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Abstract

This paper describes a new instance library for Quadratic Programming (QP),
i.e., the family of continuous and (mixed)-integer optimization problems where the
objective function and/or the constraints are quadratic. QP is a very diverse class of
problems, comprising sub-classes ranging from trivial to undecidable. This diversity
is reflected in the variety of QP solution methods, ranging from entirely combinatorial
approaches to completely continuous algorithms, including many methods for which
both aspects are fundamental. Selecting a set of instances of QP that is at the
same time not overwhelmingly onerous but sufficiently challenging for the different,
interested communities is therefore important. We propose a simple taxonomy for
QP instances leading to a systematic problem selection mechanism. We then briefly
survey the field of QP, giving an overview of theory, methods and solvers. Finally,
we describe how the library was put together, and detail its final contents.

Keywords: Instance Library, Quadratic Programming

1. Introduction

Quadratic Programming (QP) problems—mathematical optimization problems for which
the objective function [145], the constraints [146], or both are polynomial function of the
variables of degree two—include a notably diverse set of different instances. This is not
surprising, given the vast scope of practical applications of such problems, and of solution
methods designed to solve them [68]. Depending on the formulation specifics, solving a
QP may require primarily combinatorial techniques, ideas rooted in nonlinear optimization
principles, or a mix of the two. In this sense, QP is a class of problems where collaboration
between the communities interested in combinatorial and in nonlinear optimization is
potentially fruitful.

However, this diversity also implies that QP means very different things to different
researchers. This is illustrated by the fact that the class of problems that we simply
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refer to here as “QP” might more accurately be called Mixed-Integer Quadratically-
Constrained Quadratic Programming (MIQCQP) in the most general case. Therefore, it
is perhaps not surprising that, unlike for “simpler” problems classes like Mixed-Integer
Linear Programming [84], there has been no single library devoted to all different kinds of
instances of QP. While several specialized libraries devoted to particular classes of QP are
available, each of them is either focused on a particular application (a specific problem that
can be modeled as a QP), or on QPs with specific structural properties that make them
suitable for solution by some given class of algorithmic approaches. To the best of our
knowledge, collecting a set of QP instances that is at the same time not overwhelmingly
onerous but sufficiently challenging for the many different interested communities has not
been attempted. This work constitutes a first step in this direction.

This paper reports our steps towards collecting what we consider to be a quality QP
instance library, filtering a much larger set of currently available (or specifically provided)
instances and proposing a manageable set that still contains a meaningful sample of
possible QP types. A particularly thorny issue in this process was how to select instances
that are “interesting”. Our choice has been to take this to mean “challenging for a
significant set of solution methods”. Our filtering process has then been in part based on
the idea that, if a significant fraction of the solvers that can solve a QP instance do so in
a “short” time, then the instance is not challenging enough to be included in the library.
Conversely, if very few (maybe one) of the solvers can solve it very efficiently by exploiting
some specific structure, but most other approaches cannot, then the instance should be
deemed “interesting”. Putting this approach into practice requires a nontrivial number of
technical steps and decisions that are detailed in the paper. We hope that our work can
provide useful guidelines for other researchers interested in constructing benchmarks for
mathematical optimization problems.

A consequence of our focus is that this paper is not concerned with the performance
of the very diverse available set of QP solvers; we will not report any data comparing
them. The only reason that solvers are used (and, therefore, described) in this context
is to ensure that the library instances are nontrivial, at least for a significant fraction of
the current solution methods. Providing guidance about which solvers are most suited to
some specific class of QPs is entirely outside the scope of our work.

1.1 Motivation

Optimization problems with quadratic constraints and/or objective function (QP) have
been the subject of a considerable amount of research for almost seventy years. Part of
the rationale for this interest is that QPs are the “least-nonlinear nonlinear problems”.
Hence, in particular for the convex case, tools and techniques that have been honed during
decades of research for Linear Programming (LP), typically with integrality constraints
(MILP), can often be extended to the quadratic case more easily than would be required
to tackle general (Mixed-Integer) Nonlinear Programming ((MI)NLP) problems. This
has indeed happened over-and-over again with different algorithmic techniques, such
as interior-point methods, active-set methods, e.g., the simplex method, enumeration
methods, cut-generation techniques, reformulation techniques, and many others [26].
Similarly, nonconvex continuous QP is perhaps the “simplest” class of problems that
require features such as spatial enumeration techniques for their solution. Hence, QPs are
both a natural basis for developing general techniques for nonconvex NLP, and a very
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specific class enabling the development of specialized approaches [27, 44].
In addition, QP, with continuous or integer variables, is arguably a considerably more

expressive class than (MI)LP. Quadratic expressions are found, either naturally or after
appropriate reformulations, in very many optimization problems [85]. Table 1 provides
a non-exhaustive collection of applications that lead to formulations with quadratic
constraints, quadratic objective function, or both. In general, any continuous function
can be approximated with arbitrary accuracy (over a compact set) by a polynomial of
arbitrary degree. In turn, every polynomial can be broken down to a system of quadratic
expressions. Hence, QP is, in some sense, roughly as expressive as MINLP. This is, in
principle, true for MILP as well, but at the cost of much larger and much more complicated
formulations. Hence, for many applications QP may represent the “sweet spot” between
the effectiveness, but lower expressive power, of MILP and the higher expressive power,
but much higher computational cost, of MINLP.

Table 1: Application Domains of QP

Problem Discrete Contributions

Fundamental problems that can be formulated as MIQP

Quadratic assignment problem‡ X [8, 100]

Max-cut X [89, 120]

Maximum clique‡ X [22]

Computational chemistry & Molecular biology

Zeolites [72]

Computational geometry

Layout design X [7, 30, 39]

Maximizing polygon dimensions [9–13]

Packing circles‡ X [51, 57, 76, 129]

Nesting polygons [81, 119]

Cutting ellipses [82]

Finance

Portfolio optimization X [37, 51, 54–
56, 80, 98, 101, 113, 122]

Process networks

Crude oil scheduling X [93–95, 106, 107]

Data reconciliation X [124]

Multi-commodity flow X [130]

Quadratic network design X [51, 57]

Multi-period blending X [87, 88]

Natural gas networks X [74, 96, 97]

‡Applications with many manuscripts cite reviews and recent works

continued
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Table 1 (Application Domains of QP) continued

Problem Discrete Contributions

Pooling‡ X [4, 31, 36, 47, 102, 103,
112, 114, 125]

Open-pit mine scheduling X [20]

Reverse osmosis X [126]

Supply chain X [111]

Water networks‡ X [3, 14, 24, 33, 58, 64, 79,
83, 118, 136]

Robotics

Traveling salesman problem
with neighborhoods X [59]

Telecommunications

Delay-constrained routing X [52, 53]

Energy

Unit-commitment X [51, 54, 56, 131]

Data confidentiality

Controlled Tabular Adjustment X [32]

Trust-region methods

Trust-region subproblem [2, 46, 70, 71, 73, 121]

PDE-constrained optimization

Optimal control problem [115, 127, 128]
‡Applications with many manuscripts cite reviews and recent works.

The structure of this paper is as follows. In §2 we review the basic notion of QP. In
particular, §2.1 sets out the notation, §2.2 proposes a new QP taxonomy that helps discuss
the (very) different QP classes, and §2.3 very briefly reviews the QP solution methods and
the solvers we have employed. Next, §3 describes the process used to obtain the library
and its results. Some conclusions are drawn in §4, after which Appendix A provides a
complete description of all the instances of the library, while Appendix B describes a
simple (QPLIB) file format that encodes all of our examples.

While no performance issues of solvers for QP problems are considered in this paper,
we refer to the comprehensive benchmark site http://plato.asu.edu/bench.html.Of
the result on this site, three deal exclusively with QP problems, namely the (1) large
SOCP, (2) MISOCP, and the (3) MIQ(C)P benchmarks, while three others contain partial
results for such problems, namely those for (4) parallel barrier solvers on large LP/QP
problems, (5) AMPL-NLP and (6) MINLP. Benchmarks (1, 2 & 4) contain only convex
instances, while the others include nonconvex ones. Global optima are obtained by several
of the solvers in benchmarks (3 & 5), while all solvers in the latest addition (6) compute
global optima. Benchmark (6) is based on MINLPLib 2 [139], a collection of currently
1527 instances. In order to give a first representative impression of solver performance,
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care was taken there to reduce the number of instances and allow all solvers to finish in a
reasonable time. More than half of the selected instances are QP or QCP. For details we
refer to http://plato.asu.edu/ftp/minlp.html.

2. Quadratic Programming in a Nutshell

2.1 Notation

In mathematical optimization, a Quadratic Program (QP) is an optimization problem
in which either the objective function, or some of the constraints, or both, are quadratic
functions. More specifically, the problem has the form

min or max 1
2
x>Q0x + b0x + q0

such that cil ≤ 1
2
x>Qix + bix ≤ ciu i ∈M,

lj ≤ xj ≤ uj j ∈ N ,

and xj ∈ Z j ∈ Z,

where

• N = {1, . . . , n} is the set of (indices) of variables, and M = {1, . . . ,m} is the set of
(indices) of constraints;

• x = [xj]
n
j=1 is a finite vector of real variables;

• Qi for i ∈ {0} ∪M are symmetric n× n real (Hessian) matrices: since one is only
interested in the value of quadratic forms of the type x>Qix, symmetry can be
assumed without loss of generality by just replacing off diagonal pairs Qi

hk and Qi
kh

with their average (Qi
hk + Qi

kh)/2;

• bi, ciu, cil for i ∈ {0} ∪M, and q0 are, respectively, real n-vectors and real constants;

• −∞ ≤ lj ≤ uj ≤ ∞ are the (extended) real lower and upper bounds on each variable
xj for j ∈ N ;

• M = Q ∪ L where Qi = 0 for all i ∈ L (i.e., these are the linear constraints, as
opposed to the truly quadratic ones); and

• the variables in Z ⊆M are restricted to only attain integer values.

Due to the quadratic constraints and the integrality requirements on the variables, this
class is often referred to as Mixed-Integer Quadratically Constraint Quadratic Program
(MIQCQP). It will be sometimes useful to refer to the (sub)set B = { j ∈ Z : lj = 0, uj =
1 } ⊆ Z of the binary variables, and to R = N \ Z as the set of continuous variables.
Similarly, it will be sometimes useful to distinguish the (sub)set X = { j : lj > −∞∨ uj <
∞} of the box-constrained variables from U = N \ X of the unconstrained ones (in the
sense that finite bounds are not explicitly provided in the problem data, although bounds
may be implied by the other constraints).

The relative flexibility offered by quadratic functions, as opposed, e.g., to linear ones,
allows several reformulation techniques to be applicable to this family of problems in order
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to emphasize different properties of the various components. Some of these reformulation
techniques will be commented later on; here we remark that, for instance, integrality
requirements, in particular in the form of binary variables could always be “hidden”
by introducing (nonconvex) quadratic constraints utilizing the celebrated relationship
xj ∈ {0, 1} ⇐⇒ x2

j = xj. Therefore, when discussing these problems, some effort has to
be made to distinguish between features that come from the original model, and those that
can be introduced by reformulation techniques in order to extract (and algorithmically
exploit) specific properties.

2.2 Classification

Despite the apparent simplicity of the §2.1 definition, Quadratic Programming instances
can be of several rather different “types” in practice, depending on fine details of the
data. In particular, many algorithmic approaches can only be applied to QP when the
problem data has specific properties. A taxonomy of QP instances should thus strive to
identify a set of properties that an instance should have in order to apply the most relevant
computational methods. However, the sheer number of different existing approaches, and
the fact that new ones are frequently proposed, makes it hard to provide a taxonomy that
is both simple and covers all possible special cases. This is why, in this paper, we propose
an approach that aims at finding a good balance between simplicity and coverage of the
main families of computational methods.

2.2.1 Taxonomy

Our taxonomy is based on a three-fields code of the form “OVC ”, where O indicates the
type of objective function considered, V records the types of variables, and C designates
the types of constraints imposed on the variables. The fields can be given the following
values:

• objective function: (L)inear, (D)iagonal convex (if minimization) or concave (if
maximization) quadratic, (C )onvex (if minimization) or (C )oncave (if maximization)
quadratic, (Q)uadratic (all other cases);

• variables: (C )ontinuous only, (B)inary only, (M )ixed binary and continuous, (I )nteger
(including binary) only, (G)eneral (all other cases);

• constraints: (N )one, (B)ox, (L)inear, (D)iagonal convex quadratic, (C )onvex
quadratic, nonconvex (Q)uadratic. Note that (positive or negative) definiteness of
Qi is a sufficient, but not in general necessary, condition for convexity. As detailed in
§3.3, in our taxonomy we mark the constraints “C” based on the sufficient condition
alone, the rationale of this choice being discussed in §2.2.2. Quadratic constraints
with both finite bounds cannot ever be convex (unless Qi = 0, i.e., they are not
“truly” quadratic constraints).

The ordering in the preceding lists is relevant; in general, problems become “harder”
when going from left to right. More specifically, for the O and C fields the order is that of
strict containment between problem classes: for instance, linear objective functions are
strictly a special case of diagonal convex quadratic ones (by allowing the diagonal elements
all to be zero), the latter are a strict subset of general convex quadratic objectives (by
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allowing the off-diagonal elements all to be zero), and these are strictly subsets of general
nonconvex quadratic ones (since these permit any symmetric Hessian including positive
semidefinite ones). The only field for which the containment relationship is not a total
order is V, for which only the partial orderings

C ⊂ M ⊂ G , B ⊂ M ⊂ G , and B ⊂ I ⊂ G

hold. The following discussion repeatedly exploits this ordering by assuming that, unless
otherwise mentioned, when a method can be applied to a given problem, it can also be
applied to all simpler problems where the value of each field is arbitrarily replaced with a
value denoting a less-general class.

The wildcard “*” will be used below to indicate any possible choice, and lists of the
form “{X, Y, Z}” will indicate that the value of the given field can freely attain any of
the specified values.

2.2.2 Examples and Reformulations

We now give a general discussion about the different problem classes that our proposed
taxonomy defines. For simplicity, this section assumes minimization problems. Some
problem classes are actually “too simple” to make sense in our context. For instance, D*B
problems have only diagonal quadratic (hence separable) objective function and bound
constraints; as such, they read

min
{ ∑

j∈N
(

1
2
Q0

jx
2
j + b0jxj

)
: lj ≤ xj ≤ uj j ∈ N , xj ∈ Z j ∈ Z

}
.

Hence, their solution only requires the independent minimization of a convex quadratic
univariate function in each single variable xj over a box constraint and possibly integrality
requirements, which can be attained trivially in O(1) operations (per variable) by closed-
form formulæ, projection and rounding arguments. A fortiori, the even simpler cases
L*B, D*N and L*N (the latter unbounded unless b0 = 0) will not be discussed here.
Similarly, CCN are immediately solved by linear algebra techniques, and therefore are
of no interest in this context. At the other end of the spectrum, in general QP is a hard
problem. Actually, LIQ—linear objective function and quadratic constraints in integer
variables with no finite bounds, i.e.

min
{
b0x : 1

2
x>Qix + bix ≤ ci i ∈M , xj ∈ Z j ∈ N

}
,

is not only NP-hard, but undecidable [78]. Hence so are the “harder” {C,Q}IQ.
It is important to note that the relationships between the different classes can be

somehow blurred because reformulation techniques may allow one to move an instance
from one class to another. We already mentioned that x2 = x ⇐⇒ x ∈ {0, 1}, and in
general *M* —instances with only binary and continuous variables—can be recast as *CQ ;
here nonconvex quadratic constraints take the place of binary variables. More generally,
this is also true for *G* as long as U = ∅, as bounded general integer variables can be
represented by binary ones. Hence, the nonconvexity due to binary variables can always
be expressed by means of (nonconvex) quadratic constraints. The converse is also true:
when only binary variables are present, all quadratic constraints can be converted into
convex ones [17, 18].
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Another relevant reformulation trick concerns the fact that, as soon as quadratic
constraints are allowed, then there is no loss of generality in assuming a linear objective
function. Indeed, any Q** (C*C ) problem can always be rewritten as

min x0

−∞ ≤ 1
2
x>Q0x + b0x ≤ x0

cil ≤ 1
2
x>Qix + bix ≤ ciu i ∈M

lj ≤ xj ≤ uj j ∈ N
xj ∈ Z j ∈ Z

i.e., a L*Q (L*C ) problem. Hence, it is clear that quadratic constraints are, in a well-
defined sense, the most general situation (cf. also the result above about hardness of
LIQ).

When a Qi is positive semidefinite (PSD), i.e., the corresponding constraint/objective
function is convex, general Hessians are in fact equivalent to diagonal ones. In particular,
since every PSD matrix can be factorized as Qi = Li(Li)>, e.g. by the (incomplete)
Cholesky factorization, the term 1

2
x>Qix ≡ 1

2

∑
j∈N zi 2j where zi > = x>Li. Hence, one

might maintain that D** problems need not be distinguished from C** ones. However in
reality, this is only true for “complicated” constraints but not for “simple” ones, because
the above reformulation technique introduces additional linear constraints, Li >x− zi = 0.
Indeed, while C*L (and, a fortiori, C*{C,Q}) can always be brought to D*L (D* {C,Q}),
using the above technique C*B becomes D*L, which may be significantly different from
D*B. In practice, a diagonal convex objective function under linear constraints is found in
many applications (e.g., [51, 54, 56, 57]), so that it still makes sense to distinguish the D*L
case where the objective function is “naturally” separable from that where separability is
artificially introduced.

Furthermore, as previously remarked, a not (positive or negative) definite Qi does not
necessarily correspond to a nonconvex feasible region. For instance, it is well-known that
Second-Order Cone Programs have convex feasible regions; when represented in terms of
quadratic constraints, however, they correspond to Qi with one negative eigenvalue. In our
taxonomy we still consider the corresponding instances as **Q ones, with no attempt to
detect the different special structures that actually correspond to convex feasible regions.
Although this may lead to classify as “potentially nonconvex” some instances that are
in fact convex, our choice is justified by the fact that not all QP solvers are capable of
detecting and exploiting these structures, which means that the instance can actually be
treated as a nonconvex one even if it is not.
One of the nontrivial choices in our library is that we made no effort to reformulate
the instances, and inserted them in the library in the very same form as they have
been provided to us by the original contributors. The rationale of this choice is that
reformulation techniques, like the ones discussed here and others, are typically motivated
by the fact that they make the instance easier to solve for one specific class of solvers.
This being a bias that we do not want to add we have chosen to keep the instances in their
“natural” form, this being the one in which the original contributor initially wrote them.

8



2.2.3 QP Classes

The proposed taxonomy can then be used to describe the main classes of QP according to
the type of algorithms that can be applied for their solution:

• Linear Programs LCL and Mixed-Integer Linear Programs LGL have been subject
of an enormous amount of research and have their well-established instance libraries
[84], so they will not be explicitly addressed here.

• Convex Continuous Quadratic Programs CCC can be solved in polynomial time
by Interior-Point techniques [147]; the simpler CCL can also be solved by means of
“simplex-like” techniques, usually referred to as active-set methods [40]. Actually, a
slightly larger class of problems can be solved with Interior-Point methods: those
that can be represented by Second-Order Cone Programs. When written as QPs the
corresponding Qi may not be positive semidefinite, but nonetheless such problems
can be efficiently solved. Of course, just as for LCL, these problems may still require
considerable computational effort when the size of the instance grows. In this sense,
like in the linear case, there is a significant distinction between solvers that need
all the data of QP to work, and those that are “matrix-free”, i.e., only require the
application of simple operations (typically, matrix-vector products) with the problem
data. When building our instance library we never exploited such characteristics,
since they are not amenable to standard modeling tools, but this may be relevant
for the solution of very-large-scale CIC.

• Nonconvex Continuous Quadratic Programs QCQ are generally NP-hard, even if the
constraints are very specific (QCB) and only a single eigenvalue of Q0 is negative [75].
They therefore require enumerative techniques, such as spatial Branch-and-Bound
[15, 50], to be solved to optimality. Of course, local approaches are available that are
able to efficiently provide saddle points (hopefully, local optima) of the CQC, but
providing global guarantees about the quality of the obtained solutions is challenging.
In our library we have specifically focused on exact solution of the instances.

• Convex Integer Quadratic Programs CGC are, in general, NP-hard, and therefore
require enumerative techniques to be solved. However, convexity of the objective
function and constraints implies that efficient techniques (see CCC ) can be used
at least to solve continuous relaxations. The general view is that CGC are not, all
other things being equal, substantially more difficult than LGL to solve, especially if
the objective function and/or the constraints have specific properties (e.g., DGL,
CGL). Often, integer variables are in fact binary ones, so several CGC models are
C{B,M }C ones. In practice, binary variables are considered to lead to somewhat
easier problems than general integer ones (cf. the cited result about hardness of
unbounded integer quadratic programs) and several algorithmic techniques have
been specifically developed for this special case. However, the general approaches for
CBC are basically the same as for CGC, so there is seldom the need to distinguish
between the two classes as far as solvability is concerned, although matters can
be different regarding actual solution cost. Programs with only binary variables
(CBC ) can be easier than mixed-binary or integer ones (C{M,I }C ) because some
techniques are specifically known for the binary-only case, cf. the next point [17].
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Absence of continuous variables, even in the presence of integer ones (CIC ), can also
lead to specific techniques [18].

• Nonconvex Binary Quadratic Programs QB{B,N,L} are NP-hard. However, the
special nature of binary variables combined with quadratic forms allows for quite
specific techniques to be developed, one of which is the reformulation of the problem as
a LBL. Also, many well-known combinatorial problems can be naturally reformulated
as problems of this class, and therefore a considerable number of results have been
obtained by exploiting specific properties of the set of constraints [100, 120].

• Nonconvex Integer Quadratic Programs QGQ is the most general, and therefore is the
most difficult, class. Due to the lack of convexity even when integrality requirements
are removed, solution methods must typically combine several algorithmic ideas, such
as enumeration (distinguishing the role of integral variables from that of continuous
ones involved in nonconvex terms) and techniques that allow the efficient computation
of bounds (e.g., outer approximation, semidefinite programming relaxation, . . . ). As
in the convex case, QBQ, QMQ, and QIQ can benefit from more specific properties
of the variables [25, 38].

This description is deliberately coarse; each of these classes can be subdivided into several
others on the grounds of more detailed information about structures present in their
constraints/objective function. These can have a significant algorithmic impact, and
therefore can be of interest to researchers. Common structures are, e.g., network flows
[51, 52, 130] or knapsack-type linear constraints [51, 57], and semi-continuous variables
[52, 53, 57], or the fact that a nonconvex quadratic objective function/constraint can be
reformulated as a second-order cone (hence, convex) one [53, 56, 57]. It would be very
hard to collect a comprehensive list of all types of structures that might be of interest to
any individual researcher, since these are as varied as the different possible approaches
for specialized sub-classes of QP. For this reason we do not attempt such a more refined
classification, and limit ourselves to the coarser one described in this section.

2.3 Solution Methods and Solvers

This section provides a quick overview of existing solution methods for QP, restricting
ourselves to these implemented by the specific solvers considered in this paper (see §2.3.1).
For each approach, we briefly describe the formulation they address according to the §2.2
classification. Many solvers implement more than one algorithm, which the user can choose
at runtime. Moreover, algorithms are typically implemented in different ways within
different solvers, so that the same conceptual algorithm can sometimes yield different
results or performance measures on the same instances.

Solution methods for QP can be broadly organized in four categories [110]: incomplete,
asymptotically complete, complete, and rigorous.

• Incomplete methods are only able to identify solutions, often locally optimal according
to a suitable notion, and may even fail to find one even when one exists; in particular,
they are typically unable to determine that an instance has no solution.

• Asymptotically complete methods can find a globally optimal solution with probability
one in infinite time, but they cannot prove that a given instance is infeasible (see
§2.3.3 below).
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CGL QGL CGC QGQ CCC QCQ

AlphaECP [143, 144] C I C I C I
ANTIGONE [104, 105] C C C C C C
BARON [133–135] C C C C C C
BONMIN [23] C I C I C I
CONOPT [41, 42] C I
Couenne [15] C C C C C C
Cplex [19, 77] C C C C
DICOPT [45, 86, 141] C I C I C I
Gurobi [123] C C C
Ipopt [142] C I
Knitro [29] C I C I C A
Lindo API [99] C C C C C C
LGO [116, 117] A A
MINOS [108, 109] C I
MOSEK [5, 6] C C C
MsNlp [91, 137] C A
OQNLP [91, 137] A A A A C A
SBB [43] C I C I C I
SCIP [1, 140] C C C C C C
SNOPT [61, 62] C I
Xpress-Optimizer [48] C C C

Table 2: Families of QP problems that can be tackled by each solver

• Complete methods find an approximate globally optimal solution within a prescribed
optimality tolerance within finite time, or prove that none such exists (but see
§2.3.4 below); they are often referred to as exact methods in the computational
optimization community.

• Rigorous methods find globally optimal solutions within given tolerances even in
the presence of rounding errors, except for “near-degenerate cases”. Since none of
the solvers we are using can be classified as rigorous, we limit ourselves to declaring
solvers complete.

We refer the interested reader to [16] and [92] for further details on the solution
methods.

2.3.1 Solvers

When compiling QPLIB, we have worked with the QP solvers in the GAMS distribution1.
Table 2 provides a list of these solvers, together with a classification of their algorithm,
and references. For more details on the solvers, we refer to the given references, solver
manuals, and the survey [28]. In the table, we mark a pair (solver, problem) with “I” if the
solver accepts the problem as input but it is an incomplete solver for the problem, with “A”
if it is asymptotically complete, with “C” if it is complete, and leave it blank if the solver
won’t accept the provided problem. When a solver implements several algorithms, we
have chosen, for each problem class, the algorithm that potentially provides the “strongest”
results (“C” > “A” > “I” > blank).

2.3.2 Incomplete Methods

Incomplete methods are usually realized as local search algorithms, asymptotically complete
methods are usually realized by meta-heuristic methods such as multi-start or simulated

1https://www.gams.com
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annealing, and complete methods for NP-hard problems such as QP are typically realized
as implicit exhaustive exploration algorithms. However, these three categories may exhibit
some overlap. For example, any deterministic method for solving QCQ locally is incomplete
in general, but becomes complete for CCC, since any local optimum of a convex QP is also
global. Therefore, when we state that a given algorithm is incomplete or (asymptotically)
complete we mean that it is so the largest problem class that the solver naturally targets,
although it may be complete on specific sub-classes. For example, interior point algorithms
naturally target NLPs and are incomplete on NLPs, and therefore on QCQ, but become
complete for CCC. In general, all complete methods for a problem class P must be complete
for any problem class Q ⊆ P , while a complete method for P might be incomplete for a
class R ⊃ P .

The Table 2 solvers which implement incomplete methods for NLPs (a problem class
containing QCQ) are CONOPT, Ipopt, MINOS, SNOPT, and Knitro. Note that
all these solvers tackle the more general class of NLP, while we use them only for the
considerably more restricted QP class. Aside from solvers provided by GAMS, there are a
number of other, specialized, incomplete QP solvers, such as CQP [65], DQP [67] and
OOQP [60] for convex problems, and BQPD [49], QPA [69] and QPB [34], QPC [66],
SQIC [63] for nonconvex ones.

2.3.3 Asymptotically Complete Methods

An asymptotically complete method reaches a global minimum with certainty or at least
with probability one if allowed to run indefinitely long, but has no means to know when
a global minimizer has been found (see [110]). Most often, these methods are meta-
heuristics, involving an element of random choice, which exploit a given (heuristic) local
search procedure.

The solvers in Table 2 which implement asymptotically complete methods are OQNLP
and Knitro (which apply to QGQ) as well as MsNlp and certain sub-solvers of LGO
(which apply to QCQ).

2.3.4 Complete Methods

Complete methods are often referred to as exact in a large part of the mathematical
optimization community. This term has to be used with care, as it implicitly makes
assumptions on the underlying computational model that may not be acceptable in all
cases. For example, the decision version of QCL is known to be in the complexity class NP
[138], whereas the same is not known about LCQ, even with zero objective. On the other
hand, there exists a method for deciding feasibility of systems of polynomial equations
and inequalities [132], including the solution of LCQ with zero objective function.

To explain this apparent contradiction, we remark that the two statements refer to
different computational models: the former is based on the Turing Machine (TM), whereas
the latter is based on a computational model that allows operations on real numbers,
e.g. the Real RAM (RRAM) machine [21]. Due to the potentially infinite nature of exact
real arithmetic computations, exact computations on the RRAM necessarily end up being
approximate on the TM. Analogously, a complete method may reasonably be called “exact”
on a RRAM; however, the computers we use in practice are more akin to TMs than
RRAMs, and therefore calling exact a solver that employs floating point computations
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is, technically speaking, stretching the meaning of the word. However, because the term
is well understood in the computational optimization community, in the following we
shall loosen the distinction between complete and exact methods, with either properties
intended to mean “complete” in the sense of [110].

Nearly all of the complete solvers in Table 2 that address NP-hard problems (i.e. those
in QGQrCCC ) are based on Branch-and-Bound (BB) [90]. When the BB algorithm is
allowed to branch on coordinate directions corresponding to continuous variables, it is
called spatial BB (sBB) [15, 35]. BB algorithms require exponential time in the worst
case, and their exponential behavior unfortunately often shows up in practice. They can
also be used heuristically (forsaking their completeness guarantee) in a number of ways,
e.g. by terminating them early. The following solvers from Table 2 implement complete
BB algorithms for QGQ or some subclasses:

• ANTIGONE, BARON, Couenne, Lindo API, and SCIP for QGQ ;

• Cplex for QGL and CGC ;

• Gurobi and Xpress-Optimizer for QBC ;

• BONMIN, Gurobi, Knitro, MOSEK, SBB, and Xpress-Optimizer for CGC.

We remark that the solvers BONMIN, Knitro, and SBB from the latter category can
be used as incomplete solvers for QGQ. We also note that LGO implements an incomplete
BB algorithm for QCQ by using bounds obtained from sampling.

Cutting plane approaches construct and iteratively improve a MILP (LIL) relaxation
of the problem [45, 144]. The cutting planes for the MILP are generated by linearization
(first-order Taylor approximation) of the nonlinearities. If the latter are convex, the MILP
provides a valid lower bound for the problem. Additionally, incomplete methods can
be used to provide local solutions. Therefore, these methods are complete on CGC if a
complete method is used to solve the MILP. The latter is typically based on BB, which
is therefore a crucial technique also for this class of approaches. Solvers in Table 2 that
implement complete cutting plane methods for CGC are AlphaECP, BONMIN (in the
algorithmic mode B-OA), and DICOPT.

3. Library Construction

This section presents all the steps we performed to build the new instance library. In
§3.1, we describe the set of gathered instances, and in §3.2 we present the features used to
classify the instances. We describe the selection process used to filter the instances, and
graphically present the main features of the selected instances in §3.3, while in §3.4 we
provide information on how to access the test collection.

3.1 Instance Collection

This section describes the procedure we adopted to gather the instances. In January
2014, we issued an online call for instances using main international mailing lists of the
mathematical optimization and numerical analysis communities, reaching in this way a
large set of possibly interested researchers and practitioners. The call remained open for
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ten months, during which we received a large number of contributions of different nature.
The instances we gathered come both from theoretical studies as well as from real-world
applications.

In addition to these spontaneous contributions, we analyzed existing generic instance
libraries available containing QP instances. The libraries from which we gathered instances
are

• the BARON library http://www.minlp.com/nlp-and-minlp-test-problems;

• the CUTEst library https://ccpforge.cse.rl.ac.uk/gf/project/cutest;

• the GAMS Performance libraries http://www.gamsworld.org/performance/performlib.
htm;

• the MacMINLP library https://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP;

• the Maros-Mészáros library http://www.doc.ic.ac.uk/~im/00README.QP;

• the MINLPLib library http://www.gamsworld.org/minlp/minlplib.htm;

• the POLIP library http://polip.zib.de/pipformat.php.

Other quadratic instances were found in online libraries devoted to specific QP problems
as Max-Cut, Quadratic Assignment, Portfolio Optimization, and several others. In
addition, we mention that other generic libraries exist, e.g., Conic library CBLIB (http:
//cblib.zib.de) and MIPLIB 2010 (http://miplib.zib.de/), to mention just a few.

At the end of this process, we had gathered more than eight thousand instances.
Three quarters of them contained discrete variables, while the remainder contained only
continuous variables. In more detail, we gathered ≈ 1800 Quadratic Binary Linear
(QBL) instances, ≈ 2000 Quadratic Continuous Quadratic (QCQ) instances, and ≈ 2500
Quadratic General Quadratic (QGQ) instances. We also received ≈ 1000 Convex General
Convex (CGC ) instances. We obtained relatively fewer Quadratic Binary Quadratic
(QBQ), Convex Continuous Convex (CCC ) and Convex Mixed Convex (CMC ) instances,
(≈ 150, ≈ 200, and ≈ 200 instances, respectively). Finally, we found only 17 Quadratic
Mixed Linear (QML) instances. In the call for instances, no specific format requirements
were imposed for the submissions.

To evaluate the instances we decided, for practical reasons, we use GAMS as common
platform for all our final selection computations. For this reason, we translated all the
instances we received into the GAMS format (.gms).

For each instance in this large starting set, we collected important characteristics which
allowed us to classify the instances into the QP categories described in §2. As far as the
variable types are concerned, we collected the following information:

• the number of binary variables;

• the number of integer variables; and

• the number of continuous variables.

If at least one binary or integer variable is present, then the instance is categorized as
discrete, otherwise it is categorized as continuous. As far as the objective function is
concerned, we gathered the following information:
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• the percentage of positive and negative eigenvalues of the Hessian Q0; and

• the density of the Hessian Q0 (number of nonzero entries divided by the total number
of entries).

The number of positive (i.e., larger than 10−12) and negative (i.e., smaller than −10−12)
eigenvalues of Q0 allowed us to identify the objective function type, as in presence of at
least one negative (positive) eigenvalue the objective function is nonconvex (nonconcave).
Finally, as far as the constraint types are concerned, we collected the following information:

• the number of linear constraints,

• the number of quadratic constraints,

• the number of convex constraints, and

• the number of variable bounds (for non-binary variables).

A constraint is considered quadratic if it contains at least one nonzero in a quadratic
term (if present). Among the quadratic constraints, the ones whose Hessians have only
non-negative eigenvalues (when ciu < ∞) and non-positive eigenvalues (when cil > −∞)
are classified as convex constraints; thus, a quadratic constraint with two sided, finite
bounds is nonconvex. Note that this might occasionally lead us to classify some instances
that have conic constraints as nonconvex ones, although their feasible region is in fact
convex—fortunately, only some solvers are capable of properly exploiting this property.
All this information allowed us to analyse the gathered instances and to perform the filters
described in the next paragraph.

3.2 Instance Selection

We chose instances based on the following four goals:

1. to represent as far as possible all the different categories of QP problems;

2. to gather “challenging” instances, i.e., ones which can not be easily solved by
state-of-the-art solvers;

3. to include, for each of the categories, a set of well-diversified instances; and

4. to obtain a set of instances which is neither too small, so as to preserve statistical
relevance, nor too large so as to being computationally manageable.

To achieve such goals, we performed the following two filters, applied in a cascade:

• First Instance Filter.
The first filter was designed to drastically reduce the number of instances by elim-
inating the “easy” ones. An empirical measure for the hardness of an instance is
the CPU time needed by a complete solver (cf. §2.3) to solve it to global optimality.
Accordingly, for each of the gathered instances we ran the complete solvers in GAMS,
whose number depends on the category of the instance under consideration, cf. Table
2. Thanks to these extensive preliminary tests, we discarded all instances that are
solved by at least 30% of the complete solvers within a time limit of 30 seconds.
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Starting set ≈ 8500 instances
⇓ ⇓

≈ 6000 discr. inst. ≈ 2500 cont. inst.
First filter ⇓ ⇓

≈ 3000 discr. inst. ≈ 1000 cont. inst.
Second filter ⇓ ⇓

319 discr. inst. 134 cont. inst.

Table 3: Instance filter steps

Variables Convexity #

continuous convex 32

continuous nonconvex 102

discrete convex 31

discrete nonconvex 288

Total 453

Table 4: Macro classification of the final set of instances

• Second Instance Filter.
The goal of the second filter was to eliminate “similar” instances. We carefully
analyzed the instances one by one, eliminating all but a few of those with very
similar size and coming from the same donor. The instances discarded by this second
filter are instances of the same specific problem, e.g., we gathered many Max Cut
Problem instances and we kept in the library only a representative small set of them.
The selected representative instances are the larger and computationally harder
ones. Finally, in order to only keep computationally challenging instances we ran a
complete solver for QGQ with a time limit of 120 seconds; all the instances which
have been solved to proven optimality within this time limit were discarded.

In Table 3 we summarize the two filter steps, which allowed us to identify the final set of
319 discrete instances and 134 continuous instances.

3.3 Analysis of the Final Set of Instances

We now analyze the features of the instances selected to be part of the library. Table 4
provides a global overview. The instances have been divided in continuous vs discrete
and convex vs nonconvex, forming in this way, a classification of 4 macro categories. As
previously mentioned, an instance is classified discrete if it contains at least one binary or
integer variable, and continuous otherwise. On the other hand, an instance is classified
as nonconvex if the objective function is nonconvex (if minimization) or nonconcave (if
maximization) and/or at least one of the constraints is nonconvex, and convex otherwise.

The detailed characteristics of the instances are presented in Table 5 for discrete
instances (* {B,M,I,G}* ) and in Table 6 for continuous ones (*C* ). For each category,
the tables report the corresponding number of instances in column “#”. It can be seen
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Obj. Fun. Variables Constraints #

Linear

Binary Quadratic 9

Mixed
Convex 14

Quadratic 134

Integer Quadratic 2

General Quadratic 3

Convex (if min) Binary Linear 5

or
Mixed

Linear 12

Concave (if max) Quadratic 6

Quadratic

Binary

None 23

Linear 91

Quadratic 5

Mixed
Linear 11

Quadratic 1

Integer Linear 2

General Quadratic 1

Total 319

Table 5: Classification of the final set of discrete instances

that the final set well respects the original distribution of the gathered instances among
the different categories. Indeed, the discrete categories LMQ and QBL are well represented
by 134 and 91 instances, respectively. Similarly, the continuous categories LCQ and QCQ
are well represented by 52 and 30 instances, respectively. Moreover, the library actually
covers the large majority of all possible categories of instances.

We now report some graphs that help in illustrating the main features of the instances.
In Figure 1 (left) we plot the number of variables (horizontal axis) versus the number of
constraints (vertical axis), both in logarithmic scale. Continuous instances are marked
with “+” and discrete ones with “×”. Box constraints are not counted as constraints. The
figure shows that the library contains a quite diverse set of instances in terms of number of
variables and constraints. The record on the maximal number of variables and constraints
(both ≈ 1, 000, 000) is set by the instances QPLIB 8547 and QPLIB 9008. Figure 1 (right)
plots the number of nonzero elements in the gradient of the objective function and the
Jacobian and the number of these nonzeros corresponding to nonlinear variables, that is,
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Obj. Fun. Constraints #

Linear
Convex 13

Quadratic 52

Convex (if min) Box 3

or Linear 16

Concave (if max) Quadratic 11

Quadratic

Linear 6

Convex 3

Quadratic 30

Total 134

Table 6: Classification of the final set of continuous instances

it counts the appearances of variables in objectives and constraints and how often such an
appearance is in a quadratic term.

Figure 2 describes how discrete and continuous variables are distributed within the
instances. The instances are sorted accordingly to the total number of variables. For each
instance we report the total number of variables with a “+”, and the total number of
discrete variables (binary or general integer) with a “×”. The pictures clearly show that
instances with different percentages of integer and continuous variables are present in
the library, and that these differences are well distributed across the whole spectrum of
variable sizes.

Similarly, Figure 3 (left) describes how the number of linear and quadratic constraints
are distributed within the instances. The instances are sorted accordingly to the total
number of constraints. For each instance we report the total number of constraints with a
“+” and the total number of quadratic constraints with a “×”. Also in this case, different
percentages of linear and quadratic constraints are present and well-distributed across
the spectrum of constraint sizes, although both medium- and large-size instances show
a prevalence of lower percentages of quadratic constraints. In particular, from Figure 3
(left) we learn that while the maximum number of linear constraints exceeds 1,000,000,
the maximum number of quadratic constraints tops up at 140,000. This is, however,
reasonable, considering how quadratic constraints can, in general, be expected to be much
more computationally challenging than linear ones, especially if nonconvex.

Figure 3 (right) shows the instances with at least one quadratic constraint sorted
according to the number of quadratic constraints (vertical axis). For each instance we
report the total number of constraints with a “+” and the total number of nonconvex
quadratic constraints with a “×”. It can be seen that the majority of instances only have
nonconvex constraints.

On the theme of nonconvexity, Figure 4 (left) focuses on the instances with a quadratic
objective function, ordered by percentage of “problematic” eigenvalues in the Hessian Q0

(vertical axis), by which we mean eigenvalues below −10−12 in case of a minimization
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Figure 1: Distribution of number of variables and constraints of QPLIB instances (left).
Number of (nonlinear) nonzeros of QPLIB instances (right).
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Figure 2: Number of variables of QPLIB instances.

0 100 200 300 400
Instances

0
100

101

102

103

104

105

106

Nu
m

be
r o

f c
on

st
ra

in
ts

# constraints
# quadratic constraints

0 50 100 150 200 250
Instances with at least one quadratic constraint

0

100

101

102

103

104

105

Nu
m

be
r o

f q
ua

dr
at

ic 
co

ns
tra

in
ts

# quadratic constraints
# nonconvex quadratic constraints

Figure 3: Number of constraints, quadratic constraints, and nonconvex quadratic con-
straints of QPLIB instances.

19



0 50 100 150 200
Instances with quadratic objective function

0

20

40

60

80

100

%
 p

ro
bl

em
at

ic 
ei

ge
nv

al
ue

s i
n 

ob
je

ct
iv

e

0 50 100 150 200
Instances with quadratic objective function

0

20

40

60

80

100

%
 d

en
sit

y 
of

 o
bj

ec
tiv

e 
co

ef
. m

at
rix

Figure 4: “Problematic” eigenvalues (left) and density (right) of the Hessian Q0 for QPLIB
instances with a quadratic objective function.

problem and eigenvalues above 10−12 in case of a maximization problem. The instances
are mostly clustered around two values. About 25% of the instances have a convex
(if minimization) or concave (if maximization) objective function, i.e., they have 0%
of “problematic” eigenvalues. Among the others, a vast majority has around 50% of
“problematic” eigenvalues. However, instances with high or low percentages of “problematic”
eigenvalues are present, too.

Similarly, Figure 4 (right) shows the instances with a quadratic objective function
sorted according to the density of the Hessian Q0 (vertical axis). The majority of the
instances have either a very low or a rather high density: indeed, about 30% of the
instances have density smaller than 5%, and about 30% of the instances have density
larger than 50%. However, also intermediate values are present.

Additional details on the instance features can be found in Appendix A.

3.4 Website

The QPLIB instances are publicly accessible at the website http://qplib.zib.de, which
was created by extending scripts and tools initially developed for MINLPLib 2 [139]. We
provide all instances in GAMS (.gms), AMPL (.mod), CPLEX (.lp) [77], and QPLIB
(.qplib) formats. The latter is a new format specifically for QP instances. In comparison
to more high level formats such as .gms and .lp, the new format offers three main
advantages: it is easier to read by a stand-alone parser, it typically produces smaller files,
and it permits the inclusion of two-sided inequalities without needless repetition of data.
See Appendix B for more details.

Beyond the instances, the website provides a rich set of metadata for each instance: the
three letter problem classification (as described in §3.3), the contributor of the instance,
basic properties such as the number of variables and constraints of different types, the
sense and convexity/concavity of the objective function, and information on the nonzero
structure of the problem. In addition, we display a visualization of the sparsity patterns
of the Jacobian and the Hessian matrix of the Lagrangian function, if the instance size
allows. In the plots of the Jacobian nonzero pattern, the linear and nonlinear entries are
distinguished by color. Figure 5 shows an example for instance QPLIB 2967. Finally,
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Figure 5: Example for the sparsity pattern of the Jacobian of the constraint functions
(left) and of the upper-right triangle of the Hessian of the Lagrangian function (right) for
instance QPLIB 2967. The gradient of the objective function is displayed as the first row
of the Jacobian matrix. Non-constant entries are shown in red.

feasible solution points are provided for most instances.
The entire set of instances can be explored in a searchable and sortable table of

selected instance features: problem classification, convexity of the continuous relaxation,
number of (all, binary, integer) variables, (all, quadratic) constraints, nonzeros, problematic
eigenvalues in Q0, and density of Q0. Finally, a statistics page displays diagrams on the
composition of the library according to different criteria: the number of instances according
to problem type, variable and constraint types, convexity, problem size, and density. A
file containing the relevant metadata for each instance can be downloaded in comma-
separated-values (csv) format, so that researchers can easily compile their own subset of
instances according to these statistics.

The complete library can be downloaded as one archive, which contains the website for
offline browsing and exploration. In the future, we plan to extend the website by references
to the literature.

4. Final Remarks

This paper described the first comprehensive library of instances for Quadratic Program-
ming (QP). Since QP comprises different and “varied” categories of problems, we proposed
a classification and we briefly discussed the main classes of solution methods for QP. We
then described the steps of the adopted process used to filter the gathered instances in order
to build the new library. Our design goals were to build a library which is computationally
challenging and as broad as possible, i.e., it represents the largest possible categories of
QP problems, while remaining of manageable size. We also proposed a stand-alone QP
format that is intended for the convenient exchange and use of our QP instances.

We want to stress once again that we intentionally avoided to perform a computational
comparison of the performances of different solution methods or solver implementations.
Our goal was instead to provide a broad test bed of instances for researchers and practi-
tioners in the field. This new library will hopefully serve as a point of reference to inspire
and test new ideas and algorithms for QP problems.

Finally, we want to emphasize that this QP collection can only be a snapshot of the
types of problems that researchers and practitioners have worked on in the past. With the
growing interest in this area, we hope that new applications and instances will become
available and that the library can be extended dynamically in the future.
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[89] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. BiqCrunch: A semidefinite
branch-and-bound method for solving binary quadratic problem. ACM Transactions
on Mathematical Software, 43(4):32:1–32:23, January 2017.

[90] A. Land and A. Doig. An automatic method of solving discrete programming
problems. Econometrica, 28(3):497–520, 1960.

[91] Leon Lasdon, John Plummer, Zsolt Ugray, and Michael Bussieck. Improved filters
and randomized drivers for multi-start global optimization. McCombs Research
Paper Series IROM-06-06, McCombs School of Business, 2006.

28



[92] G.M. Lee, N.N. Tam, and N.D. Yen. Quadratic Programming and Affine Variational
Inequalities: A Qualitative Study. Nonconvex Optimization and Its Applications.
Springer US, 2006.

[93] J. Li, A. Li, I. A. Karimi, and R. Srinivasan. Improving the robustness and efficiency
of crude scheduling algorithms. AIChE Journal, 53(10):2659–2680, 2007.

[94] J. Li, R. Misener, and C. A. Floudas. Continuous-time modeling and global optimiza-
tion approach for scheduling of crude oil operations. AIChE Journal, 58(1):205–226,
2012.

[95] J. Li, R. Misener, and C. A. Floudas. Scheduling of crude oil operations under demand
uncertainty: A robust optimization framework coupled with global optimization.
AIChE Journal, 58(8):2373–2396, 2012.

[96] X. Li, E. Armagan, A. Tomasgard, and P. I. Barton. Stochastic pooling problem
for natural gas production network design and operation under uncertainty. AIChE
Journal, 57(8):2120–2135, 2011.

[97] X. Li, A. Tomasgard, and P. I. Barton. Decomposition strategy for the stochastic
pooling problem. Journal of Global Optimization, 54(4):765–790, 2012.

[98] X. Lin, C. A. Floudas, and J. Kallrath. Global solution approach for a nonconvex
MINLP problem in product portfolio optimization. Journal of Global Optimization,
32(3):417–431, 2005.

[99] Y. Lin and L. Schrage. The global solver in the LINDO API. Optimization Methods
and Software, 24(4–5):657–668, 2009.

[100] E. M. Loiola, N. M. Maia de Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querido.
A survey for the quadratic assignment problem. European Journal of Operational
Research, 176(2):657–690, 2007.

[101] C. D. Maranas, I. P. Androulakis, C. A. Floudas, A. J. Berger, and J. M. Mulvey.
Solving long-term financial planning problems via global optimization. Journal of
Economic Dynamics and Control, 21(8-9):1405–1425, 1997.

[102] R. Misener and C. A. Floudas. Advances for the pooling problem: Modeling, global
optimization, and computational studies. Applied and Computational Mathematics,
8(1):3–22, 2009.

[103] R. Misener and C. A. Floudas. Global optimization of large-scale pooling problems:
Quadratically constrained MINLP models. Industrial & Engineering Chemistry
Research, 49(11):5424–5438, 2010.

[104] Ruth Misener and Christodoulos A. Floudas. GloMIQO: Global Mixed-Integer
Quadratic Optimizer. Journal of Global Optimization, 57(1):3–50, 2013.

[105] Ruth Misener and Christodoulos A. Floudas. ANTIGONE: Algorithms for coN-
Tinuous / Integer Global Optimization of Nonlinear Equations. Journal of Global
Optimization, 59(2-3):503–526, 2014.

29



[106] S. Mouret, I. E. Grossmann, and P. Pestiaux. A novel priority-slot based continuous-
time formulation for crude-oil scheduling problem. Industrial & Engineering Chem-
istry Research, 48(18):8515–8528, 2009.

[107] S. Mouret, I. E. Grossmann, and P. Pestiaux. A new Lagrangian decomposition
approach applied to the integration of refinery planning and crude-oil scheduling.
Computers & Chemical Engineering, 35(12):2750–2766, 2011.

[108] B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimization.
Mathematical Programming, 14(1):41–72, 1978.

[109] B. A. Murtagh and M. A. Saunders. A projected Lagrangian algorithm and its
implementation for sparse nonlinear constraints. In A. G. Buckley and J.-L. Goffin,
editors, Algorithms for Constrained Minimization of Smooth Nonlinear Functions,
volume 16 of Mathematic Programming Studies, pages 84–117. Springer, Berlin,
Heidelberg, 1982.

[110] A. Neumaier. Complete search in continuous global optimization and constraint
satisfaction. Acta Numerica, 13:271–369, 2004.

[111] A. Nyberg, I. E. Grossmann, and T. Westerlund. The optimal design of a three-
echelon supply chain with inventories under uncertainty, 2012.

[112] D. J. Papageorgiou, A. Toriello, G. L. Nemhauser, and M. W. P. Savelsbergh. Fixed-
charge transportation with product blending. Transportation Science, 46(2):281–295,
2012.

[113] P. Parpas and B. Rustem. Global optimization of the scenario generation and
portfolio selection problems. In M. Gavrilova, O. Gervasi, V. Kumar, C. Tan,
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[129] P. G. Szabó, C. M. Markót, and T. Csendes. Global optimization in geometry – circle
packing into the square. In C. Audet, P. Hansen, and G. Savard, editors, Essays
and Surveys in Global Optimization, pages 233–265. Springer, New York, 2005.

[130] B. Tadayon and J. C. Smith. Algorithms for an integer multicommodity network
flow problem with node reliability considerations. Journal of Optimization Theory
and Applications, 161(2):506–532, 2013.

[131] M. Tahanan, W. van Ackooij, A. Frangioni, and F. Lacalandra. Large-scale Unit
Commitment under uncertainty. 4OR, 13(2):115–171, 2015.

31



[132] A. Tarski. A decision method for elementary algebra and geometry. Technical Report
R-109, Rand Corporation, 1951.

[133] Mohit Tawarmalani and Nikolaos V. Sahinidis. Convexification and Global Optimiza-
tion in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,
Software, and Applications, volume 65 of Nonconvex Optimization and Its Applica-
tions. Kluwer Academic Publishers, 2002.

[134] Mohit Tawarmalani and Nikolaos V. Sahinidis. Global optimization of mixed-
integer nonlinear programs: A theoretical and computational study. Mathematical
Programming, 99(3):563–591, 2004.

[135] Mohit Tawarmalani and Nikolaos V. Sahinidis. A polyhedral branch-and-cut approach
to global optimization. Mathematical Programming, 103(2):225–249, 2005.

[136] J. P. Teles, P. M. Castro, and H. A. Matos. Global optimization of water networks
design using multiparametric disaggregation. Computers & Chemical Engineering,
40:132–147, 2012.

[137] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Mart́ı. Scatter search
and local NLP solvers: A multistart framework for global optimization. INFORMS
Journal on Computing, 19(3):328–340, 2007.

[138] S. Vavasis. Quadratic programming is in NP. Information Processing Letters,
36:73–77, 1990.

[139] Stefan Vigerske. MINLPLib 2. In L. G. Casado, I. Garćıa, and E. M. T. Hendrix,
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A. Instance Details

Table 7 provides detailed data on all the instances of the final library. Column “name”
is the name of the instance with the prefix “QPLIB ” stripped. Column “type” is the
classification of the instance according to the taxonomy from §2.2.1. Column “% p.e.”
provides the fraction of problematic eigenvalues of Q0, the coefficient matrix of the objective
function: a positive number implies that the instance is a Q**, “0.0” implies that the
instance is a C**, a blank implies that Q0 = 0, i.e., the objective function is linear
(hence, the instance is a L** ). Column “% d.” describes the density of the Q0 matrix: a
blank implies that the corresponding instance has a linear objective function. For both
columns (“% p.e.” and “% d.”), nonzeros values below 0.1 were rounded up to 0.1. The
following three columns describe the variables by reporting the number of binary ones
(“# b.”), general integer ones (“# i.”), and continuous ones (“# c.”). Finally, the last four
columns describe the constraints reporting the number of linear ones (“# l.”), nonconvex
quadratic ones (“# q.”), convex quadratic ones (“# c.”), and variable bounds (“# v.”).
The numbering of the instances reflects the initial order in which they were gathered. Due
to our filtering this numbering is not consecutive.

Table 7: Features of QPLIB instances.

Q0 Variables Constraints

name type % p.e. % d. # b. # i. # c. # l. # q. # c. # v.

0018 QCL 48.0 100.0 0 0 50 1 0 0 50
0031 QML 18.3 99.8 30 0 30 32 0 0 30
0032 QML 25.0 99.9 50 0 50 52 0 0 50
0067 QBL 47.5 88.9 80 0 0 1 0 0 0
0343 QCL 48.0 100.0 0 0 50 1 0 0 100
0633 QBL 58.7 98.7 75 0 0 1 0 0 0
0678 LMQ 9600 0 5537 7457 960 0 1474
0681 LMQ 72 0 143 419 48 0 200
0682 LMQ 71 0 190 501 96 0 296
0684 LMQ 101 0 260 815 128 0 408
0685 LMQ 256 0 519 1603 192 0 728
0686 LMQ 692 0 1512 4440 640 0 2200
0687 LMQ 672 0 1651 4875 800 0 2520
0688 LMQ 1964 0 3824 20568 1600 0 6256
0689 LMQ 756 0 1112 9800 288 0 1608
0690 LMQ 6428 0 10048 112400 3200 0 17376
0696 LMQ 187 0 207 390 33 0 260
0698 LMQ 55 0 63 126 15 0 56
0752 QBL 50.0 10.0 250 0 0 1 0 0 0
0911 QCQ 44.0 50.5 0 0 50 0 50 0 100
0975 QCQ 50.0 50.6 0 0 50 0 10 0 100
1055 QCQ 50.0 100.0 0 0 40 0 20 0 80
1143 QCQ 50.0 97.1 0 0 40 4 20 0 80
1157 QCQ 25.0 94.5 0 0 40 8 1 0 80
1353 QCQ 26.0 95.8 0 0 50 5 1 0 100
1423 QCQ 75.0 95.4 0 0 40 4 20 0 80
1437 QCQ 50.0 95.6 0 0 50 10 1 0 100
1451 QCQ 50.0 49.1 0 0 60 6 60 0 120
1493 QCQ 50.0 97.3 0 0 40 4 1 0 80
1507 QCQ 26.7 95.8 0 0 30 3 30 0 60
1535 QCQ 50.0 94.3 0 0 60 6 60 0 120
1619 QCQ 50.0 95.5 0 0 50 5 25 0 100
1661 QCQ 50.0 95.4 0 0 60 12 1 0 120
1675 QCQ 51.7 48.8 0 0 60 12 1 0 120
1703 QCQ 51.7 97.9 0 0 60 6 30 0 120
1745 QCQ 50.0 48.8 0 0 50 5 50 0 100
1773 QCQ 50.0 94.8 0 0 60 6 1 0 120
1886 QCQ 50.0 50.0 0 0 50 0 50 0 100
1913 QCQ 50.0 24.9 0 0 48 0 48 0 96
1922 QCQ 50.0 49.6 0 0 30 0 60 0 60
1931 QCQ 50.0 49.9 0 0 40 0 40 0 80
1940 QCQ 50.0 25.0 0 0 48 0 96 0 96
1967 QCQ 50.0 99.8 0 0 50 0 75 0 100
1976 QBQ 38.2 7.0 152 0 0 136 16 0 0
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % p.e. % d. # b. # i. # c. # l. # q. # c. # v.

2017 QBQ 39.3 5.5 252 0 0 231 21 0 0
2022 QBQ 38.5 5.2 275 0 0 253 22 0 0
2029 QBQ 40.1 5.1 299 0 0 276 23 0 0
2036 QBQ 39.2 4.8 324 0 0 300 24 0 0
2047 LBQ 136 0 0 2040 17 0 0
2055 LBQ 153 0 0 2448 18 0 0
2060 LBQ 171 0 0 2907 19 0 0
2067 LBQ 190 0 0 3420 20 0 0
2073 LBQ 210 0 0 3990 21 0 0
2077 LBQ 231 0 0 4620 22 0 0
2085 LBQ 253 0 0 5313 23 0 0
2087 LBQ 276 0 0 6072 24 0 0
2096 LBQ 300 0 0 6900 25 0 0
2165 LMQ 683 0 1376 1366 683 0 683
2166 LMQ 345 0 697 690 345 0 345
2167 LMQ 61 0 131 122 61 0 61
2168 LMQ 214 0 438 428 214 0 214
2169 LMQ 297 0 608 594 297 0 297
2170 LMQ 351 0 736 702 351 0 351
2171 LMQ 150 0 305 300 150 0 150
2173 LMQ 215 0 436 430 215 0 215
2174 LMQ 768 0 1545 1536 768 0 768
2181 LMQ 90 0 190 180 90 0 90
2187 LMQ 90 0 195 180 90 0 90
2192 LMQ 90 0 200 180 90 0 90
2195 LMQ 90 0 205 180 90 0 90
2202 LMQ 90 0 185 180 90 0 90
2203 LMQ 100 0 205 200 100 0 100
2204 LMQ 110 0 225 220 110 0 110
2205 LMQ 958 0 1926 1916 958 0 958
2206 LMQ 194 0 421 388 194 0 194
2315 QBL 44.7 7.5 595 0 0 13090 0 0 0
2353 QML 50.0 23.7 147 0 93 2240 0 0 186
2357 QBL 50.0 7.8 240 0 0 2240 0 0 0
2359 QBL 44.4 4.2 306 0 0 3264 0 0 0
2416 LCQ 0 0 25 153 527 6 48
2430 LCQ 0 0 125 27 65 0 240
2445 LCQ 0 0 143 14 66 0 160
2456 LCD 0 0 5477 4131 0 1369 0
2468 LCD 0 0 14885 11203 0 3721 0
2480 LCQ 0 0 399 199 200 1 400
2482 LCD 0 0 1806 1418 0 361 0
2483 LCQ 0 0 760 40 240 0 1320
2492 QBL 25.5 86.2 196 0 0 28 0 0 0
2505 LCQ 0 0 1039 302 480 0 540
2512 QBL 46.0 77.4 100 0 0 20 0 0 0
2519 LCD 0 0 4806 3802 0 961 0
2540 LCQ 0 0 498 341 210 0 130
2546 CCQ 0.0 0.7 0 0 1015 592 400 0 15
2590 LCQ 0 0 25 93 401 0 48
2626 LCD 0 0 22327 14763 0 3721 0
2635 LCQ 0 0 176 0 188 966 0
2650 LCQ 0 0 1110 228 904 0 1072
2658 LCQ 0 0 184 57 133 0 192
2676 LCD 0 0 1445 1095 0 361 0
2693 LCQ 0 0 791 183 631 0 754
2696 QCQ 1.4 2.5 0 0 3500 1995 1500 0 5
2698 LCQ 0 0 196 36 11 0 280
2702 QML 4.6 1.2 259 0 1 212 0 0 0
2703 LCQ 0 0 799 399 400 1 800
2707 LCQ 0 0 634 151 466 0 640
2708 LMQ 108 0 526 327 30 0 520
2712 QCL 50.0 100.0 0 0 200 1 0 0 400
2714 LCQ 0 0 352 301 298 0 1
2733 QBL 25.9 89.2 324 0 0 36 0 0 0
2738 LCQ 0 0 199 99 100 1 200
2758 LCQ 0 0 303 139 112 0 140
2761 QCL 50.0 100.0 0 0 500 1 0 0 1000
2784 LCD 0 0 4501 3680 0 900 0
2819 LCQ 0 0 334 24 132 0 500
2823 LCQ 0 0 390 103 283 0 396
2834 LCQ 0 0 156 14 72 0 200
2862 LCD 0 0 40501 32640 0 8100 0
2880 QBL 48.8 90.3 625 0 0 50 0 0 0
2881 LCQ 0 0 1512 0 700 20 0
2882 LMQ 56 0 88 257 16 0 32
2894 LCQ 0 0 17 55 154 0 32
2935 LMQ 72 0 108 325 18 0 36
2957 QBL 23.1 60.3 484 0 0 44 0 0 0
2958 LMQ 42 0 70 197 14 0 28
2967 QCC 47.4 5.0 0 0 38 1 0 190 38
2981 CCQ 0.0 0.7 0 0 2015 1192 800 0 15
2987 LCQ 0 0 208 114 90 0 90
2993 LCQ 0 0 266 235 84 0 66
3029 LCD 0 0 5767 3783 0 961 0
3034 LCQ 0 0 780 40 240 0 1320
3049 QCQ 0.8 2.5 0 0 7000 3995 3000 0 5
3060 QML 0.2 6.2 48 0 792 1192 0 0 0
3080 CCQ 0.0 0.7 0 0 4015 2392 1600 0 15
3083 LCQ 0 0 243 107 126 0 120
3088 LCD 0 0 3601 2780 0 900 0
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % p.e. % d. # b. # i. # c. # l. # q. # c. # v.

3089 LCQ 0 0 132 12 72 0 228
3105 LCD 0 0 18606 14802 0 3721 0
3120 LCQ 0 0 662 40 204 0 924
3122 QML 2.8 0.1 17136 0 3988 36703 0 0 0
3147 LCQ 0 0 419 32 108 0 550
3170 LCQ 0 0 660 40 160 0 1160
3177 LCQ 0 0 1599 799 800 1 1600
3181 LMQ 84 0 308 180 16 0 222
3185 LCD 0 0 18001 14560 0 3600 0
3192 LCQ 0 0 479 32 145 0 702
3225 LCQ 0 0 136 14 66 0 160
3240 LCQ 0 0 516 187 220 0 260
3247 LCQ 0 0 361 322 8 148 1
3279 LMQ 56 0 251 148 16 0 222
3297 CCQ 0.0 0.7 0 0 8015 4792 3200 0 15
3307 QBL 19.9 61.5 256 0 0 32 0 0 0
3312 LCD 0 0 41406 33002 0 8281 0
3318 LCQ 0 0 25 93 381 0 48
3326 QCQ 2.9 2.5 0 0 1750 995 750 0 5
3334 LCQ 0 0 715 40 210 0 990
3337 LCQ 0 0 297 0 198 0 396
3338 LCQ 0 0 320 26 110 0 432
3347 QBL 51.8 85.8 676 0 0 52 0 0 0
3358 LCQ 0 0 158 66 106 0 136
3361 QBL 28.3 35.5 1024 0 0 64 0 0 0
3369 LCQ 0 0 485 32 116 0 650
3380 QBL 3.4 0.1 8904 0 0 823 0 0 0
3385 LCQ 0 0 155 77 60 0 80
3387 LCQ 0 0 170 18 65 0 160
3402 QBL 47.2 81.5 144 0 0 24 0 0 0
3413 QBL 45.0 9.0 400 0 0 40 0 0 0
3416 LCQ 0 0 424 32 96 0 400
3496 LGQ 200 56 72 623 64 0 120
3502 LMQ 10920 0 2090 209 3130 0 2090
3505 LMQ 201 0 603 605 2 0 2
3506 QBN 48.4 0.8 496 0 0 0 0 0 0
3508 LMQ 2450 0 891 99 1332 0 891
3510 LMQ 105 0 919 4568 21 0 38
3511 LMQ 2450 0 3292 4950 1283 0 891
3512 LMQ 72 0 119 403 24 0 152
3513 LMQ 123 0 1897 2569 763 0 1880
3514 LMQ 15 0 1800 960 900 0 1800
3515 LMQ 352 0 382 720 48 0 540
3522 LMQ 42 0 588 212 42 0 588
3523 QML 50.0 13.2 155 0 27 1456 0 0 54
3524 LMQ 132 0 949 3165 192 0 288
3525 QGQ 47.5 0.1 0 1662 87 52 39 0 3324
3529 LMQ 38 0 1488 1580 544 0 800
3533 LMQ 240 0 143 176 25 0 8
3547 DML 0.0 16.7 462 0 1536 3137 0 0 6
3549 LMQ 650 0 1033 1326 583 0 408
3554 QML 12.0 100.0 14 0 370 556 0 0 0
3562 LIQ 7 56 0 35 7 0 112
3565 QBN 47.8 1.4 276 0 0 0 0 0 0
3580 LMQ 108 0 24 45 18 0 24
3582 LMQ 184 0 32 60 24 0 32
3584 QBL 43.9 8.0 528 0 0 10912 0 0 0
3587 QBL 50.0 12.7 240 0 0 46 0 0 0
3588 LMQ 600 0 392 49 584 0 392
3592 QML 50.0 0.2 225 0 225 255 0 0 0
3596 LMQ 104 0 921 1054 132 0 428
3600 LMQ 112 0 16 45 12 0 16
3605 LMQ 160 0 1076 4315 192 0 288
3614 QBL 50.0 12.7 210 0 0 44 0 0 0
3620 LMQ 187 0 3285 4071 1344 0 3398
3621 LMQ 109 0 1655 2213 665 0 1624
3622 LMQ 25 0 2000 1040 1000 0 2000
3624 LMQ 40 0 6400 3280 3200 0 6400
3625 LMQ 46 0 598 191 46 0 598
3631 LMQ 750 0 143 210 25 0 8
3642 QBN 48.9 0.4 1035 0 0 0 0 0 0
3643 LGQ 216 72 72 825 68 0 152
3645 LMQ 101 0 302 304 1 1 1
3646 LMQ 20 0 2000 1050 1000 0 2000
3648 LMQ 40 0 680 306 40 0 80
3650 QBN 48.8 0.4 946 0 0 0 0 0 0
3651 LMQ 137 0 2139 2942 861 0 2136
3659 LGQ 0 960 4577 5537 960 0 1474
3661 LMQ 10816 0 12997 11024 3221 0 12906
3662 LMQ 144 0 32 55 24 0 32
3670 LMQ 54 0 864 305 54 0 108
3676 LMQ 30 0 9000 4650 4500 0 9000
3677 LMQ 30 0 6000 3100 3000 0 6000
3678 LMD 200 0 400 402 0 1 0
3680 LMQ 92 0 16 40 12 0 16
3683 LMQ 126 0 24 48 18 0 24
3690 LMQ 20 0 6000 3150 3000 0 6000
3692 LMQ 128 0 1091 751 528 0 592
3693 QBN 48.9 0.3 1128 0 0 0 0 0 0
3694 DML 0.0 0.1 40 0 3200 3280 0 0 3200
3697 LMQ 168 0 32 58 24 0 32
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % p.e. % d. # b. # i. # c. # l. # q. # c. # v.

3698 DML 0.0 0.1 30 0 3000 3100 0 0 3000
3699 LMQ 116 0 792 1668 192 0 288
3701 LMQ 60 0 1080 377 60 0 120
3703 QBL 46.7 84.6 225 0 0 30 0 0 0
3705 QBN 48.1 1.0 378 0 0 0 0 0 0
3706 QBN 48.6 0.6 703 0 0 0 0 0 0
3708 DML 0.0 0.1 14 0 12916 12917 0 0 1008
3709 QBL 48.0 91.8 600 0 0 50 0 0 0
3713 LMQ 42 0 630 254 42 0 84
3714 QBL 97.5 32.5 120 0 0 40 0 0 0
3719 LMQ 133 0 28 51 21 0 28
3725 LMQ 81 0 1171 1552 469 0 1112
3726 LMQ 116 0 816 2190 192 0 288
3727 LMQ 20 0 1600 840 800 0 1600
3728 LMQ 72 0 16 35 12 0 16
3729 LMQ 650 0 408 51 608 0 408
3733 LMQ 46 0 644 237 46 0 92
3734 LMQ 38 0 7533 7690 2754 0 4050
3738 QBN 48.3 0.9 435 0 0 0 0 0 0
3745 QBN 48.0 1.2 325 0 0 0 0 0 0
3748 LMQ 75 0 20 37 15 0 20
3750 QBL 98.6 32.9 210 0 0 70 0 0 0
3751 QBL 98.0 32.7 150 0 0 50 0 0 0
3752 QBL 45.5 4.1 462 0 0 6160 0 0 0
3757 QBL 34.4 1.7 552 0 0 8096 0 0 0
3762 QBL 50.0 28.0 90 0 0 480 0 0 0
3772 QBL 50.0 3.8 380 0 0 4560 0 0 0
3775 QBL 98.3 32.8 180 0 0 60 0 0 0
3780 LIQ 12 156 0 60 12 0 312
3785 LMQ 200 0 32 62 24 0 32
3790 QML 9.7 100.0 7 0 188 283 0 0 0
3792 DML 0.0 0.1 20 0 3000 3150 0 0 3000
3794 LMQ 576 0 986 624 602 0 968
3797 LMQ 48 0 296 623 56 0 120
3798 LMQ 54 0 810 251 54 0 810
3803 QBL 42.6 14.1 190 0 0 2280 0 0 0
3809 LMQ 224 0 32 65 24 0 32
3813 LMQ 15 0 2400 1280 1200 0 2400
3814 QMQ 4.2 16.0 2 0 46 13 28 0 80
3815 QBL 50.0 3.1 192 0 0 64 0 0 0
3816 LMQ 70 0 117 363 24 0 148
3822 QBN 48.8 0.5 861 0 0 0 0 0 0
3825 LMQ 60 0 1020 317 60 0 1020
3832 QBN 48.5 0.7 561 0 0 0 0 0 0
3834 QBL 60.0 98.0 50 0 0 1 0 0 0
3838 QBN 48.7 0.5 780 0 0 0 0 0 0
3840 LMQ 2401 0 3334 2499 1374 0 3292
3841 QBL 44.0 10.2 300 0 0 4600 0 0 0
3850 QBN 49.0 0.3 1225 0 0 0 0 0 0
3852 QBN 47.6 1.6 231 0 0 0 0 0 0
3854 LMQ 40 0 640 266 40 0 640
3855 LMQ 400 0 2118 791 1284 0 428
3856 LMQ 168 0 183 50 267 0 174
3857 LMQ 201 0 602 604 1 1 1
3859 LMQ 600 0 968 1225 560 0 392
3860 QBL 44.8 8.7 435 0 0 8120 0 0 0
3861 DML 0.0 0.1 30 0 4500 4650 0 0 4500
3863 LMQ 625 0 1053 675 628 0 1033
3865 QBL 48.0 90.7 525 0 0 50 0 0 0
3870 QML 42.9 23.4 116 0 66 1456 0 0 132
3871 DML 0.0 0.1 25 0 1000 1040 0 0 1000
3872 LMQ 95 0 1413 1874 567 0 1368
3877 QBN 48.6 0.6 630 0 0 0 0 0 0
3879 LMQ 10920 0 12906 21945 3026 0 2090
3883 QBL 50.0 17.8 182 0 0 1456 0 0 0
3913 CBL 0.0 100.0 300 0 0 61 0 0 0
3923 QBL 53.7 8.0 395 0 0 80 0 0 0
3931 QBL 50.3 8.0 316 0 0 80 0 0 0
3980 CBL 0.0 100.0 235 0 0 48 0 0 0
4095 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
4270 CML 0.0 25.1 400 0 1200 1603 0 0 800
4455 LMQ 3000 0 12000 9001 3000 0 3000
4722 LMQ 2000 0 8000 6001 2000 0 2000
4805 LMQ 2000 0 8000 6074 2000 0 4000
5023 LMQ 3000 0 12000 9155 3000 0 6000
5442 LMQ 2000 0 7999 6088 2000 0 3998
5527 DML 0.0 0.1 4492 0 21117 64348 0 0 4738
5543 DML 0.0 0.1 4514 0 21186 64096 0 0 4786
5554 LMQ 4492 0 30878 64769 4800 0 4958
5573 LMQ 4450 0 23692 72976 4800 0 4987
5577 DML 0.0 0.1 1118 0 4896 15690 0 0 1186
5721 QBN 49.0 76.8 300 0 0 0 0 0 0
5725 QBN 50.1 1.7 343 0 0 0 0 0 0
5755 QBN 50.0 1.0 400 0 0 0 0 0 0
5875 QBN 50.0 78.9 200 0 0 0 0 0 0
5881 QBN 49.2 29.5 120 0 0 0 0 0 0
5882 QBN 49.3 78.1 150 0 0 0 0 0 0
5909 QBN 50.0 9.6 250 0 0 0 0 0 0
5922 QBN 49.8 9.8 500 0 0 0 0 0 0
5924 DML 0.0 0.7 300 0 15220 36060 0 0 150
5925 LMQ 100 0 1300 271 100 0 100
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % p.e. % d. # b. # i. # c. # l. # q. # c. # v.

5926 LMQ 2400 0 31200 11923 2400 0 2400
5927 LMQ 2400 0 31200 11963 2400 0 2400
5935 QBL 49.0 99.0 100 0 0 1237 0 0 0
5944 QBL 49.0 99.0 100 0 0 2475 0 0 0
5962 QBL 49.3 99.3 150 0 0 2793 0 0 0
5971 QBL 49.3 99.3 150 0 0 5587 0 0 0
5980 QBL 49.3 99.3 150 0 0 8381 0 0 0
6287 LCQ 0 0 171 36 81 0 150
6310 LCQ 0 0 208 22 390 0 324
6311 LCQ 0 0 212 43 128 0 186
6324 QBL 50.6 31.3 640 0 0 16 0 0 0
6487 QBL 35.0 20.9 618 0 0 309 0 0 0
6597 QBL 45.7 97.3 600 0 0 60 0 0 0
6647 QBL 70.0 7.2 627 0 0 33 0 0 0
6757 QBL 18.5 4.7 2046 0 0 297 0 0 0
6764 QBL 19.1 4.7 2071 0 0 297 0 0 0
6799 QBL 18.7 4.7 2075 0 0 297 0 0 0
6941 QBL 18.7 4.5 2203 0 0 315 0 0 0
7127 QBL 50.6 6.8 1000 0 0 50 0 0 0
7139 QBL 53.3 89.2 180 0 0 100 0 0 0
7144 QBL 53.2 89.6 220 0 0 121 0 0 0
7149 QBL 53.0 89.6 264 0 0 144 0 0 0
7154 QBL 52.9 89.7 312 0 0 169 0 0 0
7159 QBL 52.5 89.7 364 0 0 196 0 0 0
7164 QBL 52.4 89.7 420 0 0 225 0 0 0
7579 LMD 100 0 200 202 0 1 0
8009 LMQ 101 0 303 305 2 0 2
8153 LMQ 31 0 93 95 2 0 2
8381 LMQ 51 0 153 155 2 0 2
8495 DCL 0.0 0.1 0 0 27543 8000 0 0 22743
8500 DCL 0.0 0.1 0 0 250997 250498 0 0 126002
8505 QCL 49.9 0.1 0 0 20050 10001 0 0 40100
8515 CCL 0.0 0.1 0 0 16002 8002 0 0 16002
8547 DCL 0.0 0.1 0 0 1003001 1001000 0 0 4002
8553 QCQ 0.0 0.1 0 0 79998 796 39601 0 158404
8559 CCL 0.0 0.1 0 0 10000 5000 0 0 20000
8567 CCL 0.0 0.1 0 0 10000 7500 0 0 20000
8585 DCQ 0.0 0.1 0 0 99999 0 49999 0 2
8595 DCQ 0.0 0.1 0 0 2500 0 1275 0 0
8602 DCL 0.0 0.1 0 0 34552 52983 0 0 69104
8605 DCQ 0.0 0.1 0 0 5000 0 1 0 1
8616 DCL 0.0 0.1 0 0 13870 10404 0 0 409
8683 DCQ 0.0 0.1 0 0 200008 0 140000 0 14
8685 DCQ 0.0 0.1 0 0 772 0 10000 0 0
8758 QCQ 4.3 50.0 0 0 2070 0 1981 0 0
8777 QCL 34.6 0.1 0 0 10000 2500 0 0 20000
8784 QCC 49.5 1.0 0 0 200 98 0 4950 204
8785 DCL 0.0 0.1 0 0 10399 11362 0 0 20798
8790 CCB 0.0 0.1 0 0 39204 0 0 0 39204
8792 CCB 0.0 0.1 0 0 15129 0 0 0 30258
8803 DCQ 0.0 0.1 0 0 150002 50000 50000 0 50003
8810 DCQ 0.0 0.1 0 0 150002 50000 50000 0 4
8815 QCD 0.1 25.0 0 0 30010 20004 0 5001 0
8845 CCL 0.0 59.8 0 0 1546 777 0 0 441
8906 CCL 0.0 3.0 0 0 5223 838 0 0 1941
8938 DCL 0.0 0.1 0 0 4001 11999 0 0 0
8991 CCB 0.0 0.1 0 0 14400 0 0 0 28800
9002 DCL 0.0 0.1 0 0 2890 1649 0 0 3617
9004 QCQ 25.0 0.1 0 0 40000 10001 10001 0 20000
9008 DCL 0.0 0.1 0 0 1009306 989604 0 0 39208
9030 QIL 0.1 0.1 0 10000 0 5000 0 0 20000
9048 QIL 29.7 18.2 0 202 0 1 0 0 404
10001 LMC 426 0 59 295 0 1 118
10002 LMC 426 0 59 295 0 1 118
10003 LMC 999 0 59 866 0 1 118
10004 LMC 150 0 250 100 0 1 500
10005 LMC 1000 0 1000 793 0 1 2000
10006 LMC 1875 0 1250 1489 0 1 2500
10007 LMC 2625 0 1750 2086 0 1 3500
10008 LMC 713 0 132 415 0 1 264
10009 LMC 473 0 132 245 0 1 264
10010 LMC 262 0 7 146 0 1 14
10011 LMC 1258 0 132 872 0 1 264
10012 LMC 835 0 132 537 0 1 264
10013 LMQ 3600 0 18106 55968 3600 0 3600
10014 LMQ 3600 0 18113 55834 3600 0 3600
10015 LMQ 3600 0 23527 50083 3600 0 3600
10016 LMQ 3600 0 23524 50427 3600 0 3600
10017 LMQ 4800 0 24149 74451 4800 0 4800
10018 LMQ 4800 0 24145 75293 4800 0 4800
10019 LMQ 4800 0 31370 66484 4800 0 4800
10020 LMQ 4800 0 31372 66912 4800 0 4800
10021 LMQ 3000 0 12000 9155 3000 0 6000
10022 LMQ 3000 0 12000 9155 3000 0 6000
10023 LMQ 3000 0 12000 9155 3000 0 6000
10024 LMQ 3000 0 12000 9089 3000 0 6000
10025 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10026 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10027 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10028 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10029 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % p.e. % d. # b. # i. # c. # l. # q. # c. # v.

10030 LMQ 3000 0 12000 9001 3000 0 3000
10031 LMQ 3000 0 12000 9001 3000 0 3000
10032 LMQ 3000 0 12000 9001 3000 0 3000
10033 LMQ 3000 0 12000 9001 3000 0 3000
10034 DCL 0.0 0.2 0 0 40400 40200 0 0 802
10035 LCQ 0 0 40401 40000 200 1 1200
10036 LCQ 0 0 40401 40000 200 1 1200
10037 LCQ 0 0 40401 200 40000 1 400
10038 DCL 0.0 0.1 0 0 160800 160400 0 0 1602
10039 LCQ 0 0 12097 11713 193 0 384
10040 QBL 8.8 92.6 125 0 0 6 0 0 0
10041 QBL 4.0 99.9 125 0 0 6 0 0 0
10042 QBL 0.8 99.9 125 0 0 5 0 0 0
10043 QBL 4.7 96.7 150 0 0 10 0 0 0
10044 QBL 8.0 97.0 150 0 0 6 0 0 0
10045 QBL 8.7 99.4 150 0 0 10 0 0 0
10046 QBL 0.7 92.1 150 0 0 6 0 0 0
10047 QBL 4.7 99.9 150 0 0 10 0 0 0
10048 QBL 1.3 99.9 150 0 0 5 0 0 0
10049 QBL 2.7 99.9 150 0 0 10 0 0 0
10050 CBL 0.0 100.0 150 0 0 5 0 0 0
10051 QBL 2.0 99.9 150 0 0 10 0 0 0
10052 QBL 1.3 99.9 150 0 0 6 0 0 0
10053 QBL 0.7 99.9 150 0 0 10 0 0 0
10054 QBL 4.6 90.1 175 0 0 11 0 0 0
10055 QBL 2.9 91.5 175 0 0 5 0 0 0
10056 CBL 0.0 98.8 175 0 0 5 0 0 0
10057 QBL 9.5 80.5 200 0 0 11 0 0 0
10058 QBL 7.5 88.0 200 0 0 11 0 0 0
10059 QBL 18.5 97.3 200 0 0 10 0 0 0
10060 QBL 8.0 91.5 200 0 0 10 0 0 0
10061 QBL 9.0 97.6 200 0 0 5 0 0 0
10062 QBL 9.5 97.0 200 0 0 10 0 0 0
10063 QBL 3.0 99.5 200 0 0 5 0 0 0
10064 QBL 2.0 99.8 200 0 0 11 0 0 0
10065 QBL 1.0 99.0 200 0 0 11 0 0 0
10066 QBL 1.5 100.0 200 0 0 11 0 0 0
10067 QBL 2.5 99.7 200 0 0 5 0 0 0
10068 QBL 2.0 99.9 200 0 0 11 0 0 0
10069 CBL 0.0 96.8 200 0 0 10 0 0 0
10070 QBL 1.5 99.9 200 0 0 11 0 0 0
10071 QBL 1.0 99.0 200 0 0 11 0 0 0
10072 QBL 12.0 90.1 75 0 0 10 0 0 0
10073 QBL 10.7 84.9 75 0 0 6 0 0 0
10074 QBL 1.3 100.0 75 0 0 10 0 0 0

B. The File Format

The QPLIB format is defined in Table 8, with the notation of §2.
The data is in free format (blanks separate values), but must occur in the order given

here. Any blank lines, or lines starting with any of the characters !, % or # are ignored.
Each term in the first column of Table 8 denotes a required value. Any strings beyond
those required on a given line will be regarded as comments and ignored. Real values may
either by in decimal or exponential formats; for the latter, the exponent may be preceded
by either the character D or E, e.g. 12.56D+2 or 12.56E+2. Variable indices, j, must lie in
the range 1 ≤ j ≤ n, while constraint indices, i, must satisfy 1 ≤ i ≤ m, that is they are
both one-based. The case for character strings is irrelevant.

Table 8: The QPLIB file format: refer to the notes after
the table for more details.

data description note
name problem name (character string)
type problem type (character string) [1]
sense one of the words minimize or maximize (character string)
n number of variables (integer)
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Table 8: The QPLIB file format (continued)

data description note
m number of constraints (integer) [2]

nQ0
number of nonzeros (integer) in lower triangle of Q0 [3]

h k Q0
hk row and column indices (integers) and value (real) for each

nonzero entry of Q0, if nQ0
> 0, one triple on each line

[3]

b0d default value (real) for entries in b0

nb0 number of non-default entries (integer) in b0

j b0j index (integer) and value (real) for each non-default term in b0,
if nb0 > 0, one pair per line

q0 constant part of the objective function∑
i∈M

nQi

number of nonzeros (integer) in lower triangles of Qi, summed
over all i ∈M

[2,4]

i h k Qi
hk i, row and column indices (integers) and value (real) for each

entry of Qi for every i ∈M, if nQi
> 0, one quadruple on each

line∑
i∈M

nbi number of nonzeros (integer) in bi, summed over all i ∈M [2]

i j bij i and index (integers) and value (real) for each nonzero entry
of bi for every i ∈M, if nbi > 0, one triple on each line

[2]

c∞ value (real) for infinity for constraint or variable bounds—any
bound greater than or equal to this in, absolute value, is infinite

cl,d default value (real) for entries in cl [2]
ncl,d number of non-default entries (integer) in cl [2]
i cil index (integer) and value (real) for each non-default term in

cl,d, if ncl,d > 0, one pair per line
[2]

cu,d default value (real) for entries in cu [2]
ncu,d number of non-default entries (integer) in cu [2]
i ciu index (integer) and value (real) for each non-default term in

cu,d, if ncu,d > 0, one pair per line
[2]

ld default value (real) for entries in l [6]
nld number of non-default entries (integer) in l [6]
i li index (integer) and value (real) for each non-default term in l,

if nld > 0, one pair per line
[6]

ud default value (real) for entries in u [6]
nud number of non-default entries (integer) in u [6]
i ui index (integer) and value (real) for each non-default term in u,

if nud > 0, one pair per line
[6]

vd default variable type (integer, 0 for continuous variables, 1 for
integer variables, 2 for binary variables)

[5]

nv number of non-default variables (integer) [5]
i vi index and type (integers) for each non-default variable type, if

nv > 0, one pair per line
[5]

x0
d default value (real) for the components of the starting point x0

for the variables x
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Table 8: The QPLIB file format (continued)

data description note

nx0
number of non-default starting entries (integer) in x

i x0
i index (integer) and value (real) for each non-default starting

value in x0, if nx0
> 0, one pair per line

y0
d default value (real) for the components of the starting point y0

for the Lagrange multipliers y for the general constraints
[2]

ny0 number of non-default starting entries (integer) in y [2]
i y0i index (integer) and value (real) for each non-default starting

value in y0, if ny0 > 0, one pair per line
[2]

z0
d default value (real) for the components of the starting point z0

for the dual variables z for the simple bound constraints

nz0 number of non-default starting entries (integer) in z
i z0i index (integer) and value (real) for each non-default starting

value in z0, if nz0 > 0, one pair per line
nx
d number of non-default names (integer) of variables—default

for variable i is the character string representing the numerical
value i

j var namej index (integer) and name (character string) for each non-default
variable name, if nx

d > 0, one pair per line
nc
d number of non-default names (integer) of general constraints—

default for constraint i is the character string representing the
numerical value i

i cons namei index (integer) and name (character string) for each non-default
constraint name, if nc

d > 0, one pair per line

[1] The problem type is represented by a three character string as given in §2.2.1

[2] For problems of type **N or **B, these lines/sections are omitted.

[3] For problems of type L**, this section is omitted.

[4] For problems of type **N, **B or **L, this section is omitted.

[5] For problems of type *C*, *B* or *I*, this section is omitted. For problems of type
*I*, binary variables should be specified as integer variables with lower and upper
bounds 0 and 1.

[6] For problems of type *B*, this section is omitted.

Binary variables defined either implicitly via the type *B* or explicitly in the variable type
section will be assumed to have lower and upper bounds 0 and 1, and this will override
any explicit bounds ld, ud, li, and ui set in the lower and upper bound sections. To fix
a binary variable to 0 or 1, its variable type should be changed to continuous or general
integer and the corresponding lower and upper bounds set accordingly in the lower and
upper bound sections.
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As a simple example, consider the mixed-integer QP

minx∈IR3 x2
1 + x2

2 + x2
3 − x1x2 − x2x3 − 0.2x1 − 0.4x2 − 0.2x3

subject to 1 ≤ x1 + x2, 1 ≤ x1 + x3, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2, and binary x3,

for which the Hessian of the objective function is

Q0 =

 2 −1 0
−1 2 −1
0 −1 2

 .

This may then be represented in QPLIB format as follows:

! ---------------

! example problem

! ---------------

MIPBAND # problem name

QML # problem is a mixed-integer quadratic program

Minimize # minimize the objective function

3 # variables

2 # general linear constraints

5 # nonzeros in lower triangle of Q^0

1 1 2.0 5 lines row & column index & value of nonzero in lower triangle Q^0

2 1 -1.0 |

2 2 2.0 |

3 2 -1.0 |

3 3 2.0 |

-0.2 default value for entries in b_0

1 # non default entries in b_0

2 -0.4 1 line of index & value of non-default values in b_0

0.0 value of q^0

4 # nonzeros in vectors b^i (i=1,...,m)

1 1 1.0 4 lines constraint, index & value of nonzero in b^i (i=1,...,m)

1 2 1.0 |

2 1 1.0 |

2 3 1.0 |

1.0E+20 infinity

1.0 default value for entries in c_l

0 # non default entries in c_l

1.0E+20 default value for entries in c_u

0 # non default entries in c_u

0.0 default value for entries in l

0 # non default entries in l

1.0 default value for entries in u

1 # non default entries in u

2 2.0 1 line of non-default indices and values in u

0 default variable type is continuous

1 # non default variable types

3 2 variable 3 is binary

1.0 default value for initial values for x

0 # non default entries in x
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0.0 default value for initial values for y

0 # non default entries in y

0.0 default value for initial values for z

0 # non default entries in z

0 # non default names for variables

0 # non default names for constraints
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