
S H A P E M O R P H I N G O F S O F T A C T I V E S H E E T S

by
daniele battista

Thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the subject of

Theoretical and Applied Mechanics

Sapienza University of Rome
Rome, Italy

Advisor:
Prof. Paola Nardinocchi

January 2022



Daniele Battista: Shape Morphing of Soft Active Sheets, © January 2022



A B S T R A C T

Biological systems often exploit their capability to respond to environ-
mental stimuli to achieve complex shapes and perform some necessary
living functions. Inspired by nature, scientists developed synthetic
soft active materials whose deformation is induced by non-mechanical
actions, and that mimic, for example, the shape transformation of
plants, in which a variety of organs such as flowers, leaves, pods and
tendrils respond to variations of light, humidity or temperature. As in
plants the tissue composition and its microstructural cell anisotropy
play an important role, so also for synthetic materials the design of
the material structure is fundamental for programming its final shape.
Up to date, some exciting achievements have been made and success-
fully applied in a variety of fields, including biomedical devices, drug
delivery, soft robotics, sensors and actuators.
This thesis aims to investigate the morphing of soft active sheets, fo-
cusing on flat metric structures such as beams, plates and cylindrical
shells, via theoretical analysis, numerical simulation and experimental
validation. The work focuses on those soft materials in which the
morphing can be driven by elastic or inelastic growth such as gels, ne-
matic elastomers or biological tissues. The adopted strategy to achieve
bending is based on a through-the-thickness mismatch realized by
stacking two homogeneous layers with different properties on top of
each other. Specifically, three processes that induce bending in bilayer
structures are explored: the differential swelling between two layers
with different elastic moduli, the shrinking of a layer containing sol-
vent glued to a passive layer, the diffusion of the solvent from one
layer to the other.
The first process is used in the study of the swelling-induced eversion
and flattening of naturally curved gel beams, and in the shaping from
sphere-like to nearly developable shapes of rectangular gel plates.
In the latter, the final shape depends on several geometrical and
mechanical factors. Reinforcing fibers can be crucial in controlling
shaping under swelling and greatly influence the characteristics of
the final shapes. Swelling is analyzed with a fully coupled nonlinear
three-dimensional stress-diffusion model. A revised version of the
Flory-Rehner free energy is adopted to model the presence of the
fibers.
The second process is carried out experimentally through the fabrica-
tion of bilayer sheets with one passive layer of polydimethylsiloxane
(PDMS) and one layer of PDMS mixed with silicone oil; the morphing
is induced by extracting the oil from the elastomer. The experiment
concerns the study of bending of shrinking beams. The problem is
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also set within the context of three-dimensional finite elasticity with
distortions, considering the total extraction of oil as an isotropic bulk
contraction. The latter is also used to investigate the eversion of cylin-
drical bilayer shells after oil extraction. It is shown how the geometry
and the initial fraction of oil affect the shape at equilibrium, which
can be in the form of cylindrical shells with axes orthogonal to the
original one, saddle-like shapes and doubly curved shapes.
The third and last process is explored starting from the experiment
described above, letting the oil initially contained in a single layer
diffuse into the layer made of only PDMS, without extracting it. The
resulting transient bending is numerically simulated through the
stress-diffusion model and a simplified way to predict the steady-state
curvature is proposed.
Furthermore, as regards swelling/shrinking of bilayer beams, the prob-
lem is also addressed from an energetic point of view, highlighting
the importance of the choice of the deformation measures for the for-
mulation of reduced analytical models. In particular, explicit formulas
for the curvature and the stretch of the middle axis are provided for
naturally curved growing beams.
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1
I N T R O D U C T I O N : T H E M O R P H I N G P R O B L E M

In solid mechanics, shape-morphing means changing smoothly and
gradually the shape of a body from one configuration to another.
The design of structures with such characteristics is a complex and
multidisciplinary task. For this reason, unlike their rigid structure
and mechanism counterparts, morphing structures are yet to be fully
understood or utilized.
Nature offers a wide range of shape-changing phenomena, particularly
in the kingdom of plants, and it is increasingly recognized as sources
of inspiration for the development of bioinspired morphing devices
[42, 65]. Because of the limited chemical resources and processing
conditions, plants have evolved mechanisms that rely on their internal
spatial arrangement of the structural elements to achieve shape change
upon different types of external stimuli. Motions of plants can be
subdivided into nastic and tropistic. In the first case, the deformation
processes of the organs always follow the same kinematical patterns,
regardless of the direction of the stimulus. On the contrary, in the
second case the motion is influenced by the direction of the stimulus, as
the sun-tracking of young sunflowers (heliotropism) and the tendency
of most plant stems to grow upward (gravitropism) [68] (Figure 1).

Figure 1: Gravitropic response of Arabidopsis thaliana. Adapted from [53].

Hydration-triggered shape change in natural systems offers a pas-
sive response with only changes in surrounding humidity levels, as
happens, for instance, in the locomotion and dispersion mechanism
of Equisetum spores (Figure 2-bottom). Each spore consists of four
elaters with a bilayer structure, where each layer has a different de-
gree of water absorption. The consequent differential volume change
due to humidity variations of one layer with respect to the other is
responsible of a change in the curvature of the elaters, and this allows
the spores to "walk" and "jump" [52].
A key role in the shape change of some plant tissues is played by stiff
cellulose microfibrils within the extracellular matrices, which confers
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anisotropic properties to the structure and hampers swelling or shrink-
ing of the surrounding matrix in the direction of the reinforcing fibril.
Depending on the architecture of such fibrils, various shape-morphing
are enabled in response to humidity variations, such as bending in
pinecones (Figure 2-top right) or twisting in orchid tree seedpods
(Figure 2-top left) [22].

Figure 2: Top left: closed-hydrated and open-dried out orchid tree seedpod.
Top right: closed-hydrated and open-dried out conifer pinecone.
Adapted from [22]. Bottom: curving of the four elaters of an Equi-
setum spore as a function of the relative humidity (RH). Adapted
from [52]

Swelling-based actuation occurs over a timescale of milliseconds to
hours and crosses length scales from stomata on the leaf surface, com-
posed of just two cells, to the entire plant structure [78]. Some plants
combine volume-changes with other structural features to achieve
faster responses through the sudden release of energy stored in other
formats. Some examples include the fracture-based explosive seed dis-
persal of the filaree [23], the cavitation-induced catapult system of the
Sporangium fern to disperse its spores [46], and the fast snap-through
transition of the Venus flytrap to capture highly mobile prey [27].
Advances in materials engineering are enabling the design of polymer-
based structures subject to large deformations, giving the possibility
of making more complex shape changes. A large library of stimuli-
responsive soft synthetic materials exists, not to mention the potential
active composites that can be obtained by combining together active
and non-active materials. It includes three main classes:

• Polymer gels, in which the amount of solvent uptake inside the
crosslinked network could be changed in response of different
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stimuli such as temperature and light, resulting in reversible
volumetric expansion or shrinkage.

• Shape memory polymers (SMP), in which a temporary shape can be
stored as memory inside the structure by deforming the material
at a temperature higher than the glass transition temperature Tg,
and then reducing the temperature below Tg. Recovery of the
original shape can then be triggered by different stimuli such as
high temperature or light.

• Liquid crystalline elastomers (LCE), which combine the properties
of liquid crystals with the elastic properties of conventional
elastomers. As a result, they show anisotropic properties due to
the alignment of those molecules and display highly anisotropic
dimensional changes in response to different stimuli such as
temperature or humidity.

Controlling the shape-morphing of soft matter without applying exter-
nal loads is a problem that has aroused the interest of many researchers
in recent decades, often taking inspiration from nature [2, 72]. In all
this, the material plays a central role in the programming of the final
shape: the material is the machine, quoting verbatim Bhattacharya et al.
[6].
The simplest programmable bodies are beams, namely elastic three-
dimensional structures characterized by one length scale much larger
than the other two scales. They may develop curvature and torsion
induced by non-mechanical actions when points in a cross-section
grow axially at different rates. The kingdom of plants is full of biofil-
ament structures which grow in response to environmental stimuli,
such as stems [74], tendrils [29] and roots [58]. In the engineering
world, the pivotal example of shape-morphing of active beams is the
Timoshenko’s pioneering work on bimetallic strips that bend due to
difference in thermal expansion of the two materials [87].
When initially flat sheets are involved, the deformative process may
induce, if appropriately programmed, curving and storage of stretch-
ing and bending energies. The programming strategies are based
on the generation of through-the-thickness or in-plane stress gradi-
ents inside the materials, which can result in bending torques or
axial forces, respectively. The first ones induce out-of plane bending,
whereas the second out-of-plane buckling. The most common strate-
gies used to induce shape change in initially flat soft active sheets
are reviewed in [51] and resumed in Figure 3. Typically, for gener-
ating bending moments the approaches consist of using multilayer
materials, through-the-thickness material gradients, or through-the-
thickness non-homogeneous activation; buckling can be generated
using material tessellation, in-plane material gradients, or in-plane
non-homogeneous exposure. Moreover, shape changes can be driven
by introducing anisotropy of the material, for instance inserting stiffer
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fibers. In addition to the material properties, the geometry of the
structure, such as the shape of the surface [66], is equally important in
governing the final shape, especially when the initial geometry is far
to be flat [67].

Figure 3: Bending (top) and buckling (bottom) strategies for programming
the shape-morphing of initially flat sheets. Adapted from [51]

1.1 applications

The shape-morphing of soft active sheets is applied at different length
scales, from micro/nanoelectromechanical systems (MEMS/NEMS)
[45] to aerospace applications [44], passing through various fields of
application including biotechnology, soft robotics, sensing and actua-
tion, self-folding devices, 3D electronics.
Initially flat structures are the most used both because they provide
access to the material surface and because of the simplicity of 2D
production techniques, such as 2D photolithography, which allow to
program the material in order to achieve a precise 3D transformation.
However, the spread of 3D printing as a manufacturing technology
has made it possible to facilitate the construction of initially non-flat
structures, and the use of active inks has allowed the development
of the so-called 4D printing [7, 83], which adds the dimension of
transformation over time.
One of the most extensive and promising fields of application is the
biomedical field [69]. Self-folding methods are important for drug
delivery applications since it is often required to package therapeutic
cargo such as small molecules, proteins and living cells. They pro-
vide a means to realize 3D, biocompatible, all-polymeric containers
with features like porosity, size, shape and surface texture, which are
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necessary for accurate control of targeting and release of drugs [24].
Furthermore, the use of polymers that respond to a specific stimulus,
such as pH changes, allows for a smart drug delivery, where it is
possible to program the folding or unfolding of the structure in a
specific location inside the human body. Self-folding devices may be
applied also for cell and microorganism encapsulation to create a safe
microenvironment for culture [3] (Figure 4-top left).
In tissue engineering applications and regenerative medicine, self-
folding methods are used to build precisely patterned scaffolds in
anatomically relevant geometries, namely cylinders (vasculature, ducts),
spirals (glandular coils, cochlea) and bidirectionally folded sheets
(gyri/sulci, villi) [69] (Figure 4-top right). The control of the geometric
and mechanical properties of the 3D scaffolds allows to mimic the
situation in vivo and to program the growth of cells [35] and the
differentiation of stem cells [30].
In microsurgery, self-folding microgrippers are explored as surgical
tools for performing biopsies. The folding of mechanism can be trig-
gered by heating or on exposure to a variety of chemicals, while a
magnetic guidance allows microgrippers with embedded ferromag-
netic layers to be guided in small, twisted passages without the need
for a tether [41] (Figure 4-bottom).

Figure 4: Top left: self-folding of a cubic container for cell encapsulation [3].
Top right: self-folded hydrogel cylindrical scaffolds with micropat-
terned holes loaded with cells [35]. Bottom: optical microscopy
sequence showing capture and retrieval of neutral red-stained cells
from a cell culture mass at the end of a tube [41].

Numerous advanced applications in several fields including biotech-
nology, cell analysis and drug delivery require the use of microtubular
structures. Self-rolling of polymers or composite bilayer films due to
differential swelling/shrinking is the approach to the formation of
such mesoscopic tubes proposed in [21, 50].
Shape-morphing of soft active sheets can be exploited also in many
nonmedical applications including sensors/actuators [4, 34] and self-
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folding devices.
In the field of electronics, the incorporation of flexible circuits into
active soft matrices has allowed the creation of morphing circuits. For
example, printed flat substrate and assembled functional electronics
on top of it are realized in [88]. The flat structure can then self-morph
into a preprogrammed 3D shape when triggered by external heating.
In [55] is shown a technique for manufacturing self-folded electri-
cal components, namely stretchable and variable resistors, capacitors,
and inductors, suitable as sensors and actuators in flexible circuits.
In several engineering fields, features such as stowability, portability,
and deployability often drive the project of key products, and origami
structures are suitable for this purposes. Such characteristics are funda-
mental in the aerospace field. Different space-deployable components
made of shape memory polymer composites (SMPC), such as SMPC
hinges and booms, are reviewed in [44]. Structures based on SMPC
components in aerospace include solar arrays and deployable panels,
reflector antennas and expandable lunar habitat.
Active origami structures may be used not only for the aforemen-
tioned features, but also for their mechanical functional characteristics.
Potential applications include metamaterial absorbers [73], deformable
energy storage devices [76] and auxetic mechanical metamaterials [71].
Finally, morphing mechanisms for space optimization are also pro-
posed in the food industry. For instance, in [84] a manufacturing
process is proposed to create flat pasta that can morphs into a target
3D shape during cooking, and that can be flat-packed to reduce the
air space in the packaging (Figure 5).

Figure 5: Simulations and experiments of different morphing pasta shapes
before and after cooking [84].
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1.2 research theme

This research aims at investigating the shape-morphing of soft active
sheets. By "soft active sheets" we mean thin structures made with
stimuli-responsive polymeric-based materials that can undergo large
displacements in the elastic field during the deformation process in
response of stimuli, without the application of external mechanical
actions. In particular, the attention is focused on narrow sheets (beams)
and naturally flat sheets (plates and cylinders), that is structures with
a zero Gaussian middle surface. The programming strategy used is
to induce bending via through-the-thickness inhomogeneity of the
material, obtained by stacking two homogeneous layers with different
properties on top of each other. The materials referred to are gels, so
the deformation is induced by swelling or shrinking.
Chapter 2 is dedicated to the literature reviewing through a glossary
that identifies the main key words concerning the topics covered in the
thesis. Specifically, the differences between elastic and inelastic growth,
and between passive, active and swelling fibers are highlighted. In
addition, the techniques, both experimental and theoretical, used to
induce bending in bilayer gel structures, both in transient and steady
state, are explored.
Chapter 3 illustrates the energetic aspects of growing bilayer beams,
showing the differences in deriving reduced models by selecting dif-
ferent strain measures. First of all, reduced models of flat bilayer flat
beams in plane bending, obtained using the Biot energy or the Green
energy, are compared in terms of curvature and stretching formulas.
Then, starting from a Biot strain measure, the energy for a bilayer
naturally curved beam in plane bending is derived.
Chapter 4 deals with elastic and inelastic processes in polymer gels.
They are studied, respectively, within the stress-diffusion continuum
model, and within a context of finite elasticity with distortions. The
first is applied to the numerical study of the swelling-induced ever-
sion and flattening in naturally curved gel beams, for which explicit
formulas for curvature and stretching are derived. The second is used
to describe the experiment of the bending of a naturally curved bilayer
beam made of PDMS/(PDMS + silicone oil) caused by the extraction
of oil. Both studies are conducted in steady-state conditions.
In Chapter 5 the experiment briefly described above is resumed, but
this time the curvature of an initially flat beam is induced by the
progressive diffusion of the oil from one layer to another. The transient
bending is then numerically simulated through the stress-diffusion
model and a simplified way to predict the steady-state curvature is
proposed.
Chapter 6 deals with the shape-morphing of bilayer naturally flat
sheets. The transition from spherical to cylindrical configuration in-
duced by swelling of rectangular bilayer gel plates is numerically inves-
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tigated, and the possibility of forcing the shaping through anisotropic
swelling is evaluated. Besides, the eversion of shrinking bilayer cylin-
drical surfaces is explored, studying them numerically in a context of
finite elasticity with distortions.
Finally, Chapter 7 summarizes the research outcomes and presents
recommendations for future studies.
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2
G L O S S A RY

A review of the literature is proposed here in the form of a glossary.
The main key words concerning the topics covered in the thesis are
listed in alphabetical order.

active fibers

For active fibers we mean fibers which can grow inelastically in re-
sponse to external stimuli. Typically, synthetic active fibers can be
divided into two main groups where either volume or molecular order
change dominates. The first group includes, for example, fibers subject
to thermal expansion or a phase transition such as crystallization.
Some materials that fall into the second group are amorphous poly-
mers, shape memory polymers, dielectric elastomers, or liquid crystal
elastomers [79]. For example, in [39], multilayer core-shell fibers where
a dielectric polymer separates two coaxial electrodes are presented.
Following the application of a high voltage to the electrodes, the elec-
trostatic attraction between the conductive layers causes a decrease
in diameter and a corresponding elongation of the fiber. In [94], two
families of SMP fibers with different glass transition temperatures are
embedded within two stacked flat passive layers. After a thermome-
chanical programming process, the fiber families can be sequentially
activated when the temperature is increased, inducing the bending of
the sheet.
The effect of active fibers can be also simulated by appropriately
orienting the microstructure, as in nematic solids, which have the
ability to deform spontaneously and anisotropically in response to
temperature change and illumination. Typically, one achieves contrac-
tion along and elongation perpendicular to the director on heating
or illumination and vice versa on cooling or on recovery in the dark.
A wide range of analytical studies on the shape changes of nematic
elastomers with patterned director fields is explored by Warner and
coworkers [56, 57, 90, 91]. The behavior of a particular class of nematic
elastomers, which features large anistropic transformation both due
to temperature (reversible) and to solvent evaporation (irreversible),
is investigated experimentally in [70] and through numerical and an-
alytical models in [85]. The model is set within the theory of finite
elasticity with anisotropic distortions and the transition between spiral
ribbons and helicoids of slender bars made of nematic elastomers with
through-the-thickness twisting nematic directors is studied.
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bilayer gels

The solvent-induced changing in volume of gels in response to exter-
nal stimuli inspired a wide range of theoretical and applied research.
The combination of two gel-based layers with different chemical prop-
erties into a bilayer gel construct is a widely applied way for realizing
soft structures able to bend without applying external actions. Many
researchers have designed and manufactured devices of this type by
combining materials with both different capacities to absorb the sol-
vent, and responsive properties to different stimuli.
A common strategy is to spread a gel layer over a passive polymer
layer. Kim et al. [37] synthesize self-bending passive/pH-responsive
hydrogel bilayer microstructures via micro-molding, and design a
flower-like soft actuator. They also show through numerical simula-
tions and experiments that the final shape is governed by geometrical
factors, such as the thickness ratio and the aspect ratio. Finally, they
realize a flower-like soft actuator (Figure 6) with controlled numbers of
petals and control their motion through the application of an external
magnetic field, thanks to magnetic nanoparticles incorporated into the
structure.

Figure 6: Shape transformation of a flower-shaped via pH variations. Top:
bending from planar sheet to 3D at pH 11. Bottom: unbending from
3D to planar sheet at pH 3. Adapted from [37].

Copolymerization between different types of stimuli-responsive
monomers is a clever strategy that is sometimes adopted to give the
active layer of the bilayer structure multi-responsive properties. For in-
stance, Bassik et al. [5] copolymerize N-isopropylacrylamide (NIPAm)
with Acrylic Acid (AAc) or poly-hydroxyl ethyl methacrylate (HEMA)
via photocrosslinking to result in a pH- and Ionic Strength (IS)-
sensitive hydrogel, and use poly-ethylene oxide diacrylate (PEODA) as
passive layer. They experiment the bilayer structures as active hinges
in reversible folding rigid panels. Another example is shown by Li
et al. [43]. They attach a thermo- and pH-responsive hydrogel-based
layer onto a hydrophobic passive layer. In response to temperature
and pH variations the active layer is able to swell and shrink, giving
the bilayer the ability to bend bidirectionally. The latter property is
achieved also by Wang et al. [89] through the implementation of a
solvent-responsive actuator consisting of a quasi-passive hydrogel
layer and a layer able to swell in deionized water and to shrink in ace-
tone/water solution. They also compare the experimental results with
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numerical simulation by modeling the chemically-induced swelling
and shrinking as a thermal expansion/contraction.
The fabrication of bilayer gels through the dispersion of the respon-
siveness to stimuli into two layers rather than one layer extends the
adaptability and applicability of such devices. Cheng et al. [11] design
a poly(N-isopropylacrylamide) (pNIPAm) and poly(2-(dimethylamino
ethyl methacrylate) based bilayer hydrogel which separately serve as
temperature and pH-sensitive layers. Considering the bidirectional
bending in acid and ethanol media, they use the bilayer hydrogel as a
soft switch in a circuit.
Some authors exploit the hydrophilic and hydrophobic behavior of
thermo-responsive hydrogels like pNIPAm below and above a volume
phase transition temperature (VPTT). Indeed, such hydrogels have the
property of swelling below the VPTT and shrinking above the VPTT.
For instance, Wei et al. [92] and Zhang et al. [96] use for their experi-
ments bilayers consisting of two thermo-responsive hydrogel-based
layers with different VPTT.
Bending of bilayer structures can also be induced using the same type
of gel for each layer but with different shear moduli, for example by
varying the degree of crosslinking during the fabrication process. In
fact, when embedded in a solvent bath, each homogeneous part, if it
was free from the rest of the system, would have a swelling ratio at
equilibrium strongly dependent on the shear modulus: the higher the
elastic modulus of the gel, the less solvent it is able to absorb. This
well known property is shown, for example, by Oh et al. [64], which
fabricate pH-responsive Janus hydrogel microstrips consisting of two
layers with large difference in the elastic moduli.

elastic growth

Gels are elastic solids consisting of long polymer chains joined between
them with crosslinks, whose density determine the global mechanical
properties. If a dried gel is placed in a solvent bath, it absorbs the
solvent and its volume increases. If allowed to swell freely, its state is
determined by a trade-off between the chemical energy and the elastic
energy. The first due to the solvent permeation, the second due to the
elastic deformation of the polymeric lattice [19]. Therefore, since gel
bodies store elastic energy during a swelling process, the latter can be
viewed as an elastic growth.

inelastic growth

Unlike the volumetric growth that occurs in gels, thermal expansion in
solids does not involve mass exchange. Furthermore, if a homogeneous
metal body is uniformly heated and leaved to expand freely, no elastic
energy is stored during the volume change. This phenomenon is the
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simplest example of inelastic growth, which is usually described in solid
mechanics as local changes of the zero-stress reference state through
the notion of distortion.

passive fibers

Reinforcing active or swellable isotropic sheets with aligned stiffer
passive fibers gives the structure anisotropic properties, limiting the
growth of the matrix along their alignment.
Examples of anisotropic swelling can be found in the kingdom of
plants, where the orientation of cellulose fibrils contained in a highly
swellable matrix control the shape-morphing of systems like pinecones
and seedpods, showing swelling-induced bending and twisting modes,
respectively [22].
Inspired by nature, scientists program the morphing of multilayer
gel-based sheets suitably orienting the fibers in the different layers.
For instance, the swelling-induced twisting of narrow sheets yielding
to helices or ribbons, obtained by orienting the fibers at an angle ±θ

with respect to the longitudinal axis, is widely studied. Two orthogo-
nally oriented arrays of cotton wires embedded in a thermoresponsive
gel matrix are employed by Sharon and coworkers [1] to program
such morphing. In [36] temperature-sensitive hydrogel films are sand-
wiched between stripes of a rigid glassy polymer into a trilayer struc-
ture. Seedpod-like architectures with different orientation angle θ are
concatenated to form complex multihelical frameworks (Figure 7).

Figure 7: Examples of multihelical structures consisting of n regular seedpod-
like architectures. Adapted from [36].

In [59] the anisotropic swelling-induced helicoid-ribbon transition of
narrow sheets is described within an extension of the Flory-Rehner
thermodynamic model which takes into account the oriented hamper-
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ing of the swelling-induced deformations due to the presence of stiffer
fibers [60, 63].

swelling fibers

The incorporation of swelling fibers into a soft matrix is another valid
technique for the anisotropic actuation of soft composite structures
through solvent absorption or release.
In [10] gel-based fibers are 3D printed upon a gel-based substrate,
and both are thermo-responsive. Because of the higher density of
crosslink, the patterned lines exhibit lower swelling ratio respect to
the substrate upon varied temperature, resulting in a through-the-
thickness swelling mismatch and out-of-plane morphing controlled by
temperature variations.
Hydrogel composite ink embedding stiff cellulose fibrils is used in [83]
to print composite hydrogel bilayer textures. During printing, fibrils
undergo shear-induced alignment, which leads to anisotropic stiffness
and swelling behaviour in the longitudinal direction compared to the
transverse direction (Figure 8).

Figure 8: Left: schematic of the shear-induced alignment of cellulose fibrils
during ink printing and subsequent effect on anisotropic swelling
Right: print pattern and final swollen shape with positive and
negative Gaussian curvature. Adapted from [83].

Another manufacturing technique is patterning photo-crosslinkable
hydrogel sheets with alternating in-plane parallel stiffer and softer
strips, as discussed in [8]. Specifically, they study the dependency of
the buckling transition between flat and rolled configuration on the
width of the strips, and find that the sheet prefers to swell anisotropi-
cally in the plane rather then roll when the strip width falls below a
critical size proportional to the sheet thickness.
The photolithographic method is also used in [86] to build planar
composite gel sheets with more than one family of parallel strips, each
responding to a particular external trigger. For example, as shown
in Figure 9, starting from a swollen flat state, the buckling transition
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from flat to rolled configuration can be achieved around two axes
by orienting a family of swelling fibers and one of shrinking fibers
orthogonally to each other, the one responding to pH variations and
the others to the addition of NaCl in the solvent bath.
The possibility of obtaining multiple shape transformations of com-
posite hydrogels through swelling/shrinking controlled by multiple
stimuli is also described in [98] by embedding printed active- or
passive-swelling fibers into active- or passive-swelling matrices, and
exploring their combinations.

Figure 9: Multiple shape transformations of a rectangular flat gel sheet (top)
through the swelling of the red stripes by increasing the pH of the
solution (center), or the shrinking of the yellow stripes by increasing
the concentration of NaCl in the solution (bottom). Adapted from
[86].

transient diffusion-induced bending

In gel-based materials, the spatial distribution of the solvent within
the matrix and the amount of solvent absorbed or released determine
the shape and size reached by the body. At equilibrium, in structures
presenting inhomogeneities in the material, the spatial distribution of
the solvent is inhomogeneous as well. However, even in homogeneous
gels non-equilibrium phenomena that take place during the solvent
absorption and migration through the network involve the stress state
in the gel and a change of shape. For instance, Figure 10 shows a
simulation of the swelling process of a homogeneous initially dry
gel cube (from left to right). The final steady-state (right) is clearly
again a cube and the solvent is evenly distributed. The intermediate
state (center), on the other hand, is not homogeneous due to the faster
absorption at the edges which gives the boundary a curved shape
during the evolution.
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Figure 10: Simulation of the swelling process of a homogeneous initially dry
gel cube (from left to right). Color map shows the volume increase.
Adapted from [48].

In homogeneous gel sheets, the diffusion of the solvent can generate
a through-the-thickness inhomogeneity which produces a transient
bending of the structure as a global effect. In [31] the top surface
of a crosslinked polydimethylsiloxane (PDMS) beam is swollen by
placing a drop of a favorable solvent. As the top of the beam expands
the remainder of the beam is required to bend to accommodate this
deformation. In this experiment the curving occurs only transiently.
Indeed, the beam bends as the fluid permeates through the thickness;
at steady-state, when the fluid is homogeneously distributed, the beam
relaxes and recovers its original shape.
However, under certain boundary conditions the diffusion can never
stop also at steady-state, as shown in [15]. Here, the Authors induce a
permanent bending of a homogeneous hydrogel thin structure which
is in contact at its top and bottom faces with two environments at
different chemical conditions; such differential chemical conditions
causes a uniform water flux through the thickness attained at steady-
state.
Transient diffusion-induced bending of bilayer sheets is investigated
by several researchers as well. Zhao et al. [97] investigate the time
response of hydrophilic/hydrophobic water-responsive bilayer struc-
tures by using photopolymers, whose rubbery nature, compared with
conventional hydrogels, provides higher actuation speed and force.
They also develop a simple analytical model to capture the transient
deformation of a bilayer flat beam during swelling. Because of the
small swelling ratio of the materials adopted, much lower than that
of hydrogels, they ignore the coupling between diffusion and defor-
mation and describe the diffusion of water into the hydrophilic layer
through the one-dimensional diffusion equation (Fick’s second law)

∂c(z, t)
∂t

= D
∂2c(z, t)

∂z2 , (2.0.1)

being c(z, t) the mole concentration of water at thickness coordinate
z and at time t, and D the diffusion coefficient. The profile of c(z, t)
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admits an explicit expression once boundary and initial conditions
are assigned. A similar approach is also adopted in [95] to describe
the diffusion-induced bending of bilayer hydrogen sensors. They then
compute the distortion λo acting on the swelling layer through the
volumetric constraint λo = (1 + Ωc)1/3, where Ω is the molar volume
of water, and calculate the linear elastic strain εa by decomposing it
additively as εa = ε0 + κz − ln λo, with ε0 the visible axial strain and
κ the visible curvature. For the hydrophobic passive layer the elastic
strain is εp = ε0 + κz. Finally, they find a formula of the bending
curvature κ(t) by imposing the static equilibrium at all times of total
external force and torque on the cross-section.
Due to the slow diffusion of solvent into the polymer network, the
deformation speed of gel-based sheets is limited. During the diffusion
process, the onset of phenomena like cavitation [46] or mechanical
instabilities [40] can quickly morph such soft structures. Stoychev et al.
[80, 81] investigated the actuation of patterned bilayer films consisting
of an hydrophobic (passive) layer and a thermoresponsive hydrophilic
(active) layer. The bilayer is undeformed at temperature T > 70 °C
and folding occurs after cooling below 70 °C. It is not homogeneously
activated, but edge-activated so that the active layer progressively
swells as water diffuses from the lateral sides, triggering the rolling
of the periphery of the film, which in turn changes its macrosopic
mechanical properties. As the water penetrates towards the center
of the film, swelling causes more stress which then becomes large
enough to overcome the energetic barrier, thus allowing for a very fast
switching of shape (see Figure 11).
Fast and repetitive shaping can also overcome by designing devices
that exploit processes of transient shrinking. Kim et al. [38] fabricate
a poly(dimethylsiloxane) (PDMS) thin strip and select n-hexane as
solvent because of its affinity with PDMS, its fast diffusion kinetics
and its fast evaporation. As shown in the scheme of Figure 12 (left),
they take a clamped-clamped swollen strip and impose an initial
lateral confinement d0, which induces an initial buckling of the beam.
Once local buckling occurrs, on the concave and convex faces of the
ribbon the surface area decreases and increases, respectively. They
observe that such asymmetric change in surface area results in a
differential evaporation speed of solvent between the two faces, that
causes a shrinking of the convex face faster than the concave face
until the critical threshold for snap-buckling is reached. The new local
curvature obtained alters the local shrinking dynamics and can trigger
a new snap-buckling of the beam, and so on. This process generates
multiple snap-through transitions without the need for additional
solvent (see Figure 12 (right)).
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Figure 11: Left: scheme of the bending of the edge of a polymer bilayer.
Right: experimentally observed folding of a square polymer bilayer.
Arrows and dashed lines indicate the folding direction. Adapted
from [80].

Figure 12: Left: schematic of the process for generating multiple snap transi-
tions through an assigned initial lateral confinement of the beam.
Right: vertical displacement and speed of middle point of the
beam. Adapted from [38].
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3
E N E R G Y C O N S I D E R AT I O N S O N G R O W I N G B E A M S

In elasticity theory the choice of a strain measure is arbitrary. Any
symmetric tensor E = f (U) that is in one-to-one correspondence with
the right stretch tensor U = Q−1F, where Q is a rotation tensor, F
is the deformation gradient, and holds f (0) = 0, can be used as a
strain measure [18]. The selection is influenced by the convenience in
correlation with experimental observations on a particular material
or the simplicity of the mathematical formulation. Some examples of
usual definitions are

EB = U − I , EG =
1
2
(C − I) ,

EA =
1
2
(I − B−1) , ES = I − V−1 , (3.0.2)

which are commonly called Biot, Green, Almansi and Swainger strain
tensor, respectively, where C = FTF and B = FFT are the left and right
Cauchy-Green deformation tensors, and V = FQ−1 is the left stretch
tensor.
Many soft matter researchers in the last few years have focused their
studies on the non-Euclidean plate theory introduced by Efrati and co-
workers [20], that is based on an elastic energy quadratic in invariants
of Green strain. However, as evidenced by Wood and Hanna in [93],
the choice of the strain measure with which an elastic energy is built
is not trivial, and they demonstrate this with a simple example. They
take a thin elastic plate, bend it into a cylindrical ring and fuse the
ends. They observe that getting a positive stretch of the midplane in-
volves dramatically different energy storage, if the energy involved in
such process is estimated with different strain measures: the Almansi
and Swainger models predict a decrease in bending energy, the Green
model predicts an increase in bending energy, while, according to the
Biot model, it is pure stretching since the bending energy does not
change. The issue is more and more relevant when growth processes
are involved and visible and elastic strain measures must be chosen.
In this section a comparison between the energies deriving from the
use of two strain measures, Biot and Green, is shown. For this pur-
pose, a simplified model of flat bilayer beam in plane bending regime
is considered as an example. In this restricted situation the three-
dimensional deformation tensor is reduced to its relevant component,
corresponding to the axial direction of the beam.
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3.1 flat beams

Given the orthonormal basis (e1, e2, e3) and the coordinate system
(x, y, z), consider a flat beam with uniform thickness h and width w
(Figure 13). It is composed of two stacked layers with equal thickness
h/2 and Young moduli Eb and Et, denoting, from now on, with b the
bottom layer and with t the top layer.

e1

e3

h

L

Figure 13: Reference configuration of the bilayer beam.

The beam suffers an incompatible three-dimensional distortion. Specif-
ically, the bottom and top layers would freely, spherically and inelas-
tically deform of an amount λob and λot, respectively, if they were
not glued together. The visible longitudinal deformation λ can be
multiplicatively decomposes into elastic and inelastic deformations,
such that

λ = λebλob = λetλot , (3.1.3)

where λeb and λet represent the elastic deformations of the two layers.
It is assumed isotropic stretch at x determined by Λ0(x). When there
is plane bending and the cross sections remain flat and orthogonal to
the beam axis, the visible longitudinal deformation may be expressed
linearly in the thickness coordinate z as

λ(x, z) = Λ0(x) + zΛ1(x) , (3.1.4)

where, from now on, Λ0 and Λ1 are assumed uniform. Inspired by the
argument proposed in [93], two reduced two-dimensional, isotropic
and quadratic energies are built in the following subsections starting
from two different visible strain measures:

Biot δ = λ − 1 , (3.1.5)

Green δ =
1
2
(λ2 − 1) . (3.1.6)

3.1.1 Biot energy

The Biot elastic strain measure for each layer is:

δeb = λeb − 1 , and δet = λet − 1 , (3.1.7)
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From (3.1.7),(3.1.3) and (3.1.4), the Biot elastic energy per unit reference
length may be written as

U B =
1
2

wEbλ3
ob

∫ 0

− h
2

δ2
ebdz +

1
2

wEtλ
3
ot

∫ h
2

0
δ2

etdz =

=
1
2

wEbλ3
ob

∫ 0

− h
2

(
λ

λob
− 1
)2

dz +
1
2

wEtλ
3
ot

∫ h
2

0

(
λ

λot
− 1
)2

dz =

=
1
2

wEbλ3
ob

∫ 0

− h
2

((
Λ0

λob
− 1
)2

+ 2z
Λ1

λob

(
Λ0

λob
− 1
)
+ z2

(
Λ1

λob

)2
)

dz+

+
1
2

wEtλ
3
ot

∫ h
2

0

((
Λ0

λot
− 1
)2

+ 2z
Λ1

λot

(
Λ0

λot
− 1
)
+ z2

(
Λ1

λot

)2
)

dz =

=
1
4

wh
[
Ebλ3

obε2
eb + Etλ

3
otε

2
et
]
+

1
8

wh2 [Etλ
3
otεetket − Ebλ3

obεebkeb
]
+

+
1
48

wh3 [Ebλ3
obk2

eb + Etλ
3
otk

2
et
]

, (3.1.8)

where the Biot elastic mid-line strain measures εeb and εet, and elastic
bending measures keb and ket for each layer are introduced and defined
as

εem =
Λ0

λom
− 1 and kem =

Λ1

λom
, m = b, t . (3.1.9)

The integral is computed on the current volume. The elementary actual
volume is dv = λ3

omdV (m = b, t), being dV = dl dw dz the elementary
reference volume. The Biot energy density is exactly at quadratic order
in the elastic measures. Alternatively, defining a visible mid-line strain
ε and a visible bending measure k as

ε = Λ0 − 1 and k = Λ1 , (3.1.10)

the equations (3.1.9) become

εem =
1

λom
(ε − εom) , with εom = λom − 1 , m = b, t ,

kem =
k

λom
, (3.1.11)

and the energy density U B can be expressed as a function of ε and k:

U B = Û B(ε, k) =
1
4

wh
(
Ebλob(ε − εob)

2 + Etλot(ε − εot)
2)+

+
1
8

wh2 (Etλot(ε − εot)− Ebλob(ε − εob)) k+

+
1
48

wh3 (Ebλob + Etλot) k2 , (3.1.12)

The unknowns of the problem ε and k result from the minimization

U̇ (ε, k) =
∂U
∂ε

ε̇ +
∂U
∂k

k̇ = 0 , (3.1.13)
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which leads to the system of linear equations

∂U
∂ε

= 0 ,
∂U
∂k

= 0 . (3.1.14)

The system of equations (3.1.14) can be written explicitly for Biot when
U = U B:4(αλot + λob)ε + h(αλot − λob)k = 4(αλotεot + λobεob)

3(αλot − λob)ε + h(αλot + λob)k = 3(αλotεot − λobεob)
,

(3.1.15)

where α = Et/Eb, and whose general solutions can be found as

ε = ε̂(α, λob, λot) and k = k̂(α, h, λob, λot) . (3.1.16)

Otherwise, introducing the curvature of the deformed mid-line κ =

Λ1/Λ2
0, and being Γ = λob/λot, the solutions of the minimization

problem can be expressed in geometric terms:

Λ0 = f (α, Γ)λob and κ = g(α, Γ)
1

λobh
, (3.1.17)

which derive from the relations (3.1.10):

Λ0 = ε + 1 and κ =
k

Λ2
0

, (3.1.18)

and using the solutions (3.1.16).
Formulas (3.1.17) can also be obtained directly as solutions of the
system of equations

∂U
∂Λ0

= 0 ,
∂U
∂κ

= 0 , (3.1.19)

when U = U B. In fact, by making the energy variations with respect
to Λ0 and κ for Biot:

U̇ B(Λ0, κ) =
∂U B

∂Λ0
Λ̇0 +

∂U B

∂κ
κ̇ =

=

(
∂U B

∂ε
+

2k
(ε + 1)

∂U B

∂k

)
Λ̇0 +

(
(ε + 1)2 ∂U B

∂k

)
κ̇ , (3.1.20)

it can be shown that the systems of equations (3.1.14) and (3.1.19),
with U = U B, are equivalent.

3.1.2 Green energy

The Green elastic strain measure for each layer is:

δeb =
1
2
(λ2

eb − 1) , and δet =
1
2
(λ2

et − 1) . (3.1.21)
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Using the equations (3.1.21), (3.1.3) and (3.1.4), the Green energy den-
sity reads

UG =
1
2

wEbλ3
ob

∫ 0

− h
2

δ2
ebdz +

1
2

wEtλ
3
ot

∫ h
2

0
δ2

etdz =

=
1
2

wEbλ3
ob

∫ 0

− h
2

(
1
2

(
λ2

λ2
ob

− 1

))2

dz+

+
1
2

wEtλ
3
ot

∫ h
2

0

(
1
2

(
λ2

λ2
ot
− 1
))2

dz =

=
1
2

wEbλ3
ob

∫ 0

− h
2

(ε2
eb + 2zεebkeb + z2k2

eb)dz + o(ε2
eb, k2

eb, εebkeb)+

+
1
2

wEtλ
3
ot

∫ h
2

0
(ε2

et + 2zεetket + z2k2
et)dz + o(ε2

et, k2
et, εetket) ≃

≃1
4

wh
[
Ebλ3

obε2
eb + Etλ

3
otε

2
et
]
+

1
8

wh2 [Etλ
3
otεetket − Ebλ3

obεebkeb
]
+

+
1
48

wh3 [Ebλ3
obk2

eb + Etλ
3
otk

2
et
]

, (3.1.22)

that is derived through an expansion to quadratic order in the Green
elastic mid-line strain measures εeb and εet, and the elastic bending
measures keb and ket, defined as

εem =
1
2

(
Λ2

0
λ2

om
− 1
)

and kem =
Λ0Λ1

λ2
om

, m = b, t , (3.1.23)

and dropping any pure or mixed terms of higher order. Alternatively,
defining a visible mid-line strain ε and a visible bending measure k as

ε =
1
2
(Λ2

0 − 1) and k = Λ0Λ1 , (3.1.24)

the equations (3.1.23) become

εem =
1

λ2
om

(ε − εom) , with εom =
1
2
(λ2

om − 1) , m = b, t ,

kem =
k

λ2
om

, (3.1.25)

and the energy density UG can be expressed as a function of ε and k:

UG = ÛG(ε, k) ≃1
4

wh
(

Eb

λob
(ε − εob)

2 +
Et

λot
(ε − εot)

2
)
+

+
1
8

wh2
(

Et

λot
(ε − εot)−

Eb

λob
(ε − εob)

)
k+

+
1

48
wh3

(
Eb

λob
+

Et

λot

)
k2 . (3.1.26)
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The unknowns of the problem ε and k result from the minimization
(3.1.13) that leads to the system of linear equations (3.1.14), which can
be written explicitly when U = UG:4(αλob + λot)ε + h(αλob − λot)k = 4(αλobεot + λotεob)

3(αλob − λot)ε + h(αλob + λot)k = 3(αλobεot − λotεob)
,

(3.1.27)

whose general solutions are like equations (3.1.16), or they can be
expressed in geometric terms like equations (3.1.17) by inverting the
relations (3.1.24):

Λ0 = (2ε + 1)
1
2 and κ =

k
Λ3

0
, (3.1.28)

and using the solutions (3.1.16).
As for Biot, formulas (3.1.17) can also be obtained directly as solutions
of the system of equations (3.1.19), setting U = UG. In fact, by making
the energy variations with respect to Λ0 and κ:

U̇G(Λ0, κ) =
∂UG

∂Λ0
Λ̇0 +

∂UG

∂κ
κ̇ =

=

(
(2ε + 1)

1
2

∂UG

∂ε
+

3k

(2ε + 1)
1
2

∂UG

∂k

)
Λ̇0 +

(
(2ε + 1)

3
2

∂UG

∂k

)
κ̇ ,

(3.1.29)

it can be shown that the systems of equations (3.1.14) and (3.1.19),
with U = UG, are equivalent.

3.1.3 Iso-curvature and iso-stretching transformations

In order to compare different energy models, in [93] the following
example is proposed: a monolayer passive beam of length L is bent
into a circular arc with a fixed radius, and one wonders how the
different energy models adopted behave when the elongation of this
arc varies. Here, one want to reproduce the example in the context of
active blilayer beams in absence of external loads. On the basis of the
model presented in this section, a curvature κ and a mid-axis stretch
Λ0 cannot be freely assigned regardless of the distortions λob and λot,
which cause the bending and elongation of the beam. Therefore, once
the thickness h and the ratio between the Young’s moduli α have been
fixed, the problem consists in finding the pairs (λ⋆

ob, λ⋆
ot) that generate

an assigned curvature κ = κ̄ for any stretch Λ0. On the other hand, a
similar problem consists in finding the pairs (λ⋆

ob, λ⋆
ot) that identify an

assigned stretch Λ0 = Λ̄0 for any curvature κ.
For each pair (λob, λot), a pair (κ, Λ0) can be calculated using the
respective formulas for the Biot and Green models (equations (3.1.17)).
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The morphological diagrams in Figure 14 show, for Biot (left diagram)
and Green (right diagram), the configurations reached by a flat beam
as a function of λob and λot ranging between 0.5 and 5, setting h = 4
mm and α = 1 (same Young modulus for the two layers).
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Figure 14: Morphological phase diagrams representing the configurations
of a beam according to the Biot (top left) and Green (top right)
models, for λob and λot ranging from 0.5 to 5. It is set h = 4
mm and α = 1. Black and red lines are iso-Λ0 and iso-κ lines,
respectively. The black and red dashed lines correspond to Λ0 = 1
(unstretched configuration) and κ = 0 (flat configuration), respec-
tively. The cartoons (bottom) represent three configurations of the
beam with constant curvature κ = 50 m−1 corresponding to the
labels 1 (Λ0 = 0.75), 2 (Λ0 = 1), and 3 (Λ0 = 1.5). The values on
the iso-κ lines indicate the dimensionless curvature κh

The black solid lines are isolines of the realized stretch Λ0 (iso-Λ0)
when Λ0 ̸= 1. The black dashed lines correspond to the isolines
Λ0 = 1, that is when the beam bends without stretching the mid-axis,
and divide the diagrams into region with Λ0 < 1 (shortening of the
mid-axis) and a region with Λ0 > 1 (elongation of the mid-axis). The
red solid lines are isolines of the realized curvature (iso-κ) when κ ̸= 0.
The red dashed lines correspond to the isoline κ = 0 (λob = λot), that
is when the beam grows without bending, and divide the diagrams
into two regions with κ > 0 and κ < 0. Having set the same elastic
modulus for the two layers, they are also line of symmetry for the
diagrams.
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Moving on an iso-κ line, it crosses the iso-Λ0 lines identifying config-
urations of the beam with constant curvature and different stretch,
as the three cartoons at the bottom of Figure (14) show. They corre-
spond to beams with κ = κ̄ = 50 m−1 and stretch values Λ0 = 0.75
(1), Λ0 = 1 (2) and Λ0 = 1.5 (3). They also highlight that, as the
beam undergoes isotropic stretch, there is simultaneously an elon-
gation(shortening) of the mid-axis and a thickening(thinning) of the
thickness. Likewise, moving on an iso-Λ0 line, it crosses the iso-κ lines
identifying configurations of the beam with different curvatures at
constant stretch.
These graphs highlight an important aspect between the two models.
When both the values of λob and λot are limited to around 1, i.e. when
the distortions are small, the isolines are practically superimposable.
However, as the distortions grow, and more evidently, as the mismatch
|λob − λot| between them grows, the two models diverge. This implies
that each model realizes a certain configuration of the beam, identified
by a pair (Λ⋆

0 , κ⋆), but with different pairs (λ⋆
ob, λ⋆

ot) in Biot and Green.

3.2 naturally curved beams

Consider now a naturally curved bilayer beam with uniform curvature
κd, thickness h and width w, composed of two stacked layers with
thickness hi = βh and he = (1− β)h, being β ∈ (0, 1), and Young mod-
uli Ei and Ee, denoting, from now on, with e the outer layer (extrados)
and with i the inner layer (intrados). In III, the explicit formulas for the
mid-axis stretch and curvature come from a constitutive prescription
based on the Biot strain measure

δ = λ − 1 , (3.2.30)

with the visible hoop deformation λ defined by

λ(ζ) = (1 + κdζ)−1(Λ0 + ζΛ1) , Λ1 = κΛ2
0 , (3.2.31)

being ζ the radial coordinate, Λ0 the visible axis stretch and κ the
curvature. As it is done in Section 3.1 for straight beams, also for
naturally curved beams the elastic strain measures for the inner and
outer layer can be defined as

δee =
λ

λoe
− 1 and δei =

λ

λoi
− 1 , (3.2.32)
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and a Biot elastic energy per unit reference length can be written as1:

U B =
1
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∫ − h
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− h
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+
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∫ h
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=
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∫ h
2

− h
2+βh

(
λ

λoi
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)2

(1 + κdζ)dζ . (3.2.33)

As an alternative to the balance of force and torque on the cross-section
(4.5.60) and (4.5.61), the couple (Λ0, Λ1) (formulas III-A.2 and III-A.3)
can be obtained as solution of the minimization of the elastic energy:

∂U B

∂Λ0
= 0 ,

∂U B

∂Λ1
= 0 , (3.2.34)

and the beam axis curvature evaluated as κ = Λ1/Λ2
0. Since λ(ζ) is

nonlinear in the radial coordinate ζ, terms of order h, h2 and h3 do not
appear in the equation of the elastic energy (3.2.33). Setting β = 1/2,
the asymptotic expansion of the elastic energy up to O(h3) leads to a
simplified equation

U B ≃1
4

wh
(
Eiλoi(Λ0 − λoi)

2 + Eeλoe(Λ0 − λoe)
2)

+
1
16

wh2(Eiλoi(Λ0 − λoi)(2Λ1 − κd(Λ0 + λoi))−
− Eeλoe(Λ0 − λoe)(2Λ1 − κd(Λ0 + λoe)))+

+
1
48

wh3(Eiλoi + Eeλoe)(Λ1 − κdΛ0)
2 , (3.2.35)

which reduces to the Biot energy density for a flat beam (3.1.12) by
setting κd = 0 and using formulas (3.1.18). The minimization of the
approximate energy through the system (3.2.34) gives the solutions

Λ0 =
α2(1 + κ̄d) + Γ3(1 − κ̄d) + αΓ(7(1 + Γ) + κ̄d(1 − Γ))

Γ(14αΓ + Γ2(1 − κ̄d) + α2(1 + κ̄d))
λoe ,

(3.2.36)

Λ1 =
κ̄d(α

2(1 + κ̄d) + Γ3(1 − κ̄d))

Γ(14αΓ + Γ2(1 − κ̄d) + α2(1 + κ̄d))

λoe

h
+

+
αΓ((κ̄2

d + 24)(1 − Γ) + 7κ̄d(1 + Γ))
Γ(14αΓ + Γ2(1 − κ̄d) + α2(1 + κ̄d))

λoe

h
, (3.2.37)

where α = Ei/Ee, Γ = λoe/λoi and κ̄d = κdh are dimensionless param-
eters.

1 The elementary actual volume is dv = λ3
omdV (m = i, e), being dV = (1+ κdζ) dl dw dζ

the elementary reference volume.
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In the plots of Figure 15, the solutions deriving from the minimization
of the non-approximate energy (3.2.33) (solide line) and the approxi-
mate energy (3.2.35) (dash-dotted line) are compared. The dimension-
less curvature κh (left panel) and the mid-axis stretch Λ0 (right panel)
are represented as a function of the distortion of the outer layer λoe

for κ̄d = 0 (blue line) and κ̄d = 0.8 (orange line), setting α = 2, h = 4
mm, λoi = 1. As for Λ0, the curves are almost overlapping; as for
κh the simplified formula is closer and closer to the full formula for
λoe which tends to 1 and κ̄d decreasing. In the limit of the flat beam
(κ̄d → 0) the two models match. The dashed lines (left panel) represent
the Timoshenko’s linear formula of dimensionless curvature which is
tangent to the nonlinear formulas in λoe = 1 for small κ̄d, as seen in
III.
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Figure 15: Dimensionless curvature κh (left) and mid-axis stretch Λ0 (right)
versus λoe for κ̄d = 0 (blue line) and κ̄d = 0.8 (orange line), fixing
α = 2, h = 4 mm, λoi = 1. Solid and dash-dotted lines correspond
to the non-approximate and approximate models, respectively;
dashed lines (only in the left plot) correspond to the Timoshenko’s
linear model.

3.3 flattening

Flattening of bilayer naturally curved beams is numerically explored
for gels in III. Results are shown in the morphological phase diagrams
in Figure III-2 and III-3, where the red dashed isolines represent the
locus of points (α, β) and (κ̄d, β), respectively, that identify the flat
configuration of the beam in stationary conditions.
For generic inelastic distortions, the value of the ratio Γ⋆ needed to
straighten a beam with assigned geometrical and material properties
can be found numerically by equating the full nonlinear formula
III-4.22 to zero. However, it would be interesting to find an explicit
formula that estimates the ratio Γ⋆ introducing some approximations.
An easily usable formula can be derived for a slightly curved beam
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equating to zero the expansion of the curvature III-4.22 at the first
order in Γ and κ̄d around Γ = 1 and κ̄d = 0:

Γ⋆ =
24α(α2 + 14α + 1)− κ̄d(43α3 + 99α2 − 15α + 1)
24α(α2 + 14α + 1) + κ̄dα(α3 − 15α2 + 99α + 43)

, (3.3.38)

where it is set β = 1/2 to ease the reading of the formula. In Figure
16 the approximate formula 3.3.38 (blue lines) is compared with the
values of Γ⋆, obtained numerically, that make the complete formula III-
4.22 equal to zero (green triangles), and the following explicit formula
for Γ⋆ which derive from the Timoshenko’s curvature III-5.36 (orange
lines):

Γ⋆ =
24αλoe

κ̄d(α2 + 14α + 1) + 24αλoe
. (3.3.39)

The left panel shows Γ⋆ versus κ̄d ranging between 0 (flat beam) and 1,
fixing α = 2, h = 4 mm and λoe = 1. The right panel shows Γ⋆ versus
λoe ranging between 0.5 and 3, fixing α = 2, h = 4 mm and κ̄d = 0.4.
It can be seen that the three models match for slightly curved beams
and when λoe is close to 1; whereas, for increasing values of κ̄d the
Timoshenko’s and approximate formulas overestimate the ratio Γ⋆.
Moreover, the approximate formula and the full model do not depend
on λoe.
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Figure 16: Value of the ratio Γ⋆ needed to straighten a naturally curved beam
versus the dimensionless curvature κ̄d (left panel) and the distor-
tion of the external layer λoe (right panel). Triangles correspond to
the values of Γ⋆ obtained numerically from the complete formula
III-4.22; blue and orange lines correspond to approximate formula
(3.3.38) and the Timoshenko’s linear model (3.3.39). In the left plot
the fixed parameters are α = 2, h = 4mm, λoe = 1; in the right
plot the fixed parameters are α = 2, h = 4 mm, κ̄d = 0.4.
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4
E L A S T I C A N D I N E L A S T I C P R O C E S S E S I N
P O LY M E R G E L S

As described in Chapter 2, elastic and inelastic growth are two distinct
processes. The following example shows the difference in terms of en-
ergy between the two processes. Consider two flat bilayer beams with
the same size and elastic moduli. Both beams have a passive elastic
layer and an active layer. The latter, in one case grows inelastically,
while in the other case it grows elastically through the absorption of
solvent. The mismatch caused by the growth of a single layer generates
both planar bending and elongation of the middle axis.
The plots in Figure 17 show some results of numerical simulations
based on the 3D models of finite elasticity with distortions, for the
inelastic growth, and stress-diffusion, for the elastic growth, presented
in Sections 4.2 and 4.1, respectively. The total elastic energy (bottom
panel of Figure 17) Ue is in both the cases based on the neo-Hookean
form, suitable for rubber-like materials, and it is computed for differ-
ent values of the average deformation λ̄ = (1/V)

∫
J dV, where V is

the volume of the beam and J = det F, with F the visible deforma-
tion gradient. As growth in the beams is not compatible due to the
presence of the passive layer, in both cases there is a storage of elastic
energy, but of a different amount: in the inelastic case (blue line) it
derives only from the incompatibility between the two layers; in the
elastic case (orange line) another contribution is added due to the
elastic stretching of the polymer chains after the absorption of solvent.
Although the elastic energy is quite different in the two examples, the
mid-axis stretch and the curvature attained is almost the same, as the
top-left and top-right panels of Figure 17 show.
So, in terms of energy, swelling and growth are quite different phenom-
ena, especially when they come together. There is a clear distinction
between them and a full modeling of their interactions is crucial to ac-
curately describe the combined processes [14]. Nevertheless, reduced
models of growing beams have often been used to study swelling in
thin structures [47, 61, 62]. The reason is that, for thin structures, the
growth approach to the elastic problem, based on the multiplicative
decomposition of the deformation gradient, yields simplified models
which allow for semi-analytical solutions.
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Figure 17: Mid-axis stretch Λ0 (top-left), dimensionless curvature κh (top-
right) and total elastic energy Ue (bottom) versus the average
deformation λ̄ = (1/V)

∫
J dV of two identical flat bilayer beams

consisting of a passive layer and an active layer. In one case the
active layer undergoes an inelastic distortion (blue lines), in the
other case it swells due to solvent absorption (orange lines).

4.1 swelling processes in polymer gels

Swelling in polymer gels is studied within the stress-diffusion contin-
uum model presented and discussed in [16, 47–49]. Water-polymer
mixture is modeled as a homogenized continuum body where a flow
of solvent is allowed [12, 32, 33]. Two states of a gel body are in-
troduced: a reference configuration Bd identified with its dry state,
and an actual configuration Bt identified with its swollen state (see
Figure 18). The chemo-mechanical state of the body is described by
two state variables: the displacement field ud(Xd, t) ([ud] =m) from
Bd and the molar solvent concentration per unit dry volume cd(Xd, t)
([cd] =mol/m3), where Xd ∈ Bd is a material point and t ∈ T is an in-
stant of the time line T . The displacement ud gives the actual position
x ∈ Bt at time t of a point Xd as x = Xd + ud(Xd, t) = fd(Xd, t).
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Figure 18: Reference and actual configurations.

The hypothesis that any change in volume of the gel body is due
only to solvent uptake or release results in the following volumetric
constraint:

Jd = det Fd = Ĵd(cd) = 1 + Ωcd , (4.1.40)

which couples the two state variables. Therein, Fd = I +∇ud is the
deformation gradient and Ω ([Ω] =m3/mol) is the molar volume of
the solvent.
The classical Flory-Rehner theory describing the swelling of cross-
linked polymer networks [25, 26] postulates the free-energy per unit
dry volume ψ(Fd, cd) to be additively decomposed into an elastic part
ψe(Fd) and a mixing part ψm(cd). The volumetric constraint (4.1.40) is
taken into account through a relaxed free-energy ψr defined as

ψr(Fd, cd, p) = ψe(Fd) + ψm(cd)− p(Jd − Ĵd(cd)) , (4.1.41)

where the Lagrangian multiplier p ([p] =Pa) represents the pressure
which reacts to the volumetric constraint. The constitutive equations
for the dry-reference stress Sd ([Sd] =Pa) and for the chemical potential
µ ([µ] =J/mol) stem from the dissipation principle [13] and prescribe
that

Sd = Ŝd(Fd)− pF⋆
d and µ = µ̂(cd) + pΩ , (4.1.42)

with

Ŝd(Fd) =
∂ψe

∂Fd
and µ̂(cd) =

∂ψm

∂cd
, (4.1.43)

being F⋆
d = JdF−T

d . The Flory-Rehner thermodynamic model prescribes
that the elastic component ψe of the free-energy has a neo-Hookean
form, and the polymer-water mixing energy ψm has the Flory-Huggins
form:

ψe(Fd) =
G
2
(Fd · Fd − 3) , ψm(cd) =

RT
Ω

h(cd) , (4.1.44)

with

h(cd) = Ωcd log
(

Ωcd

1 + Ωcd

)
+ χ

Ωcd

1 + Ωcd
, [h] = 1 , (4.1.45)
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being G ([G] =J/m3) the shear modulus of the dry polymer, R
([R] =J/(K mol)) the universal gas constant, T ([T] =K) the tem-
perature, and χ the dimensionless Flory parameter, which measure
the dis-affinity between gel and solvent. From equations (4.1.44) and
(4.1.45), together with the volumetric constraint (4.1.40) which pro-
vides the relation cd = (Jd − 1)/Ω, the constitutive prescriptions
(4.1.43) give

Ŝd(Fd) = GFd and µ̂(Jd) = RT

(
log

Jd − 1
Jd

+
1
Jd

+
χ

J2
d

)
. (4.1.46)

The balance of forces, in absence of bulk loads and neglecting the
inertial forces, and the conservation of solvent mass, in absence of
bulk sources, are

0 = div Sd and ċd = −div hd in Bd , (4.1.47)

with the reference solvent flux hd ([hd] =mol/(m2s)), driven by the
dissipation principle, constitutively determined in terms of the positive
definite mobility tensor M as

hd = −M∇µ , with M =
D
RT

cdC−1
d , (4.1.48)

where Cd = FT
d Fd, and D ([D] =m2/s) is the diffusivity. Here M is as-

sumed to be isotropic during any process as in [12], where a thorough
discussion on constitutive issues about the mobility can be found.
A full discussion on the different isotropic representations for M is
reported in [48].
Balance equations (4.1.47) are supplemented by Neumann-type bound-
ary conditions on the stress vector Sdm and on the solvent flux hd · m:

Sdm = t̄ in ∂tBd and hd · m = q̄s in ∂qBd , (4.1.49)

and Dirichlet-type boundary conditions on the displacement ud and
the concentration cd:

ud = ū in ∂uBd and cd = c̄s in ∂cBd , (4.1.50)

being ∂tBd, ∂qBd, ∂uBd and ∂cBd the portion of the boundary Bd of unit
normal m where tractions, fluxes, displacements and concentration,
respectively, are prescribed. Usually, the chemical boundary condition
(4.1.50) is replaced by the implicit condition µ̂(cs) + pΩ = µe on the
concentration field cs at the boundary ∂cBd controlled by assigning
the external chemical potential µe. Finally, the model is completed by
the initial conditions for the state variables ud = udo and cd = cdo on
Bd at t = 0.
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4.2 finite elasticity with distortions

The theory of bulk growth is based on the multiplicative decomposi-
tion of the visible deformation in an inelastic deformation Fo and in an
elastic deformation Fe, such that F = FeFo (Figure 19). The distortion
Fo maps the reference state B into a natural state Bo, which is stress-
free, but usually do not correspond to any realizable deformation. The
main difference with the stress-diffusion-model shown in Section 4.1
is the assumption that there is no exchange of mass, but a local change
of the ground state.

B

Bt

Bo

F

Fo

Fe = FF−1
o

X

x

Figure 19: Multiplicative decomposition of the deformation gradient.

The problem is described by one state variable: the displacement field
u(X), which gives the actual position x = X +u(X) of a material point
X ∈ B. There is no dependence on time as the aim is to determine
only the equilibrium states of the polymer bodies. The tensor-valued
field Fo is given and does not constitute a state variable; in addition, it
is assumed that Fo is the only cause of volume changes. This translates
into the volumetric constraint

J = det F = Jo = det Fo , (4.2.51)

which is equivalent to assigning an isochoric constraint to the elastic
deformation Fe, that is, such that Je = det Fe = 1. Introducing the
pressure p as a Lagrangian multiplier, the volumetric constraint is
included in the definition of the elastic free-energy ψe(Fe) as follows:

ψr(Fe, p) = ψe(Fe)− p(J − Jo) , (4.2.52)

which provides, through the dissipation inequality, the constitutive
equation for the reference stress S:

S = Ŝ(Fe)− pF⋆ , with Ŝ(Fe) =
∂ψe

∂Fe
, (4.2.53)

where, for a neo-Hookean material, the elastic free-energy has the
form

ψe(Fe) =
G
2
(Fe · Fe − 3) , (4.2.54)
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and leads to the following equation for S:

S = GFF−1
o F⋆

o − pF⋆ , (4.2.55)

being F⋆ = JF−T and Fo = JoF−T
o . The actual (Cauchy) stress T can be

obtained from S through T = J−1SFT. For a spherical tensor Fo = λoI,
as in I, the constitutive equation (4.2.55) becomes

S = GλoF − pF⋆ . (4.2.56)

As Fo is a given of the problem, no balance law for the remodeling
actions [9, 14] is here introduced; the only balance law considered is
the balance of forces div S = 0, in absence of bulk loads and inertial
forces. Finally, the boundary conditions on the displacement u = ū or
on the stress vector Sm = t̄ complete the formulation of the problem.

4.3 computational analysis of growing beams

The stress-diffusion continuum model is solved numerically with a
finite element method through implementation in the finite element
software COMSOL Multiphysics [48]. The balance equations (4.1.47)
and the volumetric constraint (4.1.40) are reformulated in weak form,
and the problem is set as follows: find ud, cd, p such that it holds

0 =
∫
Bd

(
−Sd · ∇ũd − ċd · c̃d + hd · ∇c̃d + [Jd − Ĵ(cd)] · p̃

)
, (4.3.57)

for all test fields ũd, compatible with the kinematic constraints, c̃d and
p̃. The constitutive equations shown in the previous section hold for
the stress Sd and the flux hd. As for the boundary conditions, it is
assumed zero traction and assigned a displacement ū that eliminates
any rigid motion without generating reaction forces. The implicit
boundary condition on the concentration field cs in weak form is

0 =
∫

∂cBd

[µ̂(cs) + pΩ − µe] · c̃s . (4.3.58)

Also the problem of finite elasticity with distortions presented in
Section 4.2 is solved numerically through a finite element method, and
stated as follows: find a displacement u and a pressure p such that,
for all test functions ũ, compatible with the kinematic constraints, and
p̃ it holds:

0 =
∫
B
(−S · ∇ũ + [J − Jo] · p̃) . (4.3.59)

4.4 eversion and flattening under swelling

The simplest way to realize a gel-based actuator is to create a non-
homogeneous structure by stacking two homogeneous strips one on
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the other. The estimation of the geometrical and mechanical character-
istics which produce a specific shape of such actuator is challenging.
In III the swelling-induced eversion and flattening of naturally curved
bilayer gel beams is discussed through exact numerical models and
approximate explicit formulas. The aim of the work is to investigate
how geometrical and material parameters determine variations in
curvature in a gel beam, initially dry, consisting of two layers of dif-
ferent thickness and elastic modulus, once immersed in a solvent
bath with assigned chemical potential. Indeed, as the two layers have
different elastic properties, they would like to swell differently if they
where free from each other but, since they are glued together, the
bilayer bends. The problem is set within the context of continuum
mechanics, studying the swelling processes with the fully nonlinear
three-dimensional stress-diffusion model presented in Section 4.1,
and solved numerically with a finite element method as described in
Section 4.3. A campaign of numerical experiments is carried out by
varying some key parameters such as the geometrical parameters β

and κ̄d, and the material parameter α, and the results are summarized
in the morphological phase diagrams of emerging curvature patterns
at steady-state in Figures III-2 and III-3. They represent the curvature
as a function of α and β, and as a function of κ̄d and β, respectively.
They show how an appropriate combination of design parameters can
generate a flattening (white regions) or eversion (red regions) of the
beam at equilibrium, going from a dry state to wet state, and fixing
the environmental conditions (chemical potential and temperature of
the solvent bath).
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a b s t r a c t 

This paper investigates swelling-induced eversion and flattening in curved bilayer gel beams. An explicit for- 

mula is produced to evaluate the change in curvature induced by large swelling deformations. The validity is 

tested against a fully coupled nonlinear three–dimensional stress-diffusion model. Limit situations for nearly- 

homogeneous and slightly curved beams are discussed. 

1. Introduction 

Designing changes in size and shape of soft materials is challenging. 

The effectiveness of soft actuators, where deformations and displace- 

ments are triggered through a wide range of external stimuli [1–8] , de- 

pends on the ability to achieve prescribed changes in the system. Specifi- 

cally, in gel–based actuators, shape control involves materials which are 

swellable due to the capability of these materials to absorb solvents [9] . 

It is largely recognized that a gel structure realized with chemically 

distinct regions can swell freely, giving rise to non–homogeneous de- 

formation patterns which resemble well–known macroscopic structural 

deformations [10,11] . Two key issues are: the estimation of the geo- 

metrical and mechanical characteristics of the non–homogeneous gel 

systems which produce three–dimensional shapes, under free–swelling 

conditions; the capability to realize non–homogeneous gel systems with 

the estimated characteristics. 

Ref. [10] is focused on non–homogeneous flat gel structures, and 

flat structures are the subject of numerous studies [12–16] . The same 

problems can also be investigated with reference to non–homogeneous 

and naturally curved structures. In this case, the range of deformation 

patterns is wide and extremely interesting, including eversion and flat- 

tening of the structure. 

The investigation concentrates on bilayered naturally curved gel 

beams, which are non–homogeneous along the thickness and represent 

special cases of non–homogeneous gel systems with beam–like homo- 

geneous components. These kind of structures have been largely stud- 

ied when they are flat (see Refs. [17–20] ). However, the behaviour of 

curved composites under swelling is still largely unexplored. 

The problem is set within the context of continuum mechanics, 

where swelling–induced deformation processes can be studied through 

the fully nonlinear three–dimensional stress–diffusion model at our dis- 

posal [17,21–27] (see also [28–30] ). The model is utilized to find 
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free–swelling solutions in the stress–diffusion problem corresponding 

to non–homogeneous and naturally curved gel beams. Through the fi- 

nite element solution of the problem, we show how different changes 

in beam curvature can be produced at zero force and torque, depend- 

ing on the mismatch between the shear moduli of the two beam–like 

parts. We also show how swelling always induces a change in cur- 

vature, which can be interpreted following [31] as a pure stretch- 

ing deformation for two beam–like parts that have the same shear 

modulus. 

In addition, another important aspect considered concerns the ap- 

proximate modeling of swelling–driven large deformations in non–

homogeneous naturally curved thin structures, following [17] . It de- 

livers explicit and complex formulae that estimate the change in beam 

curvature. The model is based on the assumption that within each ho- 

mogeneous beam–like part of the system, bending deformation can be 

multiplicatively split into the uniform free–swelling stretch that would 

take place if the part was free from the rest of the beam and a further 

elastic component. The uniform free–swelling stretches of each homo- 

geneous beam are determined by the mechano–chemical equilibrium 

equations which use the Flory–Rehner stress–diffusion model and de- 

pend on three material parameters: the shear modulus of the polymer, 

the chemical potential of the bath and the Flory parameter that mea- 

sures the dis-affinity between the aforementioned polymer and solvent. 

The elastic deformations come out from the multiplicative decomposi- 

tion, once assured the compatibility of the global bending deformation. 

Within the gel beam, elastic deformations deliver internal stresses cor- 

responding to null forces and torques on each cross section of the beam, 

in the absence of external forces. 

We show through appropriate morphological diagrams how geomet- 

rical and material parameters determine changes in the curvature of 

the structure which can deliver eversion of a naturally curved bilayer 

beam and flattening. Limit cases corresponding to nearly homogeneous 
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gel beams and nearly flat beams are identified and discussed. The Tim- 

oshenko formula for bilayer thermal beams is also recovered within the 

limits of a slight curvature in the original dry beam and small deforma- 

tions [32] . 

2. Background 

We describe swelling–induced deformation processes in bilayered 

gel beams which are naturally curved, through a multiphysics con- 

tinuum model based on the balance equations for forces and sol- 

vent, on the thermodynamics inequalities restricting the class of ad- 

missible constitutive prescriptions, and on the choice of a free en- 

ergy density which accounts for both the elastic and mixing contri- 

butions. As we aim to set up a series of numerical experiments, we 

shortly review below the model, already presented and discussed in 

[17,21,22,33] , focusing on the weak form of the above equations which 

have been implemented within the commercial software COMSOL 

Multiphysics. 

2.1. State variables and thermodynamics 

The reference configuration  𝑑 of the gel body is identified with 

its dry state and is a beam-like three-dimensional region of the Eu- 

clidean space  with boundary 𝜕 𝑑 of outward unit normal n . We de- 

note with  the time line and describe the chemo-mechanical state 

of the body by two state variables: the displacement field 𝐮 𝑑 ∶  𝑑 × → V , ( 𝑋 𝑑 , 𝑡 ) ↦ 𝐮 𝑑 ( 𝑋 𝑑 , 𝑡 ) and the water concentration 𝑐 𝑑 ∶  𝑑 ×  →
ℝ , ( 𝑋 𝑑 , 𝑡 ) ↦ 𝑐 𝑑 ( 𝑋 𝑑 , 𝑡 ) . The displacement u d gives the actual position 

x at time t of a point X d as 𝑥 = 𝑋 𝑑 + 𝐮 𝑑 ( 𝑋 𝑑 , 𝑡 ) , whereas the water 

concentration c d gives the moles of water per unit dry volume at 

𝑋 𝑑 + 𝐮 𝑑 ( 𝑋 𝑑 , 𝑡 ) . 
The two variables are coupled by the volumetric constraint which 

forces the change in volume of the gel body to be only due to solvent 

uptake or release: 

𝐽 𝑑 = 𝐽 ( 𝑐 𝑑 ) = 1 + Ω𝑐 𝑑 with 𝐽 𝑑 = det 𝐅 𝑑 and 𝐅 𝑑 = 𝐈 + ∇ 𝐮 𝑑 , (2.1) 

with Ω as the molar volume of the solvent ([Ω] = m 

3 ∕ mol ) . 
We take into account the constraint (2.1) 1 by considering a relaxed 

free–energy 𝜓 r based on the Flory–Rehner free-energy 𝜓( F d , c d ) per unit 

dry volume, which includes the volumetric constraint through the La- 

grangian multiplier p : 

𝜓 𝑟 ( 𝐅 𝑑 , 𝑐 𝑑 , 𝑝 ) = 𝜓( 𝐅 𝑑 , 𝑐 𝑑 ) − 𝑝 ( 𝐽 𝑑 − 𝐽 ( 𝑐 𝑑 )) , 𝜓( 𝐅 𝑑 , 𝑐 𝑑 ) = 𝜓 𝑒 ( 𝐅 𝑑 ) + 𝜓 𝑚 ( 𝑐 𝑑 ) , 

(2.2) 

with 𝜓 additively decomposed into the elastic 𝜓 e and mixing 𝜓 m 

part. 

The constitutive equations for the stress S d and the chemical potential 

𝜇 come from dissipation issues and prescribe that 

𝐒 𝑑 = �̂� 𝑑 ( 𝐅 𝑑 ) − 𝑝 𝐅 ⋆ 
𝑑 

and 𝜇 = �̂�( 𝑐 𝑑 ) + 𝑝 Ω , (2.3) 

with 

�̂� 𝑑 ( 𝐅 𝑑 ) = 

𝜕𝜓 𝑒 

𝜕𝐅 𝑑 
and �̂�( 𝑐 𝑑 ) = 

𝜕𝜓 𝑚 

𝜕𝑐 𝑑 
, (2.4) 

being 𝐅 ⋆ 
𝑑 
= 𝐽 𝑑 𝐅 − 𝑇 𝑑 

. Moreover, granted for the volumetric constraint 

(2.1) 1 and with a light abuse of notation, we also will write �̂�( 𝑐 𝑑 ) = �̂�( 𝐽 𝑑 ) 
with 𝑐 𝑑 = ( 𝐽 𝑑 − 1)∕Ω. The Flory-Rehner thermodynamics delivers the 

following consitutive prescriptions for �̂� 𝑑 ( 𝐅 𝑑 ) and �̂�( 𝐽 𝑑 ) : 

�̂� 𝑑 ( 𝐅 𝑑 ) = 𝐺 𝐅 𝑑 and �̂�( 𝐽 𝑑 ) =  𝑇 

( 

log 
𝐽 𝑑 − 1 
𝐽 𝑑 

+ 

1 
𝐽 𝑑 

+ 

𝜒

𝐽 2 
𝑑 

) 

. (2.5) 

Finally, the reference water flux h d ( [ 𝐡 𝑑 ] = mol/m 

2 s) is represented 

as 𝐡 𝑑 = ̂𝐡 𝑑 ( 𝐅 𝑑 , 𝑐 𝑑 , 𝑝 ) = − 𝐌 ( 𝐅 𝑑 , 𝑐 𝑑 )∇( ̂𝜇( 𝑐 𝑑 ) + 𝑝 Ω) in terms of the mobility 

tensor M which is positive definite in such a way to satisfy the dissipa- 

tion inequality. 

2.2. Balance equations and boundary conditions 

We pose the balance equations of the problem in integral form as 

follows: find u d , c d and p such that, for all test fields �̃� 𝑑 , 𝑐 𝑑 , and �̃� , it 

holds 

0 = ∫ 𝑑 
(
−[ 𝐒 𝑑 ( 𝐅 𝑑 ) − 𝑝 𝐅 ⋆ 

𝑑 
] ⋅ ∇ ̃𝐮 𝑑 − �̇� 𝑑 ⋅ 𝑐 𝑑 + 𝐡 𝑑 ⋅ ∇ ̃𝑐 𝑑 + [ 𝐽 𝑑 − 𝐽 ( 𝑐 𝑑 )] ⋅ �̃� 

)
. 

(2.6) 

Boundary conditions are of mechanical and chemical nature. The firsts 

are easy to handle, as we assume zero tractions and assign a displace- 

ment �̄� 𝑑 on the boundary that eliminates any rigid motion without gen- 

erating reaction forces. On the contrary, tackling the chemical bound- 

ary conditions is more tricky, as it is not possible to control the solvent 

source q s at the surface, nor the surface concentration c s . So, following 

[25–27] , we assume to control the chemical potential 𝜇 on the surface 

and set it equal to the chemical potential �̄� of the bath: 

0 = ∫𝜕 𝑐  𝑑 [ �̂�( 𝑐 𝑠 ) + 𝑝 Ω − �̄� ] ⋅ 𝑐 𝑠 . (2.7) 

Moreover, as we control the state variable c s , the surface flux source q s 
must be considered as a reaction, which is unknown a priori, and whose 

evaluation a posteriori yields poor approximations. So, we also require 

that 

0 = ∫𝜕 𝑐  𝑑 [ ( 𝑐 𝑑 − 𝑐 𝑠 ) ̃𝑞 𝑠 + 𝑞 𝑠 ( ̃𝑐 𝑑 − 𝑐 𝑠 ) ] . (2.8) 

All in all, the complete problem is reformulated as follows: find u d , c d , p, 

c s , and q s such that, for any test functions ̃𝐮 𝑑 , 𝑐 𝑑 , �̃� , 𝑐 𝑠 , and 𝑞 𝑠 , Eqs. (2.6) –

(2.8) hold; the three fields u d , c d , p are defined in  𝑑 ×  , while the two 

fields c s and q s are defined on 𝜕 𝑐  𝑑 ×  . 
3. Numerical swelling tests on a curved beam 

We fix an orthonormal basis { e 1 , e 2 , e 3 } of the translation space  of 

 , and consider a gel beam that at its dry state has got as axis a circular 

arc of curvature 𝜅𝑑 = 1∕ 𝑅 𝑚 laying in the plane of unit normal e 3 . The arc 

has length 𝐿 = 2 ̄Θ𝑅 𝑚 , with 2 ̄Θ the angle amplitude. A cylindrical basis 

{ 𝐞 𝑅 , 𝐞 Θ , 𝐞 3 } is introduced, with 𝐞 𝑅 = sin Θ𝐞 1 + cos Θ𝐞 2 and 𝐞 Θ = cos Θ𝐞 1 − 

sin Θ𝐞 2 ; the corresponding coordinates are ( R , Θ, Z ). The cross-section 

of the beam is assumed in the form of a plane rectangular region of 

thickness ℎ = 𝐿 ∕10 and width w , with unit normal 𝐞 Θ (see Fig. 1 ). 

The beam is assumed to be composed of two stacked beam-like layers 

with thickness ℎ 𝑖 = 𝛽ℎ the inner (intrados) layer and ℎ 𝑒 = (1 − 𝛽) ℎ the 

outer (extrados) layer, being 𝛽 ∈ (0, 1); the corresponding shear moduli 

of the two layers are G i and G e and, in general, 𝛼 = 𝐺 𝑖 ∕ 𝐺 𝑒 ≠ 1 . 
When immersed in a solvent bath with assigned chemical potential 

�̄�, both the layers of the gel beam would swell isotropically, if they were 

free, with different homogeneous equilibrium free-swelling ratio: 𝜆oi is 

the free-swelling stretch corresponding to the intrados layer and 𝜆oe is 

the one corresponding to the extrados layer. Both of them are given by 

the following equation 

 𝑇 

(
log 

𝜆3 
𝑜 
− 1 
𝜆3 
𝑜 

+ 

1 
𝜆3 
𝑜 

+ 

𝜒

𝜆6 
𝑜 

)
+ 

𝐺 

𝜆𝑜 
Ω = �̄� , (3.9) 

with 𝜆𝑜 = 𝜆𝑜𝑖 and 𝐺 = 𝐺 𝑖 for the intrados layer, and 𝜆𝑜 = 𝜆𝑜𝑒 and 𝐺 = 𝐺 𝑒 

for the extrados one. Eq. (3.9) yields the homogeneous isotropic solu- 

tion of the stress-diffusion problem corresponding to a body which at- 

tains a swollen stress-free state once embedded into a pure water bath of 

known chemical potential �̄� = 0 . As 𝛼 ≠ 1 , 𝜆oi is different from the equi- 

librium swelling ratio 𝜆oe of the extrados beam. As the two homogeneous 

beam-like layers realize an assembly and swell differently, a macro- 

scopic bending is induced which may determine a further curving of the 

beam, which can yield an increase or a decrease of the beam curvature, 

other than an extension of the beam. Higher is the mismatch between 

the two moduli, and hence between the two free-swelling stretches 𝜆oi 
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Fig. 1. Dry and wet configurations of the nat- 

urally curved bilayered beam; the plane of unit 

normal e 3 is the flexure plane. 

and 𝜆oe , higher is the change of curvature realized by the beam. With 

the aim to investigate the dependence of the change of curvature on 

the key geometrical and material parameters, we plan and implement a 

series of numerical experiments. We consider a naturally curved dry bi- 

layer beam of curvature 𝜅d ; moreover, we assume the ratio between the 

shear moduli 𝛼 ≠1, and also assume that the ratio 𝛽 take values in be- 

tween 0 (homogeneous beam with 𝐺 = 𝐺 𝑖 ) and 1 (homogeneous beam 

with 𝐺 = 𝐺 𝑒 ). More specifically, the limit case 𝛼 = 1 and/or 𝛽 = 1 cor- 

responding to a homogeneous beam will also be considered. All along 

the experiments, we assume to control the chemical potential �̄� of the 

external environment, and take it as a function of the relative humidity 

RH : �̄� = 𝑅𝑇 log 𝑅𝐻 , with the temperature T as known. 

We are in general interested in the equilibrium solution of the stress- 

diffusion problem; hence, we use the Stationary Solutor in the 

finite element software COMSOL Multiphysics to look for them, imple- 

menting the Eqs. (2.6) - (2.8) with �̇� 𝑑 = 0 . The numerical solution de- 

livers (right Cauchy-Green) strain 𝐂 = 𝐅 𝑇 
𝑑 
𝐅 𝑑 and (Cauchy) stress 𝐓 = 

(1∕ 𝐽 𝑑 ) 𝐒 𝑑 𝐅 𝑇 𝑑 at any point of the beam. In particular, with reference to 

the reference system illustrated in Fig. 1 , we evaluate the longitudinal 

axis stretch as 

Λ0 (Θ) = ( 𝐂 ( 𝑅 𝑚 , Θ, 0) 𝐞 Θ(Θ) ⋅ 𝐞 Θ(Θ)) 1∕2 . (3.10) 

The new curvature 𝜅 realized by the beam axis is evaluated by consid- 

ering the cylindrical surface whose directrix is the beam axis. Denoting 

with a and b the first and second fundamental forms of that surface, we 

get the mean curvature H of the surface as 

𝐻 = 

1 
2 
tr ( 𝐚 −1 𝐛 ) = 

𝜅1 + 𝜅2 
2 

, (3.11) 

and, being one of the two principal curvatures equal to zero, say 𝜅2 = 0 , 
we also get the curvature 𝜅 = 𝜅1 of the beam. 

3.1. Geometrical and material determinants of swelling-induced bending 

The goal of the numerical experiments is to investigate how far we 

can go from the naturally curved state by changing some key parameters 

of the model such as the geometrical parameters 𝛽 and �̄�𝑑 = 𝜅𝑑 ℎ, and 

the material parameter 𝛼, when the beam goes from a dry state (we 

think the beam embedded into an environment with chemical potential 

𝜇 = −∞) to a wet state (in this case, we think the beam embedded into 

an environment with chemical potential �̄� = 𝑅𝑇 log 𝑅𝐻). Our aim is to 

build a morphological phase diagram of emerging curvature patterns for 

different values of 𝛼, 𝛽 and �̄�𝑑 . Hence, we start fixing the environmental 

conditions, that is, the chemical potential �̄� and the temperature T of 

the bath. We also fix some geometric and material features such as the 

length L , thickness h , and width w of the beam, the shear modulus G e of 

the extrados layer and the Flory parameter 𝜒 which is assumed to be the 

same in the two layers. Their values are shown in Table 1 . So, numerical 

experiments involve beams with different dry curvature 𝜅d , thicknesses 

ratio 𝛽, and shear moduli ratio 𝛼, and the outcomes of the numerics are 

shown in the contour plots in Figs. 2 and 3 . 

The first diagram is the morphological diagram corresponding to a 

dry and naturally curved beam with 𝜅𝑑 = 50 m 

−1 . The diagram shows 

Table 1 

Numerical values of the parameters. 

Parameter Symbol and value 

Length 𝐿 = 40 mm 

Thickness ℎ = 4 mm 

Width 𝑤 = 1 mm 

Shear modulus of the outer layer 𝐺 𝑒 = 50 kPa 

Dis-affinity 𝜒 = 0 . 4 
Molar volume Ω = 6 . 023 × 10 −5 m 

3 /mol 

External chemical potential �̄� = 0 J/mol 

Temperature 𝑇 = 293 K 

the beam curvatures attained from 𝜅d for values of 𝛼 ranging from 0.1 to 

10 and 𝛽 from 0 to 1, due to swelling. Dashed and solid lines are isolines 

of the curvature 𝜅 realized and, as it can be appreciated in the diagram, 

both positive and negative curvatures 𝜅 are realized. There are three 

highlighted isolines. One is the red dashed line corresponding to a flat 

beam, that is, to 𝜅 = 0 : the diagram shows as there are different pairs 

of parameters ( 𝛼, 𝛽) which realize a flat beam starting from one with 

curvature 𝜅𝑑 = 50 m 

−1 . Moreover, the dashed red line divides the dia- 

gram into a (blue) part corresponding to beams with positive curvatures 

and a (red) part corresponding to beams with negative curvatures. The 

second key isoline is the black dashed line, corresponding to 𝛼 = 1 , that 

is, to a homogeneous beam. In this case, fixed �̄� = 0 we get 𝜅 = 20 m 

−1 , 

starting from 𝜅𝑑 = 50 m 

−1 for any values of the parameter 𝛽 which is no 

more meaningful. The third distinguished isoline is the solid red isolines 

corresponding to a curvature 𝜅 = 𝜅𝑑 , that is, to a curvature equal to the 

one characterizing the dry state of the beam. It means that, working 

with the pair ( 𝛼, 𝛽) of parameters, we can also aim to keep unchanged 

beam’s curvature under a change in the environment conditions. As ex- 

pected, swelling gets to evert the dry curvature of the beam only when 

𝛼 < 1; indeed, as the shear modulus and the free-swelling stretch of a 

single layer taken separately are in inverse relation through (3.9) , 𝛼 < 1 

( G i < G e ) implies 𝜆oi > 𝜆oe . As a consequence, the beam-like located at the 

intrados swells more than the one placed on the extrados favouring the 

eversion. On the other hand, for 𝛼 > 1, beam curvature gets increasing 

for increasing values of 𝛼. 

It is also interesting to view the curvature patterns from a different 

point of view through the diagram shown in Fig. 3 (left panel). Therein, 

the isolines of curvature corresponding to values of 𝛽 between 0 and 

1 and of 𝜅d between 1 and 50 m 

−1 are shown in the plane �̄�𝑑 − 𝛽, at 

𝛼 = 0 . 5 . This value of 𝛼 < 1 was chosen to evidence in the diagram also 

the eversion of the beam (as remarked above, only possible for 𝛼 < 1). 

In the contour plot, we identify a locus of points ( ̄𝜅𝑑 , 𝛽) , the red dashed 

isoline, where 𝜅 = 0 ; it divides the diagram into the red zone, always 

corresponding to negative curvatures from the blue zone correspond- 

ing to positive curvatures. The diagram shows as, at that values of 𝛼, 

there are some values of 𝜅d such that we can get beam eversion, that is, 

through swelling when the appropriate thicknesses ratio 𝛽 is used. The 

right panel of the same figure shows the correspondence between the 

dimensionless curvature �̄�𝑑 used in the left diagram and the curvature 

𝜅d , when ℎ = 4 mm, and the corresponding beam’s cartoons. 
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Fig. 2. Morphological phase diagram of emerging curved patterns from numerical simulations. Dashed and solid lines are isolines of the curvature 𝜅 realized by 

swelling a naturally curved beam with reference curvature 𝜅𝑑 = 50 m 

−1 . The black dashed isoline corresponds to 𝛼 = 1 ( 𝐺 𝑖 = 𝐺 𝑒 ) . The red dashed isoline, belonging 

to the half-plane 𝛼 < 1, corresponds to the flat configuration 𝜅 = 0 . The red solid isoline corresponds to 𝜅 = 𝜅𝑑 . The insets represent the deformed configuration of the 

beam, at different values of curvature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Cartoon showing the beams corresponding to 𝜅𝑑 = 1 ( ̄𝜅𝑑 = 𝜅𝑑 ℎ = 4 ⋅ 10 −3 ), 𝜅𝑑 = 25 ( ̄𝜅𝑑 = 𝜅𝑑 ℎ = 0 . 1 ), and 𝜅𝑑 = 50 ( ̄𝜅𝑑 = 𝜅𝑑 ℎ = 0 . 2 ) (right). Isolines of curvature 

corresponding to different values of 𝛽 and �̄�𝑑 at 𝛼 = 0 . 5 (left). 

3.2. The limit case of homogeneous beams 

The homogeneous and naturally curved beam corresponds to both 

𝛼 = 1 (two layers of the same material), and to 𝛽 = 0 , 1 (the beam co- 

incides with the extrados or with the intrados layer, respectively). In 

this case, Eq. (3.9) delivers the uniform swelling ratio 𝜆o realized by the 

beam at the equilibrium and corresponding to �̄� = 0 . So, the equilibrium 

state is identified by a swollen thickness ℎ 𝑜 = 𝜆𝑜 ℎ and a swollen curva- 

ture 𝜅𝑜 = 𝜅𝑑 ∕ 𝜆𝑜 . Hence, for a homogeneous beam, the swollen curvature 

𝜅o depends linearly on the reference curvature 𝜅d ; moreover, at 𝜅𝑑 = 0 , 
swelling can’t induce any curving in a homogeneous beam. The elas- 

tic energy stored along the swelling process is easily determined from 

(2.2) as 

Ψ = 

3 
2 
𝐺ℎ ( 𝜆2 

𝑜 
− 1) 𝐿𝑤 , (3.12) 

and, following [31] , we would say that the swelling process induces a 

pure stretching deformation of the homogeneous beam. 

When the free–swelling stretch 𝜆o ≫1, the chemical equilibrium 

equation can be replaced by its asymptotic version. The swelling stretch 

is evaluated by estimating the leading order term in the asymptotic ex- 

pansion up to 𝑂(1∕ 𝜆8 
𝑜 
) (see [33] ) as 

𝜆𝑜 ≃
(  𝑇 

Ω
1∕2 − 𝜒

𝐺 

) 1∕5 
. (3.13) 

It leads to an explicit formula for the curvature at the swollen equilib- 

rium state in the form 

𝜅𝑜 ≃
( 

Ω
 𝑇 (1∕2 − 𝜒) 

) 1∕5 
𝐺 

1∕5 𝜅𝑑 . (3.14) 

At different values of the reference curvature 𝜅d , varying from 0 to 

100m 

−1 , Fig. 4 (left panel) shows the swollen curvatures 𝜅o correspond- 

ing to a shear modulus G varying from 1 to 150 kPa. Precisely, the 

triangle-based lines correspond to the exact solution of the equilibrium 

Eq. (3.9) ; the solid lines correspond to the approximate solution pre- 

sented in the next section (precisely, Eq. (3.14) ). Fig. 4 (right panel) 

shows the swollen curvatures 𝜅o corresponding to a reference curvature 

𝜅d varying from 0 to 100 m 

−1 at different values of the shear modulus 

G (triangle-based lines and solid lines represent the same code used for 

the left panel). The three cartoons at the bottom of Fig. 4 correspond to 

beams whose curvatures are identified in the two panels by the number 

1 ( 𝜅𝑜 = 0 ), 2 ( 𝜅o ≃40 m 

− 1 ), and 3 ( 𝜅o ≃80 m 

− 1 ). 

4. Explicit model for curved bilayer beams 

Due to the numerical evidences of plane bending processes, we set 

the explicit model within a two-dimensional scenario: given the coordi- 

nate system ( 𝜁 , Θ, Z ), we assume that the flexure plane 𝑍 = 0 is a sym- 

metry plane (see Fig. 1 ). Bending deformations from the dry state to a 

swollen and steady state are then modeled assuming that cross-sections 

stay plane and curvature uniform. Under these hypotheses, each circu- 

lar arc of radius 𝑅 = 𝑅 𝑚 + 𝜁, where 𝜁 ∈ [− ℎ ∕2 , ℎ ∕2] , and angle amplitude 

2 ̄Θ maps into another circular arc of radius r and angle amplitude 2 ̄𝜃. 
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Fig. 4. Swollen curvature 𝜅o versus shear modulus G at different values of 𝜅d ranging from 𝜅𝑑 = 0 to 𝜅𝑑 = 50 m 

−1 (left) and versus dry curvature 𝜅d at different 

values of G ranging from 𝐺 = 10 2 Pa to 𝐺 = 10 6 Pa (right). Triangles represent the outcomes of the numerical experiments; solid lines correspond to the asymptotic 

approximation (3.14) (right). Cartoons of the beams whose curvatures correspond to circle 1 ( 𝜅𝑜 = 0 ), 2 ( 𝜅o ≃40 m 

−1 ), and 3 ( 𝜅o ≃80 m 

−1 ) in the diagrams (bottom). 

Fig. 5. Cartoon of the multiplicative decomposition of the bending deformation: 

if the two layers were free, one from each other, they would swell as represented 

in the ideal swollen configuration, which can’t be realized; as they are bonded, 

starting from a dry configuration, swelling induces a bent deformed configura- 

tion. 

With this, the measure 𝜆( 𝜁) of the hoop deformation that takes place 

within the gel beam can be represented as 

𝜆( 𝜁 ) = (1 + 𝜅𝑑 𝜁 ) −1 (Λ0 + Λ1 𝜁 ) , Λ1 = 𝜅Λ2 
0 , (4.15) 

where we assumed the existence of a swelling ratio Λ0 in between 𝜆oi 

and 𝜆oe that determines an isotropic stretch of the beam such that: 

(i) 𝑟 = Λ0 𝑅 ; (ii) ( ̄𝜃∕ 𝜅) = Λ0 ( ̄Θ∕ 𝜅𝑑 ) , that is, the length of the axis at the 

swollen state is Λ0 times the length of the dry axis. Following the un- 

coupled approach proposed in [17] , we assume that a multiplicative 

decomposition holds for the visible longitudinal (hoop) deformation 𝜆

and write it as the product of an elastic component 𝜆e and a distor- 

tion 𝜆om 

( 𝑚 = 𝑖, 𝑒 ) which is the free swelling-induced deformation that 

would take place in each single part if it was free from the rest of the 

beam ( Fig. 5 ). With this, we write 

𝜆 = 𝜆𝑒𝑖 𝜆𝑜𝑖 = 𝜆𝑒𝑒 𝜆𝑜𝑒 , (4.16) 

with 𝜆ei and 𝜆ee the elastic deformation in the intrados and in the ex- 

trados layer, respectively, and with 𝜆oi and 𝜆oe the free-swelling defor- 

mation corresponding to each of the two layers through the chemical 

equilibrium Eq. (3.9) (see Fig. 5 ). 

We assume zero out–of–plane stresses and evaluate the bending 

stresses 𝜎i and 𝜎e at the cross–sections of the extrados and intrados lay- 

ers as 

𝜎𝑖 ( 𝜁 ) = 3 𝐺 𝑖 ( 𝜆( 𝜁 ) 𝜆−1 𝑜𝑖 
− 1) , − 

ℎ 

2 
< 𝜁 < − 

ℎ 

2 
+ 𝛽ℎ , (4.17) 

𝜎𝑒 ( 𝜁 ) = 3 𝐺 𝑒 ( 𝜆( 𝜁 ) 𝜆−1 𝑜𝑒 
− 1) , − 

ℎ 

2 
+ 𝛽ℎ < 𝜁 < 

ℎ 

2 
, (4.18) 

where, due to the material incompressibility, 3 𝐺 𝑖 = 𝐸 𝑖 and 3 𝐺 𝑒 = 𝐸 𝑒 . 

Under no external load and unconstrained conditions, the total force F 

and torque T of the longitudinal stresses have to be identically null: 

𝐹 = 𝑤𝜆2 
𝑜𝑖 ∫

− ℎ 2 + 𝛽ℎ 

− ℎ 2 

𝜎𝑖 ( 𝜁 ) 𝑑𝜁 + 𝑤𝜆2 
𝑜𝑒 ∫

ℎ 

2 

− ℎ 2 + 𝛽ℎ 
𝜎𝑒 ( 𝜁 ) 𝑑𝜁 = 0 , (4.19) 

𝑀 = 𝑤𝜆3 
𝑜𝑖 ∫

− ℎ 2 + 𝛽ℎ 

− ℎ 2 

𝜁𝜎𝑖 ( 𝜁 ) 𝑑𝜁 + 𝑤𝜆3 
𝑜𝑒 ∫

ℎ 

2 

− ℎ 2 + 𝛽ℎ 
𝜁𝜎𝑒 ( 𝜁 ) 𝑑𝜁 = 0 . (4.20) 

Keeping Λ0 and Λ1 uniform, it yields a linear system whose solution 

( Λ0 , Λ1 ) can be found in the form 

Λ0 = Λ̂0 ( 𝛼, 𝛽, Γ, ̄𝜅, 𝜆𝑜𝑒 ) and Λ1 = Λ̂1 ( 𝛼, 𝛽, Γ, ̄𝜅, ℎ, 𝜆𝑜𝑒 ) , (4.21) 

where the dimensionless parameter Γ = 𝜆𝑜𝑒 ∕ 𝜆𝑜𝑖 has been introduced. 

With this, the beam axis curvature can be evaluated as 

𝜅 = 

Λ1 

Λ2 
0 

= �̂�( 𝛼, 𝛽, Γ, ̄𝜅, ℎ, 𝜆𝑜𝑒 ) . (4.22) 

The representation of the functions Λ̂0 ( 𝛼, 𝛽, Γ, ̄𝜅, 𝜆𝑜𝑒 ) and Λ̂1 ( 𝛼, 𝛽, Γ, ̄𝜅, 
ℎ, 𝜆𝑜𝑒 ) is heavy, and has been reported in Appendix A ; nevertheless, they 

allow to deliver explicitly beam stretch and curvature. 

Up to now, 𝜆oi and 𝜆oe in the Eq. (4.21) are just distortions, that is, 

generic inelastic deformations such as thermal distortions or growth- 

induced deformations, as the equations which assign to 𝜆oi and 𝜆oe the 

role of swelling elastic deformations, that is, the chemical equilibrium 

conditions, haven’t been used, yet. It means that, Eq. (4.22) delivers the 

axis’s curvature induced in a bilayered beam by any stimulus whose ef- 

fect can be taken into account into 𝜆oe and 𝜆oi , as does Timoshenko’s 

formula for curved bimetal strips [32] . The difference between the twos 
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Fig. 6. Curvature 𝜅 versus thickness ratio 𝛽 at 𝛼 = 0 . 5 and different values of 𝜅𝑑 = 0 , 25 , 50 , 75 m 

−1 (left panel) and at 𝜅𝑑 = 50 m 

−1 and different values of 𝛼 = 
0 . 1 , 0 . 2 , 0 . 5 , 1 , 2 , 5 (right panel). Solid lines and triangles correspond to explicit and numerical results, respectively. 

being the validity regime: small deformations and small reference cur- 

vature 𝜅d for Timoshenko’s formula, finite deformations for Eq. (4.22) , 

as we are discussing in the last section. 

For gel beams under swelling, the chemical equilibrium conditions 

require that the pairs ( G e , 𝜆oe ) and ( G i , 𝜆oi ) have to satisfy the follow- 

ing equations, which identify the deformations 𝜆oi and 𝜆oe as the free 

swelling-induced deformations that would take place in each single part 

if it was free from the rest of the beam: 

𝐺 𝑖 Ω
𝜆𝑜𝑖 

+  𝑇 

( 

log 
𝜆3 
𝑜𝑖 
− 1 

𝜆3 
𝑜𝑖 

− 

1 
𝜆3 
𝑜𝑖 

+ 

𝜒

𝜆6 
𝑜𝑖 

) 

= �̄� , (4.23) 

𝐺 𝑒 Ω
𝜆𝑜𝑒 

+  𝑇 

( 

log 
𝜆3 
𝑜𝑒 
− 1 

𝜆3 
𝑜𝑒 

− 

1 
𝜆3 
𝑜𝑒 

+ 

𝜒

𝜆6 
𝑜𝑒 

) 

= �̄� . (4.24) 

5. Results and discussion 

Eqs. (4.21) and (4.22) , together with Eqs. (A.2) –(A.4) , allow to eval- 

uate beam’s curvature, once assigned the chemical potential �̄� of the 

bath and the shear moduli of the two layers in terms of the thicknesses 

ratio 𝛽 at any values of the ratio 𝛼 between the shear moduli and of 

the curvature 𝜅d of the beam’s axis at the dry state. Fig. 6 (left panel) 

shows the realized curvature 𝜅 at different values of 𝜅d , from 0 to 75 

m 

−1 , at 𝛼 = 0 . 5 . The same figure (right panel) shows the realized cur- 

vature 𝜅 at different values of 𝛼, from 0.1 to 5, at 𝜅𝑑 = 50 m 

−1 . Solid 

lines come from the approximate explicit formulas (4.21) and (4.22) , 

whereas triangle-based lines are the corresponding outcomes from the 

fully three-dimensional nonlinear stress-diffusion model. 

5.1. Curved monolayer beams 

The values of the stretch Λo and the curvature 𝜅 for a monolayer 

curved beam are easily recovered by setting 𝛽 = 0 or 𝛽 = 1 as well as 

𝛼 = 1 . From Eqs. (4.21) 1 and (4.22) , we get: for 𝛽 = 0 , that is, when the 

monolayer collapses on the extrados layer, 

𝜅 = 𝜅𝑜 = 

𝜅𝑑 

𝜆𝑜𝑒 
and Λ0 = 𝜆𝑜𝑒 ; (5.25) 

on the other hand, for 𝛽 = 1 , that is, when the monolayer collapses on 

the intrados layer, we get 

𝜅 = 𝜅𝑜 = 

𝜅𝑑 

𝜆𝑜𝑖 
and Λ0 = 𝜆𝑜𝑖 . (5.26) 

As expected, the steady swollen state is a homothety of the dry configu- 

ration; the amount of dilation is controlled by �̄� through Eqs. (4.23) and 

(4.24) . The two panels of Fig. 4 showed the swollen curvature 𝜅o versus 

the shear modulus G at different values of the reference curvature 𝜅d , 

varying from 0 to 100 m 

−1 , as well as 𝜅o versus the dry curvature 𝜅d at 

different values of the shear modulus G , varying from 1 to 150 kPa. The 

agreement between the full and the approximated curvature, especially 

for low values of G and 𝜅d , is very good. 

5.2. Flat bilayer beams 

The limit case corresponding to flat bilayer beams can be recovered 

from Eqs. (4.21) 1 and (4.22) as limits for 𝜅d →0. We get: 

Λflat 
0 = lim 

�̄�→0 
Λ̂0 ( 𝛼, 𝛽, Γ, ̄𝜅, 𝜆𝑜𝑒 ) = Λ̂0 ( 𝛼, 𝛽, Γ, 𝜆𝑜𝑒 ) 

= 

𝑓 ( 𝛼, 𝛽, Γ) 
𝑔 ( 𝛼, 𝛽, Γ) 

𝜆𝑜𝑒 , (5.27) 

𝜅flat = lim 

�̄�→0 
�̂�( 𝛼, 𝛽, Γ, ̄𝜅, ℎ, 𝜆𝑜𝑒 ) = �̂�( 𝛼, 𝛽, Γ, ℎ, 𝜆𝑜𝑒 ) 

= − 

6 𝛼𝛽Γ( 𝛽 − 1)(Γ − 1)( 𝛽(Γ − 1) + 1) 𝑔 ( 𝛼, 𝛽, Γ) 
𝑓 ( 𝛼, 𝛽, Γ) 2 

1 
ℎ𝜆𝑜𝑒 

, (5.28) 

with 

𝑓 ( 𝛼, 𝛽, Γ) = 𝛼2 𝛽4 + 𝛼( 𝛽 − 1) 𝛽Γ
(
𝛽2 
(
3Γ2 − 8Γ + 3 

)
+ 𝛽

(
−3Γ2 + 8Γ − 3 

)
− 4Γ

)
+ ( 𝛽 − 1) 4 Γ4 , (5.29) 

𝑔 ( 𝛼, 𝛽, Γ) = Γ
(
𝛼2 𝛽4 − 𝛼𝛽( 𝛽 − 1)Γ

(
𝛽2 (Γ + 1) + 𝛽(Γ − 3) + Γ + 3 

))
+ ( 𝛽 − 1) 4 Γ4 . (5.30) 

The functions Λ̂0 ( 𝛼, 𝛽, Γ, 𝜆𝑜𝑒 ) and �̂�( 𝛼, 𝛽, Γ, ℎ, 𝜆𝑜𝑒 ) are the same as the ones 

derived and presented in [17] , where the problem has been dealt for flat 

bilayer beams. 

5.3. Nearly-homogeneous beams 

We can also consider a nearly-homogeneous bilayer curved beam, 

that is, with shear moduli G e and 𝐺 𝑖 = 𝐺 𝑒 + Δ, with Δ∕ 𝐺 𝑒 − > 0 . In this 

case, the ratio between the shear moduli can be rewritten as 

𝛼 = 1 + 𝜀 , 𝜀 = 

Δ
𝐺 𝑒 

, (5.31) 

and the previous results can be approximated up to o ( 𝜀 ). Using (3.13) , 

the ratio between the free swelling deformations 𝜆oe and 𝜆oi can be ap- 

proximated for 𝜀 →0 as 

Γ = 

𝜆𝑜𝑒 

𝜆𝑜𝑖 
= ( 1 + 𝜀 ) 1∕5 ≃ 1 + 

1 
5 
𝜀 . (5.32) 
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Fig. 7. Error bar diagram in the plane 𝐺 𝑖 − 𝐺 𝑒 . Error bars represent the range 

of G i , corresponding to a certain value of G e , within which the relative error 

e r between the curvatures 𝜅 and 𝜅n − h is less than 10% (blue) or 5% (red). The 

black dashed line corresponds to 𝐺 𝑖 = 𝐺 𝑒 . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

From Eqs. (5.31) and (5.32) , by expanding the Eq. (4.22) as a power 

series around 𝜀 = 0 at the first order in 𝜀 , we get the following additive 

formula for 𝜅 = 𝜅𝑛 − ℎ : 

𝜅𝑛 − ℎ = 

𝜅𝑑 

𝜆𝑜𝑒 
+ 

𝛽�̄�𝑑 

(
2 ̄𝜅𝑑 ( 𝛽�̄�𝑑 − �̄�𝑑 + 1) + ( 𝛽�̄�𝑑 − �̄� + 2) log 

(
2− ̄𝜅𝑑 
2+ ̄𝜅𝑑 

))
10 ℎ 

(
�̄�𝑑 + log 

(
2− ̄𝜅𝑑 
2+ ̄𝜅𝑑 

)) 1 
𝜆𝑜𝑒 

𝜀 . 

(5.33) 

For 𝜀 = 0 , that is, Δ = 0 , only the first addend survives and the curva- 

ture of a homogeneous beam (5.25) is recovered. The above additive 

formula is much simpler than the original one and we may ask which 

are the limits of its validity, that is, how much a bilayer beam can be 

far from being homogeneous to be considered nearly-homogeneous, in 

such a way that its swelling-induced increase/decrease in curvature can 

be dictated by the Eq. (5.33) . In general, for 𝜀 ≠ 0 , the relative error 

between formulas (4.22) and (5.33) can be estimated as 

e 𝑟 = 

||||𝜅 − 𝜅𝑛 − ℎ 
𝜅

|||| . (5.34) 

Then, we can fix an acceptable value 𝛿e of the error limit and evaluate, 

for any values of G e , the range of G i such that e r < 𝛿e . Fig. 7 show the 

validity ranges corresponding to G e from 0 to 100 kPa and 𝛿𝑒 = 0 . 1 , 0 . 05 . 
Precisely, the error bars corresponding to 𝛿𝑒 = 0 . 1 ( 𝛿𝑒 = 0 . 05 ) are shown 

as blue (red) bars. The black dashed lines corresponds to 𝐺 𝑖 = 𝐺 𝑒 that 

is, to a perfectly homogeneous beam. 

5.4. Additive decomposition of the curvature 

Finally, we like to highlight the differences between our formulas, 

given by the Eqs. (4.21) 1 and (4.22) , and other additive formulas pro- 

posed in the Literature. 

Let us start with the noteworthy contribution presented in [32] , 

where an additive formula for the curvature 𝜅 of naturally curved bi- 

layer beams undergoing thermal strains is provided, under the hypothe- 

ses of small (thermal and elastic) strains and small initial curvature. 

Our curvature formula (4.22) , holding for generic distortions 𝜆oi and 

𝜆oe , can be evaluate in the case of slightly curved bilayer beams, that is, 

for �̄�𝑑 → 0 . Moreover, introduced the small distortions 𝜀 𝑜𝑒 = 𝜆𝑜𝑒 − 1 and 

𝜀 𝑜𝑖 = 𝜆𝑜𝑖 − 1 , and set 𝛾 = 𝜀 𝑜𝑖 ∕ 𝜀 𝑜𝑒 (see also [20] ), we can write 

Γ = (1 + 𝜀 𝑜𝑒 )∕(1 + 𝜀 𝑜𝑒 ∕ 𝛾) . (5.35) 

Fig. 8. Curvature 𝜅 versus 𝜀 oe at 𝛼 = 2 , 𝛽 = 0 . 5 , 𝛾 = 2 , ℎ = 4 mm and different 

values of 𝜅d . Solid lines correspond to the Eq. (4.22) ; dashed lines to Timo- 

shenko’s linear model (5.36) ; and the dash-dotted lines to the additive nonlinear 

Eq. (5.37) . Different colours correspond to different dry beam’s curvature. 

Introduced Timoshenko’s notation, that is, setting 𝛼 = 𝑛 and 𝛽 = 𝑚 ∕(1 + 

𝑚 ) , where 𝑚 = ℎ 𝑖 ∕ ℎ 𝑒 , and expanding the Eq. (4.22) as a power series 

around 𝜀 𝑜𝑒 = 0 and 𝜅𝑑 = 0 , we get, at the first order in 𝜅d and 𝜀 oe , 

𝜅 = 𝜅𝑑 + 

6 𝑚𝑛 ( 𝑚 + 1) 2 

ℎ 
(
𝑚 

4 𝑛 2 + 4 𝑚 

3 𝑛 + 6 𝑚 

2 𝑛 + 4 𝑚𝑛 + 1 
)(𝜀 𝑜𝑒 − 𝜀 𝑜𝑖 

)
, (5.36) 

which is the Timoshenko’s formula for slightly naturally curved bimetal 

beams. It delivers the curvature 𝜅 as an additive decomposition into the 

reference curvature 𝜅d and another term which correspond to the lin- 

ear Timoshenko’s formula for the curvature of bilayer straight beams. It 

corresponds to the straight dashed lines in Fig. 8 , where 𝜅 is represented 

versus 𝜀 oe at 𝛼 = 2 , 𝛽 = 0 . 5 , 𝛾 = 2 , and ℎ = 4 mm, for different values of 

𝜅d , corresponding to the different colours of the lines. 

It is worth noting that a different additive formula for the curvature 

𝜅 of naturally curved bilayer beams can be written from Eqs. (5.27) and 

(5.28) as 

𝜅 = 

𝜅𝑑 

Λflat 
0 

+ 𝜅flat , (5.37) 

where Λflat 
0 and 𝜅flat are the axis stretching and curvature of a straight 

bilayer beam with the same geometrical and material structure of the 

naturally curved beam (see also [34] ). In this case, we get the dash- 

dotted lines shown in Fig. 8 , together with the solid lines representing 

the curvature as delivered by our Eq. (4.22) . It is worth noting that, as 

well known, Timoshenko’s equation is linear both in 𝜅d and 𝜀 oe and tends 

to coincide with the tangent of our equation in 𝜀 𝑜𝑒 = 0 for low values of 

𝜅d . On the other hand, he additive formula (5.37) , that is linear in 𝜅d and 

nonlinear in 𝜀 oe , is closer and closer to the formula (4.22) for small 𝜀 oe 

and low values of 𝜅d . In particular, for 𝜅𝑑 = 0 , (5.37) and (4.22) agree; 

whereas, for high values of 𝜅d it overestimates beam curvature with re- 

spect to the estimation given by Eq. (5.37) , which on its turn, slightly 

overestimates the solution delivered from the numerical implementa- 

tion of the fully coupled three-dimensional nonlinear model of stress- 

diffusion originally presented in [21] . 

6. Conclusions and future directions 

The swelling-induced eversion and flattening of bilayer gel beams 

has been discussed through exact numerical models and approximate 

explicit formulas. A good agreement of the two approaches in terms of 

the expected final curvature has been found. Our results show that ever- 

sion and flattening of an initial curved beam can be realized for specific 
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ratios of thicknesses and elastic moduli of the two homogeneous layers. 

They are independent on the original curvature and include the Timo- 

shenko formula for bilayer thermal beams within the limits of slightly 

curvature of the original dry beam and small deformations [32] , and an 

additive-type formula like the one derived in [34] 

The explicit formulas that predict the final shape of naturally curved 

bilayer gel beams provide a step forward into the understanding of 

the key design principles and modeling tools for swelling of curved 

gel beams. These structures can be employed in encapsulation and de- 

livery of drugs, medical intervention, scaffolding materials for three–

dimensional cell culture, soft robots, sensing and actuation, due to prop- 

erties of hydrogels such as high-swelling, biocompatibility, biodegrad- 

ability, and stimuli response. Hence, the availability of explicit formulas 

which deliver a correct value of the change in curvature under swelling 

is highly valuable and still missing. 

In the next future, the same approach will be implemented to ana- 

lyze the change in curvature due to de-swelling produced by different 

techniques, as shown in [14] . 
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Appendix A. Explicit representation of beams’s stretch and 

curvature 

Solving the Eqs. (4.19) and (4.20) , we get 

Λ0 = Λ̂0 ( 𝛼, 𝛽, Γ, ̄𝜅, 𝜆𝑜𝑒 ) and Λ1 = Λ̂1 ( 𝛼, 𝛽, Γ, ̄𝜅, ℎ, 𝜆𝑜𝑒 ) , (A.1) 

with Γ = 𝜆𝑜𝑒 ∕ 𝜆𝑜𝑖 . The explicit representation of the two quantities is: 

Λ0 = 

𝑎 log (2 − �̄�𝑑 ) + 𝑏 log ( ̄𝜅𝑑 + 2) + 𝑐 log (2 𝛽�̄�𝑑 − �̄�𝑑 + 2) + 𝑑 + 𝑒 

𝑎 ′ log (2 − �̄�𝑑 ) + 𝑏 ′ log ( ̄𝜅𝑑 + 2) + 𝑐 ′ log (2 𝛽�̄�𝑑 − �̄�𝑑 + 2) + 𝑑 ′
𝜆𝑜𝑒 , 

(A.2) 

Λ1 = 

𝑎 log (2 − �̄�𝑑 ) + 𝑏 log ( ̄𝜅𝑑 + 2) + 𝑐 log (2 𝛽�̄�𝑑 − �̄�𝑑 + 2) + 𝑑 

𝑎 ′ log (2 − �̄�𝑑 ) + 𝑏 ′ log ( ̄𝜅𝑑 + 2) + 𝑐 ′ log (2 𝛽�̄�𝑑 − �̄�𝑑 + 2) + 𝑑 ′
�̄�𝑑 

ℎ 
𝜆𝑜𝑒 , 

(A.3) 

where 

𝑎 = �̂� ( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = 𝛼
(
𝛼𝛽(( 𝛽 − 1) ̄𝜅𝑑 + 2) − ( 𝛽 − 1)Γ2 ( 𝛽Γ�̄�𝑑 + 2) 

)
, 

𝑏 = �̂� ( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = Γ
(
𝛼𝛽(− 𝛽�̄�𝑑 − 2Γ + �̄�𝑑 ) + ( 𝛽 − 1)Γ3 ( 𝛽�̄�𝑑 + 2) 

)
, 

𝑐 = 𝑐 ( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = ( 𝛽 − 1) 𝛽�̄�𝑑 (Γ − 𝛼) 
(
𝛼−Γ3 

)
−2 

(
𝛼 − Γ2 

)(
𝛼𝛽 − ( 𝛽−1)Γ2 

)
, 

𝑑 = 𝑑 ( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = 2 ̄𝜅𝑑 
(
𝛼𝛽 − ( 𝛽 − 1)Γ2 

)2 
, 

𝑒 = 𝑒 ( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = − 𝛼( 𝛽 − 1) 𝛽(Γ − 1)Γ�̄�2 
𝑑 
( 𝛽(Γ − 1) + 1) , 

𝑎 ′ = �̂� ′( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = −Γ𝛼( 𝛼𝛽(− 𝛽�̄�𝑑 + �̄�𝑑 − 2) + ( 𝛽 − 1)Γ( 𝛽Γ�̄�𝑑 + 2)) , 

𝑏 ′ = �̂� ′( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = −Γ2 
(
𝛼𝛽(( 𝛽 − 1) ̄𝜅𝑑 + 2Γ) − ( 𝛽 − 1)Γ2 ( 𝛽�̄�𝑑 + 2) 

)
, 

𝑐 ′ = 𝑐 ′( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = −Γ
(
𝛼 − Γ2 

)
( 𝛽( 𝛼 − Γ)(( 𝛽 − 1) ̄𝜅𝑑 + 2) + 2Γ) , 

𝑑 ′ = 𝑑 ′( 𝛼, 𝛽, Γ, ̄𝜅𝑑 ) = 2Γ�̄�𝑑 ( 𝛼𝛽 − 𝛽Γ + Γ) 
(
𝛼𝛽 − ( 𝛽 − 1)Γ2 

)
. (A.4) 

Even if the two formulas look cumbersome, nevertheless they allow an 

explicit evaluation of the beam’s stretch Λo and beam’s curvature 𝜅 = 

Λ1 ∕Λ𝑜 . 
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4.5 from computational analysis to explicit formulas

The switching from computational analysis to explicit formulas takes
place through the introduction of appropriate approximations. As
for flat bilayer beams, the linear model presented by Timoshenko in
1925 [87] is well known. Although he refers to the specific case of a
bimetallic thermostat, the formula he derives for the curvature fits
whatever the nature of the growth, as long as the deformations remain
small. A reduced non-linear model of flat bilayer beam in plane bend-
ing has been proposed in [47]. Explicit formulas are provided for the
curvature and the longitudinal axis stretch, both assumed uniform,
of layered gel beams when they absorb solvent differentially in the
layers. It is assumed plane bending, flat cross–sections and uniform
curvatures. It is also assumed that the visible longitudinal deformation
can be multiplicatively split into the uniform free-swelling stretch that
would take place if each layer was free from the rest of the beam and
a further elastic component. The uniform free–swelling components
of each part are determined from the appropriate mechano–chemical
equilibrium equations which can be written within the Flory–Rehner
stress–diffusion model in terms of the shear modulus, the chemical
potential of the bath, and the Flory parameter. The strong hypothesis
here introduced is to imagine that the two layers absorb the solvent
separately, and that they become impermeable once glued to each
other. The reduced model works in the case of plane bending, as the
comparison with the full 3D numerical model shows; however, the
validity for different deformation modes, such as torsion, should be
investigated.

In III the aim is to build a reduced model, based on the approximations
described above, for a curved bilayer beam with uniform curvature κd.
The visible hoop deformation is represented by (3.2.31). The elastic
deformation λe comes out from a multiplicative decomposition such
that λe = λλ−1

o , where λo is the inelastic stretch (see Figure III-5).
Being such distortion discontinuous, it cannot be realized and the
beam cannot be stress-free. In absence of external forces the elastic de-
formations deliver internal stresses within the gel beam corresponding
to null forces and torques on each cross-section:

0 = F = wλ2
oe

∫ − h
2+βh

− h
2

σe(ζ)dζ + wλ2
oi

∫ h
2

− h
2+βh

σi(ζ)dζ , (4.5.60)

0 = M = wλ2
oe

∫ − h
2+βh

− h
2

ζσe(ζ)dζ + wλ2
oi

∫ h
2

− h
2+βh

ζσi(ζ)dζ ,

(4.5.61)

where σi and σe are the bending stresses at the cross-section, λoi and
λoe are the free swelling deformation (the subscripts i and e indicate
the intrados and extrados, respectively). The system of equations
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(4.5.60) and (4.5.61) provide the curvature κ and the axis stretch Λ0

once a constitutive equation for σi and σe is introduced.
The formulas obtained for κ and Λ0 depend on geometrical parame-
ters such as the beam thickness, the layer thicknesses and the initial
curvature, as well as on the shear moduli of the two layers, and on
the natural longitudinal deformations λoi and λoe. The latter are mere
inelastic deformations, such as thermal distortions, unless the chem-
ical equilibrium conditions are introduced, which make λoi and λoe

assume the role of swelling elastic deformations. Even if the two for-
mulas III-A.2 and III-A.3 look cumbersome, nevertheless they allow
an explicit evaluation of the beam stretch and curvature even for large
deformations. As shown in figure III-6 there is a good agreement
between the full 3D stress-diffusion model and the approximate ex-
plicit formulas. Limit cases corresponding to nearly homogeneous
gel beams and nearly flat beams are identified and discussed. The
Timoshenko additive formula for slightly naturally curved bimetal
beams [87] is also recovered within the limits of a slight curvature in
the original dry beam and small deformations.
As shown in Section 3.2, the same system of equations (4.5.60) and
(4.5.61) can be obtained from the Biot elastic energy (3.2.33) as F =

∂U B/∂Λ0 = 0 and M = ∂U B/∂Λ1 = 0; hence, the couple (Λ0, Λ1) is
found as solution of the minimization of U B.

4.6 eversion and flattening under shrinking

The good agreement between numerical and explicit results for swelling
curved gel beams suggests testing the same reduced model for shrink-
ing gel beams, that is, when the solvent comes out from the polymer.
In III the bending of curved beams has always occurred, starting from
a (compatible) dry configuration, through a differential increase in the
volume of the two layers due to the absorption of solvent. Considering
such wet configuration as the starting point, the morphing process
can be inverted reversibly by favoring the escape of liquid from the
polymer network, for example by acting on the chemical potential
of the bath in which the body is immersed, and recovering the dry
configuration. In the latter case the reference wet configuration is not
stress-free, due to the incompatibility between the layers. However,
to make the explicit formulas for axial curvature and stretching valid
the reference configuration must be compatible. For this purpose, an
experiment that allows to validate the reduced model of bilayer curved
beams in case of shrinking is set up. The beams consist of one layer
made of polydimethylsiloxane (PDMS) and one layer made of PDMS
mixed with silicone oil. The aim of the experiment is inducing bending
through extraction of the silicone oil, that is, through shrinking of
just one of the two layers. Specifically, it is decided to place the oil in
the outer layer in such a way as to investigate flattening and eversion
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following its extraction. The manufacturing process, described in I
and [21], ensures that the reference configuration, i.e. the beam before
oil extraction, is stress-free. It is assumed that the natural deforma-
tions λoi and λoe are determined by the bulk contraction due to oil
extraction from the bilayer PDMS beam. Since the oil is contained in
only one layer, it is set λoi = 1 for the PDMS layer, considered as a
passive layer. On the other hand, assuming all the oil is extracted from
the external layer, it is set

λoe = (1 − f )1/3 , (4.6.62)

being f the oil fraction defined as the ratio between the amount of
oil and the total volume of the layer containing the oil. The samples
are made for different oil fractions; the extraction of the latter from
the external layer induces significant deformations in the beam, which
produce beam flattening and eversion. The plot in Figure I-3 shows a
good correspondence of the experimental results with the analytical
model.
From equation (3.3.38) and (4.6.62), setting α = 1, a formula for the
fraction of oil f ⋆ needed to flatten a PDMS beam of assigned κ̄d can
be derived:

f ⋆ = 1 −
(

3 − κ̄d

3 + κ̄d

)3

, (4.6.63)

which provides the value f ⋆ = 0.33 measured experimentally for
κ̄d = 0.2.
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1. Introduction

In the last decades, polydimethylsiloxane (PDMS) has become
popular for the rapid prototyping of many devices widely used
in manufacturing and biomedical industries [1]. This is due to
the many advantageous characteristics of the material: trans-
parency, biocompatibility, flexibility, high cost-effectiveness and
good moldability. [2] PDMS is a rubber-like material. However,
owing to its porous nature and compatibility with organic sol-
vents [3], it shows a gel-like behavior swelling when a solvent
diffuses into the polymer and, vice versa, shrinking when it comes
out from it. This property, together with the PDMS hydropho-
bicity, allowed to realize several devices: sponges for water–oil
separation [4–6], solvent-tunable microlens [7], wrinkled micro-
electrodes [8], and wireless passive radio frequency identification

∗ Correspondence to: Dipartimento di Ingegneria Strutturale e Geotecnica, via
Eudossiana 18, I-00184 Roma, Italy

E-mail addresses: daniele.battista@uniroma1.it (D. Battista),
valeriy.luchnikov@uha.fr (V. Luchnikov), paola.nardinocchi@uniroma1.it
(P. Nardinocchi).

sensors (RFID) based on PDMS swelling caused by organic vapour
solvents [9]. In functionalized or composite PDMS, deformation
can also be induced in response to external stimuli as pH [10],
UV irradiation [11] and magnetic field [12].

Some drawbacks may arise when the swelling(shrinking)-
induced deformation of PDMS structures is undesired. For exam-
ple, the modification of PDMS microchannel geometries due to
swelling can affect the trajectories of droplets [13]. In some cases,
such as after the extraction of silicone uncrosslinked chains [14]
or after ion beam and electron beam irradiation [15] these unde-
sired deformations are irreversible, too.

In the present paper, we investigate shape-morphing of PDMS-
based thin bilayer structures, which is a quite common configu-
ration employing PDMS as both passive [16] and active layer [17]
(see also [18]). Mismatch strains due to expansion(shrinkage) of
the active layer can induce a macroscopic bending or surface
instabilities, depending on different material and geometrical
parameters [19]. Slender bilayer self-bending soft structures can
be used as sensors and actuators in soft robotics, as drug delivery
system, or can represent the single element of an architectural

https://doi.org/10.1016/j.eml.2020.100655
2352-4316/© 2020 Elsevier Ltd. All rights reserved.
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material. All these situations require an accurate control of the
deformation process and we wish to make some progress towards
addressing this question.

We present the results of a campaign of experimental tests
made on bilayer naturally curved PDMS beams, with the outer
layer containing oil. The beams are made to flatten and evert
through oil extraction from the outer layer. The final change in
curvature of the beam can be explicitly determined starting from
the spontaneous shrinking deformation of the outer layer due to
oil extraction. The explicit model is borrowed from [20] and it is
shown to be in good agreement with the experimental results.
Shape-shifting due to oil extraction in bilayer PDMS cylindrical
shells is also presented in terms of a model set within the context
of finite elasticity with spontaneous deformations. The model is
solved via finite element method and it allows to determine the
amount of oil to put in the outer layer of a cylindrical shell of
given axis and curvature to get after oil extraction a cylindrical
shell with axis orthogonal to the original one, saddle-like shapes
and double-curved shapes.

2. Material and methods

The goal of our experiments is inducing bending in bilayer
naturally curved PDMS beams through shrinking of just one of
the two layers. The naturally curved beams are obtained by
cutting them from a cylindrical bilayer thin structure in the hoop
direction just after the end of the curing process described in
the following. The preparation of the bilayer cylinders is resumed
in the cartoon in Fig. 1. The procedure followed to realize the
two layers had already been used by one of the Authors and
exhaustively described in [21]. Shortly, one layer is made up of
polydimethylsiloxane (PDMS) (SYLGARDTM184) at a 10 : 1 ratio
of prepolymer/crosslinker (the passive layer). The second (active)
layer is made up of PDMS mixed with silicone oil (Rhodorsil R⃝ Oil
47V20) at 10 : x : 1 ratio of prepolymer/oil/crosslinker, with x =

2, 4, 6, 8, 10; during the curing process, as the PDMS reticulates,
the silicone oil remains trapped into the polymer matrix.

The external (active) layer of the cylindrical shell is formed
by pouring the PDMS-oil-curing agent liquid mixture into the
space between the hollow cylinder (B) of internal radius 22 mm
and the full cylinder (C) of radius 20 mm. After degassing and
curing at 100 ◦C for 1 h, the cylinder (C) is extracted and another
one (D) of smaller radius 18 mm is inserted coaxially to (B).
The inner (passive) layer is formed by pouring the PDMS-curing
agent liquid mixture into the space between the outer layer just
crosslinked and the cylinder (D). It follows a second degassing and
heating, at 100 ◦C for a time sufficient to complete all chemical
reactions (about 2 h). After the mold opening the two parts result
glued each other and form a cylindrical bilayer shell with middle
radius 20 mm and thickness 4 mm. Already at this stage, it is
expected that the oil starts partially diffusing through the inner
layer. However, we do not observe relevant effects on the curving
of the sample since the curing time is much shorter than the
diffusion time.

The samples are then immersed in a toluene bath. The com-
plete extraction of the oil is produced in a few hours. The final
configuration which the bilayer beam gets is bent with respect to
the initial, stable and maintained.

3. Beam flattening and eversion induced by oil extraction

In the process described above, four main phases can be iden-
tified: (i) diffusion of oil from the outer (active) to the inner
(passive) layer, which takes place even when the layers are still
in the mold; (ii) swelling of the bilayer in toluene; (iii) diffu-
sion of oil from the swollen bilayer into the toluene bath; (iv)

Fig. 1. Top: bilayer cylinder fabrication. The outer layer is formed by pouring
the PDMS-oil-curing agent liquid mixture into the space between the hollow
cylinder (B) and the full cylinder (C). After degassing and curing, the cylinder
(C) is removed and (D) is inserted coaxially to (B). The inner layer is formed
by pouring the PDMS-curing agent liquid mixture into the space between the
outer layer just crosslinked and the cylinder (D). Bottom: some shapes made by
the same bilayer structure fabricated by using the same kind of procedure.

Fig. 2. Bilayer naturally curved beams after oil extraction for several values of
the oil fraction. The initial configuration has a curvature κc = 50 m−1 , thickness
h = 4 mm. The oil is in the outer layer.

evaporation of toluene. At the stationary state, corresponding
to the complete oil extraction, the PDMS bilayer beam looks
like bent, due to the loss of oil from one layer, and swollen,
due to the toluene absorption by both layers. The final shape
is attained when all the toluene is evaporated and the bilayer
is shrinked. Fig. 2 shows the final shapes of a set of beams
sharing the same initial beam curvature κc and thickness h but
different one from another for the silicone oil content x: the ratio
of prepolymer/oil/crosslinker is 10 : x : 1 and x = 2, 4, 6, 8, 10.
It is shown that there are values of x which determine, after oil
extraction, beam flattening (x = 6) and beam eversion (x > 6).

As observed, oil extraction from the outer layer induces rele-
vant deformations in the naturally curved beam, which produce
beam flattening and eversion. In this situation, the well-known
linear Timoshenko formula [22] fails in describing the change in
curvature, as it fails when swelling-induced eversion and flat-
tening in gel beams is studied [20], because it is valid for small
deformations and slightly naturally curved beams. We adopt the
explicit nonlinear formula presented in Ref. [20] to evaluate the
curvature κ acquired by the beam at the end of the extraction
process. It has been shown to depend on geometrical parameters
such as the beam thickness h, the layer thicknesses hi and he

(i=inner layer, e=external layer), and the initial curvature κc as
well as on the shear moduli Gi and Ge of the two layers, and on
the natural longitudinal deformations λoi and λoe. These latter are
defined as the deformations which would take place in the two
layers if they were free one from another. The curvature formula
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Fig. 3. Normalized curvature κ̄ = κh versus oil fraction f for a naturally straight
beam and a naturally curved beam with silicone oil in the outer layer. The
blue solid lines represent the 1D reduced model; the red triangles represent the
experimental results.

has the following form1

κ = κ̂(α, β, Γ , κ̄c, h, λoe) , (3.1)

with α = Gi/Ge, β = hi/h, Γ = λoe/λoi and κ̄c = κch.
We assume that λoi and λoe are determined by the bulk con-

traction due to oil extraction from the bilayer PDMS beam. Specif-
ically, as oil is only present in the external layer, we set λoi = 1,
that is, we consider the inner layer as a passive layer. On the
other hand, we assume that oil is completely extracted from the
external layer and set

λoe = (1 − f )1/3 with f = Vo/(Vp + Vc−l + Vo) , (3.2)

with the oil fraction f = x/(11 + x) defined as the ratio between
the amount of oil Vo and the total volume of the layer containing
the oil, that is, the sum of the volume Vp of the prepolymer,
the volume Vc−l of the cross-linker and Vo. It holds: f < 1 and
λoe < 1.

In our experiments, α ≃ 1, β = 1/2, Γ = λoe = (1 − f )1/3.
Moreover, for small initial curvatures κ̄c → 0 we get a simpler
formula from Eq. (3.1) which is valid for almost flat beams:

κ flat
=

12λoe(1 − λoe)(λoe + 1)2
(
λ2
oe + 6λoe + 1

)
h
(
λ4
oe + 3λ3

oe + 8λ2
oe + 3λoe + 1

)2 . (3.3)

Eqs. (3.1) and (3.3) deliver the curvature of the beam axis for a
naturally curved and flat beam, respectively. Fig. 3 shows that
they are in excellent agreement with experimental data.

4. Shape-shifting of cylindrical shells due to oil extraction

The good agreement between experimental and explicit re-
sults for beams, suggested to study the deformations induced by
oil extraction in bilayer PDMS cylindrical shells within the con-
text of three-dimensional finite elasticity with distortions (nat-
ural deformations). These latter, as for the beams, are induced
by oil extraction from the outer layer. The difference between
curved beams and cylindrical shell is in the aspect ratio: small as-
pect ratios identify beams, large aspect ratios identify cylindrical
shells.

Similarly to what we did for the beam curvature formulas (3.1)
and (3.3), we assume that a bulk contraction corresponds to the
complete extraction of oil from the external layer; it determines
the stationary configuration of the cylindrical shell we aim to
characterize.

The reference state B of the 3D continuum is a bilayer cylindri-
cal shell with a principal curvature κ2 ̸= 0 equal to the curvature
κc of the beam cutted from it in the hoop direction (and κ1 = 0).
Fig. 4 shows the reference states of cylindrical shells (left top
and center cartoons) and beam (left bottom cartoon). Moreover,

1 See the appendix of Ref. [20] for the explicit formula

Fig. 4. Morphing of bilayer naturally curved beam (bottom) and cylindrical
shells (center and top) due to a bulk contraction λo in the outer layer. The
corresponding values of the oil fraction increase from left to right. The initial
curvature κ2 = κc can be find by looking at the f = 0 column. At λo = λ⋆

o =

0.875(f = f ⋆
= 0.33) (third column) the Gaussian curvature K vanishes.

denoted with L the length of the beam, as well as the arc length
of the cylindrical shells(beam), and with AR the ratio between the
width w of the cylindrical shells(beam) and L, it holds AR = 0.1,
AR = 0.5 and AR = 1 for the beam and the cylindrical shells in
the left cartoons in Fig. 4.

The dynamics of the process is beyond the scope of the paper
and we focus on the equilibrium states of the polymer bodies.
Introduced as state variable of the problem the displacement
field u from B, we denote with x = X + u(X) the position of a
point X ∈ B at the steady state attained after oil extraction. We
multiplicatively decompose the deformation gradient F = I+∇u
in a pure inelastic deformation (bulk contraction) Fo and an elastic
deformation Fe. We also assume that Fo = λoI with λo = 1 in
the passive layer and λo < 1 in the active layer. On the other
hand, the elastic deformation Fe is assumed to be isochoric, that
is, such that det Fe = 1. Hence, volume changes are only due
to the distortion λo which models the bulk contraction in the
active layer due to oil extraction. It can be shown [23] that the
following constitutive equations hold for the (reference) stress
S, corresponding to an elastically incompressible neo-Hookean
material:

S = GλoF − p(det F)F−T , (4.4)

with p the reactive stress maintaining the volumetric constraint
det Fe = 1.2

We implement within the finite element code COMSOL Mul-
tiphysics the mechanical equilibrium equation div S = 0, in
a weak form, together with the boundary conditions of zero
tractions. Eventually, we assume some boundary conditions on
u that eliminate any rigid motions without generating reaction
forces. We look for the solutions of the stationary problem cor-
responding to different values of the deformation λo, and for
different AR (keeping fixed the arc length L). We set L = 35mm,
h = 4mm, β = 1/2, Gi = Ge = 1 MPa and fixed the initial
curvature κ2 = κc = 50m−1 of the cylindrical shell.

Fig. 4 shows the outcomes of the numerical simulations for
AR = 0.1 (bottom row of cartoons corresponding to a curved
beam), AR = 0.5 and AR = 1 (center and top rows of car-
toons, respectively, corresponding to a cylindrical shell). Bulk
contraction of the external layer increases from left to right. It
corresponds to a distortion λo decreasing from left to right in the
top, center and bottom rows of cartoons and taking the values
λo = (1, 0.95, 0.875, 0.8, 0.75). The corresponding values of the
oil fraction are f = (0, 0.14, 0.33, 0.49, 0.58). So, left top, center
and bottom cartoons correspond to the reference states of beam
and cylindrical shells. As expected, to decreasing values of λo,
the bilayer beam undergoes curvature reduction, flattening and

2 It is worth noting that, due to the elastic incompressibility constraint,
det F = λ3

o .
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Fig. 5. Normalized Gaussian curvature K̄ = Kh2 versus the bulk contraction
λo varying from 1 to 0.75, for aspect ratios AR = 0.1, 0.4, 0.7, 1 (green, blue,
orange, red lines). The inset shows the dependence of the λ⋆

o on the initial
dimensionless curvature κ̄c of the cylindrical shell; the pattern corresponds to
L = 35 mm, h = 4 mm, β = 1/2, Gi = Ge = 1 MPa. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

eversion. On the contrary, the morphing of the shells with AR =

0.5 and AR = 1 shown in Fig. 4 is noteworthy.
Firstly, at λo = λ⋆

o = 0.875, corresponding to f = f ⋆
=

0.33, we get cylindrical shells with the principal curvature axes
switched with respect to the reference state: κ1 ̸= 0 and
signκ1 = −signκ2 (see the cylindrical shells within the dashed
frame in Fig. 4, third column).

The value λ⋆
o which identifies the switched cylindrical shell is

the same for any AR. Moreover, changing the initial curvature κc ,
the value λ⋆

o changes even if it is still the same for any AR (see the
inset in Fig. 5). Hence, given the initial curvature, we can evaluate
the amount of oil to add to the polymer mixture to produce the
shift of the two axes of the cylindrical shell. For λ⋆

o < λo < 1, the
beam decreases its curvature and flattens, while the cylindrical
shells morph into cylindrical shells with the axes of principal
curvatures switched, passing through saddle-like shapes (Fig. 4,
second and third columns from left). For λo < λ⋆

o, that is, f > f ⋆,
the beam everts, the shell with AR = 0.5 attains a double-curved
shape with κ1 < 0 and κ2 < 0, and the shell with AR = 1 bends
along the direction orthogonal to the initial one (Fig. 4, fourth and
fifth column from left).

The morphing described above via the cartoons in Fig. 4 is
also shown in Fig. 5 through the values taken by the normalized
Gaussian curvature K̄ = Kh2, with K = κ1κ2, evaluated at
the center of the middle surface in the stationary configuration
at different values of λo from 1 to 0.75, for several AR ranging
between 0.1 and 1. For any AR, all the curves cross the zero line
in two points: at λo = 1, which corresponds to the reference
state, and at λo = λ⋆

o, corresponding to the cylindrical shells
with the axes of principal curvature switched with respect to the
reference axes. Interestingly, the value λo = λ∗

o corresponds to
the value which makes null the curvature of a naturally curved
beam (see Eq. (3.1)).

Fig. 5 also shows as λ⋆
o identifies the transition from saddle-

like shapes and shapes with positive Gaussian curvature. Indeed,
it can be observed that for λo > λ∗

o , we have K < 0 for all the
aspect ratios (saddle-like shape); for λo < λ∗

o , we have K > 0 for
AR = 0.1, 0.4, 0.7, and K ≃ 0 for AR = 1.

In Fig. 6, we show how the transition from a given cylindrical
shell to the cylindrical shell with switched axes changes when the
normalized initial curvature κ̄c = κch of the shell decreases. The
normalized principal curvatures κ1h (blue lines) and κ2h (orange
lines) are evaluated at the center of the middle surface in the
stationary configuration at different values of λo from 1 to 0.85,
for κ̄c = 0.2, 0.1, 0.05 and keeping fixed AR = 1. It is observed
that the range of λo values which allows to get a saddle-like
shape is smaller and smaller as the cylindrical shell is thinner and
thinner, and the green band in Fig. 6 is narrow and narrow. These
observations allow us to make a precise design of the recipe used
to realize the PDMS layer with oil inside, once fixed the thickness
and the curvature of the cylindrical shell.

Fig. 6. Normalized principal curvatures κ1h (blue lines) and κ2h (orange lines)
versus the bulk contraction λo varying from 1 to 0.85, for κ̄c = 0.2 (top plot),
κ̄c = 0.1 (center plot), κ̄c = 0.05 (bottom plot), and keeping fixed AR = 1.
The green area identifies, for each value of κ̄c , the range of λo for which a
saddle-like shape is attained. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

5. Conclusions

We investigated the shape-shifting of bilayer polymer beams
and cylindrical shells due to oil extraction. Polymer beams are
made to evert through oil extraction from the outer layer. The
morphing mechanism is also studied through an explicit model
which accurately describes the observed morphing. The good
agreement between experiments and modeling in beams inspired
the computational study of cylindrical shells under the same
working conditions, which will be supported in the next future
by the appropriate experimental tests and also reviewed in view
of the recent study presented in Ref. [24].
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5
D Y N A M I C S O F P O LY M E R B E A M S D R I V E N B Y
S O LV E N T D I F F U S I O N

During the experimental campaign described in I it is observed that,
once the PDMS/(PDMS + silicone oil) bilayer is prepared, if the sil-
icone oil extraction step is skipped, the latter begins to diffuse into
the pure PDMS layer. This diffusion process manifests itself macro-
scopically with a progressive bending of the beam due to a swelling
of the layer into which the oil penetrates and a shrinking of the layer
from which the oil emigrates, until the diffusion stops and a condition
of stationary equilibrium is reached. The six images in Figure 20 are
some shots of the evolution of a naturally flat bilayer beam with the
silicon oil located in the top layer, and correspond to instants of time
t = 1, 24, 48, 72, 96, 120 h. The numerical values of the parameters are
shown in Table 1. The dis-affinity χ is computed from the free-swelling
equation [48]

GΩ
λo

+RT
(

log
λ3

o − 1
λ3

o
+

1
λ3

o
+

χ

λ6
o

)
= 0 , (5.0.64)

with the universal gas constant R = 8.314 J/(K mol), the room temper-
ature T = 293 K, the shear modulus G = 0.4 MPa and the equilibrium
stretch λo ≃ 1.13 measured in a free-swelling test.

t = 1 h t = 24 h t = 48 h

t = 72 h t = 96 h t = 120 h

PDMS + oil

PDMS

Figure 20: Bending of a bilayer PDMS/PDMS+oil beam due to oil diffusion
from the top to the bottom layer. The six images represent the
configurations assumed by the beam over 120 hours, with intervals
of 24 hours, starting from the straight configuration. The ratio of
prepolymer/oil/crosslinker is 10:6:1.
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Parameter Symbol and value

Length l = 60 mm

Thickness h = 4 mm

Thickness ratio β = 0.5

Width w = 5 mm

Fraction of oil f = 0.35

Young’s modulus of the top layer Et = 0.8 MPa (from [21])

Young’s modulus of the bottom layer Eb = 1.2 MPa (from [21])

Molar volume of the silicone oil Ω = 3 · 10−3 m3mol−1

Dis-affinity χ ≃ 0

Table 1: Numerical values of the parameters.

5.1 internal diffusion

In I the dynamics of the oil extraction process goes beyond the scope
of the paper. For this reason a three-dimensional finite elasticity model
with distortions is considered suitable to describe the equilibrium
state of the polymer bodies. However, to model the deformation of
the body induced by the diffusion of the oil through the polymeric
lattice, it is appropriate to consider the stress-diffusion continuum
model described in Section 4.1, introducing some modifications. The
reference configuration B is identified by a non-dry stress-free state.
For this reason the subscript "d", which indicates in Section 4.1 that
the quantities refer to the dry configuration, is eliminated here. The
consequence of this choice is that the volumetric constraint (4.1.40)
changes as follows

J = det F = Ĵ(c) = 1 + Ω(c − co) , (5.1.65)

where co is the concentration of solvent at time t = 0, and co = cot for
the top layer and co = cob for the bottom layer. With this modification,
at time t = 0, when c = co, J = 1. The constitutive prescriptions
(4.1.42)-(4.1.46) and the balance equations (4.1.47) remain unchanged.
They must be complemented with boundary and initial conditions.
It is assigned zero traction so that the beam is free to bend, and
a displacement on the boundary that eliminates any rigid motion
without generating reaction forces. Regarding the chemical boundary
condition, zero solvent flow is assigned over the entire boundary,
assuming the oil can’t evaporate. Finally, u = 0 and c = co on B at
t = 0 are set as initial conditions. The problem is then reformulated in
weak form as described in Section 4.3, and solved numerically through
the finite element software COMSOL Multiphysics.
In Figure 21 the squares represent the dimensionless curvature κh as
a function of the dimensionless time τ = t/t̄ computed numerically
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using the data in Table 1. The initial concentrations are set cob = 0.01
mol/m31 and cot = f /Ω = 117.65 mol/m 3, which correspond to
initial chemical potentials µob = −21733 J/mol and µot = −750 J/mol,
respectively. The diffusivity of the solvent D is used as a calibration
parameter to fit the time-scale of curvature. A parametric analysis
is then carried out by varying D, and it is found that a value of
D ≃ 1.8 · 10−11 m2/s (orange squares) lead to the best fit to the
experimental data. Green and red squares correspond to D = 10−10

m2/s and D = 10−12 m2/s, respectively. The blue triangles represent
the experimental results; the curvature is measured with time intervals
of acquisitions of 6 h, over a time window t̄ = 180 h.

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2

τ

κ
h

Figure 21: Dimensionless curvature κh versus dimensionless time τ = t/t̄,
ranging between 0 and 1, over a time window t̄ = 180 h. The blue
triangles represent the experimental data, acquired in 6-hours
intervals; the squares represent the numerical results obtained
using the parameters shown in Table 1, setting cob = 0.01 mol/m3,
cot = f /Ω = 117.65 mol/m3. Green, orange and red squares
correspond to diffusivities D = 10−10 m2/s, D = 1.8 · 10−11 m2/s
and D = 10−12 m2/s, respectively. Orange squares are the best fit
to the experimental data.

Taking the diffusivity value D = 1.8 · 10−11 m2/s, Figure 22 shows
the trend of the dimensionless concentration c Ω (left panel) and
the dimensionless chemical potential µ/(RT) (right panel) on the
thickness mid-line parameterized by the coordinate ζ = 2z/h, ζ ∈
(−1, 1), where ζ = −1 and ζ = 1 correspond to the bottom and
top surface, respectively. The solid lines go from blue to red as time
increases; following the direction of the arrows, they correspond to
τ = 0.01, 0.03, 0.15, 0.3, 0.6, 1. The red solid line, corresponding to
τ = 1, is the steady-state. It can be seen that the concentration is
not uniform at equilibrium and does not correspond to the average
(cob + cot)Ω/2 (red dashed line), as one would expect from a pure
diffusion problem (see [95]); this depends on the coupling between

1 The concentration cannot be 0 because the chemical potential is not defined on the
dry volume (it tends to −∞). For this, a value for the concentration close to zero has
been chosen.
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the chemical and the mechanical problem, hence the distribution of
the solvent depends on how the stresses are distributed. On the other
hand, the chemical potential at equilibrium must be uniform on the
section for the conservation of solvent mass equation (4.1.47)2 to be
satisfied.

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

ζ

cΩ

τ

τ
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0
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µ
/
(R

T
)

τ

τ

Figure 22: Dimensionless concentration c Ω (left panel) and chemical poten-
tial µ/(RT) (right panel) versus ζ = 2z/h, ranging between −1
(z = −h/2) and 1 (z = h/2), for τ = 0.01, 0.03, 0.15, 0.3, 0.6, 1, in-
creasing according to the arrows indicated in the plot. The red
dashed line correspond to the average (cob + cot)Ω/2.

5.2 explicit prediction of the steady-state

The aim is to make an estimate of the curvature reached by the
beam in steady-state. Again the explicit formula for the curvature of
a flat bilayer beam III-5.28 is used. Here, the parameters α, β, and
h are assigned, and the problem consists in identifying the natural
deformations λ̄ob and λ̄ot, reached at equilibrium, knowing the initial
concentrations of solvent cob and cot (see Figure 23).

cob

cot

c̄b, µ̄b

c̄t, µ̄t

cot > cob

Reference configuration Natural state

Figure 23: Reference configuration and ideal natural state at equilibrium,
when diffusion stops.

Fixing cot > cob, the top and bottom layers would like to shrink
(λot < 1) and swell (λob > 1), respectively, as molecules of oil are
flowing from the former to the latter, without coming out of the beam,
until a steady equilibrium condition is reached. Supposing that in
the natural state at equilibrium the unknown concentrations c̄b of the
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bottom layer and c̄t of the top layer are uniform, the following solvent
mass conservation equation must hold:

c̄bhb + c̄tht = cotht + cobhb , (5.2.66)

being hb and ht the thicknesses of the bottom and top layer. In condi-
tions of chemical equilibrium, the chemical potential must be uniform
over the whole beam. Hence, defining

µ̄b = µ̂(c̄b) + p̄bΩ ,

µ̄t = µ̂(c̄t) + p̄tΩ , (5.2.67)

the steady-state chemical potential of the bottom and top layer, respec-
tively, with the pressures p̄b = Gb/λ̄ob and p̄t = Gt/λ̄ot, it must hold

µ̄b = µ̄t . (5.2.68)

Finally, the volumetric constraint for the natural state reads

λ̄3
ob = 1 + Ω(c̄b − cob) ,

λ̄3
ot = 1 + Ω(c̄t − cot) . (5.2.69)

The system constituted by equations (5.2.66), (5.2.68) and (5.2.69) can
be solved, providing the unknowns (c̄b, c̄t, λ̄ob, λ̄ot), and the steady-
state curvature can thus be calculated. Figure 24 displays the di-
mensionless curvature at steady-state κh as the dimensionless initial
concentration of the top layer cotΩ varies, keeping the concentration
of the bottom layer locked. The theoretical model is represented by
the blue solid line and matches the numerical results (orange squares)
well. The data shown in Table 1 are used for the calculations.

0 0.15 0.3 0.45 0.6

0

0.1

0.2

0.3

cotΩ

κ
h

Figure 24: Dimensionless curvature at steady-state κh versus dimensionless
initial concentration of the top layer cotΩ. The blue solid line
represents the theoretical prediction; the orange squares represent
the numerical results. The data shown in Table 1 are used for the
calculations.
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6
N AT U R A L LY F L AT S H E E T S : P L AT E S A N D
C Y L I N D E R S

In the previous chapters it has dealt with 1D geometries. Now, the
elastic and inelastic processes described in Chapter 4 are studied for
non-narrow sheets whose mid-surfaces have initial zero Gaussian cur-
vature, namely plates and cylinders. Specifically, anisotropic swelling
is here introduced for the analysis of the shaping of anisotropic bilayer
gel plates, while, inelastic bulk contraction is used to model the oil
extraction from a bilayer cylindrical shell, inducing its eversion.

6.1 anisotropic swelling

Under free conditions homogeneous gels only involve change in size
once immersed in a solvent bath. In fact, swelling process is intrin-
sically isotropic as is the structure of the Flory-Rehner free-energy
ψ(Fd, cd) = ψe(Fd) + ψm(cd), with ψe(Fd) and ψm(cd) given by equa-
tions (4.1.44), presented in Section 4.1.
Now consider a gel in which reinforcing fibers are inserted to form
a composite material with a swellable matrix. The fibers give the gel
anisotropic elastic properties as experimentally investigated in [22].
The so-called anisotropic swelling is here described through an extension
of the elastic component of the free-energy, by adding energetic contri-
butions based on some invariants of deformations, as introduced in
[77] to describe the mechanical behavior of anisotropic materials, while
the polymer-water mixing component always maintains an isotropic
structure. As proposed in [59, 60, 63], the Flory-Rehner free-energy
is revised in order to account the hampering of the swelling-induced
deformations along the stiff fibers direction:

ψani(Fd, cd) = ψ(Fd, cd) +
1
2

Gγ (Fde · Fde − 1)2 , (6.1.70)

with the unit vector field e as the fiber direction and γ a stiffening
parameter, whose mechanical meaning has been largely analyzed
in [54] through deformation tests. While the constitutive equation
for the chemical potential remains unchanged ((4.1.42)2) for isotrop-
ic/anisotropic swelling, the constitutive equation delivering the stress
prescribes that

S = GFd + 2Gγ(Fde · Fde − 1)Fde ⊗ e − pF⋆
d . (6.1.71)
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6.2 enforcing shaping of gel sheets by anisotropic swelling

Consider an isotropic bilayer plate subject to a differential growth,
elastic or inelastic, of the two layers and imagine to gradually increase
the mismatch strain in the absence of external mechanical actions.
Since both the material and the growth are isotropic, the plate ini-
tially deforms into a spherical cap for relatively small values of the
mismatch strain. By further increasing the latter, deforming into a
spherical cap becomes too energetically costly above a certain thresh-
old, and the symmetry of the plate is broken by bifurcating into a
developable surface (cylindrical surface). This type of problem has
been extensively studied in the Literature (see for example [28]), and
it is well known that the threshold of bifurcation and the bending
direction of the cylindrical surface is strongly affected by the size and
the shape of the plate [21, 37, 66]).
The stimuli-induced curling of bilayer film has a technological impli-
cation as an original manufacturing method for micro- and nanotubes
from 2D films [50]. Some applications include nanoreactors [17], op-
tical microtube resonators [82], and components for on-chip capture
and detection of individual micro/nano-organisms [75].
In II the swelling-driven shaping of bilayer gel rectangular plates is
investigated numerically with the three-dimensional stress-diffusion
model presented in 4.1, focusing on the steady shapes attained, start-
ing from a dry flat sheet.
Firstly, a parametric analysis campaign is carried out on plates sub-
jected to isotropic swelling varying the ratio between the stiffness
of the two layers, the slenderness ratio, and the aspect ratio of the
rectangular plate, fixing the length of one side. In particular, the aspect
ratio would appear to be a determinant of the final shape attained
by the plate (see Figure II-3). The aim is to identify the bifurcation
threshold between the spherical shape and the nearly developable
shape, represented in terms of the natural curvature κo of the plate.
The latter is measurable by cutting a beam out of the plate and iden-
tifying the natural curvature κo with the curvature realized by that
beam through the explicit formula proposed in [47], here revised in
energy key in Section 3.1. The measured value of κ̄o = κoh is then
compared with a theoretical threshold κ̄ob (formula II-3.12), presented
in [66] and slightly revised in [67] to account the isotropic growth (see
formula II-3.13). However, it is seen that the theoretical threshold is
far from predicting that measured numerically and it requires further
investigation.
Secondly, reinforcing fibers are introduced inside the gel matrix in
order to explore the possibility to enforce the cylindrical shaping.
Actually, the presence of the fibers is fictitious and is simulated by the
anisotropic swelling described in Section 6.1. The fibers are parallel
to one side of the plate and homogeneously distributed in both the
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layers or only in one of them. It is observed that the latter architecture
provides a better enforcing cylinder-like shapes, as Figure II-4 shows.
Moreover, a larger suppression of the anticlastic curvature is observed
by inserting fibers in both the layers.
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A B S T R A C T

This paper investigates swelling-induced shaping in bilayer thin plates. Sphere-like and nearly developable
shapes are realized and the ability to control a specific shaping, shifting from one shape to another, under
anisotropic swelling is investigated. It is shown that reinforcing fibers can be crucial in controlling shaping under
swelling and dramatically affect the characteristics of the final shapes.

1. Introduction

Swelling and shrinking of polymer gels have been widely used as
driving forces to change the shape of materials. In response to different
stimuli, such as variations in temperature or pH, the solvent uptake
inside the cross–linked network can change resulting in reversible vo-
lumetric expansion or shrinkage. Most gels have a long response time,
and the corresponding changes in shape are typically slow, generally
due to local volume changes in the material corresponding to solvent
uptake and release. Inhomogeneous swelling (shrinking) can determine
dramatic changes in shape, especially in thin structures which can also
quickly shift from one shape to another (Kim et al., 2012; Huang et al.,
2016; Morales et al., 2016; Kim et al., 2017; Cangialosi et al., 2017;
Battista et al., 2019). This has already been observed in different
structures under different stimuli, such as in electro-responsive hydro-
gels (Jiang et al., 2019), in elastomers under oil extraction
(Egunov et al., 2016), in liquid crystalline elastomers (Mostajeran et al.,
2016; Kowalski et al., 2018), in shells under thermal expansion (Vu-Bac
et al., 2018; 2019), and in biological structures (Aharoni et al., 2012;
Oliver et al., 2016). In thin shells, in-plane and through-the-thickness
inhomogeneous swelling, corresponding to in-plane or through-the-
thickness inhomogeneous material, drive these changes in shape and
produce domes and other surfaces from plates (Pezzulla et al., 2016;
Stoychev et al., 2016; Pezzulla et al., 2017; van Manen et al. 2018).

Swelling in gel bodies can be viewed as an elastic growth, as it is the
growth of a body due to the elastic stretching induced by solvent uptake
of the polymeric network. A gel body stores elastic energy even if it
freely swells from a dry state under no constraints and no loads. On the
contrary, (inelastic) growth processes can determine changes in body
shape without any storage of elastic energy, if growth deformations are
compatible and realizable. So, in terms of energy, swelling and growth
are quite different phenomena, especially when they come together (i.e.

in active gels Bernheim-Groswasser et al., 2018; Bacca et al., 2019).
There is a clear distinction between them and a full modeling of their
interactions is crucial to accurately describe the combined processes
(Curatolo et al., 2017a). Nevertheless, reduced models of growing
plates and shells have often been used to study swelling in thin struc-
tures (Kim et al., 2012; Dias et al., 2011; Liu et al., 2016). The reason is
that, for thin structures, the growth approach to the elastic problem,
based on the multiplicative decomposition of the deformation gradient,
yields simplified models which allow for semi-analytical solutions.
However, the three-dimensional nature of the swelling processes, which
are locally isotropic processes, as well as the differential capability to
store energy with respect to growth processes, can deliver important
differences in the realized steady and swollen configurations.

The topic of this paper is the swelling-driven bending of thin plates.
The strategy used to achieve plate bending under swelling is based on
bonding, one above the other, two layers with different elastic prop-
erties to realize a through-the-thickness inhomogeneous swelling. The
amount of bending depends on the swelling mismatch between the
layers; on the other side, the final shaping depends on different geo-
metrical and mechanical factors. The goal is to discuss the shaping of
bilayer plates using a three-dimensional fully coupled stress-diffusion
nonlinear model presented in Lucantonio et al. (2013) and tested and
discussed in Lucantonio et al. (2014), Nardinocchi et al. (2015),
Nardinocchi et al. (2015), Curatolo et al. (2017b), Curatolo (2018),
Curatolo and Nardinocchi (2018) and Curatolo et al. (2018).

We have largely investigated that issue with reference to bilayer
naturally straight (Nardinocchi and Puntel, 2016; 2017a; 2017b) and
naturally curved beams (Battista et al., 2019). We have also shown in
Lucantonio et al. (2014) how our explicit analysis failed when the bi-
layer structure has aspect ratios that resemble plates more than beams.
In this paper, we implement a set of numerical experiments by con-
sidering a large range of swelling mismatches between two isotropic/
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anisotropic plates with different slenderness, aspect ratio and stiffness.
Specifically, we test the capability of the structure to maintain the
spherical shape or to bifurcate from it.

The results are also reviewed within the context of the non-eu-
clidean plate theory (Pezzulla et al., 2017) and discussed with reference
to a revised version of the bifurcation formula produced in
Pezzulla et al. (2015).

Lastly, how shaping strategy can be controlled by generating bilayer
plates which include anisotropic layers is shown. In this case, reinfor-
cing fibers can be crucial in controlling shaping under swelling and
dramatically affect the characteristics of the final shapes.

2. Steady states of swelling processes

Swelling is studied using the multiphysics model presented and
discussed in Ref. Lucantonio et al. (2013) and successively refined in
Refs. Lucantonio et al. (2014), Curatolo et al. (2017b), Curatolo and
Nardinocchi (2018) and Curatolo et al. (2018). The key elements of the
model are briefly reviewed.

Water–polymer mixture is modeled as a homogenized continuum
body, allowing for a mass flux of the solvent (see also Refs. Hong et al.,
2008; Hong et al., 2009; Zhang et al., 2009; Chester and Anand, 2010).
The dry-reference state �d of the gel is a plate, identified with the region
of the Euclidean space � it occupies. The state variables of the model
are the displacement field ud from �d and the molar water-concentra-
tion cd per unit dry volume. The two state variables satisfy the following
volumetric constraint

= = = +J J c cFdet ^ ( ) 1 Ω ,d d d d d (2.1)

implying that any changes in volume of the gel is accompanied by an
equivalent uptake or release of water content. Therein, = + ∇F I ud d is
the deformation gradient and Ω is the molar volume of the water.

As prescribed by the Flory–Rehner thermodynamic model (Flory
and Rehner, 1943a; 1943b), the free energy ψ per unit dry-volume
depends on Fd through an elastic component ψe, and on cd through a
polymer–water mixing energy ψm: = +ψ ψ ψe m. We introduce a relaxed
free–energy ψr, which includes the volumetric constraint, as

= + − −ψ c p ψ ψ c p J J cF F( , , ) ( ) ( ) ( ^ ( ))r d d e d m d d d d with the pressure p as the
reaction to the volumetric constraint, which maintains the volume
change Jd due to the displacement equal to the one due to solvent ab-
sorption or release J c^ ( )d d . The constitutive equation for the dry-re-
ference stress Sd and for the chemical potential μ are consistently de-
rived as

=
∂
∂

− =
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F and Ω ,d
e

d
d
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d (2.2)

being =★ −JF Fd d d
T . For isotropic gels, the elastic component ψe of the

free energy takes a neo-Hookean form, whereas for anisotropic gels a
further component has been added which accounts for the reinforcing
effect of the fibres (Nardinocchi et al., 2015). The polymer–water
mixing energy ψm always maintains the Flory–Huggins isotropic form.
So, by introducing the unit vector field e which identifies the fiber di-
rection field in transversely isotropic gels, we have:
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where G represents the shear modulus of the dry polymer, � represents
the universal gas constant, T represents the temperature and χ re-
presents the Flory parameter. However, the constitutive equation for

the chemical potential does not change for isotropic/anisotropic gels,
and is

� ⎜ ⎟= = = ⎛
⎝

− + + ⎞
⎠

μ μ c μ J T J
J J

χ
J

^ ( ) ^ ( ) log 1 1 ,d d
d

d d d
2 (2.5)

the constitutive equations for the stress in the isotropic and anisotropic
case are

= − = + − ⊗ −★ ★G p G G γ pS F F S F F e F e F e e For 2 ( · 1) .d d d d d d d d d

(2.6)

Typically, thermodynamical issues drive the constitutive representation
of the solvent flux hd in terms of the gradient ∇μ of the chemical po-
tential as = − ∇ +c μ c ph M F( , ) (^ ( ) Ω)d d d d with the mobility tensor

�= −c D T cM F C( , ) /d d d d
1 and =C F Fd d

T
d as a positive definite tensor

depending on the diffusivity D of the polymer. Here, we only aim to
characterize the stationary swollen states of thin bilayer structures,
delivered by the equilibrium equations of the model in the form:

�= = −S h0 div and 0 div in .d d d (2.7)

In this study, they are supplemented by the boundary mechanical
=S m td and chemical + =μ c p μ^ ( ) Ωs e conditions on �∂ ,d with the

latter corresponding to an implicit condition on the concentration field
cs on �∂ d controlled by assigning the external chemical potential μe.

It is worth noting that the mechanical problem, governed by the
balance equation (2.7)1 of forces, and the diffusion problem, governed
by the balance equation (2.7)2 of solvent mass, are coupled by the local
volumetric constraint (2.1) between the two state variables of the full
problem. A direct consequence of that constraint is the presence, in the
equations (2.2), of the pressure term p which is the reaction to the
volumetric constraint and represents a further coupling between me-
chanics and diffusion.

2.1. Swelling mismatch in bilayer structures

Bilayer plates bend under swelling due to the mismatch between the
shear moduli and/or the Flory parameters of the two plate-like parts.
The issue has already been largely discussed elsewhere (Armon et al.,
2011; Erb et al., 2013; Lucantonio et al., 2014; Pezzulla et al., 2016;
2017), and can be described starting from the free-swelling solution of
the stress-diffusion problem corresponding to a body which is em-
bedded into a bath of assigned chemical potential μe. A homogeneous
body attains a swollen stress-free state with =S 0d and =h 0,d identi-
fied by the deformation gradient = λF Id o with the free-swelling stretch
λo the solution of the equilibrium equation:

� ⎜ ⎟
⎛
⎝

−
+ + ⎞

⎠
+ =T

λ
λ λ

χ
λ

G
λ

μlog
1 1 Ω .o

o o o o
e

3

3 3 6 (2.8)

Eq. (2.8) shows that the uniform swelling ratio λo is completely de-
termined by the shear modulus G once the external chemical potential
μe and the Flory parameter χ have been fixed.

When two bonded layers of different shear modulus swell into a
homogeneous bath of assigned chemical potential, the mismatch be-
tween the uniform swelling ratios which would correspond to the two
layers if each of them were free from the other, is one of the determi-
nants of the bending intensity. It has been shown that, for →λ1/ 0,o

3 the
mismatch δ between the uniform swelling ratios λot and λob of the top
and bottom layers, respectively, can be written as

⎜ ⎟= = ⎛
⎝

⎞
⎠
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α α G
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with .ot
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b

t

t

b

1/5
1/5

(2.9)

When one of the two layers is unidirectionally fiber reinforced, the
swelling mismatch between the two layers may be different along the
fiber direction and in the transverse direction. Indeed, a homogeneous
anisotropic body with fibers attains a swollen stress-free state with

=S 0d and =h 0,d identified by the deformation gradient
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= ⊗ +∥ ⊥λ λF e e Ǐd o o being λo∥ and λo⊥ the linear swelling ratios along
the fiber direction e⊗e and in the orthogonal plane, respectively, and
with = − ⊗I I e eˇ . Moreover, the free-swelling stretches λo∥ and λo⊥
are solutions of the equilibrium equations:

= + − = − =⊥ ∥ ∥
∥

∥ ⊥λ γ λ λ G
λ

μ μ J J λ λ(1 2 ( 1)) and Ω ^ ( ) , .o o o
o

e d d o o
2 2 2 2

(2.10)

Eq. (2.10)1 delivers a representation of ⊥λo
2 in terms of ∥λo

2 ; by using it in
(2.10)2, we get the relation between λo∥ and the external chemical
potential μe. It is worth noting that the isotropic free-swelling ratio λo
always stays between λo∥ and λo⊥ for the same values of the other
parameters:

< <∥ ⊥λ λ λ .o o o (2.11)

Hence, we can define differential swelling mismatches depending on
fiber direction and on fiber position (within the top or bottom layer). As
shown in Section 4, when anisotropic layers are included in the as-
sembled structure, the shaping problems induced by the differential
swelling mismatches raise some interesting questions.

3. Isotropic swelling of bilayer thin sheets

Realizing thin multilayered plates by bonding at least two layers
with different elastic moduli, and with at least one of the two as a
stimuli-responsive layer is a strategy to obtain plate bending in absence
of mechanical actions. Under the stimulus, the mismatched response of
the two layers delivers a strain gradient along the thickness which
permits bending in the absence of mechanical actions.

We consider bilayer isotropic plates of thickness h and sides L1 and
L2, with h/Lη< <1 ( =η 1, 2). We assume the ratio β between the
thickness ht of the top layer and the thickness h of the plate fixed. Once
embedded into a solvent bath, each layer swells to the extent its shear
modulus and the bond with the other layer allows. The plate increases
its thickness and, due to the swelling mismatch δ between the two
layers, bends.

The problem is set within the stress-diffusion model illustrated in
the Section 2 and the isotropic elastic energy is chosen in the form
(2.4)1. We are interested in the equilibrium solution of the problem and
solve it by using Stationary Solutor in the finite element software
COMSOL Multiphysics. A mesh composed of parallelepiped cells with at
least six elements for each direction ius used as well as the stationary
solver with the Newton nonlinear method to solve all the equations of
the problem in a weak form. High order shape functions are also used.
More specifically, we use quintic order Lagrange shape functions for the
balance of forces and the balance of solvent mass. A quartic dis-
continuous Lagrange shape function is used for the Lagrangian multi-
plier of the volumetric constraint equation. Finally, the convergence is
verified by testing different mesh sizes of mesh and by increasing the
order of the shape functions. More details regarding the numerical
implementation and validation of the model are given in the Appendix.

3.1. From flat to double-curved shapes

Analyses were performed by implementing a wide range of swelling
tests keeping the aspect ratio =AR 1 of the plate fixed, that is, as-
suming = =L L L1 2 (and =L 1cm), and changing both the slenderness
h/L, in the interval (0.07, 0.2), and the ratio α in the interval (0.3,1).
We also fixed =β 0.6.1 A swelling mismatch =δ λ λ/ot ob corresponds to
each α, it corresponds, due to the equation (2.9). In our tests, δ varies in
the interval (1.3,1), determining a maximum differential strain

− ≃ε ε 0.3ot ob . The same swelling mismatch holds when the bottom
layer (and, as a consequence assuming α as fixed, the top layer) is softer
and softer. Finally, we also remark that both the layers in the following
analyses are isotropic, that is, there are no fibers present.

For =G 10b
5Pa and =G 10b

7Pa, Fig. 1 shows the increase in bending
of a plate of slenderness =h L/ 0.07, corresponding to the decrease in α:
for =α 1, the plate is homogeneous and the swelling realizes a homo-
thety with the plate maintaining its flat shape. For ≠α 1 a sphere-like
shape is realized, with equal principal curvatures and the Gaussian
curvature K⋆, evaluated at the center of the middle surface, increasing
for α decreasing, corresponding to an increase in the swelling mis-
match. We can see that, at =α 0.3, we get a swelling mismatch =δ 1.3
for both the plates, even if, it corresponds to free-swelling stretches λob
and λot equal to 2.75 and 3.5, for =G 10b

5Pa, and to free-swelling
stretches λob and λot equal to 1.32 and 1.68, for =G 10b

7Pa. Fig. 1 also
shows the plate configurations at the three points 1-2-3 corresponding
to =α 1, 0.6, 0.3, respectively, highlighted in the plot of Fig. 1, corre-
sponding to a bottom layer with =G 10b

5Pa.
The sphere-like shape still holds when the slenderness h/L changes

in the interval (0.07,0.2). Fig. 2 shows the final configurations of the
plates corresponding to =α 0.7, that is to a swelling mismatch δ≃ 1,
and to a shear modulus of the bottom layer equal to =G 10b

5. We still
get a double-curved surface even if the volumetric change Jd and the
swelling stretches of the two layers are very high.

3.2. From spherical to nearly developable shapes

Within the wide range of swelling tests we investigated, the aspect
ratio of the bilayer plate would appear to be a determinant of the final
shape realized by the plate. Indeed, under the same conditions pre-
viously presented regarding the materials of the two layers, and for a
slenderness ratio within the interval explored above, we found a com-
pletely different deformation regime. =L L2 remains fixed and L1
changes so as to cover a range of aspect ratios AR between 1 and 0.1.
We ran several simulations with different meshes, for every ≠AR 1,
fixing =G 10b

7Pa, =α 0.7, and =h L/ 0.07.
The shape of the bilayer plate bifurcates from the spherical shape at
=AR 1, as it is shown in Fig. 3 where the values of the principal cur-

vatures κ1 (solid line) and κ2 (dashed line), evaluated at the center of
the middle surface, are represented versus AR. The two lines start di-
verging when ≠AR 1; they remain close up to a critical AR value
(about =AR 0.2 in the figure). Fig. 3 also shows that a cylindrical
shape, with zero Gaussian curvature =K κ κ* ,1 2 is attained when AR is
very small; otherwise, dome-like shapes with positive Gaussian curva-
tures are realized.

3.3. Bifurcation thresholds

The shaping discussed above can be reviewed within the modeling
presented in Pezzulla et al. (2016). The non euclidean plate theory was
used to derive the threshold between the deformative regimes of bilayer
plates delivering double-curved and nearly developable shapes, when
one of the two layers in-plane grows with respect to the other (in-plane
growth mismatch). In that case, the threshold is represented in terms of
the natural curvature κo of the plate. Having defined the dimensionless
natural curvature corresponding to the bifurcation as κ̄ ,ob it is shown
that2

�
⎜ ⎟= ⎛
⎝

+ ⎞
⎠

=κ h¯ 20 14 2
27

ϵ , ϵ ,ob

1/2
2

(3.12)

with the shape factor � ∫= r dA A(2/9 / )4 1/4 and =κ κ h¯ob ob . At that
value of natural curvature, the energy of a spherical cap coincides with
the energy of an isometric state, and bifurcation occurs. Taking into

1 It has been shown in Lucantonio et al. (2014) how for the same values of all
the other parameters, =β 0.6 determines the maximum value of curvature in
bilayer beams. 2 See equation (9) in Pezzulla et al. (2016).
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account the observations made in Pezzulla et al. (2017), where the non
euclidean plate theory has been slightly revised to comprehend bilayer
plate with isotropically growing layers, a revised version of the above
formula can be produced, with ϵ2 changed in

= = − + −λ f α β f α β β βαϵ̃ ( , )ϵ , ( , ) 1 .ob
2 2 1/5 (3.13)

We can easily evaluate ϵ̃ and, hence, κob for our plates. We can also
evaluate κo by cutting a bilayer beam out of the bilayer plate and by
identifying the natural curvature κo with the curvature realized by that
beam through the explicit formula produced in
Lucantonio et al. (2014). Focus is now given to the plates whose steady
curved shapes are represented in Fig. 3. Fixed Gb, α, h/L and L, the
natural curvature κo does not depend on the aspect ratio and, using the
equations (4.14)-(4.16) in Lucantonio et al. (2014), its value is
69.5m−1. On the contrary, the bifurcation natural curvature κob depends

on the aspect ratio by means of the shape factor � and decreases from
55.71m−1 to 22.85m−1 going from =AR 0.1 =AR 1, as the area of the
plate descreases. This means that κo> κob when ≠AR 1 and, as Fig. 3
shows, bifurcation from a sphere has already occurred. However,
κo> κob also for squared plates which assume spherical shapes in the
range of swelling tests we investigated.

As is stressed in the Conclusions, the poor matching of the two
approaches requires further investigation, starting from both sides:
numerical tests via a fully three-dimensional stress-diffusion model and
an analytical approach via energetic issues which take into account the
characteristics of the swelling deformation processes.

4. Enforcing cylindrical shaping by anisotropic swelling

A controlled assembly of isotropic and anisotropic gel layers which
admits differential swelling mismatches in different directions con-
siderably changes the shaping scenario. Moreover, the architecture of
the assembly determines the shaping of the structure. Well-known ex-
amples exist in the plant world. Typically, plant cell walls are compo-
sites of stiff cellulose fibrils embedded in a compliant and highly
swellable matrix consisting of hemicelluloses. Different alignments of
cellulose fibrils in different layers of the composite produce different
architectures, and plants can control the swelling(shrinking)–driven
deformation of cells through an elaborated adjustment of cell wall ar-
chitecture (Burgert and Fratzl, 2009; Ruggeberg and Burgert, 2015).

In this section, our investigation is continued, moving towards more
complex architectures. First, we consider the assembly of two gel layers,
with a softer top than the bottom (α<1), and the reinforcing fibers in
the e2 direction which are homogeneously distributed in the softer top
layer (architecture T), in the harder bottom layer (architecture B), and
in both (architecture TB). The three architectures are identified with
three different marks in the following figures.

We consider bilayer plates with =G 10b
5Pa, =α 0.7, =β 0.6 and

=h L/ 0.007 and different aspect ratios; the three described archi-
tectures are characterized by different swelling problems.

For squared plates, Fig. 4 (left column) shows that embedding fibers
in just one layer favours cylindrical shaping. When the softer top layer
is reinforced (top left), stretching in the fiber direction is too expensive
and the plate contracts at the top layer thus generating a positive κ2
curvature, as shown in Fig. 5 (see the dashed blue line), with the other
curvature κ1 almost null. On the contrary, when the harder bottom layer
is reinforced (middle left), the plate contracts at the bottom layer thus
producing a negative κ2 curvature as shown in Fig. 5 (see the dashed
yellow line). As before, the other curvature κ1 is almost null. In this
case, the steady shape resembles a cylindrical tube as the lower shear

Fig. 1. Top: Gaussian curvature K⋆ versus shear moduli ratio α for a square
plate with slenderness =h L/ 0.07 and shear modulus of the bottom layer

=G 10b
5Pa (blue line) and =G 10b

7Pa (yellow line). Bottom: Gel configurations
at the three points 1-2-3 corresponding to =α 1, 0.6, 0.3, respectively, high-
lighted in the top plot. Colour code corresponds to the volumetric change Jd,
which is related to the amount of solvent uptake. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Top: Gaussian curvature K⋆ versus slenderness h/L for a square plate
with ratio =α 0.7 and shear modulus of the bottom layer =G 10b

5Pa. Bottom:
Gel configurations at the three points 1-2-3 corresponding to

=h L/ 0.2, 0.11, 0.07, respectively, highlighted in the top plot. Colour code
corresponds to the volumetric change Jd, which is related to the amount of
solvent uptake.

Fig. 3. Top: Principal curvatures κ1 (solid line) and κ2 (dashed line) versus the
aspect ratio AR for a bilayer plate with slenderness =h L/ 0.07, shear modulus of
the bottom layer =G 10b

7Pa, and =α 0.7. Bottom: Gel configurations at the
three points 1-2-3 corresponding to =AR 1, 0.5, 0.1, respectively, highlighted
in the top plot. Colour code corresponds to the volumetric change Jd, which is
related to the amount of solvent uptake.
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modulus of the top layer allows there large stretches in the circumfer-
ential (fiber) direction. Two anisotropic layers sharing the fiber direc-
tion almost fail to bend in the fiber direction, as shown in Fig. 4 (bottom
left). Moreover, the anticlastic effect, that is, the difference between the
absolute values of the principal curvatures, is reduced with respect to
that observed when only one layer is fiber reinforced. This effect can be
seen in Fig. 5 for both =AR 1 and =AR 0.6.

When the aspect ratio is small, the plates almost resemble beams. In
this case, putting fibers in the softer top or in the harder bottom layer
produces shapes with the two principal curvatures of the opposite sign,
that is, an anticlastic curvature different from zero. Moreover, going
from the beam-like plate with the reinforced top layer, Fig. 4 (top
right), to the other, Fig. 4 (middle right), the signs of both the principal
curvatures change. Hence, even in beam-like plates, fibers can greatly
affect the steady shape realized under swelling by the structure.

5. Conclusions

The behaviour of bilayer thin gel sheets under swelling has been
investigated using a three-dimensional model which accounts for large

deformations and for the contribution of the mixing energy to the total
potential energy. Specifically, attention was focused on the steady
shapes realized under swelling and on how these shapes can be mas-
tered. The plate aspect ratio has a key role in determining the shape, as
already noted for different stimuli-responsive plates in other studies.
However, the difference between the elastic properties of the two layers
to achieve different shapes is less important. We showed as reinforcing
fibers can be crucial to change this last statement. A better enforcing of
cylinder-like shapes is observed when fibers are inserted in only one
rather than two layers. Finally, a larger suppression of the anticlastic
curvature was observed by inserting fibers in both layers.

The results of the large number of swelling tests presented here
propose a few challenging issues to be considered in the near future,
possibly through a semi–analytic approach. This would enhance our
understanding of the role of the different quantities used in this study,
such as the anisotropic swelling mismatch and the anticlastic effect.

In our opinion, the effectiveness of the reduced models of growing
plates in predicting final steady shapes, when three-dimensional elastic
growth (swelling) is involved, needs to be addressed. We noted how,
also accounting for the observations made in recent papers, some re-
sults borrowed from the non euclidean plate theory can not be applied
in the present context. As noted in Hanna (2019) and Wood and
Hanna (2019), the choice of elastic energies for thin plates and shells is
an unsettled issue and the difference between stretching and bending
modes may have important consequences for more recent modeling of
soft matter, especially when large deformations are expected.
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Appendix A. Numerical implementation

Our finite element model solves the balance equations (2.7) together with the volumetric constraint =J J c^ ( )d d d in integral form (weak form).
Therein, the problem is formulated as follows: find ud, cd and p such that, for all test fields ũ ,d c̃ ,d and p̃ , it holds

Fig. 4. Morphological phase diagrams of emerging surface patterns from numerical simulations corresponding to architectures T, B, TB (top, middle, bottom rows)
and to aspect ratios =AR 1, 0.6, 0.1 (left, middle, right columns). Colour code represents the volume change Jd.

Fig. 5. Principal curvatures κ1 (solid lines) and κ2 (dashed lines) of bilayer
plates assemblied in the architectures T, B, TB (blue, yellow and green lines)
versus the aspect ratio AR. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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∫= − ∇ + ∇ + −c J J c pS u h0 ( · ˜ · ˜ ( ^ ( ))· ˜) ,d d d d d d d

d (5.14)

where the representation forms introduced in Section 2 for the stress Sd and the flux hd hold. As far as boundary conditions are concerned, we assume
zero tractions and assign a displacement ūd on the boundary that eliminates any rigid motion without generating reaction forces. On the other hand,
we control the concentration cs of the solvent on the boundary in an implicit way assuming that the chemical potential field μ there must be equal at
all times to the chemical potential μe of the bath; the corresponding nonlinear implict equation is set in a weak form as

�
∫= + −

∂
μ c p μ c0 [ ^ ( ) Ω ]·˜ .s e s

d (5.15)

Then, the full problem can be reformulated as follows: find ud, cd, p and cs such that, for any test functions ũ ,d c̃ ,d p̃ and c̃s Eqs. (5.14)–(5.15) hold.
The robustness and the accuracy of the numerical model are tested for a different number n of parallelepiped elements along the three sides of a

bilayer plate characterized by the following parameters: =α 0.7, =h L/ 0.07, =β 0.6 and =G 10b
7 Pa (see Fig. 6). The Gaussian curvature K* at the

center of the plate is evaluated; it reaches a stable value for n≥ 5. The degrees of freedom go from 7000 for =n 2 to 350000 for =n 8. In all the
simulations presented in this paper, =n 6 parallelepiped elements are used. Due to the geometry of the bilayer bodies here investigated, which do
not have any curved parts, parallelepiped elements are always preferred to tetrahedral elements to discretized the three-dimensional body. The
convergence of the model is always assured with quintic order Lagrange shape functions for the balance of forces and solvent mass and with a quartic
discontinuous Lagrange shape function for the Lagrangian multiplier of the volumetric constraint equation. It is worth noting that high orders of
shape functions are also mandatory to obtain a good accuracy as both the dependent variables ud and cd in the balance laws have second spatial
derivatives. On the other hand, lower orders of shape functions, especially when huge deformation are involved, do not assure the convergence of the
problem.
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6.3 eversion of polymer cylinders

Let us consider the experiment proposed in Section 4.6 on shrinking
naturally curved polymer beams due to oil extraction. The same
experiment can be carried out by increasing the aspect ratio of the
beams, thus obtaining open cylindrical bilayer surfaces consisting of
a layer of PDMS and a layer of PDMS mixed with silicone oil. If the
oil is placed in the inner layer of the cylinder, the shell will simply
increase its curvature as the oil is extracted. On the contrary, more
interesting is the case in which the oil is in the outer layer; here the
cylinder will unroll and, eventually, evert and bend along a direction
orthogonal to the initial one.
In I, the shape-shifting of cylindrical shells due to oil extraction is
studied numerically within the context of three-dimensional finite
elasticity with distortion for an elastically incompressible neo-Hookean
material (see Section 4.2). The study is focused on the equilibrium
states attained by the cylinders after the complete extraction of oil, the
latter modeled as a spherical bulk contraction Fo = λoI, with λo = (1−
f )1/3 < 1 as a function of the fraction of oil f . A campaign of numerical
experiments is conducted by parametrically varying the aspect ratio
(AR = 0.1, 0.5, 1) and the bulk contraction, as if simulating different
initial oil fractions in the mixing between PDMS and oil. The results are
resumed in the morphological diagram of Figure I-4 (Figure 25), where
the bulk contraction(oil fraction) decreases(increases) from left to right,
starting from the initial configuration (first column) corresponding to
λo = 1( f = 0). It is shown that, as expected, to decreasing values of
λo the bilayer beam, corresponding to AR = 0.1, undergoes curvature
reduction, flattening at λo = λ⋆

o ( f = f ⋆) and eversion. When the
aspect ratio increases (AR = 0.5, 1), the same value λ⋆

o (third column),
corresponding to the flattened beam, identifies everted cylindrical
shells with the principal curvature axes switched with respect to
the reference state. This result is also shown in Figure I-5, where
the normalized Gaussian curvature K, evaluated at the center of the
middle surface, vanishes at λo = 1 and λo = λ⋆

o for any AR. When
λ⋆

o < λo < 1, that is 0 < f < f ⋆, the beam decreases its curvature and
flattens, while the cylindrical shells morph into cylindrical shells with
the axes of principal curvatures switched, passing through saddle-like
shapes (second column). By further increasing the fraction of extracted
oil above f ⋆, the beam everts, the shell with AR = 1 continues to bend
along the direction orthogonal to the initial one, and the shell with
AR = 0.5 attains a dome-like shape (fourth and fifth columns).
Finally, a parametric analysis reducing the thickness of a cylindrical
shell with AR = 1 is carried out and shows that the range of λo which
allows to get saddle-like shapes decreases as the cylindrical shell
decreases its thickness (see Figure I-6).
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0(1) 0.14(0.95) 0.33(0.875) 0.49(0.8) 0.58(0.75)

K = 0
κ2κ1

90◦

0◦

Figure 25: Morphological diagram of a naturally curved beam (bottom) and
cylindrical shells with different aspect ratios (top and centers) due
to a bulk contraction λo of the outer layer, corresponding to a
complete extraction of an initial fraction of oil f . From I.
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7
C O N C L U S I O N A N D F U T U R E S T U D I E S

Soft active materials are a valid resource for many fields of appli-
cation, in particular the biomedical one, where it is often necessary
to induce deformation of a device without the application of loads.
Programming the control of such structures is challenging. The study
of theoretical models which describe the shape-morphing is impor-
tant, at least in the preliminary design phase. This allows not only
to experiment virtually the deformation process, but also to access
simplified and applicable explicit formulas.
This work aimed to provide some original tools, both analytical and
numerical, useful for designing the shape change of soft active sheets.
Firstly, as regards growing bilayer beams, through an energetic ap-
proach explicit formulas for the curvature and the middle axis stretch
have been computed, using both the Biot and Green deformation
measures. The main differences between the formulas deriving from
the two measures have been highlighted.
Then, we focused on the study of bilayer gel structures, in which
the fluid induces bending through local variations in volume. Three
distinct bending processes have been explored:

1. the bending induced by differential swelling between two layers
with different elastic moduli;

2. the bending induced by the extraction of the solvent contained
in a layer stacked on a passive layer;

3. the bending induced by a through-the-thickness diffusion of the
solvent.

The first and third has been studied with a continuous stress-diffusion
model, while the second within a context of finite elasticity with dis-
tortions.
The first bending process has been applied to the study of initially
dry naturally curved gel beams and rectangular gel plates. About
the beams, the swelling-induced eversion and flattening has been
discussed through exact numerical models and appropriate explicit
formulas. A good agreement of the two approaches in terms of the ex-
pected final curvature has been found. The results show that eversion
and flattening of an initial curved beam can be realized for specific
ratios between the thicknesses and the elastic moduli of the layers.
The explicit formulas include the formula of an initially flat bilayer
gel beam derived in [47], the Timoshenko formula for bimetals within
the limits of slightly curvature of the original dry beam and small
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deformations [87], an additive-type formula like the one derived in
[67], and a simplified formula for nearly-homogeneous beams.
As for the plates, the swelling-induced shaping from sphere-like to
nearly developable shapes has been investigated. Specifically, atten-
tion was focused on the steady shapes and on how they can ben
mastered. In the latter, the final shape depends on several geometrical
and mechanical factors. Reinforcing fibers can be crucial in controlling
shaping under swelling and greatly influence the characteristics of the
final shapes. The plate aspect ratio has a key role in determining the
shape, as already noted for different stimuli-responsive plates in other
studies. However, the difference between the elastic properties of the
two layers to achieve different shapes is less important. It was shown
as reinforcing fibers can be crucial to change this last statement. A
better enforcing of cylinder-like shapes was observed when fibers are
inserted in only one rather than two layers, and a larger suppression
of the anticlastic curvature was observed by inserting fibers in both
layers. The presence of fibers has been modeled with an extension
of the Flory-Rehner free energy which accounts the hampering of
swelling-induced deformations along the fibers direction.
The second bending process has been inspired by an experiment
shown in [21], consisting in inducing the change of shape in bilayer
sheets made of PDMS/(PDMS + silicone oil) through the total extrac-
tion of oil. It has been proposed here to describe, both experimentally
and numerically, the bending of shrinking naturally curved beams
and flat beams, and then, only numerically, the shape-morphing of
cylindrical shells. The experimental results allowed to validate the
explicit formula for the curvature of swelling beams also for shrinking
beams, modeling the oil extraction as a bulk contraction.
The parametric computational study of cylindrical shells, where the oil
extraction is modeled as a bulk contraction, has shown the possibility
of quantifying the fraction of oil to put in the outer layer to get, after
oil extraction, saddle-like shapes, everted cylindrical shells with axis
orthogonal to the original one and doubly curved shapes.
The third bending process has been explored starting from the exper-
iment described above, letting the oil initially contained in a single
layer diffuse into the layer made of only PDMS, without extracting it,
generating a progressive bending. The transient bending of a flat beam
has been studied numerically and the results in terms of curvature
have been compared with some experimental evidences. In addition,
a simplified method to calculate the steady-state curvature has been
proposed.

There are uncountable ideas that may be carried out in future to
extend this study. For instance, some aspects that need attention are:
the lack of a more suitable model to describe oil extraction, not simply
considering it as an inelastic distortion; the lack of formulas that
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identify the transition from sphere to cylinder in anisotropic gel plates;
the expansion of the experiments to cylindrical shells and plates,
also evaluating the possibility of introducing material anisotropies.
Furthermore, as regards diffusion-induced bending, the effect of both
internal diffusion, between layers, and external diffusion, outside the
beam, may be considered, taking into account the different diffusion
times, and the phenomenon can also be studied on more complex
structures such as plates and shells.
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