

Article **A New Fully Closed-Loop, High-Precision, Class-AB CCII for Differential Capacitive Sensor Interfaces**

Gianluca Barile ¹®[,](https://orcid.org/0000-0001-8615-4497) Francesco Centurelli ²®, Giuseppe Ferri ^{1,∗}®, Pietro Monsurrò ²®, Leonardo Pantoli ¹®, **Vincenzo Stornelli ¹ [,](https://orcid.org/0000-0001-7082-9429) Pasquale Tommasino ² and Alessandro Trifiletti ²**

- ¹ Department of Industrial and Information Engineering and Economics, University of L'Aquila, 67100 L'Aquila, Italy; gianluca.barile@univaq.it (G.B.); leonardo.pantoli@univaq.it (L.P.); vincenzo.stornelli@univaq.it (V.S.)
- ² Department of Information, Electronics and Telecommunications Engineering, Sapienza University, 00184 Roma, Italy; francesco.centurelli@uniroma1.it (F.C.); pietro.monsurro@uniroma1.it (P.M.); pasquale.tommasino@uniroma1.it (P.T.); alessandro.trifiletti@uniroma1.it (A.T.)
- ***** Correspondence: giuseppe.ferri@univaq.it

Abstract: The use of capacitive sensors has advantages in different industrial applications due to their low cost and low-temperature dependence. In this sense, the current-mode approach by means of second-generation current conveyors (CCIIs) allows for improvements in key features, such as sensitivity and resolution. In this paper, a novel architecture of CCII for differential capacitive sensor interfaces is presented. The proposed topology shows a closed-loop configuration for both the voltage and the current buffer, thus leading to better interface impedances at terminals *X* and *Z*. Moreover, a low power consumption of 600 µW was obtained due to class-AB biasing of both buffers, and the inherent drawbacks in terms of linearity under the mismatch of class-AB buffering are overcome by its closed-loop configuration. The advantages of the novel architecture are demonstrated by circuit analysis and simulations; in particular, very good robustness under process, supply voltage and temperature variations and mismatches were obtained due to the closed-loop approach. The CCII was also used to design a capacitive sensor interface in integrated CMOS technology, where it was possible to achieve a sensitivity of 2.34 nA/fF, with a full-scale sensor variation of 8 pF and a minimum detectable capacitance difference of 40 fF.

Keywords: CCII; class-AB; sensor applications; low-power circuits

1. Introduction

Nowadays, capacitive sensors can be considered a leading technology since they show inherent benefits for different kinds of measurements [\[1](#page-14-0)[,2\]](#page-14-1). They are extremely versatile and can be realized in different ways, allowing their use in many applications [\[3](#page-14-2)[–7\]](#page-14-3). In fact, capacitance variation can be obtained either by changing the capacitor geometry acting on the surface of the plates, or by shifting them, changing the overlapping area, or modifying the plates' distance. Another solution may rely on the modification of the permittivity of the considered dielectric material, and this, for instance, also allows chemical changes in material compositions or physical parameters to be sensed [\[8\]](#page-14-4).

Further advantages are the integration capability, the low-temperature dependance and the low cost, which make these kinds of sensors suitable for different industrial applications and uses. They can be employed, for instance, as accelerometers [\[9,](#page-14-5)[10\]](#page-14-6), pressure or moisture sensors [\[11](#page-14-7)[,12\]](#page-14-8), movement sensors [\[13\]](#page-14-9) and concentration sensors [\[14\]](#page-14-10). Furthermore, no particular constraints can be found on sensor dimensions since, in principle, custom geometries and structures can be used for each application. However, miniaturization is a straightforward alternative, especially in many modern systems, in the form of integrated on-chip solutions. Moreover, capacitance variation, and so the dynamics of

Citation: Barile, G.; Centurelli, F.; Ferri, G.; Monsurrò, P.; Pantoli, L.; Stornelli, V.; Tommasino, P.; Trifiletti, A. A New Fully Closed-Loop, High-Precision, Class-AB CCII for Differential Capacitive Sensor Interfaces. *Electronics* **2022**, *11*, 903. [https://doi.org/10.3390/](https://doi.org/10.3390/electronics11060903) [electronics11060903](https://doi.org/10.3390/electronics11060903)

Academic Editor: Inhee Lee

Received: 10 February 2022 Accepted: 14 March 2022 Published: 15 March 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

the sensor, can be easily defined and managed for the considered applications without particular criticism.

Among capacitive sensors, it is important to consider the differential ones, which are of particular interest since they show improved performance when used for the detection of low capacitance variations or in critical systems with interferences, providing even more robust sensing [\[15](#page-14-11)[–18\]](#page-14-12).

It is evident that, in this context, a critical role is played by the sensor interface, which should be easily integrated with the capacitive sensor and should be able to exploit sensor performance [\[19](#page-14-13)[–28\]](#page-15-0). Different solutions have been provided in the literature, especially in recent years. Two main categories can be defined among capacitive sensor interfaces: the first one is represented by standard interfaces, without any compensation, which simply transduce the sensing parameter [\[19–](#page-14-13)[21](#page-14-14)[,25](#page-15-1)[,26](#page-15-2)[,28\]](#page-15-0), while the second one collects interfaces that are able to compensate for parasitics by reducing the measurement error [\[22–](#page-15-3)[24,](#page-15-4)[27\]](#page-15-5). Moreover, an additional classification can be defined by considering the design approach, and, in particular, we can take into account both current-mode (CM) [\[23](#page-15-6)[,25](#page-15-1)[,27](#page-15-5)[,28\]](#page-15-0) and voltage-mode (VM) solutions [\[19](#page-14-13)[–22,](#page-15-3)[24,](#page-15-4)[26,](#page-15-2)[29\]](#page-15-7).

One of the main drawbacks when considering a VM approach is that, especially in highly integrated low-pitch technologies, it is difficult to achieve good sensitivity, resolution and signal-to-noise ratios due to the narrow supply voltage rail, hence the intrinsically reduced voltage swing per variation that is to be measured. However, the current-mode approach could easily overcome this limitation; therefore, it represents an increasingly attractive methodology. One of the most famous CM active building blocks (ABBs) is the second-generation current conveyor (CCII), which inherits and expands the functionalities of its predecessor, the first-generation current conveyor (CCI) [\[30–](#page-15-8)[39\]](#page-15-9).

In this paper, we propose a completely novel architecture that implements a CCII especially designed for sensor interfacing applications. Favorably, the ABB uses a double IC-level feedback path, both for the voltage and the current subsections of the CCII, which allows for an improvement in the performance of the current buffer section and its robustness to process, supply voltage and temperature (PVT) variations and mismatches. In particular, the closed-loop configuration desensitizes circuit behavior from variations in component parameters, allowing stable performance under the variations, and mitigates the inherent drawbacks in terms of the linearity of the class-AB current buffer, allowing both low power and good linearity even under device mismatches. The proposed CCII was tested in a differential capacitive sensor exploiting the CM approach, and a sensitivity of 2.34 nA/fF with a full-scale sensor variation of 8 pF was achieved.

This manuscript is structured as follows: Section [2](#page-1-0) introduces the proposed topology and shows its high-level working principle. Section [3](#page-5-0) shows the IC-level in-depth analysis of the circuit, offering specific considerations for the differential capacitive sensor application. Section [4](#page-7-0) presents the main simulation results and a comparison with the literature. In Section [5,](#page-13-0) conclusions are drawn.

2. The Proposed Topology

The CCII is a three-port network, as shown in Figure [1,](#page-2-0) and in the ideal case, it is characterized by the equations $V_X = \alpha V_Y$, with $\alpha = 1$, and $I_Z = \beta I_X$, with $\beta = 1$; i.e., it is ideally composed of a voltage buffer between terminals *Y* and *X* and a current buffer between terminals *X* and *Z*. Closed-loop architectures are usually employed for the former, resulting in an accurate voltage gain *α*, wide bandwidth and low distortion, whereas a current mirror is typically employed for the current buffer since it naturally provides a wide bandwidth [\[30\]](#page-15-8). This, however, results in gain error on the current gain *β*, especially in low-voltage designs with deep submicron devices that present a low-output resistance, and in some nonlinearity in the current buffering action.

Figure 1. CCII⁺ schematic symbol and matrix representation of an ideal CCII.

To deal with this problem, we implemented the proposed CCII topology, which exploits closed-loop architectures for both the voltage buffer and the current buffer, improving
recipe architecture and to DVT providing a Management is linearizing official of the foodback proving gain precision even under PVT variations. Moreover, the linearizing effect of allows class-AB topologies to also be used for the current buffer, resulting in a fully class-AB
CCU tenalesy which are have fell in law navyer anglications. gain precision even under PVT variations. Moreover, the linearizing effect of the feedback CCII topology, which can be useful in low-power applications.

The proposed CCII topology is shown in Fig[ur](#page-2-1)e 2 for the case of a non-inverting CCII $(CCH⁺)$. The inverting topology (CCII⁻) only requires the way in which R_{SX} is connected to the left differential difference amplifier (DDA) inputs to be inverted. We provide a detailed nected to the left differential differe analysis of this topology in Section [3,](#page-5-0) while in this section, we provide insights into its approximation operation.

Figure 2. The proposed CCII at block scheme level for a non-inverting topology.

The voltage transfer function from node Y to node X must have an ideal unitary voltage gain, and this is ensured by voltage feedback, which also provides a high impedance at node Y and a low impedance at node X, thus amplifying the input error voltage $V_Y - V_X$ of the operational amplifier (A_V) , which drives a class-AB output stage with low-output impedance. Hence, the system inherently has high-input impedance and low-output impedance, while voltage feedback additionally improves both impedances. Furthermore, the output class-AB stage allows high power efficiency by providing large output currents at node X with a limited quiescent current. Linearity in the voltage transfer function is finally improved by feedback. The open-loop gain of the stage mostly depends on the operational amplifier A_V . The input common-mode signal swing of the operational amplifier and the output signal swing of the output stage set the maximum and minimum voltages at nodes X and Y, respectively, as $V_X = V_Y$ when the system operates correctly. Hence, large voltage swing operation is possible if the output stage and operational amplifiers are suitably designed, whereas the output current is limited by the (class-AB) output stage so that low-impedance high-current loads at node *X* can also be efficiently driven.

The operation of the voltage transfer function is straightforward, as its topology, The operation of the voltage transfer function is straightforward, as its topology, composed of an operational amplifier and a class-AB output stage, is conventional. The composed of an operational amplifier and a class-AD output stage, is conventional. The
only difference is the presence of the resistor R_{SX} , which has some impact on the open-loop $\frac{1}{100}$ anti-trice is the presence of the resistor $\frac{1}{100}$, which has some impact of the open loop frequency response of the stage (as shown in Section [3\)](#page-5-0). This resistor is necessary to sense the current flowing at node *X* and, thus, to obtain $R_{SX} = R_{SZ}$, the unity-gain current thowing at node *X* and, thus, to obtain $R_{SX} = R_{SZ}$, the unity-gain current transfer function between nodes *X* and *Z*. The current transfer function is achieved by a transfer function between nodes *X* and *Z*. The current transfer function is achieved by a nance renearch convening the interest risk of the carrer mancel renearch to the car by a novel class-AB architecture, which ensures high linearity and improved input and output impedances due to feedback. This is unlike conventional class-AB CCIIs, where a *P*-type put impedances due to feedback. This is unlike conventional class-AB CCIIs, where a *P*the political and the courrent source and the push and pull current source, mirrors the push and pull currents at node *X* toward the output node *Z*, with an output impedance dependent on the topology of the current mirror (which is usually cascoded, if not gain-boosted, to maximize the output impedance). α of an operation of the voltage transfer ruttion is straightforward, as its topology, α

The conventional approach (shown in Figure [3\)](#page-3-0) to class-AB current buffering has a The conventional approach (shown in Figure 3) to class-AB current buffering has a significant disadvantage in terms of linearity under mismatch variations. In fact, let us significant disadvantage in terms of linearity under mismatch variations. In fact, let us assume that the *P*-type current mirror has current gain $A_I^P \approx 1$ and that the *N*-type current mirror has current gain $A_I^N \approx 1$. When both gains are unitary, no problem occurs; when a current enters node *X*, the *P*-type current mirror provides less current, and the *N*-type provides more current. In ideal class-AB operation, the positive (inflowing) current at node \tilde{X} would be mirrored to node *Z* by the *N*-type mirror, and the negative (outflowing) current would be mirrored by the *P*-type mirror. Both the *N*-type and *P*-type mirrors would amplify the input current by $A_I^P = A_I^N = 1$ in the ideal case. However, especially under mismatch variations, both A_I^P and A_I^N will not be unitary, and, above all, they will change differently, because mismatches among P devices will be mostly uncorrelated to mismatches among N devices. Hence, linearity will be greatly reduced under mismatches, because the positive output current will be amplified by a factor other than the negative output current. In an ideal class-AB current mirror, where the positive and negative parts of the signal are separately amplified by the *N*-type and *P*-type current mirrors, we have the following: $I_Z = I_Z^P + I_Z^N = A_I^P I_X^P + A_I^N I_X^N = A_I^P \frac{(I_X + |I_X|)}{2} + A_I^N \frac{(I_X - |I_X|)}{2} = \frac{A_I^P + A_I^N}{2} I_X + \frac{A_I^P - A_I^N}{2} |I_X|$. Of course, the term $\frac{A_1^{\overline{P}}-A_1^N}{2}|I_X|$ is heavily nonlinear and will be significant if large mismatches occur.

CCII.

Figure 3. A block scheme showing the conventional approach for class-AB current buffering in **Figure 3.** A block scheme showing the conventional approach for class-AB current buffering in CCII.

Because of this problem, in this work, we propose the closed-loop class-AB current mirror shown in Figure [2.](#page-2-1) The input current I_X is sensed by the resistor R_{SX} , so the left input of the DDA is fed by the input differential voltage $R_{S X} I_X$. However, the output current I_Z is sensed by the resistor R_{SZ} , so the right input of the DDA sees the differential

input voltage $R_{SZ}I_Z$. The feedback loop provided by the DDA and the class-AB output stage copies the current at node *X* to node *Z* by enforcing $R_{SZ}I_Z \approx R_{SX}I_X$. It also provides high output impedance at node Z, as the current at node Z is set by the current at node
X, and, thus, node Z must have large impedance, as the current is insensitive to voltage X , and, thus, node Z must have large impedance, as the current is insensitive to voltage X , and, thus, node Z must have large impedance, as the current is insensitive to voltage variations. In order to prove this point, we consider Figure [4,](#page-4-0) where ideal current generators
The equilibrium at the output node is given by the output node is given by the output node is given by the output and current mirrors are assumed, so the equilibrium can only be reached when the currents of the output node are matched. Calling I_{Di} , $i = 1, 2, 3, 4$, the drain currents of the four
NMOS devices of the differential pairs, counted from left to right, we have NMOS devices of the differential pairs, counted from left to right, we have

$$
I_{D1} = I_B + \frac{g_m R_{SX} I_X}{2}, I_{D2} = I_B - \frac{g_m R_{SX} I_X}{2}
$$
 (1)

$$
I_{D3} = I_B + \frac{g_m R_{SZ} I_Z}{2}, I_{D4} = I_B - \frac{g_m R_{SZ} I_Z}{2}.
$$
 (2)

Figure 4. Simplified schematic of the DDA for current gain evaluation. **Figure 4.** Simplified schematic of the DDA for current gain evaluation.

The equilibrium at the output node is given by

$$
I_{D1} + I_{D3} = I_{D2} + I_{D4} \rightarrow 2I_B + \frac{g_m R_{SX} I_X + g_m R_{SZ} I_Z}{2} = 2I_B - \frac{g_m R_{SX} I_X + g_m R_{SZ} I_Z}{2}
$$
(3)

Hence, in this ideal case, the linear range of the inputs of the DDA. Thus, the value of the sensing resistors must

$$
g_m R_{SX} I_X + g_m R_{SZ} I_Z = 0 \to I_Z = -\frac{R_{SX}}{R_{SZ}} I_X = -I_X.
$$
 (4)

under the hypothesis of $R_{SX} = R_{SZ} = R_{sense}$.

The class-AB output stage ensures that a large output current can be provided at node *Z*. However, when the input current at node *X* is large, the input differential voltages at the two inputs of the DDA become large, as they are $R_{SX}I_X \approx R_{SZ}I_Z$, so it may happen that the DDA saturates with large input differential voltages. In order to avoid deep saturation, the maximum voltage across $R_{SX} = R_{SZ}$ must not be much larger than the linear range of the inputs of the DDA. Thus, the value of the sensing resistors must be set by taking into account the maximum currents at terminals *X* and *Z*. However, a linear voltage-to-current transfer function in the DDA is not required for linearity to the extent that the DDA ensures that $R_{SZ}I_Z$ is close to $R_{SX}I_X$; however, when close to saturation, the two differential pairs

of the DDA will show a limited gain, thus reducing the effectiveness of the feedback loop in ensuring good linearity.

The values of the sensing resistors *RSX* and *RSZ* have to be chosen by carefully weighing the trade-off among the maximum current, terminal impedances and noise, as shown by the simulations in Section [4.](#page-7-0)

3. Circuit Analysis

3.1. Analysis of the Proposed CCII

The proposed architecture of the current conveyor shown in Figure [2](#page-2-1) has to be designed, at transistor level, by considering the ideal properties of a current conveyor; the negative feedback from both the *Z* and *X* outputs allows voltage gain α and current gain *β* to be obtained close to 1. If the same class-AB stage, showing voltage gain *AVbuf* and output resistance $1/g_m$, is used to design both the voltage buffer A_I and the transconductance stage *G^m* in Figure [2,](#page-2-1) the following expressions for *α* and *β* are found:

$$
\alpha = \frac{A_V \cdot A_{Vbuf}}{1 + A_V \cdot A_{Vbuf}},\tag{5}
$$

$$
\beta = \pm \frac{A_{DDA} \cdot A_{Vbuf} \cdot \frac{g_m R_{sense}}{1 + A_{DDA} \cdot A_{Vbuf} \cdot \frac{g_m R_{sense}}{1 + g_m R_{sense}}}.
$$
\n(6)

As can be seen from Equation (6), a sufficiently high value for *Rsense* has to be chosen in order not to degrade the gain of the current feedback loop too much.

At the same time, the feedback allows us to lower the impedance at the *X* node (*RX*) and to enhance the one at the *Z* node (*RZ*), as required, so that a very high *RZ*/*R^X* ratio can be obtained:

$$
R_X = \frac{R_{sense} + 1/g_m}{1 + A_V \cdot A_{Vbuf}},\tag{7}
$$

$$
R_Z = (R_{sense} + 1/g_m) \cdot \left(1 + A_{DDA} \cdot A_{Vbuf} \cdot \frac{g_m R_{sense}}{1 + g_m R_{sense}}\right),\tag{8}
$$

$$
\frac{R_Z}{R_X} = \left(1 + A_V \cdot A_{Vbuf}\right) \cdot \left(1 + A_{DDA} \cdot A_{Vbuf} \cdot \frac{g_m R_{sense}}{1 + g_m R_{sense}}\right). \tag{9}
$$

The presence of the *Rsense* resistor allows the open-loop impedance at node *Z* to be enhanced, but, unfortunately, it also increases the open-loop impedance at node *X*; if a given closed-loop *R^X* is specified, the gain of the voltage feedback loop and the value of *Rsense* have to be jointly designed in order obtain the required *R^X* value according to Equation (7). Then, the gain of both feedback loops (in terms of A_V , A_{DDA} , A_{Vbuf} and $1/g_m$) must be designed to be sufficiently high and, at the same time, to permit the desired *RZ*/*R^X* ratio (>1000 in most practical cases). It has to be noted that the value of *Rsense* also affects the noise and linear range of the CCII, as shown in the simulation Section, thus making the choice of the most appropriate value even more critical.

3.2. Application as Differential Capacitive Sensor Interface

The proposed CCII can be applied in a differential capacitive sensor, whose architecture is shown in Figure [5.](#page-6-0) Two CCIIs, one inverting and the other non-inverting, were employed to sense the differential current passing through two capacitors, namely, C_0 and C_1 , whose difference has to be measured. An input current generator provides a square wave with period *T* and amplitude I_{RFF} , which is fed to the two capacitors (C_2 in Figure [6](#page-6-1) represents parasitic capacitance at the input node). The input node voltage increases and decreases linearly with slope $I_{in}/(C_0 + C_1 + C_2)$; thus, there is a trade-off between the input current amplitude, the square wave period—related to the speed of the variation in the capacitance difference—and the average value of the capacitances C_0 and C_1 due to there being a limit on the maximum value that the input voltage can assume. The CCIIs buffer the currents

through the capacitors, and their output currents are summed on resistor R_3 , providing the output voltage V_{out} . The output voltage during the positive cycle of the square wave is thus dependent on the capacitance difference $C_1 - C_0$, provided that the circuit operates in the linear region. As an alternative, current-mode processing can be adopted, with the output current read by some current input block (e.g., a current amplifier or a transimpedance amplifier); in this case, I_3 and R_3 in Figure [5](#page-6-0) model the input of such a block. Techniques to compensate for the stray capacitance C_2 are discussed in [\[27\]](#page-15-5) and are outside the scope of this paper. μ s paper. μ the input of such a block. Techniques to competent of the stray capacitance $\overline{\mathcal{L}}$ are dis-

the input current amplitude, the square wave period—related to the speed of the varia-

Figure 5. Block scheme and simulation setup for capacitive sensor interface.

Figure 6. Input terminal model for a current-mode sensor interface based on the proposed CCII architecture. architecture.

The use of the proposed CCII scheme as a current-mode interface for capacitive The use of the proposed CCII scheme as a current-mode interface for capacitive sensors can be seen that a parasitic capacitance C_{par1} at node X is found, given by the sum of the parasitic capacitance at the A_V - input and the parasitic capacitance at the negative A_{DDA} input. Moreover, a parasitic capacitance C_{par2} ($\langle C_{par1}$) is found at the positive A_{DDA} input. \mathcal{A}_{D} is expression for the overall input impedance \mathcal{A}_{M} , \mathcal{A}_{M} , \mathcal{A}_{M} , is the following. The expression for the overall input impedance at node X , Z_X , is the following: therefore also requires a more accurate analysis of parasitic capacitance at input node *X*. It

$$
Z_X = \frac{1}{sC_{par1}} || Z_X' \cong \frac{1}{sC_{par1}} || R_X, \tag{10}
$$

where

$$
Z'_X = R_X \cdot \left(1 + s \cdot \frac{C_{par2} R_{sense}}{1 + g_m R_{sense}}\right) = R_X + s \cdot L_X \cong R_X,\tag{11}
$$

and

$$
L_X = \frac{C_{par2}R_{sense}R_X}{1 + g_m R_{sense}}.\tag{12}
$$

The parasitic capacitance C_{par2} creates a zero in the Z_X' expression, and an equivalent inductance can be considered to account for its frequency behavior; particular care has to be paid during the design of the CCII, so the zero of Z_X' is placed outside the range of the input frequencies used as a stimulus for the sensor interface. Under the previous hypothesis, the approximate expression in Equations (10) and (11) can be adopted.

In the general case, the model in Figure [6](#page-6-1) has to be considered for the input terminal of the current-mode sensor interface. The stray capacitance *CStray* of the sensor (equivalent to half C_2 in Figure [5\)](#page-6-0) has to be estimated in order to calibrate the measurement and improve accuracy. The following partition function αSENS is found between the current stimulus *I* and the current *I*_{*DUT*} entering the sensor:

$$
\alpha_{SENS} = \frac{C_{DUT}}{C_{DUT} + C_{Stray}} \cdot \frac{1 + s \cdot C_{par1} R_X (1 + s \cdot L_X / R_X)}{1 + s \cdot \left(C_{par1} + \frac{C_{DUT} C_{Stray}}{C_{DUT} + C_{Stray}}\right) R_X (1 + s \cdot L_X / R_X)}.
$$
(13)

A second condition, concerning the time constant $\tau_1 = L_X/R_X$, has to be fulfilled in order to set the input bandwidth of the interface. Moreover, the time constant *τ*₂, given by

$$
\tau_2 = R_X \cdot \left(C_{par1} + \frac{C_{DUT} C_{Stray}}{C_{DUT} + C_{Stray}} \right) \tag{14}
$$

has to be suitably chosen in order to avoid limits in the input bandwidth of the sensor interface.

4. Simulation Results of a Sensor Design Case Study

Both inverting and non-inverting CCIIs based on the proposed approach were designed and simulated using the Cadence software suite, in a 130 nm CMOS technology from STMicroelectronics, in order to develop a current-based sensor interface for differential capacitance [\[25\]](#page-15-1) based on the architecture described in Section [3.2](#page-5-1) [\[28\]](#page-15-0). The two feedback loops were designed with an overall voltage gain of about 40 dB for the cascade of the block A_V (or DDA) and buffer. In Figure [7,](#page-8-0) the transistor implementation of the CCII⁺ stage is shown. The current mirrors were designed to bias the A_V stage with a 29.9 μ A tail current $(M3)$, the DDA stage with a 14.9 μ A tail current $(M30, M31)$ and the class-AB stages with 68.8μ A (M7, M21) and 39.7μ A (M13, M26) tail currents. The overall power consumption from a [1.](#page-7-1)2 V supply voltage is about 600 μ W. The transistor sizes are reported in Table 1.

Figure 7. Transistor-level implementation of the proposed class-AB CCII⁺.

To evaluate the effect of the sensing resistor on CCII performance, simulations for two different values of R_{sense} are reported. When R_{sense} is set to $5 \text{ k}\Omega$, the DC transfer functions shown in Figure 8 are achieved. The input range at terminal *Y* is about ± 250 mV, and the current range is about ± 30 µA, limited by the input voltage range of the DDA. The corresponding small-signal performance is reported in Figure [9,](#page-9-0) and it shows small Fire corresponding small signal performance is reported in Figure 3, and it shows small gain errors with bandwidths of 12 MHz and 12.8 MHz for the voltage and current buffers, $\frac{1}{1}$, $\frac{1}{1}$, respectively. In particular, the value of R_{sense} allows a loop gain of 47.5 dB to be achieved, respectively. In particular, are value of $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ about -0.2 dB. Figure 10 reports the impedances at the terminals of the CCII, highlighting a ratio of impedances at Z and X terminals larger $\frac{1}{2}$ than 1000 and up to 100 kHz. $T = 1 + 1 + 2$ coeffect of the sensing resistor on C two different values of the sensing resident of CCI performance, set to 5 kD transfer function $\frac{1}{2}$

Figure 8. DC performances of the α (**a**) and the β parameters (**b**) for $R_{sense} = 5$ k Ω .

The modeling inductor L_X defined in Section [3.2](#page-5-1) is equal to 99.7 μ H. Capacitive behavior can be seen at high frequencies for Z_X ; from the graph in Figure [10,](#page-9-1) the value C_X = 0.9 pF is evaluated. Finally, analysis of the *Z^Z* graph allows the definition of a modeling capacitance C_Z = 3.5 pF.

In Figure [11,](#page-9-2) the input equivalent noise current at terminal *X* and the noise voltage at terminal *Y* are reported: an input equivalent noise voltage *V_{NY}* = 11.5 nV/ \sqrt{Hz} at terminal *Y* are reported: an input equivalent noise voltage *V_{NY}* = 11.5 nV/ \sqrt{Hz} at terminal *Y* and an input equivalent noise current *I_{NX}* = 5.3 pA/ \sqrt{Hz} at terminal *X* can be observed *Y* and an input equivalent noise current *I_{NX}* = 5.3 pA/ \sqrt{Hz} at terminal *X* can be observed at 1 MHz.

Figure 9. Simulated voltage (green curve) and current (gold curve) gain of the CCII for *Rsense* = 5 **Figure 9.** Simulated voltage (green curve) and current (gold curve) gain of the CCII for $R_{sense} = 5 \text{ k}\Omega$.

Figure 10. Impedance at terminal *X* (red curve), *Y* (green curve) and *Z* (gold curve) for *R_{sense}* = 5 \overline{a}

Figure 11. Equivalent noise current at X (a) and noise voltage at Y (b) for $R_{\text{sense}} = 5 \text{ k}\Omega$.

Linearity was evaluated by testing both the voltage buffer and the current buffer with a Linearity was evaluated by testing both the voltage buffer and the current buffer Entently was evaluated by testing both the voltage builet and the earlient builet with a 100 kHz sinusoidal input, and Figure [12](#page-10-0) reports the total harmonic distortion (THD) versus the input amplitude. The relatively large value of *R_{sense}* leads to significant distortions of the current buffer for currents in the range of tenths of μ A, with -40 dB THD achieved at 30μ A. From this point of view, this choice of sensing resistor seems appropriate when a relatively large load resistance at the *X* terminal is used. appropriate when a relatively large load resistance at the *X* terminal is used.

Figure 11. Equivalent noise current at *X* (**a**) and noise voltage at *Y* (**b**) for *Rsense* = 5 kΩ.

Figure 12. Total harmonic distortion vs. input amplitude for the voltage (a) and current buffers (b) for $R_{sense} = 5 \text{ k}\Omega$.

The simulations were repeated in the case $R_{sense} = 500 \Omega$, and the main performance parameters for both of the designs are reported in Table [2.](#page-10-1) Scaling the sense resistors viously directly impacts the terminal impedances; in particular, a lower sense resistor obviously directly impacts the terminal impedances; in particular, a lower sense resistor results in a lower R_X , which is an advantage in many applications, but also a lower R_Z . The ratio of terminal resistances remains approximately constant. The loop gain of the feedback in the current buffer reduces to 31.5 dB, allowing a closed-loop gain β of about -0.27 dB.

Item	This Work									
	$R_{sense} = 5 \text{ k}\Omega$	$R_{sense} = 0.5 \Omega$	$[31]$	$[32]$	$[33]$	$[34]$	$\left[35\right]$	36	$[37]$	$[38]$
CMOS tech. (μm)	0.13		0.35	0.18	0.18	0.18	0.18	0.18	0.13	0.35
Power supply (V)	1.2		± 0.75	± 0.75	± 1	± 0.5	1.0	± 0.75	1.5	± 0.75
Power diss. (mW)	0.605 ±0.250		0.118	0.27	$\overline{}$	120	0.4	0.23	1.5	0.00015
Y Input range (V)			$\overline{}$	± 0.75	± 0.4	± 0.24	± 1.0	± 0.75	1.5	
X Input range (μA)	± 30	± 225	$\overline{}$	± 125	± 350	± 24	± 1000	± 220	± 20	
DC- α (dB)	-0.088	-0.088	$\mathbf{0}$	0.009	-0.464	-0.087	$\boldsymbol{0}$	$\mathbf{0}$	-0.005	-0.04
f_{-3dB} of α (MHz)	12	18.6	10.5	1200	3340	36	25.7	3000	94	4.2
$DC-\beta$ (dB)	-0.181	-0.271	Ω	Ω	Ω	-0.141	$\mathbf{0}$	$\mathbf{0}$	-0.130	-0.82
f_{-3dB} of β (MHz)	12.8	17.6	10.5	1200	4370	30.2	30	2960	99	4.4
$R_X(\Omega)$	51	7.8	13	2.4	169	137	$\overline{}$	8.26	200	52
R_Z (k Ω)	256	25.8	2600		6.81	225	۰	46.5	560	700
C_Y (pF)	0.305	0.305	0.5	0.004	0.164	3×10^{-6}	۰	0.012	10	0.5
IZ THD (dB)	-46.4 @225 mV 100 kHz	-46.4 @225 mV 100 kHz			-52.4 @300 mV 1 MHz					
V_X THD (dB)	-46.1 $@25 \mu A 1 kHz$	-46.1 @200 μA 1 kHz			-47.7 $@300~\mu\text{A}$ 1 MHz				-35 $@10 \mu A$ 1 kHz	

Table 2. Comparison of CCII⁺ simulation performance to published results.

A lower series resistance results in a wider linear range for the current buffer, as shown by the DC transfer curve in Figure [13a](#page-11-0), but also in a higher equivalent noise current at terminal *^X* (about 48.4 pA/[√] Hz at 1 MHz). The plot of THD versus peak input current for a

rent at terminal *X* (about 48.4 pA/√Hz at 1 MHz). The plot of THD versus peak input

100 kHz sinusoidal input is reported in Figure [13b](#page-11-0). The voltage buffer results were practically unaffected by the value of *Rsense*, apart from the value of the resistance at node *X*. sistance at node *X*.

Figure 13. DC performance (a) and THD vs. input amplitude (b) of the current buffer for $R_{\text{sense}} = 500 \Omega$.

(PVT) variations was carried out, together with a Monte Carlo analysis involving process variations and mismatches at 27 °C and nominal voltage supply. Tables 3 and [4](#page-12-0) report the results for the case of $R_{sense} = 5 \text{ k}\Omega$ (similar results were obtained at 500 Ω). Table [3](#page-11-1) shows a very low variation in the current gain under PVT variations: this good result is due to the use of a closed-loop approach for the current buffer, where feedback is employed to desensitize the performance from variations in the open-loop gain. Analogously, the Monte Carlo results reported in Table 4 show a very good stability of the gain and distortion. This is in contrast with the results typically achieved in class-AB CCIIs with an open-loop current buffer, where distortion under mismatch is much worse than that obtained in typical conditions [39]. Histograms for the current gain and the THD of the curren[t b](#page-15-9)uffer Analysis of the CCII⁺ performance under process, voltage supply and temperature for a peak input current of $25 \mu A$ are reported in Figure [14](#page-12-1) to better highlight the advantage of the proposed approach.

Item Temperature		Supply		FF	FS	SF	SS	
Temperature (°C)	0	70	27	27	27	27	27	27
Power supply (V)	1.2	1.2	1.14	1.26	1.2	1.2	1.2	$1.2\,$
Power diss. (mW)	585	639	572	640	631	605	607	583
$DC-\alpha$ (dB)	-0.085	-0.093	-0.095	-0.082	-0.086	-0.103	-0.084	-0.090
f_{-3dB} of α (MHz)	12.7	11.1	11.9	12.1	12.5	12.1	11.9	11.5
$DC-\beta$ (dB)	-0.177	-0.193	-0.191	-0.173	-0.180	-0.230	-0.171	-0.184
f_{-3dB} of β (MHz)	13.7	11.7	12.6	13	13.5	13.0	12.7	12.1
$R_{\rm X}(\Omega)$	51.4	53.9	53.3	50.2	52.3	66.2	48.3	51.4
R_7 (k Ω)	268	233	237	270	259	219	272	250
$I7$ THD (dB)	-46.2	-45.7	-42.1	-53.2	-50.2	-36.9	-37.5	-42.5
V_X THD (dB)	-44.1	-47.5	-44.3	-46.9	-46.1	-38.1	-44.4	-45.2

Table 3. Analysis of CCII⁺ performance under PVT variations.

The proposed CCII was also used to simulate the differential capacitive sensor in Figure [5.](#page-6-0) Given the 3 dB bandwidth of the CCII, we chose a frequency of 2 MHz for the input square wave current. The peak value of such a current has to be determined according to the average value *CDUT* of the capacitances; for *CDUT* = 4 pF, limited by stability considerations, a peak current of 20 μ A was chosen. The CCII was sized with sensing resistors $R_{sense} = 500 \Omega$ as a trade-off between speed, terminal impedances and noise.

Item	Mean	Std
Power diss. (mW)	0.606	0.0018
DC- α (dB)	-0.087	0.0002
f_{-3dB} of α (MHz)	12	0.04
DC- β (dB)	-0.181	0.043
f_{-3dB} of β (MHz)	12.8	0.05
$R_X(\Omega)$	51.6	0.12
R_Z (k Ω)	246	16.5
I_Z THD (dB)	-46.4	0.13
V_X THD (dB)	-45.1	1.3

Table 4. CCII⁺ performance under a 1000-iteration Monte Carlo analysis.

Figure 14. Histograms of the current gain β (a) and the THD of the current buffer for a peak input current of 25 µA (**b**) for 1000 Monte Carlo mismatch iterations (*Rsense* = 5 kΩ). current of 25 µA (**b**) for 1000 Monte Carlo mismatch iterations (*Rsense* = 5 kΩ).

Figure [15](#page-13-1) reports the resulting characteristic of the sensor (output current in the positive period of the square wave vs. capacitance difference), which shows very good linearity for the whole range of variations in the capacitance (C_0 , $C_1 = C_{DUT} \pm \Delta C/2$, with C_{DUT} = 4 pF) and allows a sensitivity of about 2.34 nA/fF to be estimated. Transient noise simulations allow us to estimate an output noise current of 94 nA rms, corresponding to a minimum detectable ∆*C* of 40 fF.

f−3dB of *α* (MHz) 12.7 11.1 11.9 12.1 12.5 12.1 11.9 11.5 Table [5](#page-13-2) reports the main performance parameters of the sensor and compares them with similar reports in the literature. To allow an easy comparison between different implementations*,* the following figure of merit is defined:

$$
FOM = \frac{BW}{Pd} \frac{\Delta C_{max}}{\Delta C_{min}} \tag{15}
$$

where the bandwidth *BW* is calculated as half of the clock frequency and the minimum ∆*C* the best *FOM* is achieved by the sensor in [\[27\]](#page-15-5), which uses very simple circuits for the power death the concerned concerned in the beam of heavy continuing difference readout, the proposed sensor, which has not been optimized for noise, shows interesting results regardless, allowing a large bandwidth and a large C_{DUT} at the same time. is obtained from noise and sensitivity values, if not explicitly declared in the papers. While

Item	This Work *	$[23]$ *	27	$\lceil 28 \rceil$	$[29]$ *
CMOS tech. (μm)	0.13	0.35	0.065	0.8	0.18
Sensor type	Differential	Differential	Differential	Single ended	Differential
Power supply (V)	1.2	± 1.65	2.5		1.8
Power diss. (mW)	1.2	5.6	0.22	0.725	0.04
Bandwidth (kHz)	1000	50	500	290	50
Sensitivity	2.34 nA/fF	$6.1 \text{ mV}/pF$	5 nA/fF	1.2 nA/fF	N.A.
Full-scale ΔC (pF)	8	20	1.8		0.01
Minimum ΔC (fF)	$40**$	N.A.	0.8	N.A.	$0.23**$
Conversion type	C-I	$C-V$	C-I	$C-I$	$C-V$
$\Delta C_{max}/\Delta C_{min}$	200	N.A.	2250	N.A.	43.5
FOM(MHz/mW)	167	N.A.	5134	N.A.	54

Table 5. Comparison to published results of capacitive sensor interfaces.

 $*$ Simulated, $**$ estimated from noise data.

Figure 15. Characteristic of the differential capacitance sensor (C_{DUT} = 4 pF).

 T able 5 reports the main performance parameters of the sensor and compares them sensor and com **5. Conclusions**

A novel architecture of a second-generation current conveyor, which also exploits a closed-loop feedback approach for the current buffer, was presented, thus combining the In addition to good linearity, very robust performance was in fact achieved under PVT
weristions and devias mismatches due to the use of a unity gain feedback leap for the Y.Z. advantages of class-AB biasing with the linearizing and desensitizing effects of feedback.
Little states in the little states of the little states in the little states in the little states in the little transfer. Inverting and non-inverting CCIIs can be easily obtained by simply changing the sign of the differential voltage, thus maximizing the symmetry in applications where both conveyors are needed and have to be matched. Sensing resistors were employed to implement the current feedback loop, and their values can be optimized according to the required application by finding the desired trade-off between gain precision*,* bandwidth, variations and device mismatches due to the use of a unity-gain feedback loop for the X-Z linearity and noise.

A CCII was designed in a 130 nm CMOS technology by STMicroelectronics, and it was characterized for different values of the sensing resistors to highlight the trade-offs. PVT and Monte Carlo simulations showed very good robustness of the performance for both the voltage and current buffers. An inverting and a non-inverting CCII were employed to design and simulate a differential capacitive sensor interface that allows a high operating frequency with large capacitive values and good linearity for a 100% variation in the capacitance.

Author Contributions: Conceptualization: P.M.; methodology: F.C., P.T., A.T.; software: P.T., G.B.; validation: F.C., P.M., G.F., V.S.; formal analysis: P.T.; investigation: F.C., P.M., P.T.; writing—original draft preparation: P.M., P.T., G.B., L.P.; writing—review and editing: F.C., G.F., L.P.; supervision: F.C., G.F., V.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interests.

References

- 1. *Capacitive Sensors: Design and Applications*; Wiley-IEEE Press: Hoboken, NJ, USA, 1997. Available online: [https://ieeexplore.ieee.](https://ieeexplore.ieee.org/book/5264832) [org/book/5264832](https://ieeexplore.ieee.org/book/5264832) (accessed on 18 January 2022).
- 2. Puers, R. Capacitive sensors: When and how to use them. *Sens. Actuators A Phys.* **1993**, *37–38*, 93–105. [\[CrossRef\]](http://doi.org/10.1016/0924-4247(93)80019-D)
- 3. Dong, T.; Gu, Y.; Liu, T.; Pecht, M. Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications. *Sens. Actuators A Phys.* **2021**, *326*, 112720. [\[CrossRef\]](http://doi.org/10.1016/j.sna.2021.112720)
- 4. Qian, H.; Hrnjak, P. Characterization of R134a two-phase flow regimes in horizontal and vertical smooth tubes with capacitive sensors. *Int. J. Refrig.* **2021**, *125*, 90–103. [\[CrossRef\]](http://doi.org/10.1016/j.ijrefrig.2021.01.015)
- 5. Wang, W.; Zhao, K.; Zhang, P.; Bao, J.; Xue, S. Application of three self-developed ECT sensors for monitoring the moisture content in sand and mortar. *Constr. Build. Mater.* **2021**, *267*, 121008. [\[CrossRef\]](http://doi.org/10.1016/j.conbuildmat.2020.121008)
- 6. Zeng, T.; Lu, Y.; Liu, Y.; Yang, H.; Bai, Y.; Hu, P.; Li, Z.; Zhang, Z.; Tan, J. A Capacitive Sensor for the Measurement of Departure From the Vertical Movement. *IEEE Trans. Instrum. Meas.* **2015**, *65*, 458–466. [\[CrossRef\]](http://doi.org/10.1109/TIM.2015.2490806)
- 7. Ferlito, U.; Grasso, A.; Vaiana, M.; Bruno, G. A Time-Based Electronic Front-End for a Capacitive Particle Matter Detector. *Sensors* **2021**, *21*, 1840. [\[CrossRef\]](http://doi.org/10.3390/s21051840)
- 8. Andrés, M.A.; Vijjapu, M.T.; Surya, S.G.; Shekhah, O.; Salama, K.N.; Serre, C.; Eddaoudi, M.; Roubeau, O.; Gascón, I. Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles. *ACS Appl. Mater. Interfaces* **2020**, *12*, 4155–4162. [\[CrossRef\]](http://doi.org/10.1021/acsami.9b20763)
- 9. Ramakrishnan, J.; Gaurav, P.T.R.; Chandar, N.S.; Sudharsan, N.M. Structural design, analysis and DOE of MEMS-based capacitive accelerometer for automotive airbag application. *Microsyst. Technol.* **2020**, *27*, 763–777. [\[CrossRef\]](http://doi.org/10.1007/s00542-020-04979-3)
- 10. Martínez, J.; Asiain, D.; Beltrán, J. Lightweight Thermal Compensation Technique for MEMS Capacitive Accelerometer Oriented to Quasi-Static Measurements. *Sensors* **2021**, *21*, 3117. [\[CrossRef\]](http://doi.org/10.3390/s21093117)
- 11. Li, R.; Zhou, Q.; Bi, Y.; Cao, S.; Xia, X.; Yang, A.; Li, S.; Xiao, X. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. *Sens. Actuators A Phys.* **2021**, *321*, 112425. [\[CrossRef\]](http://doi.org/10.1016/j.sna.2020.112425)
- 12. Okasha, A.; Ibrahim, H.; Elmetwalli, A.; Khedher, K.; Yaseen, Z.; Elsayed, S. Designing Low-Cost Capacitive-Based Soil Moisture Sensor and Smart Monitoring Unit Operated by Solar Cells for Greenhouse Irrigation Management. *Sensors* **2021**, *21*, 5387. [\[CrossRef\]](http://doi.org/10.3390/s21165387) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/34450826)
- 13. Shiah, J.; Rashtian, H.; Mirabbasi, S. A Low-Noise Parasitic-Insensitive Switched-Capacitor CMOS Interface Circuit for MEMS Capacitive Sensors. In Proceedings of the 2011 IEEE 9th International New Circuits and Systems Conference, Bordeaux, France, 26–29 June 2011; pp. 470–473.
- 14. Litvinov, A.; Samotaev, N.; Etrekova, M.; Ivanova, A.; Filipchuk, D. Hydrogen Concentration Control in Oil-Filled Power Transformers Using Field Effect Capacitive Gas Sensors. *J. Electrochem. Soc.* **2021**, *168*, 017503. [\[CrossRef\]](http://doi.org/10.1149/1945-7111/abd5fb)
- 15. Gupta, N.; Dutta, S.; Panchal, A.; Yadav, I.; Kumar, S.; Parmar, Y.; Vanjari, S.R.K.; Jain, K.K.; Bhattacharya, D.K. Design and Fabrication of SOI Technology Based MEMS Differential Capacitive Accelerometer Structure. *J. Mater. Sci.* **2019**, *30*, 15705–15714. Available online: [https://www.springerprofessional.de/en/design-and-fabrication-of-soi-technology-based-mems-differential/](https://www.springerprofessional.de/en/design-and-fabrication-of-soi-technology-based-mems-differential/17036044) [17036044](https://www.springerprofessional.de/en/design-and-fabrication-of-soi-technology-based-mems-differential/17036044) (accessed on 13 March 2022). [\[CrossRef\]](http://doi.org/10.1007/s10854-019-01955-0)
- 16. Eswaran, P.; Malarvizhi, S. Design Analysis of MEMS Capacitive Differential Pressure Sensor for Aircraft Altimeter. *Int. J. Appl. Phys. Math.* **2012**, *2*, 14–20. [\[CrossRef\]](http://doi.org/10.7763/IJAPM.2012.V2.45)
- 17. Li, R.; Mohammed, Z.; Rasras, M.; Elfadel, I.; Abe, M.; Choi, D. Design, modelling and characterization of comb drive MEMS gap-changeable differential capacitive accelerometer. *Measurement* **2021**, *169*, 108377. [\[CrossRef\]](http://doi.org/10.1016/j.measurement.2020.108377)
- 18. Aydemir, A.; Terzioglu, Y.; Akin, T. A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer. *Sens. Actuators A Phys.* **2016**, *244*, 324–333. [\[CrossRef\]](http://doi.org/10.1016/j.sna.2016.04.007)
- 19. Depari, A.; Sisinni, E.; Flammini, A.; Ferri, G.; Stornelli, V.; Barile, G.; Parente, F.R. Autobalancing Analog Front End for Full-Range Differential Capacitive Sensing. *IEEE Trans. Instrum. Meas.* **2018**, *67*, 885–893. [\[CrossRef\]](http://doi.org/10.1109/TIM.2017.2785160)
- 20. Barile, G.; Ferri, G.; Parente, F.R.; Stornelli, V.; Depari, A.; Flammini, A.; Sisinni, E. A Standard CMOS Bridge-Based Analog Interface for Differential Capacitive Sensors. In Proceedings of the 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Giardini Naxos-Taormina, Italy, 12–15 June 2017; pp. 281–284.
- 21. Li, X.; Hu, J.; Liu, X. A High-Performance Digital Interface Circuit for a High-Q Micro-Electromechanical System Accelerometer. *Micromachines* **2018**, *9*, 675. [\[CrossRef\]](http://doi.org/10.3390/mi9120675)
- 22. Depari, A.; Sisinni, E.; Bellagente, P.; Ferrari, P.; Flammini, A.; Rinaldi, S. Simple and robust microcontroller-based acquisition system for differential capacitive sensors. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6.
- 23. Barile, G.; Safari, L.; Ferri, G.; Stornelli, V. A VCII-Based Stray Insensitive Analog Interface for Differential Capacitance Sensors. *Sensors* **2019**, *19*, 3545. [\[CrossRef\]](http://doi.org/10.3390/s19163545)
- 24. Sisinni, E.; Depari, A.; Flammini, A.; Ferri, G.; Stornelli, V.; Barile, G. Full-Analog Parasitic Capacitance Compensation for AC-Excited Differential Sensors. *IEEE Trans. Instrum. Meas.* **2020**, *69*, 5890–5899. [\[CrossRef\]](http://doi.org/10.1109/TIM.2019.2962296)
- 25. Pennisi, S. High-performance and simple CMOS interface circuit for differential capacitive sensors. *IEEE Trans. Circuits Syst. II Express Briefs* **2005**, *52*, 327–330. [\[CrossRef\]](http://doi.org/10.1109/TCSII.2005.848999)
- 26. Singh, T.; Saether, T.; Ytterdal, T. Current-Mode Capacitive Sensor Interface Circuit With Single-Ended to Differential Output Capability. *IEEE Trans. Instrum. Meas.* **2009**, *58*, 3914–3920. [\[CrossRef\]](http://doi.org/10.1109/TIM.2009.2021241)
- 27. Scotti, G.; Pennisi, S.; Monsurro, P.; Trifiletti, A. 88-µ A 1-MHz Stray-Insensitive CMOS Current-Mode Interface IC for Differential Capacitive Sensors. *IEEE Trans. Circuits Syst. I* **2014**, *61*, 1905–1916. [\[CrossRef\]](http://doi.org/10.1109/TCSI.2014.2298275)
- 28. Ghallab, Y.H.; Badawy, W. A New Design of a Current-mode Wheatstone Bridge Using Operational Floating Current Conveyor. In Proceedings of the 2006 International Conference on MEMS, NANO, and Smart Systems, Cairo, Egypt, 27–29 December 2006; pp. 41–44.
- 29. Zhong, L.; Shang, P.; Cao, W.; Zhu, Z.; Liu, S. Capacitance-to-voltage converter employing parallel-series passive charge integrator for low noise power efficient MEMS capacitive sensor. *Microelectron. J.* **2022**, *121*, 105369. [\[CrossRef\]](http://doi.org/10.1016/j.mejo.2022.105369)
- 30. Sedra, A.; Smith, K. A second-generation current conveyor and its applications. *IEEE Trans. Circuit Theory* **1970**, *17*, 132–134. [\[CrossRef\]](http://doi.org/10.1109/TCT.1970.1083067)
- 31. Ferri, G.; De Marcellis, A.; Di Carlo, C.; Stornelli, V.; Flammini, A.; Depari, A.; Marioli, D.; Sisinni, E. A CCII-Based Low-Voltage Low-Power Read-Out Circuit for DC-Excited Resistive Gas Sensors. *IEEE Sens. J.* **2009**, *9*, 2035–2041. [\[CrossRef\]](http://doi.org/10.1109/JSEN.2009.2033197)
- 32. Abolila, A.H.M.; Hamed, H.F.A.; Hasaneen, E.-S.A.M. High performance wideband CMOS current conveyor for low voltage low power applications. In Proceedings of the 10th IEEE International Symposium on Signal Processing and Information Technology, Luxor, Egypt, 15–18 December 2010; pp. 433–438.
- 33. Hassen, N.; Ettaghzouti, T.; Besbes, K. High-Performance Second-Generation Controlled Current Conveyor CCCII and High Frequency Applications. *Int. J. Electron. Commun. Eng.* **2011**, *5*, 1764–1773.
- 34. Hwang, Y.-S.; Ku, Y.-T.; Chen, J.-J.; Yu, C.-C. Inverter-Based Low-Voltage CCII- Design and Its Filter Application. *Radioengineering* **2013**, *22*, 1026–1033.
- 35. Suwansawang, S.; Thongleam, T. A 1-V bulk-driven CMOS fully differential second-generation current conveyor. In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12–15 November 2013; pp. 662–665.
- 36. Ettaghzouti, T.; Hassen, N.; Besbes, K. A novel low-voltage low-power CCII based on super class AB CMOS OTA cells and filter application. In Proceedings of the 2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15), Mahdia, Tunisia, 16–19 March 2015; pp. 1–6.
- 37. Reda, A.; Ibrahim, M.F.; Farag, F. Input–output Rail-to-Rail CMOS CCII for low voltage & low power applications. *Microelectron. J.* **2016**, *48*, 60–75. [\[CrossRef\]](http://doi.org/10.1016/j.mejo.2015.12.001)
- 38. Stornelli, V.; Pantoli, L.; Ferri, G.; Liberati, L.; Centurelli, F.; Monsurrò, T.; Trifiletti, A. The AB-CCII, a novel adaptive biasing LV-LP current conveyor. *AEU Int. J. Electron. Commun.* **2017**, *79*, 301–306. [\[CrossRef\]](http://doi.org/10.1016/j.aeue.2017.06.022)
- 39. Centurelli, F.; Monsurrò, P.; Stornelli, V.; Barile, G.; Trifiletti, A. Low-power class-AB 4th-order low-pass filter based on current conveyors with dynamic mismatch compensation of biasing errors. *Int. J. Circuit Theory Appl.* **2020**, *48*, 472–484. [\[CrossRef\]](http://doi.org/10.1002/cta.2762)