at order O(R−1/2)
are summarized in (C.1).

Gσεσ
A (x, y)/(M 2〈ε〉) = 2

π
sin−1

(
ρ2

)
+

E√
πλ

erf2
(

ρη√
1− ρ2

)
e−η2 ,

Gσεσ
B (x, y)/(M 2〈ε〉) = 1− 8T

(
√
2χ,

√
1− ρ2

1 + ρ2

)
+

E√
πλ

erf2
(

χ√
1− ρ2

)
,

Gσεσ
C (x, y)/(M 2〈ε〉) = 1− 8T

(
√
2χ,

√
1− ρ2

1 + ρ2

)
+

E√
πλ

erf2
(

ρη − χ√
1− ρ2

)
e−η2 ,

Gσεσ
D (x, y)/(M 2〈ε〉) = −1 + 8T

(
√
2χ,

√
1 + ρ2

1− ρ2

)
− E√

πλ
erf2

(
χ√
1− ρ2

)
,

(C.1)

where E = A
(0)
ε /〈ε〉. The dependence on the coordinate is encoded in the correlation

coefficient ρ =
√
(1− τ)/(1 + τ) and the variables η, χ, which are defined in the main

body of the paper. The following clustering relations are easily established:

lim
x→+∞

Gσεσ
A (x, y) = Gσσ

i (y,−y)

lim
x→+∞

Gσεσ
B (x, y) =

(
1 +

E√
πλ

)
= − lim

x→+∞
Gσεσ
D (x, y)

lim
x→+∞

Gσεσ
C (x, y) = M 2〈ε〉.

(C.2)

Mixed correlation functions involving two energy density fields and one spin field
at the leading and first subleading order can still be obtained within the probabilistic
interpretation.
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Figure 19. Mixed three-point correlation functions involving two spin fields and
one energy density field.
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