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Abstract

This paper addresses the problem of optimal planning of a liner service for a barge container shipping

company. Given estimated weekly demands between pairs of ports, our goal is to determine the subset of

ports to be called and the amount of containers to be shipped between each pair of ports, so as to maximize

the profit of the shipping company. In order to save possible leasing or storage costs of empty containers

at the respective ports, our approach takes into account the repositioning of empty containers. The line

has to follow the outbound-inbound principle, starting from the port at the river mouth. We propose a

novel integrated approach in which the shipping company can simultaneously optimize the route (along with

repositioning of empty containers), the choice of the final port, length of the turnaround time and the size

of its fleet. To solve this problem, a new mixed integer programming model is proposed. On the publicly

available set of benchmark instances for barge container routing, we demonstrate that this model provides

very tight dual bounds and significantly outperforms the existing approaches from the literature for splittable

demands.

We also show how to further improve this model by projecting out arc variables for modeling the shipping

of empty containers. Our numerical study indicates that the latter model improves the computing times for

the challenging case of unsplittable demands. We also study the impact of the turnaround time optimization

on the total profit of the company.
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1. Introduction

Liner shipping network design is a family of important and challenging problems in sea and inland

waterway transport dealing with a creation of a (set of) sailing route(s) for a designated fleet to transport

multiple commodities. Due to the global financial crisis and the turmoil in global sea freight, the container

shipping business is hardly profitable (see [12]). For example, Hanjin, which was the world’s seventh largest

container shipper, went bankrupt in August 2016. It is therefore clear that creating profitable lines becomes

a key competitive advantage in container shipping business. During the last decades many variants of

the liner shipping network design have been addressed in the literature (see, e.g. recent surveys given in

[5, 6, 8, 14, 24]). In general, liner shipping companies have to design lines, i.e., sequences of calling ports with

a given schedule that are operated periodically. In this article we consider the tactical part of this decision

making process in which a route for a given liner container ship has to be defined under the following

assumptions which are typically considered in the barge container routing:

1. A predetermined ordering of ports for the outbound-inbound trips is given. This is the natural way of

scheduling routes in the inland waterway transport.

2. The port calling sequence must start at and return to the first port (in case of barge transport, it is

usually a sea port, located at a river mouth, see Figure 1).

3. There is no transshipment.

4. At the last visited port (in barge transport, it is the furthest visited port upstream), the ship changes

sailing direction. This port is not known in advance.

5. Repositioning of empty containers between the ports is allowed.

For a given liner ship, the problem consists of selecting a subset of calling ports upstream and downstream

and, given weekly demands of containers between all pairs of ports, deciding what amount of that demand

will be shipped in order to maximize total profit within the given planning horizon. In addition to revenues

associated with demand units (i.e., containers) between pairs of ports, one has to consider various costs that

include fuel cost, port dues and cargo handling cost.

According to [37], the containerized cargo flows on major container trade routes are characterized by

huge imbalances between inbound and outbound directions, see also Song and Dong [35]. In addition, since

the flow of containers has to be balanced at each port, these imbalances result in empty container leasing or

storing at respective ports. Shipping the empty containers between the ports instead, has a strong impact

on cost calculation. Hence, when determining the liner shipping routes, in some cases the profit of a shipping

company can be significantly improved if empty container flows are treated adequately and if their flow is

planned simultaneously with the design of the shipping routes.

Liner shipping network design under Assumptions 1-3 (with an additional assumption that the final port

is fixed) has been introduced in the seminal paper [29]. Since then, these concepts have been extended by
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introducing new and important aspects relevant in the maritime or inland waterway shipping (see Section 2

for the detailed literature overview). However, what remained insufficiently studied in the literature is the

important and challenging question studied in the present article: how to develop an integrated approach to

design shipping routes while simultaneously taking into account:

(a) empty container balancing and repositioning,

(b) optimal turnaround time (and, consequently, the size of the homogeneous fleet needed to operate the

line), and

(c) optimal choice of the final port in the outbound direction.

Figure 1: An example of liner shipping along a river with n ports.

As mentioned above, the basic problem of routing a single container ship while maximizing profit under

a knapsack-type time constraint has been studied in [29]. The major assumption in this setting is that the

ordering of ports for a given ship is predetermined. To our knowledge, an approach to design the optimal

ship route involving empty container repositioning was considered for the first time in [32]. In that article,

the authors assume that a pre-ordered list of ports is given and that all container demand emanating from

a port must be satisfied if that port is called. However, in their model, a ship can change direction multiple

times (at some intermediate ports of call) before returning to the initial port. A problem variant for barge

container shipping with outbound-inbound principle and empty container repositioning has been studied in

[21].

Contributions. In this article, we propose an exact solution approach for barge container shipping that

explicitly takes advantage of the outbound-inbound principle. To the best of our knowledge, this is the first

exact approach for barge container shipping that simultaneously searches for the optimal route, while taking
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care of empty container balancing and repositioning, optimizing the turnaround time and the size of the

(homogeneous) fleet, and searching for the final port along the route. In contrast to the usual utilization

of arc-variables for modeling the routes, our approach exploits node-variables for the route design. Two

formulations are given: the first formulation requires arc-variables for modeling empty containers, whereas

in the second formulation these variables are projected out and replaced by a smaller set of node-variables that

handle empty containers as a single commodity. An equivalence of the two models, concerning the strength

of their linear programming relaxation bounds, is shown. We furthermore show that the problem remains

strongly NP-hard, even after relaxing many of its constraints, and we also discuss a special polynomially

solvable case.

Our computational study is conducted on a set of benchmark instances of barge container shipping from

the literature. Our new modeling approach based on node-variables for route design enables us to significantly

reduce the computational time and to solve to optimality all instances with up 25 ports in a few seconds only,

thus drastically outperforming the previous state-of-the-art model. For the more challenging variant with un-

splittable demands, our approach is able to compute (near) optimal solutions within a short computing time.

The paper is structured as follows. Section 2 gives a detailed overview of the related literature. We then

focus on the Barge Container Shipping Problem (BCSP) and in Section 3 we provide the formal problem

definition and the NP-hardness proof. Section 4 provides the two new MIP formulations, together with the

proof of equivalence between the two models. Computational experiments on benchmark instances are given

and analyzed in Section 5, whereas Section 6 concludes the paper.

2. Related Work

A classification of optimization problems for liner container ship routing was given in the recent surveys

[6, 8, 24]. Following their classification, our problem falls into the category Liner Container Shipping Network

Design (single route or several routes without transshipment). These three surveys, along with a recent paper

[5], cite a dozen of papers published in the last decade in that specific category. An older survey [7] provides

a list of papers on general ship routing and scheduling.

The recent article [5] provides an excellent overview of the major logistics aspects and challenges for

the Operations Research community in the liner shipping business. The authors present a rich integer

programming model based on services that constitute the fixed schedule of a liner shipping company (multi-

route multi-vessel case). In addition, a publicly available benchmark suite of data instances is created.

Unfortunately, the model provided in [5] does not take empty container repositioning into account, and,

consequently, their benchmark suite does not contain cargo handling cost associated to empty containers,

nor assumes that the pre-ordering of ports that could be called is given.
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Recently three articles appeared in the maritime planning literature which deal with stochastic aspects,

uncertainty factors or simulation. In [38], market uncertainties are considered and a two-stage stochastic

model is proposed. In [11], a decision support methodology for strategic planning is presented using a

Monte Carlo simulation framework. Finally in [25], the authors seek to design robust schedules of ships

under weather uncertainty, and a simulation-optimization based methodology is presented. All these articles

consider real-case instances.

General maritime route design with outbound-inbound principle and without transshipment. The pre-

viously cited paper of [29] falls into this category in which no transshipment is allowed, i.e., exchanging

containers between two ships is not an option. In [30] the authors extend their previous model to designing

multiple ship routes for a heterogeneous fleet. In both papers it is assumed that the order of ports that

could be called is predetermined, with a fixed starting and ending port. In [29] a MIP formulation has been

proposed for simultaneously optimizing the total profit and the number of round trips of the ship in a week,

the latter being represented by a decision variable α. Although this leads to a quadratic model, the variable

α can only take a few integer values, so that the authors propose to solve the problem by enumerating all

possible values of α. This boils down to solving the same model for each α but with a different constraint

concerning the total allowed time per route. The authors apply Benders decomposition technique, whereas

in the multi-vessel extension of [30] Lagrangian relaxation and decomposition is involved. In [19], the authors

propose a branch-and-cut algorithm for finding shipping routes that respect pickup and delivery requests

and take into consideration draft limits.

Liner shipping network design with empty container repositioning.

To our knowledge, the route design with empty container repositioning is considered for the first time in

[32]. In this problem variant, pairwise demands are given and profit is to be maximized. In addition, all the

cargo traffic between two ports must be satisfied if the ports are called and the ship can change its direction

multiple times (at some intermediate ports) before returning to the initial port, which differs from [29].

The authors propose a genetic algorithm to find heuristic solutions. This algorithm explores possible calling

sequences of ports, and solves an LP for each given port sequence found during the search, involving empty

container variables between two ports. When going in the outbound (or inbound) direction, the authors

bring the argument that the ship is allowed to change its direction and move backward to an earlier port, for

a matter of empty container repositioning. Such flexibility may indeed provide a more economical solution,

but, to our knowledge, it is not applicable in inland waterway transport, which is why in our article we keep

the assumption that the strict outbound-inbound principle has to be respected.

Table 1 provides a classification of papers on liner shipping route design with empty container reposi-

tioning that have been published since the work of [32]. The column “ports selection” refers to papers in
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which the selection of ports is part of the routing problem. Note that in some of these articles, the calling

ports are already given (see the column “pre-specified line services”), and the major decisions concern the

shipping of commodities and empty containers. The “inbound-outbound” column indicates the papers that

assume inbound-outbound routing, and the “single/multi” column states whether the model deals with the

design of a single route, or multiple routes for a fleet of ships.

In [10], a multi-route multi-vessel problem is considered. In [23], the authors design a hub-and-spoke

network with multiple routes. In [4], the routes are given, and the problem consists of determining the

amount of containers to be shipped along each route (multi-flow in a network is solved by Dantzig-Wolfe

decomposition). In [33], the authors consider a problem with muliple liner ships where demands between ports

are to be satisfied while minimizing costs, including transhipment costs, and empty container repositioning

and inventory costs. The time dimension is taken into account. There is no pre-specified ordering of ports

in the route design. Multiple cargo routes are designed in a first-stage by shortest-path computations inside

a MIP, whereas the empty container repositioning is performed in a second-stage. In [34], a single long-haul

route is considered for liner shipping, composed of several cycles with pre-specified ordering of ports for each

cycle. The relationships between the container flow pattern and the route structure are exploited to simplify

the design of the route in the first-stage and to better reposition the empty containers at the second stage.

Sizing the fleet of ships assigned to the route and their capacity is performed in a third stage. Multi-route

planning with cost minimization is also studied in [13]. The remaining papers from Table 1 deal with barge

i.e., inland waterway liner transportation and will be addressed in the following paragraphs.

In all papers cited in Table 1, arc variables (associated with pairs of ports) are used to design the ship

route and measure the total trip duration that should not exceed the given time limit. That may appear

natural when modeling maritime routes since making a shortcut between two ports by skipping an interme-

diate port could shorten the length of the route, depending on the location of the ports. However, let us note

that when routing a barge container ship along a river, skipping a port along the route does not shorten the

distance, hence in this particular setting there is no direct justification for using arc variables to design the

ship route.

Liner shipping network design in the inland waterway transport. We now review papers specifically

dealing with inland waterway shipping, since our generic model is particularly suited for routing a barge

container ship along a river.

As in [29], all these papers deal with selecting the calling sequence of ports for a single line that should

respect a predetermined order, both in the outbound and inbound direction, while maximizing profit and

respecting a given time limit. The major difference to [29] is that the location of ports along a river induces

a fixed travel time between the starting and last port. In addition, as in [32], the balancing and repositioning
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Table 1: Classification of route design problems with empty container repositioning

Paper Empty cont. ports pre-specified inbound single /

repositioning selection line services outbound multi

[32] × × ×a single

[21] × × × single

[3] × × ×b multi

[2] × × × multi

[10] × × ×c multi

[23] × ×d multi

[4] × × multi

[33] × × multi

[34] × × ×e singlee

[13] × × multi

a : possibility of ship turning back; b : first and last ports not pre-specified; c : network can be slightly more complex

than a line; d: pre-specified set of potential routes ; e : multiple ships are assigned to a single route made of several

cycles. Inboud-outbound principle holds for each cycle.

of empty containers is considered. In [20], the author proposes a MILP formulation with binary variables

associated with each pair of ports. This formulation, along with the MILP-based heuristics is implemented in

[21] where the authors managed to solve instances with up to 20 ports to provable optimality, but, typically,

more than a day of computing was required to provide the optimal solutions. Also, the last port of the route

is fixed whereas leaving that as a decision to make, as we do in this paper, would enable more flexibility to

increase profit further. Other papers specifically dealing with barge route design and inland waterway liner

transportation with empty container repositioning are [2, 3, 39].

The three latter articles deal with multi-route multi-vessel optimization. The first one considers the

selection of unsplittable demands that maximizes profit, whether the other two deal with covering demands

at minimum cost. Note that all papers used arc variables, both for the route design and the empty container

repositioning, which does not exploit the line structure of the route on a river. Also note that none of these

papers optimizes the turnaround time of the route.

3. Notation and Problem Definition

In this section we introduce the input parameters, provide a formal problem definition and discuss the

problem’s computational complexity.

The following input is given (where the units of measure used are hours [h], tons [t], twenty-foot equivalent
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unit [TEU], kiloWatt [kW], kiloWatt hour [kWh] and US dollar [US$]):

• N = {1, . . . , n} : ordered set of n ports, where 1 is the starting port and n is the last port that can be

visited in the outbound direction;

• Dij ∈ Z+ : weekly expected number of full containers available to be transported between ports i and

j [TEU/week];

• C ∈ Z+ : carrying capacity of the ship [TEU]

• Pij ∈ R+ : freight rate per container from port i to port j, i, j ∈ N [US$/TEU]

• Fi : entry cost per call at port i, i ∈ N [US$]

• Lfi (Ufi ): loading (unloading) cost per full container at port i, i ∈ N [US$/TEU]

• Lei (Uei ): loading (unloading) cost per empty container at port i, i ∈ N [US$/TEU]

• Li (Si): short-term leasing (storage) cost per empty container at port i, i ∈ N [US$/TEU]

• T li (Tui ): average loading (unloading) time per full container at port i, i ∈ N [h/TEU]

• T̃ li (T̃ui ): average loading (unloading) time per empty container at port i, i ∈ N [h/TEU]

• T ai (T di ): stand-by time for arrival (departure) at port i, i ∈ N [h]

• wmin: minimum allowed turnaround time [weeks]

• wmax: maximum allowed turnaround time [weeks]

• CI : cost per time for keeping the ship idle at the initial port [ US$/h]

• HI : maximum allowed idle time at the initial port [h]

• Ti: total sailing time to go from port 1 to port i, and to go back to port 1, for each i ∈ N [h]

• Twi : total waiting time for crossing borders and locks along the route from 1 to i in both directions,

for each i ∈ N (Twi is counted in Ti) [h].

Note that the sailing time Ti, for each i ∈ N , does not comprise the stopping times at ports for loading and

unloading containers. We have Ti ≥ Ti−1, for all i ∈ N , i > 1. The total travel time is the sum of the sailing

time and the stopping time at ports.

Additional parameters are:

• wcc : weekly time charter cost of a ship [US$/week];
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• Pout : engine output (propulsion) [kW];

• fp (lp) : fuel (lubricant) price [US$/t];

• scf (scl) : specific fuel (lubricant) consumption [t/kWh];

The case in which we allow to partially satisfy the demand Dij between ports i and j, is called splittable

demands in the following, while the case in which either zero or all Dij containers have to be shipped is

called unsplittable demands. In this article, both problem variants are addressed.

3.1. Problem Definition

In this section we provide a formal definition of the Barge Container Shipping Problem.

Definition 1 (Barge Container Shipping Problem (BCSP)). Given the input parameters described

above, the BCSP asks to determine

(i) the turnaround time w in weeks (which is also the size of the fleet),

(ii) the last port i∗ ∈ N \ {1} of the route,

(iii) the sequence of ports Nout ⊆ N \ {i∗ + 1, . . . , n} called in the outbound direction,

(iv) the sequence of ports Nin ⊆ Nout \ {i∗} called in the inbound direction,

(v) the numbers zij and yij of full and empty containers, respectively, to be shipped between ports i and j,

(vi) the numbers li and si of empty containers leased, respectively stored at port i ∈ N ,

so as to maximize the profit, which is defined as the difference between the revenue for shipping full con-

tainers, and the port call cost, cargo-handling cost, and bunker and capital costs, see (2). Thereby, the

following constraints need to be respected:

• The route must start at port 1.

• The total turnaround time (which also includes traveling and service time, see (1)) must be between

wmin and wmax weeks.

• At each port i, if the total inflow of full and empty containers (counting the flow both in the outbound

and inbound direction) is not equal to the total outflow, the difference should be balanced by either

leasing or storing containers at that port (the balancing of empty containers is explained in the next

section). Alternatively, to save the latter cost, empty containers can be transported on the ship.

• Full containers can be transported either in the outbound or inbound direction.
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Let us now more formally define the constraints on the turnaround time, then the profit function. Let

N ′ = Nout ∪ Nin. To calculate the total turnaround time in hours, denoted by Ttot, we have to take into

consideration the time for loading and unloading full and empty containers at the respective ports, the time

for arrival and departure at the calling ports, and the fixed time Ti∗ :

Ttot =
∑
i∈N ′

∑
j∈N ′

(
T li + Tuj

)
zij +

∑
i∈N ′

∑
j∈N ′

(
T̃ li + T̃uj

)
yij +

∑
i∈Nout

(
T ai + T di

)
+
∑
i∈Nin

(
T ai + T di

)
+ Ti∗ (1)

The turnaround time in weeks is w = dTtot

168 e, as there are 7 × 24 = 168 hours in a week. The constraint is

then

wmin ≤ w ≤ wmax.

The number of idle hours the ship stays immobilized at the initial port is 168 ·w−Ttot ≤ HI . Note that, for

the given line that is operated on a weekly basis, the value of w implicitly determines the size of the fleet,

i.e., for w = 4, a fleet of four ships is needed to guarantee the weekly service.

The profit function is then calculated as follows:∑
i∈N ′

∑
j∈N ′

Pijzij−
∑
i∈N ′

∑
j∈N ′

(
Lfi + Ufj

)
zij −

∑
i∈N ′

∑
j∈N ′

(
Lei + Uej

)
yij+

−
∑
i∈N ′

(Lili + Sisi)−
∑

i∈Nout

Fi −
∑
i∈Nin

Fi −Ki∗ − wcc · w − CI(168 · w − Ttot). (2)

The first term denotes the revenue collected for shipping the full containers, which is followed by the

cargo-handling cost (that consists of: loading/unloading cost for full and empty containers, respectively, and

cost for storing/leasing of empty containers), and port call costs (paid only for the called ports). Finally,

wcc · w denotes the capital cost (which includes the cost of the charter, maintenance, insurance, crew, etc.)

and Ki∗ denotes the bunker (fuel) cost for the whole route from 1 to i∗ and back. The value of Ki∗ is

calculated as follows (see [21]):

Ki∗ = Pout · (Ti∗ − Twi∗ ) · (fp · scf + lp · scl) i∗ ∈ N. (3)

The value CI(168 · w − Ttot) represents the total cost for the ship remaining idle at the initial port.

Observe that the profit calculated by (2) is the profit (in US$) for one ship collected during the turnaround

time of w weeks. This is at the same time the weekly profit for the shipping company for the whole fleet.

Indeed, consider an optimal route whose optimal solution value is P and let the calculated turnaround time

for this solution be w weeks. The weekly profit per ship is then P/w. However, to provide a regular service

on the weekly basis, the company will have to employ a fleet of w ships, so that the total weekly profit for

the company is P .
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3.2. Transformation of the Input Graph

To simplify the notation and the description of our models, we introduce for full and empty containers,

respectively, two directed acyclic graphs (DAG) Gf = (N̄ , Af ) and Ge = (N̄ , Ae), where:

• Each graph has the same ordered set of nodes N̄ = {1, 2, . . . , n, n+ 1, n+ 2, . . . , 2n− 1}, where nodes

i ∈ {1, . . . , n} correspond to the outbound visit of port i, whereas nodes i ∈ {n + 1, . . . , 2n − 1}

correspond to the inbound visits of ports ī = 2n− i. In the following we will use a mapping ī = 2n− i

to refer to the physical port ī associated to the node i ∈ N̄ , whenever i > n.

• The shipping of full containers is modeled by defining the set of arcs Af = {(i, j) : i, j ∈ N̄ , i < j ≤

n or n ≤ i < j}. The shipping of empty containers (which is unrestricted) is instead modeled using

the set of arcs Ae = {(i, j) : i ∈ N̄ , j ∈ N̄ , i < j} , i.e., contrary to full containers, empty containers

can be transported from outbound to inbound while staying on the the ship at the last visited port.

• To each node i ∈ N̄ , we associate:

– T̄i is the time necessary to visit port i. It is defined as:

T̄i :=

T
a
i + T di , if i ≤ n,

T a
ī

+ T d
ī
, otherwise

i ∈ N̄

The definition of all other parameters (Fi, U
e
i , Lei , U

f
i , Lfi , T li , T

u
i , T̃ li , T̃

u
i ) is straightforwardly

extended from set N to N̄ , namely, for i ≤ n, the values remain unchanged, and for i > n, they

are set to the respective value for port ī = 2n− i.

• We associate the following parameters to the arcs:

– D̄ij is the weekly expected demand of full containers between i and j, and it is set as:

D̄ij :=

Dij , if i < j ≤ n,

Dīj̄ , if n ≤ i < j

(i, j) ∈ Af

– P̄ij is the net profit for shipping a full container from port i to port j, i.e., it is obtained by

subtracting the container unloading and loading costs from the collected revenue:

P̄ij :=

Pij − U
f
j − L

f
i , if i < j ≤ n,

Pīj̄ − U
f
j̄
− Lf

ī
, if n ≤ i < j

(i, j) ∈ Af

– C̄ij is the cost per empty container shipped from i to j:

C̄ij := Lei + Uej , (i, j) ∈ Ae
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– T̄ij , resp., T̄ eij , is the sum of the loading and unloading time per full, resp., empty, container when

shipped from i to j:

T̄ij :=

T
l
i + Tuj , if i < j ≤ n,

T l
ī

+ Tu
j̄
, if n ≤ i < j

(i, j) ∈ Af , T̄ eij := T̃ li + T̃uj (i, j) ∈ Ae

Observe that P̄ij shall remain strictly positive, otherwise the O-D pair (i, j) can be removed from the set of

demands (as the shipping company would normally not offer the service if these net profits are non-positive).

A feasible solution can now be described by selecting a subset of arcs A′ and associating with each arc

(i, j) in A′ a label zij |yij , which means that zij full and yij empty containers are shipped from port i to

port j. By construction, only shipping in the outbound, respectively, inbound direction is allowed for full

containers. Nodes incident to A′ define the calling ports, and the route can be automatically reconstructed

by following the sequence of incident nodes in the outbound and then inbound direction. In the following

we provide two examples to illustrate the basic concepts of the empty container repositioning.

Example. Let us assume that we are given n = 4 ports, such that the demands for transporting full containers

(after the transformation of the input graph, as described above) are: D̄12 = 2, D̄13 = 5, D̄34 = 7, D̄46 = 4,

D̄57 = 3, D̄67 = 7. Let us furthermore assume that the ship capacity is C = 10, so that in a feasible

solution all demands can be satisfied. Assume that the time data and wmax are such that a solution in

which all four ports are called in both directions is feasible. In the following, we illustrate two feasible

solutions, each of them corresponding to a route 1-2-3-4-3-2-1. For the two examples, empty containers do

not cross outbound and inbound, so we only represent arcs in Af . In the first one (depicted in Figure 2),

the balancing of containers is done by storing and leasing empty containers at respective ports, whereas in

the second example (Figure 3), storage and leasing costs are avoided by transporting the empty containers

along the route. Depending on the costs required for storage/leasing, one solution can be better than the

other.

We use Figure 2 to explain the balancing of empty containers: at each port i ∈ N , flow-balance constraints

have to be satisfied. So, for example, at port 2, there are 2 full containers unloaded in the outbound direction,

there are 4 more unloaded in the inbound direction. There are zero containers loaded in the outbound, and

7 containers loaded in the inbound direction. Hence, the total difference between the unloaded and loaded

containers in both directions is (7 + 0) − (2 + 4) = 1, and we conclude that one empty container has to be

leased at port 2. Similarly, whenever this difference is negative, the corresponding number of containers has

to be stored at the given location.

Another example given in Figure 3 illustrates an alternative solution in which balancing of empty con-

tainers ensures that no leasing or storage cost need to be paid.
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1 2 3 4 3̄ 2̄ 1̄

2|0
5|0

7|0
4|0 3|0

7|0

Figure 2: Example of a solution in which storage of empty containers is needed at port 1 (3 containers) and port 4 (3 containers),

and leasing is necessary at port 2 (1 container) and port 3 (5 containers).

1 2 3 4 3̄ 2̄ 1̄

2|3
5|0

0|2 7|0 0|3
4|0 3|0

7|0

Figure 3: Example of a solution in which no leasing/storage of empty containers is needed, since the balancing is guaranteed

by the shipping of empty containers.

3.3. NP-hardness

The BCSP introduced in Definition 1 contains a constraint associated to the upper bound on the total

turnaround time. This is a knapsack-type constraint, which implies that in general the BCSP is at least

weakly NP-hard. We refer the interested reader to [15, 22] for further details on the knapsack problem. In the

following, we show two results: (1) we prove that the problem is in fact strongly NP-hard, even if most of the

constraints are relaxed and the turnaround time constraint is kept, and (2) in the case that the turnaround

time constraint and the ship-capacity constraint are relaxed, the problem can be solved in polynomial time.

We say that the input instance is capacity-unconstrained if the ship capacity C is sufficiently large so that at

every leg, complete demand can be shipped, i.e., if
∑

(i,j)∈Af :i≤i′,j>i′ D̄ij ≤ C for each port i′ ∈ N̄ . Similarly,

we say that the instance is time-unconstrained, if the imposed interval [wmin, wmax] for the turnaround time

is sufficiently large so that all ports can be called in both directions and all demands can be served, and

wcc = CI = 0 (in this case, decision variables w and h can be removed).

The decision problem associated with BCSP consists of determining if there exists a solution ensuring a

given profit.

Theorem 1. The decision problem associated with BCSP is strongly NP-complete even if the instance is:

• capacity-unconstrained,

• all costs are equal to zero (i.e., C̄ij = 0, for all (i, j) ∈ Ae and Ki = Li = Si = 0 for all i ∈ N),

• all demands and profits are binary (i.e., D̄ij, P̄ij ∈ {0, 1}, for all (i, j) ∈ Af ),

• all loading and unloading times are zero.
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Proof. We will prove this result by reduction from the (decision variant of the) CLIQUE problem. Let

H = (V,E) be an undirected graph, V the set of nodes, E the set of edges and let k be an integer. The

decision variant of the CLIQUE problem consists of deciding if a subset of nodes Q ⊆ V of cardinality k

exists such that the induced subgraph H[Q] is complete. We transform this instance of the CLIQUE problem

into an instance of the BCSP in the following way. Without loss of generality we can order the nodes as

follows: V = {2, . . . , n−1}. We build the DAG Gf = (N̄ , Af ) where N̄ = {1}∪V ∪{n}∪
⋃n−1
i=2 {̄i}∪{2n−1}

and Af =
⋃n
i=2{(1, i), (n, ī)} ∪

⋃n−2
i=2

⋃n−1
j=i+1{(i, j), (̄i, j̄)} ∪

⋃n−1
i=2 {(i, n), (̄i, 2n− 1)}

Profits and demands are defined as follows:

P̄ij = D̄ij =

1, if edge ij ∈ E ∨ īj̄ ∈ E ∨ i ∈ {1, 2n− 1} ∨ j ∈ {1, 2n− 1}

0, otherwise

(i, j) ∈ Af ,

We set T̄i = 168 (168 hours correspond to exactly one week) for each port i ∈ N̄ , wmin = 0 and

wmax = 2k + 2, Ti = 0, for i ∈ N , and wcc = CI = 0. Figure 4 illustrates the transformation from the

graph H into the DAG Gf , where dashed arcs correspond to the arcs where the associated net profits and

demands are equal to zero (P̄24 = D̄24 = P̄25 = D̄25 = P̄5̄2̄ = D̄5̄2̄ = P̄4̄2̄ = D̄4̄2̄ = 0).

2 3

45 1 2 3 4 5 6 5̄ 4̄ 3̄ 2̄ 1̄

Figure 4: Transformation from CLIQUE problem into the BCSP on the DAG Gf .

Under the assumptions stated in the theorem, we observe that the optimal solution of the BCSP has

a value (k + 1)k if and only if the selected ports in this solution correspond to a clique of size k in Gf .

Indeed, given the interval [wmin, wmax] for the turnaround time in weeks, and given that stopping at any

port will exactly spend one week, at most 2k+2 ports can be called (including the first port), by any feasible

BCSP solution. Observe that a profit between ports i and j (in the inbound and outbound direction) can

be collected only if there exists an edge ij ∈ E. Hence, the total profit collected by traversing from 1 to the

last visited port is at most (k+1)k
2 , and the same holds for the profit collected from the last visited port to

1. If the induced subgraph defined by the visited ports is not complete, then the solution value is strictly

less than (k + 1)k. This also holds if less than k ports are visited between 1 and the last visited port. This

completes the proof. �

Corollary 1. The BCSP is strongly NP-hard.

Theorem 2. The BCSP is polynomially solvable in the restricted case in which:

• the instance is capacity-unconstrained,
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• the instance is time-unconstrained, and

• leasing and storage costs for empty containers are zero (i.e., Li = Si = 0, for all i ∈ N) and wcc=0.

Proof. We will prove this result by modeling the problem using two sets of binary variables: Let binary

variables xi be set to one iff port i is called, i ∈ N̄ , and, for each (i, j) ∈ Af , let binary variables bij be set

to one iff the complete demand D̄ij is satisfied. Assume for the moment that n is the last visited port along

the route. Due to the zero costs for leasing or storing empty containers, we easily observe that there always

exists an optimal solution in which no empty containers need to be shipped. In this case the problem can

be modeled as follows:

max
∑

(i,j)∈Af

P̄ijD̄ijbij −
∑
i∈N̄

Fixi (4)

bij ≤xi (i, j) ∈ Af (5)

bij ≤xj (i, j) ∈ Af (6)

xn = 1 (7)

xi, bij ∈{0, 1} (i, j) ∈ Af (8)

The validity of this formulation follows from the fact that, if port i is called, all its demand will be covered

(since there are no capacity restrictions and a solution in which the demand is partially fulfilled can always

be improved by increasing the served demand). We observe that the constraint matrix defined by (5)-(6) is

totally unimodular, hence, solving the LP-relaxation of this problem already provides an integer solution.

To deal with the more general case in which the final port has to be chosen, one has to solve the above

problem n− 1 times, assuming the port i, 2 ≤ i ≤ n, is chosen as the last one. This concludes the proof. �

4. New MIP models for the BCSP

In this section we propose two new MIP formulations for the BCSP. Our models are much sparser when

compared to those known in the literature, both in terms of the required decision variables and the underlying

constraints. As we will demonstrate in the computational section, these models also provide significantly

tighter lower bounds when compared to the previous formulation given in [21].

The following variables are common in both our models:

• χi are binary variables which are set to one iff port i is the last visited port, i ∈ N ,

• xi are binary variables which are set to one iff port i is called, i ∈ N̄ ,

• zij is the number of full containers shipped from i to j, (i, j) ∈ Af ,
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• si is the number of empty containers stored at port i, i ∈ N ,

• li is the number of empty containers leased at port i, i ∈ N ,

• w is the turnaround time in weeks (which is also the size of the fleet)

• h is the number of idle hours the ship remains immobilized at the starting port.

In the DAG Gf , for a given S ⊂ N̄ , let δ+
f (S) = {(i, j) ∈ Af : i ∈ S, j 6∈ S} denote the set of outgoing

arcs from S, and similarly δ−f (S) = {(i, j) ∈ Af : i 6∈ S, j ∈ S} the set of incoming arcs. In the special case,

for S = {i} we will write δ+
f (i) and δ−f (i), respectively. The corresponding notations δ+

e (i) and δ−e (i) hold for

arcs in Ae. In the following, for each node i′ ∈ N̄ , with Afi′ we denote the arc-cut between the predecessors

of i′ (including i′) and all its successors:

Afi′ = {(i, j) ∈ Af : i ≤ i′, j > i′} (9)

with the corresponding notation Aei′ for empty containers. By summing up the number of all containers

shipped through Afi′ and Aei′ , we obtain the load of the ship between ports i′ and i′ + 1. Obviously, for each

1 ≤ i′ < 2n− 1, we must ensure that the total load does not exceed capacity C.

Finally, we also have to specify the repositioning of empty containers. Modeling of this repositioning

comprises the major difference between the two MIP models considered in this paper. The first model keeps

track of the number of empty containers shipped between any two ports, whereas for the second model we

only keep track of the number of empty containers that arrive, respectively, leave each port.

4.1. First Model with Arc-Variables for Empty Containers

In our first model, we use the same arc variables yij as those of the problem definition:

• yij is the number of empty containers shipped from i to j, (i, j) ∈ Ae.

and to ease the reading, we use the simplified compact notations :∑
j

(zij + yij) ≡
∑

(i,j)∈δ+f (i)

zij +
∑

(i,j)∈δ+e (i)

yij

∑
j

(zji + yji) ≡
∑

(j,i)∈δ−f (i)

zji +
∑

(j,i)∈δ−e (i)

yji

In the following we present a first MIP model that will be denoted by MS
1 . It is a valid formulation for the

BCSP (notation S stands for splittable demand). The objective function is given in (10) and it maximizes

the difference between the net profit (P̄ ) obtained for shipping the full containers, and the remaining cost

that is composed of the cost for loading and unloading empty containers, cost for entering the ports (note

that they will be paid twice if the same port is visited in the outbound and inbound direction), and cost for
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balancing containers at each port. The last three terms correspond to the fuel cost, the charter cost and the

cost for idle hours. Since the cost of visiting the last port of the line should be paid just once and in the

set N̄ each node except node n is represented twice, the objective function includes the necessary correction

term (fourth term in the formula).

max
∑

(i,j)∈Af

P̄ijzij −
∑

(i,j)∈Ae

C̄ijyij −
∑
i∈N̄

Fixi +
∑

i∈N\{n}

Fiχi −
∑
i∈N

(Sisi + Lili)−
∑
i∈N

Kiχi − wcc w − CIh

(10)

In the following we present the families of constraints of MS
1 . Constraint (11) ensures that exactly one port

is chosen as the last visited port, whereas constraints (12) and (13) ensure that this port is called (both in

the outbound and inbound direction). Constraints (14) ensure that all ports after the last visited one cannot

be called in each direction. ∑
i∈N

χi =1 (11)

χi ≤xi i ∈ N (12)

χi ≤x2n−i i ∈ N (13)

χi + xj ≤1 i ∈ N \ {n}, i < j < 2n− i. (14)

Constraints (15) and (16) guarantee that full containers can be shipped from i to j only if both ports i and

j are called. In addition, they impose the number of shipped containers not to exceed the demand D̄ij .

zij ≤D̄ijxi (i, j) ∈ Af (15)

zij ≤D̄ijxj (i, j) ∈ Af (16)

Constraints (17) and (18) state that the complete ship load to be delivered at (or shipped from, respectively)

port i cannot exceed ship capacity C, and in addition, nothing can be transported to/from a port, if the

port is not called. ∑
j

(zij + yij) ≤Cxi i ∈ N̄ (17)

∑
j

(zji + yji) ≤Cxi i ∈ N̄ (18)

Inequalities (19) are the capacity constraints associated to the maximal capacity of the ship C: they ensure

that the load of the ship (concerning both empty and full containers) between each node i′ and i′ + 1 does

not exceed C. ∑
(i,j)∈Af

i′

zij +
∑

(i,j)∈Ae
i′

yij ≤C i′ ∈ N̄ \ {1̄} (19)
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Balancing of empty containers is given by constraints (20), where we again use the notation ī = 2n− i. For a

given port i ∈ N , we calculate the difference of all containers loaded at i (either in the inbound or outbound

direction) and containers unloaded at i (again, either inbound or outbound). If this difference is positive,

the shipping company has to lease as many containers at port i, otherwise, it will need to store them. By

minimization of Sisi+Lili in the objective function, at optimality we necessarily have for each i either li ≥ 0

and si = 0, or si ≥ 0 and li = 0, but not li > 0 and si > 0.∑
j

(zij + yij)−
∑
j

(zji + yji) +
∑
j

(zīj + yīj)−
∑
j

(zjī + yjī) =li − si i ∈ N (20)

Finally, we compute the turnaround time w and the number of idle hours h with constraint (21) together

with the minimization of associated costs in the objective. The bounds on variables w and h are given in

constraints (22)-(23).

168w − h ≤
∑
i∈N

Tiχi +
∑

(i,j)∈Af

T̄ijzij +
∑

(i,j)∈Ae

T̄ eijyij +
∑
i∈N̄

T̄ixi −
∑

i∈N\{n}

T̄iχi ≤168w (21)

wmin ≤ w ≤ wmax (22)

h ≤ HI (23)

The nature of decision variables is defined by (24)-(26). We do not explicitly impose integrality on li and si,

since whenever variables x, z and y are integer, variables l and s will automatically take integer values.

si, li ≥0 i ∈ N (24)

xi ∈{0, 1} i ∈ N̄ (25)

w, h ∈ Z+ (26)

zij ∈Z+ (i, j) ∈ Af (27)

yij ∈Z+ (i, j) ∈ Ae (28)

We stress that the given MIP formulation is, to the best of our knowledge, the first model in the literature

that integrates the optimization of the turnaround time along with the design of the line. On the contrary,

most of the available models for the barge container routing explicitly impose the overall turnaround time,

which may lead to suboptimal solutions and reduced profits. In our computational study (cf. Section 5) we

analyze benefits of our new integrated approach and demonstrate the gains in profit that can be achieved

by utilizing our new model.

4.2. Second (Aggregated) Model with Node Variables for Empty Containers

In this section we propose an alternative, more compact but less intuitive formulation for the BCSP.

In deriving this new model, we exploit the fact that empty containers can be seen as a single commodity
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that can be picked up and/or delivered at any port. This is in contrast to the full containers, where each

of them has a pre-specified origin and destination with a differenciated profit (and hence, each D̄ij has to

be considered as a separate commodity). As shown in the following subsection, the new model retains the

same quality of the LP relaxation bound, while significantly reducing the number of decision variables. This

property can turn into an important advantage when difficult instances with unsplittable demand need to be

solved (see our computational results in Section 5 for further details). In this second model (denoted by MS
2

in the following) we do not explicitly state the exact amount of empty containers transported from port i to

port j, but rather the amount of empty containers that leave, respectively enter, each port. For the ease of

exposition and without loss of generality, the model is derived from the model MS
1 (with explicitly imposed

bounds on the turnaround time), by replacing the yij variables with these two new sets of variables:

• yini is the number of empty containers unloaded at port i, i ∈ N̄ ,

• youti is the number of empty containers loaded at port i, i ∈ N̄ .

using the transformation:

yini =
∑

(j,i)∈δ−e (i)

yji (29)

youti =
∑

(i,j)∈δ+e (i)

yij (30)

Given these variables, we have to slightly modify the objective function so that the costs for load-
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ing/unloading empty containers at each port are handled separately. The model MS
2 reads as follows:

max
∑

(i,j)∈A

P̄ijzij −
∑
i∈N̄

(Fixi + Leiy
out
i + Uei y

in
i )+

+
∑

i∈N\{n}

Fiχi −
∑
i∈N

Kiχi − wcc w − CIh (31)

(11)-(16)∑
(i,j)∈δ+f (i)

zij + youti ≤Cxi i ∈ N̄ (32)

∑
(j,i)∈δ−f (i)

zji + yini ≤Cxi i ∈ N̄ (33)

∑
(i,j)∈Af

i′

zij +
∑
i≤i′

(youti − yini ) ≤C i′ ∈ N̄ \ {1̄} (34)

∑
(i,j)∈δ+f (i)

zij + youti −
∑

(j,i)∈δ−f (i)

zji − yini +

+
∑

(̄i,j)∈δ+f (̄i)

zīj + youtī −
∑

(j,̄i)∈δ−f (̄i)

zjī − yinī =li − si i ∈ N (35)

168w − h ≤
∑
i∈N

Tiχi +
∑

(i,j)∈Af

T̄ijzij+

+
∑
i∈N̄

(T̄ixi + T̃ li y
out
i + T̃ui y

in
i )−

∑
i∈N\{n}

T̄iχi ≤168w (36)

∑
j<i

youtj −
∑
j<i

yinj ≥yini i ∈ N̄ (37)

∑
j>i

yinj −
∑
j>i

youtj ≥youti i ∈ N̄ (38)

∑
i∈N̄

youti =
∑
i∈N̄

yini (39)

yini , y
out
i ∈Z+ i ∈ N̄ (40)

(22)− (27)

Constraints (32)-(36) are the direct adaptation of inequalities (15)-(21), respectively, using the transformation

(29)-(30) . In order to balance the empty containers, additional constraints are needed. Constraints (37)

enforce that the amount of empty containers unloaded at a specific port cannot exceed the surplus of empty

containers cumulated in the previous ports. The meaning of inequalities (38) is similar, but it concerns the

empty containers loaded at port i. Finally, we impose by (39) that the total number of empty containers

loaded all over the route is unloaded, i.e., the ship cargo has no more empty containers at the end of the

route. Note that for the last port i∗ verifying χi∗ = 1, we necessarily have youti∗ = yini∗ = 0 or yout
ī∗

= yin
ī∗

= 0,

as since all other ports after i∗ are not called and there is no demand between i∗ and ī∗, then loading a > 0
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containers at i∗ and unloading b < a containers at ī∗ is strictly more costly than just loading a−b containers

at i∗ (or ī∗) which keeps the same number of empty containers when the ship leaves the port. The same

reasoning holds for unloading at i∗ then loading at ī∗. In contrast to model MS
1 , the validity of model MS

2

is less obvious, and this result will be shown in the following subsection.

4.3. Equivalence of the Two Models

With the following theorem we prove two results: First, we show that the model MS
2 is a valid formulation

for the BCSP (by providing a bijection of solutions between the first and the second model). Second, we

also prove that the two formulations, MS
1 and MS

2 , have the same value of the LP-relaxation (in which case,

we call the two models equivalent).

Theorem 3. Every (fractional) solution (x̄, χ̄, z̄, s̄, l̄, w̄, h̄, yij) of model MS
1 can be transformed into a (frac-

tional) solution (x̄, χ̄, z̄, s̄, l̄, w̄, h̄, yin, yout) of model MS
2 with the same objective value, and vice-versa. The

linear transformation is given by (29)-(30) on both sides, i.e., also from model MS
2 to MS

1 .

Proof. The transformation from solutions of MS
2 to MS

1 , that also ensures (29) and (30), will be explained

at the end of the proof.

Observe first that if (29) and (30) hold, we have equality of objective values for the two models, which follows

from the definition of C̄ij , since∑
(i,j)∈Ae

C̄ijyij =
∑
i∈N̄

∑
(i,j)∈δ+e (i)

(Lei + Uej )yij

=
∑
i∈N̄

Lei
∑

(i,j)∈δ+e (i)

yij +
∑
i∈N̄

Uei
∑

(j,i)∈δ−e (i)

yji =
∑
i∈N̄

(Leiy
out
i + Uei y

in
i ),

whereas all the other terms remain equal in the objective functions of the two models. Now, let us focus

on constraints. Observe that if (29) and (30) are satisfied, then obviously constraints (17), (18), (20) and

(21) for MS
1 become constraints (32), (33), (35) and (36) for MS

2 and vice-versa. Moreover, the cut capacity

constraints (19) become constraints (34) and vice versa because∑
i≤i′

(youti − yini ) =
∑
i≤i′

(
∑
j>i

yij −
∑
j<i

yji)

=
∑
i≤i′

(
∑

j:i<j≤i′
yij +

∑
j>i′

yij −
∑
j<i

yji)

=
∑
i≤i′

∑
j>i′

yij =
∑

(i,j)∈Ae
i′

yij

as in the second line above, the first and the third summation cancel out (as each arc (i, j) with i < j < i′

appears with a positive and a negative sign), so that what finally remains is the summation of the arcs with

origin i ≤ i′ and destination j > i′.
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Now to finish the proof, we need to complete the missing parts studying one transformation after the other.

(i) Transformation from solutions of MS
1 to MS

2 . It remains to show that constraints (37) and (38) are

satisfied. Indeed, by using (29) and (30), we get∑
i<i′

(youti − yini )− yini′ =
∑
i<i′

∑
j>i

yij −
∑
j≤i′

∑
i<j

yij =
∑
i<i′

∑
j>i′

yij ≥ 0

which follows from the fact that each arc (i, j) such that i < j ≤ i′ appears twice in the summation on the

left-hand side, once with a positive and once with a negative sign, so that what finally remains is the sum

of arcs that start before i′ and end after i′. Hence, (37) is satisfied. Similarly, the validity of (38) can be

shown, as they practically boil down to the same
∑
i<i′

∑
j>i′ yij ≥ 0.

(ii) Transformation from solutions of MS
2 to MS

1 . It finally remains to show that from given yini and youti ,

one can find values of variables yij such that (29) and (30) are satisfied, i.e., this system of equations has a

solution.

We show that the values of yij can be obtained by solving a circulation problem on an extended digraph

in which node demands/supplies are defined using the values of yin and yout. Recall that the circulation

problem consists of finding a network flow with added constraints of a lower bound on edge flows and flow

conservation constraints also being required for the source and sink [1]. Our extended graph is constructed

starting from the original digraph Ge, by adding for each node i ∈ N̄ two nodes i− and i+, and two arcs

(i−, i) with a lower bound and capacity both equal to yini (to ensure a flow of yini units on that arc) and

(i, i+) with a lower bound and capacity both equal to youti for the same reason. Then for each (i, j) ∈ Ae, we

add an arc (i+, j−) with capacity C − z̄ij . In Figure 5 we show an example of the extended digraph for an

instance with 4 ports (we skip the arcs crossing outbound and inbound to make it more readable). Solving

the system of equations (29)-(30) is equivalent to finding a feasible circulation in this modified graph with

supply/demands di := yini − youti on nodes i ∈ N̄ . A sufficient condition for finding a feasible flow on such a

graph is that
∑
i∈N̄ di = 0 (see [16], section 7.7) which is exactly property (39). So, we can indeed find the

yij satisfying (29)-(30) from the yini , youti values. This completes the proof. �

Even though the two formulations provide the same quality of lower bounds, it is not clear which one

of them performs better from the computational point of view. This is because formulation MS
2 admits

less decision variables, but more constraints when compared to MS
1 . On the one hand, formulation MS

2

strongly exploits the problem assumptions (outbound-inbound principle) and results into a “thinner” model.

On the other hand, model MS
1 could be more flexible in terms of potential extensions concerning e.g., the

time-dimension, simultaneous planning of multiple routes, or transshipment. Computational comparison of

the two models, among other issues, will be investigated in Section 5.
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Figure 5: Example of extended graph for an instance of 4 ports.

4.4. Properties of Optimal Solutions

We now introduce some properties of optimal solutions whenever special assumptions concerning cost,

capacity or time limit parameters are satisfied.

Proposition 1. If for each port i, we have Uei > Li, L
e
i > Si and T li + Tui < T̄ li + T̄ui , then all variables yi

will be zero at optimality and therefore can be removed from the model.

Proof. Let us use model MS
2 for the proof. To balance containers at each port, constraints (35) can be

rewritten as ∑
(i,j)∈δ+f (i)

zij +
∑

(̄i,j)∈δ+f (̄i)

zīj

−
 ∑

(j,i)∈δ−f (i)

zji +
∑

(j,̄i)∈δ−f (̄i)

zjī

 = li − si + (yini + yinī )− (youti + youtī )

which says that the difference between outflow and inflow at port i (computing flows at a port both outbound

and inbound) should be exactly balanced by a mix of storing or leasing, and empty container repositioning.

The right-hand side of the above flow balance equation has a corresponding cost of Sisi + Lili + Lei (y
out
i +

yout
ī

)+Uei (yini +yin
ī

) in the objective function (31). Therefore, if the cost assumptions of the proposition hold,

balancing the containers with only storing or leasing (variables si or li) without using any empty containers

(yin = yout = 0) will be less costly. Since the empty containers variables yin and yout consume ship capacity

in constraints (32), (33), (34) and consume more time in constraint (36) if T li + Tui < T̄ li + T̄ui , then these

variables yin and yout will all be equal to zero at optimality. �

Consequently, to have an economic interest in transporting empty containers, we can assume that the

conditions of Proposition 1 do not hold. We now introduce a second property of optimal solutions based on

capacity and time-limit assumptions.

Proposition 2. For the splittable demand case, if (i) there is enough demand to fill the ship at any time

(i.e.,
∑

(i′,j)∈Af
i
D̄i′j ≥ C for each port i ∈ N̄), and (ii) the instance is time-unconstrained, then the ship

will carry full containers only and will be at full capacity C during the whole trip.
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Proof. Assume that
∑

(i′,j)∈Af
i
D̄i′j ≥ C for each port i ∈ N̄ and let (x∗, z∗, s∗, l∗, y∗) be an optimal

solution such that there exists a port i ∈ N̄ with
∑

(i′,j)∈Af
i
z∗i′j < C. In this solution, the ship might

carry some empty containers (i.e., we might have
∑

(i′,j)∈Ae
i
y∗i′j 6= 0) without exceeding the overall capacity.

Starting from this optimal solution, one can find a feasible solution (x∗, z′, 0, 0, 0) that visits exactly the

same ports, satisfies z′ij ≥ z∗ij for all arcs (i, j) and
∑

(i′,j)∈Af
i
z′i′j = C for each i ∈ N̄ , by simply removing all

empty containers and adding full containers up to systematically filling the ship capacity. In this modified

solution, since the ship is always at full capacity with only full containers we have yini = youti = 0 for each

i ∈ N̄ . As the containers are already balanced by the z′-variables, we also have li = si for all i ∈ N .

Moreover, as all profits satisfy P̄ij > 0 and we added full containers to those already transported, the new

solution (x∗, z′, 0, 0, 0) has a strictly higher profit than the starting one, i.e.,
∑

(i,j) P̄ijz
′
ij >

∑
(i,j) P̄ijz

∗
ij ,

it has the same fixed costs associated to visited ports, and has zero leasing, storage, or empty container

repositioning costs. So the objective value of (x∗, z′, 0, 0, 0) is strictly better than that of (x∗, z∗, s∗, l∗, y∗),

which contradicts the fact that the optimal solution would not be at full capacity at each port. �

In practice, the total demand is often large enough to completely fill the ship at most of the segments.

Therefore, the reason why the ship would not be at full capacity C is mainly the possible upper limit for the

turnaround time imposed by the profit maximization which implicitly bounds the amount of full containers

to be shipped. Similarly, if the demand is not allowed to be split, there will be more available capacity

on each segment. This residual capacity at the ship is normally filled by empty containers, whenever this

can bring savings with respect to leasing and storage costs. Both observations are verified in our numerical

experiments, as we will see later (cf. Section 5).

4.5. Modeling Unsplittable Demand

In many realistic cases it is not allowed to split demands, so that either 0 containers or all D̄ij containers

have to be shipped, assuming ports i and j are called (i, j,∈ N̄). We show that our models can easily be

modified to deal with this “unsplittable demand-case”. In this case we call the models MU
1 and MU

2 , where

U stands for unsplittable.

If it is not allowed to split the demand D̄ij between any two ports i and j, (i, j) ∈ A, then our model MS
1

and MS
2 require a slight modification, which consists in replacing zij by D̄ijbij , where the binary variable

bij is set to one iff the complete demand D̄ij is shipped from i to j, i.e.:

bij =

 1 if demand from port i to port j is completely fulfilled

0 otherwise
(i, j) ∈ Af

In order to get a correct model for the unsplittable demands case, it is sufficient to replace every appearance

of the variable zij in models MS
1 and MS

2 by D̄ijbij , for all (i, j) ∈ Af .
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Observation 4.1. The value of the LP-relaxation of model MU
1 (resp., MU

2 ) is the same as the one obtained

by model MS
1 (resp., MS

2 ).

This result follows because, for model MS
1 , every fractional feasible solution (x̄, z̄, s̄, l̄, w̄, h̄, ȳ) can be

transformed into a fractional feasible solution (x̄, z̄, s̄, l̄, w̄, h̄, b̄) forMU
1 with the same objective function value,

and vice-versa using the linear transformation b̄ij =
z̄ij
D̄ij

for all (i, j) ∈ Af . Observe that all feasible integer

solutions of MU
1 can be transformed to feasible integer solutions of MS

1 using this linear transformation, but

trivially not vice-versa. The same transformation holds for models MS
2 , which has the same LP-relxation

value as MU
1 by Theorem 3, and MU

2 . Accordingly, the gap between the optimal integer solutions value of

model MU
1 (resp., MU

2 ) and its LP-relaxation value cannot be smaller than the LP-gap of model MS
1 (resp.,

MS
2 ). In our computational study (cf. Section 5), we computationally show that these gaps are considerably

higher and accordingly, modelsMU
1 andMU

2 are harder to solve than their splittable versions. It is well known

that unsplittable demands give less flexibility to the shipping companies, and hence lower ship utilization is

normally achieved. This can be (partially) compensated by allowing the repositioning of empty containers

as they can be used to fill the residual capacity of the ship, thereby saving the storage/leasing costs at the

ports.

5. Computational Experiments

The goals of our computational study are as follows: (1) Evaluate the performance of the two formulations

introduced in this paper; (2) Compare them with the state-of-the-art model from [21] for a specific subclass

of the problem; (3) Demonstrate the economical advantages of our models to simultaneously optimize the

route and the turnaround times, rather than imposing the turnaround time explicitly; (4) Measure how the

empty container rebalancing is influenced by imposing splittable vs unsplittable demands, both in terms of

the cost and the solution time.

All the algorithms are coded in C/C++, and run single-thread on a PC with an Intel(R) Core(TM)

i7-4770 CPU at 3.40GHz and 16 GB RAM memory, under Linux Ubuntu 14.04 64-bit. We used IBM-ILOG

Cplex 12.6.0 (Cplex in the following) as a general-purpose MILP solver. All Cplex parameters were set to

their default values, except the following ones: relative and absolute tolerance were set to 0.0.

5.1. Benchmark Instances

We use the benchmark instances for the BCSP introduced in [21]: they consist of n ports, with n ∈

{10, 15, 20, 25}. In total, 20 instances are considered: for each value of n, five instances were produced with

different ship characteristics (carrying capacities, daily charter costs, downstream and upstream speeds,

engine outputs, fuel and lubricant consumptions, cf. Table 2). The real-world input parameters are taken

from the Container Liner Service Danube project [9], where ports along the river Danube are taken as input.
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Table 2: The characteristics of 5 different container barge ships (taken from [21]).

Container barge ships No. units TEU Pout Total v1 v2 wcc/7

[kW] TEU [km/h] [km/h] [$]

Ship 1 Motorized cargo push vessel 1 90 2×607 215 19 11 3050

Pushed barges 1 165 –

Ship 2 Motorized cargo push vessel 1 145 2×1024 409 20 12 4450

Pushed barges 2 132 –

Ship 3 Motorized cargo push vessel 1 77 2×565 242 19 11 2850

Pushed barges 1 165 –

Ship 4 Motorized cargo push vessel 1 60 667 180 16 9 1750

Pushed barges 2 60 –

Ship 5 Motorized cargo push vessel 1 98 2×927 338 20 12 3850

Pushed barges 4 60 –

Other parameters are taken from [17, 18, 26, 27, 28, 31]. In Table 2 we also report the speed of the ship in the

outbound and inbound direction, v1 and v2, respectively, and daily charter costs (wcc/7) . The Benchmark

instances, along with the LP files and the best obtained solutions of all the models presented in this paper

are publicly available at www.mi.sanu.ac.rs/~tanjad/ships.htm.

5.2. Computational Performance and Comparison with the State-of-the-Art

To the best of our knowledge, no integrated approaches for the BCSP are considered in the previous liter-

ature. We therefore compare it with a problem variant that was introduced in [21] in which the turnaround

time was fixed (Tmax), the final port (n) was given and the transport of full and empty containers was allowed

only in one direction. The instances considered by [21] have a fixed Tmax which depends on the number of

ports, i.e., for n = 10 the value of Tmax is 3 while for all the others Tmax is 4. In this section we compare the

computational performance of our new models against the state-of-the-art from [21]. Later, in Section 5.3

we show the economical advantages of an integrated approach in which the turnaround time is optimized

within a model. We conclude our computational study in Section 5.4 by comparing the performance of the

two new models for the more challenging problem variant in which demands are not allowed to be split.

We first consider the BCSP problem variant from [21] and compare the following three settings:

• MS
1 : the MIP formulation introduced in Section 4.1, based on arc-variables yij for modeling empty-

container repositioning, where χn = 1, and
∑

(i,j)∈Ae\Af yij = 0 are imposed and 168w is replaced by

Tmax in (21),

• MS
2 : the MIP formulation introduced in Section 4.2, based on node-variables yini and youti for modeling
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empty-container repositioning, where χn = 1,
∑
i∈N\{1} y

in
i =

∑
i∈N\{n} y

out
i and

∑
i∈{n,...,2n−2} y

out
i =∑

i∈{n+1,...,2n−1} y
in
i are imposed and 168w is replaced by Tmax in (36), and

• MLDM: the MIP formulation studied in [21].

All three models have been tested on the same machine whose features are described above. For the results

of MLDM, we set a time limit of two hours.

Table 3 compares the three models in terms of the number of decision variables and constraints. Observe

that it is sufficient to report a single line per each n ∈ {10, 15, 20, 25}, since the size of the models remains the

same, once the number of ports is fixed. We notice that the MLDM model exhibits roughly twice as many

variables as our new models and more than 50% more constraints. Comparing the size of the node-based

model MS
2 with the arc-based one, MS

1 , we observe that the latter one contains about 50% more variables,

whereas the number of constraints of the former one is slightly larger, but remains at the same scale as for

MS
1 .

In Table 4 we compare the three models in terms of the following values: overall computing time in

seconds (time), total number of branch-and-bound nodes (# nodes), LP-relaxation gap (lp gap) and final

gap after reaching the time limit or proving optimality (exit gap). The LP-gap is defined as:

lp gap =
LP − LB

LB
· 100%,

where LP is the value of the LP-relaxation of the corresponding model, and LB is the best-known lower

bound (or optimal solution). ”Exit gap” is calculated as

exit gap =
UB − LB

LB
· 100%,

where UB is the global upper bound obtained upon the termination of the algorithm. Column ”lp gap” is

reported only once for MS
1 and MS

2 (recall that the two models have the same quality of lower bounds).

Finally, TL in the column “time” indicates that the time-limit was reached. Column “profit” reports the

optimal solution values.

The obtained results indicate that our new models are clearly superior to the MLDM formulation: with

our models all benchmark instances are solved within seconds to optimality (in most of the cases within a

fraction of a second), whereas for MLDM half of the instances could not be solved to optimality within two

hours (with exit gaps ranging between 11% and 40%). This can be explained by two facts: (1) the size of the

underlying formulations (cf. Table 3) and (2) by the quality of the LP-relaxations. Indeed, the LP-gap of the

MLDM is as big as 180%, whereas our models exhibit an LP-gap which is consistently below 1% (with the

exception of a single instance, for which the LP-gap is 1.9%). Consequently, relatively few branch-and-bound

nodes are needed to prove optimality (hundreds, on average), whereas MLDM enumerates 3 to 4 orders of

magnitude larger number of nodes to prove optimality (for n ∈ {10, 15}) and for n ∈ {20, 25} it reaches the
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Table 3: Number of variables and constraints of the different models on the BCSP variant from [21].

MLDM Model MS
1 Model MS

2

instance # vars # cons # vars # cons # vars # cons

Port10 358 398 219 246 167 286

Port15 758 818 479 521 327 581

Port20 1308 1388 839 896 537 976

Port25 2008 2108 1299 1371 797 1471

time limit after exploring hundreds of thousands of nodes. Finally, it is worth mentioning that even after

running the MLDM model with a time limit of one day, most of the instances with n ∈ {20, 25} remained

unsolved.

Comparing the performance of MS
1 vs MS

2 , we can see that MS
2 slightly outperforms MS

1 1 for computation

times, although no clear picture emerges: we may conclude that the two models are competitive, both in

terms of computing time and number of enumerated branch-and-bound nodes. We will see later that the

difference between the two models is much more significant for the case of unsplittable demands.

5.3. Optimizing Turnaround Time

We now focus on the more general case in which we let the optimization model decide about the optimal

turnaround time and the size of the fleet, along with the ports to be visited and amounts of containers to be

shipped. We compare solutions of the BCSP variant from [21] (with the fixed turnaround time) versus the

optimal solutions of the BCSP as introduced in this paper. On 10 out of 20 instances from our benchmark

set, we show that the profits can be significantly improved due to the newly proposed integrated modeling

approach. These instances are listed in Table 5 along with the basic solution properties including: the

number of ports in the calling sequence (outbound plus inbound) (#calls), the percentage of total demand

fulfilled (%D1) and the percentage of the total demand of the visited ports (%D2). The average load (Load

[%]) is calculated as the sum of the loads between every two consecutive ports, divided by the total number

of ports. The number of ships required to fulfill the schedule is given in column “fleet” and corresponds to

the turnaround time in weeks.

In all reported cases, the optimal solutions are obtained by decreasing the given turnaround time by one

week. This clearly reduced the collected revenue, but increased the net profit, which can be explained by

very high capital investments per ship. The improvement of profit (which is reported in column Impr.[%])

ranges between roughly 10 and 100%.
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Table 4: Computational performance of the three models on the BCSP variant from [21].

MLDM Model MS
1 Model MS

2

instance profit time [s] # nodes lp gap [%] exit gap time [s] # nodes time [s] # nodes lp gap [%]

Port10 1 22339.01 2.43 3699 26.03 0.00 0.03 30 0.03 30 0.20

Port10 2 24738.23 0.15 249 1.83 0.00 0.11 464 0.09 334 0.81

Port10 3 23294.75 4.88 5821 31.88 0.00 0.04 84 0.04 63 0.14

Port10 4 20686.27 0.42 591 8.76 0.00 0.13 297 0.09 108 1.90

Port10 5 25314.99 0.84 1589 13.15 0.00 0.07 184 0.09 174 0.81

Port15 1 12268.96 222.01 96914 146.79 0.00 0.03 0 0.03 0 0.02

Port15 2 25341.81 85.31 54249 69.08 0.00 0.12 238 0.15 351 0.05

Port15 3 13798.22 228.95 162075 158.94 0.00 0.06 0 0.06 13 0.03

Port15 4 22372.58 897.73 523976 180.98 0.00 0.19 432 0.18 392 0.32

Port15 5 15799.96 82.42 32528 101.04 0.00 0.08 12 0.05 10 0.01

Port20 1 19892.20 TL 842898 136.64 22.95 0.30 90 0.26 177 0.26

Port20 2 33204.57 TL 866050 66.81 11.60 0.31 137 0.20 99 0.08

Port20 3 21042.63 TL 905052 148.36 23.97 0.86 530 0.71 562 0.45

Port20 4 27962.32 TL 1064498 165.02 29.27 0.29 145 0.26 126 0.24

Port20 5 24257.89 TL 805063 96.21 16.94 1.06 1919 1.10 2041 0.18

Port25 1 21843.22 TL 403415 134.33 37.46 1.28 281 1.02 370 0.45

Port25 2 34410.74 TL 363195 66.88 23.07 1.08 332 0.57 138 0.25

Port25 3 23443.93 TL 401944 144.84 39.80 6.11 5777 5.57 5342 0.45

Port25 4 29177.52 TL 453145 161.98 40.89 1.19 298 0.80 181 0.61

Port25 5 26189.80 TL 416339 95.25 28.44 5.19 4272 4.50 4157 0.30
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Table 5: Solution features for the optimal turnaround case. Only improved solution, when compared to those shown in Table

4 are reported.

BCSP with Tmax = 4, [21] BCSP with optimal turnaround time

instance # calls % D1 % D2 Load [%] fleet profit # calls % D1 % D2 Load [%] fleet profit Impr.[%]

Port15 1 27 42.65 48.36 96.1 4 12269.0 14 23.84 75.64 94.3 3 24297.3 98.0

Port15 2 28 53.39 56.69 95.1 4 25341.8 15 28.58 80.97 85.5 3 30199.1 19.2

Port15 3 27 41.72 47.30 96.3 4 13798.2 14 23.71 75.21 94.7 3 25272.9 83.2

Port15 5 28 50.07 53.17 94.9 4 15800.0 14 29.70 85.78 91.4 3 29702.2 88.0

Port20 1 28 28.79 53.97 96.6 4 19892.2 13 15.22 85.66 94.5 3 24667.9 24.0

Port20 3 28 28.68 49.90 97.3 4 21042.6 14 14.57 77.33 94.9 3 25544.5 21.4

Port20 5 29 32.42 55.00 96.5 4 24257.9 14 18.85 85.59 91.5 3 30000.9 23.7

Port25 1 27 21.35 56.23 97.7 4 21843.2 13 10.89 85.93 95.1 3 24829.9 13.7

Port25 3 28 20.76 52.89 97.6 4 23443.9 14 10.29 77.11 96.4 3 25732.8 9.8

Port25 5 28 23.82 63.49 97.3 4 26189.8 14 13.54 85.59 90.5 3 30000.9 14.6

5.4. Unsplittable Demands

In this section we focus on the BCSP with unsplittable demand and we take a closer look at the perfor-

mance of the two proposed models, namely MU
1 and MU

2 . Recall that both models exhibit the same quality

of lower bounds, but since MU
2 contains significantly less variables, we investigate how beneficial is the use

of the latter model in some practical situations.

The same benchmark setting from [21] is used, apart from the fact that the demand is not allowed to

be split. Unsplittable demands make the BCSP much harder to solve from the computational perspective.

Both models do not manage to solve all the instances of this problem variant within the given time limit of

one hour. The obtained exit gaps are shown in Figure 6. A point (x, y) in this chart indicates that for y

instances, the exit gap was ≤ x%. The figure shows that both models are able to solve only 5 instances to

proven optimality within one hour of computing time. For the instances in which the time limit is reached,

the chart shows that model MU
2 consistently outperforms MU

1 , i.e., the exit gaps of model MU
2 are globally

lower than the ones of MU
1 and they range between 0.1% and 1%.

In a second set of experiments we enlarged the time limit to 30 hours and we ran the experiments in a

multi-core setting on the same machine (with 8 CPUs). That allowed us to solve seven more instances to

optimality. The results of this comparison are given in Table 6. The following values are provided for all 12

instances solved to proven optimality by at least one of the two models: the optimal solution value (profit),

and for each of the two models, the total CPU time in seconds and the number of branch-and-bound nodes.

Table 6 shows that for all instances with up to 15 ports, we are able to provide optimal solution values.
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Figure 6: Exit gaps of models MU
1 and MU

2 after one hour of CPU time.

In addition, two more instances with 20 ports (namely Port20 1 and Port20 4) are solved by the model

MU
2 within approximately 23.5 and 13.5 hours, whereas the model MU

1 runs into memory limit. For the

remaining 8 instances, both models run into memory or time limit. Further increasing of the time limit to

75 hours, does not help in solving more instances to optimality.

The obtained results indicate that the sparser model, namely MU
2 significantly outperforms MU

1 : for the

difficult instances with 15 ports, the average speed-up ratio is 2.7, but one of the five instances remains

unsolved by MU
1 , due to the memory overconsumption (denoted by ML in Table 6). We therefore conclude

that it indeed pays off to project out arc variables and model the empty container repositioning as a single

commodity using node-variables only.

5.5. Analyzing Solutions: Splittable vs Unsplittable Demands

In the following, we analyze the profit of BCSP solutions for both splittable and unsplittable demand

cases. The Splittable demand case allows a shipping company to adjust the number of containers accepted

for loading and transportation in each port so as to achieve the highest value of profit. The Unsplittable

demand case is more oriented towards satisfaction of all customer requests in calling ports. Both profit and

customer satisfaction are among the most significant business goals of any barge shipping company so these

cases have its practical values and usefulness.

We summarize the increase of profits that can be achieved by allowing splittable demands and/or empty

container repositioning in Figure 7. The zero line corresponds to the basic setting in which the demand

cannot be split and no empty container repositioning is allowed. We then demonstrate: (1) the relative

increase of profit (in %) if empty container repositioning is allowed (curve denoted by “+e”), and (2) the

relative increase of profit (in %) if both, empty container repositioning and splittable demands are possible

(curve denoted by “+es”). Instances in this chart are sorted according to the increase with respect to “+e”.

We observe that, only by shipping empty containers, the (weekly) profit (per ship) can be increased up to
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Table 6: Computational performance of models MU
1 and MU

2 for unsplittable demands. The time limit was set to 30h.

Model MU
1 Model MU

2

instance profit time [s] # nodes time [s] # nodes lp gap [%]

Port10 1 18204.52 4.02 4097 11.25 8320 4.10

Port10 2 21872.31 0.85 778 1.19 1669 2.71

Port10 3 19783.36 3.25 2377 7.95 6401 3.59

Port10 4 17608.09 0.37 0 1.10 206 6.37

Port10 5 23297.05 1.47 1820 2.27 4253 2.28

Port15 1 9658.81 ML ML 91001.05 95207142 2.21

Port15 2 22706.26 29912.24 6672144 7138.04 10436315 1.48

Port15 3 11574.65 19424.34 3507591 15584.75 15253603 1.99

Port15 4 19913.30 28201.77 4546113 24435.47 23252439 3.23

Port15 5 13561.16 41305.43 7434705 10147.12 14549527 1.45

Port20 1 17270.88 ML ML 95431.86 86459157 2.34

Port20 4 25138.57 ML ML 48863.55 33264924 3.39

7%, when compared to the basic setting. It is not surprising to see that the increase of profit is even more

drastic when the demand can be split, in which case the profit obtained by the basic setting can be improved

up to 30%.

A further comparison shows that the profit, in the case of splittable demands, is higher from 8% to 22 %

compared to the unsplittable demand case. Therefore, it can be concluded that a barge shipping company

should pay more attention to balancing the container flows and accepting the requests to the level that will

enable higher profits, than to the needs to satisfy all requests from all customers in calling ports. Tendency

to meet all the requirements not only decreases the profit but also becomes unrealistic in the view of constant

growth on the market and a given capacity of the ship. This market situation was taken into account in our

benchmark instances characterized by large transport demands.

The results obtained for both demand cases (splittable and unsplittable) justify the importance of

economies of scales in the shipping sector. It becomes obvious if we compare the TEU capacity of ana-

lyzed barge container ships, container demands and achieved profits for each instance. Ships with higher

carrying capacity proved to be more profitable due to lower unit costs per TEU. These reduced costs come

out since operating, voyage and capital costs do not increase proportionally with increase of TEU capacity

of ships ([21, 36]). However, it is also necessary that customer demands and container flows among ports

and terminals are large enough to ensure high utilization of carrying capacity of ships. This is the case with

our benchmark instances. The results for instances with 10 ports, characterized by smaller total demands,
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Figure 7: Relative improvement of profit, compared to the setting in which loads cannot be split and no empty container

repositioning is allowed (zero line).

are in line with this claim since the highest profit is not achieved for the ship with the largest TEU capacity.

For instances with 15, 20 and 25 ports, barge container ship 2, with the highest carrying capacity, reached

the highest values of objective function.

6. Conclusion

In this article we studied the design of a route for a liner shipping company that provides regular service

among a sequence of ports on a fixed-schedule basis. The models have been derived from the perspective

of the shipping company that maximizes its profit, given the estimated weekly demands, and under the

assumption that the given ordering of ports has to be respected by the calling sequence. In contrast to the

models considered in the previous literature in which the turnaround time is fixed, we proposed an integrated

approach that simultaneously optimizes the route, the cargo and the turnaround time (and hence, the size

of the fleet as well).

In an extensive computational study on open benchmark barge shipping instances from the literature for

which the optimal solution values were not known, we managed to prove the optimality within seconds. We

also considered different scenarios and problem variants, and we proposed an effective way of incorporating

them in our models. We finally analyzed the impact of these realistic variants on the achievable profits. The

study has shown that: (i) by allowing the optimization of turnaround time, better profits (between 10%

and 100%) can be achieved, (ii) profits can also be increased by allowing empty container repositioning and

demand splitting.

Concerning the future work, it would be interesting to consider non-identical routes performed by a

fleet of ships that is not necessarily homogeneous, and incorporation of transshipment in the context of

outbound-inbound shipping with empty container repositioning.
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Appendix: Schematic Representation of Optimal Solutions

In the following, we provide schematic representations for optimal solutions of the five instances with 10

ports for the BCSP with unsplittable demand. Drawings in Figures 8 to 12 show the optimal routes for five

different barge container ships, respectively (cf. Table 2 for their basic characteristics). The solutions are

defined by the upstream and downstream calling sequence and the number of loaded and empty containers

transported between any two ports. Shaded nodes represent called ports, and the notation ”a+ b” refers to

the number of full and empty containers, respectively. The port P1 is at the river mouth, whereas port P10

is the furthest port in the upstream direction.

Figure 8: Optimal route of barge container ship for 10 possibly calling ports and schematic overview of obtained container

flows. Instance Port10 1.
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Figure 9: Optimal route of barge container ship for 10 possibly calling ports and schematic overview of obtained container

flows. Instance Port10 2.

Figure 10: Optimal route of barge container ship for 10 possibly calling ports and schematic overview of obtained container

flows. Instance Port10 3.
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Figure 11: Optimal route of barge container ship for 10 possibly calling ports and schematic overview of obtained container

flows. Instance Port10 4.

Figure 12: Optimal route of barge container ship for 10 possibly calling ports and schematic overview of obtained container

flows. Instance Port10 5.
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