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Abstract—A linear performance drop is generally assumed dur-
ing the photovoltaic (PV) lifetime. However, operational data
demonstrate that the PV module degradation rate (Rd) is often
nonlinear, which, if neglected, may increase the financial uncer-
tainty. Although nonlinear behavior has been the subject of numer-
ous publications, it was only recently that statistical models able
to detect change-points and extract multiple Rd values from PV
performance time-series were introduced. A comparative analysis
of six open-source libraries, which can detect change-points and
calculate nonlinear Rd, is presented in this article. Since the real
Rd and change-point locations are unknown in field data, 960 syn-
thetic datasets from six locations and two PV module technologies
have been generated using different aggregation and normalization
decisions and nonlinear degradation rate patterns. The results
demonstrated that coarser temporal aggregation (i.e., monthly vs.
weekly), temperature correction, and both PV module technologies
and climates with lower seasonality can benefit the change-point de-
tection and Rd extraction. This also raises a concern that statistical
models typically deployed for Rd analysis may be highly climatic-
and technology-dependent. The comparative analysis of the six
approaches demonstrated median mean absolute errors (MAE)
ranging from 0.06 to 0.26%/year, given a maximum absolute Rd
of 2.9%/year. The median MAE in change-point position detection
varied from 3.5 months to 6 years.

Index Terms—Change-point analysis, modeling, nonlinear
degradation, photovoltaics (PVs).
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I. INTRODUCTION

D EGRADATION rates (Rd) inform photovoltaic (PV) life-
time energy yield predictions. Knowledge of this metric

is therefore important for feasibility, reliability and financial
analyses of PV systems. Simplistic assumptions may cause
detrimental effects increasing PV financial uncertainties [1]
and, hence, investment risk [2]. Such assumptions may include
the usage of: single Rd values from literature; values reported
from different climatic conditions; values reported for a specific
technology but built with differing manufacturing quality or with
different packaging materials; and the assumption of constant
performance loss over time.

On the other hand, relatively simple statistical analyses can be
performed to extract the Rd of a system based on its performance
time-series. However, it is known that PV performance fluctuates
due to a number of seasonally related factors such as temperature
[3], spectrum [4], soiling [5], or even abrupt changes caused
by failures [6], etc. Therefore, although the statistical tools are
available and relatively easy to use, it is inherently challenging
to extract reproducible and accurate PV Rds [7], [8].

The way PV time-series data are handled and processed
adds to the complexity and uncertainty [9]. For example, if
temperature correction is applied and the reported temperature
coefficients are biased, a seasonality due to changing tempera-
ture ranges will be introduced. Furthermore, spatial and temporal
variability in the actual temperature of the array could lead to
seasonality in the performance metric, especially if the wind
direction varies seasonally and affects spatial patterns of array
temperature. Moreover, with respect to data quality, integrity
and processing, the Rd calculation can also be influenced by
other factors such as missing data [10], sensor drift [11], filtering
criteria [12], temporal aggregation [13], etc. Therefore, data
handling and quality assurance is crucial in an Rd pipeline [10].

Ambitious targets for 50-year PV module lifetimes [14] tend
to focus on design challenges, but they also require tools for
predicting Rd at an early stage in order to inform service life-
time (e.g., [15]) and provide reassurance during operation. Of
equal importance is the ability to detect subsequent changes
in Rd, especially at the beginning and end of life, in order to
help identify the mechanisms behind such behaviors. Further-
more, the ability to detect and quantify changes in Rd behavior
is important for condition-based maintenance. For example,
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assuming an installation that does not experience inverter clip-
ping, the energy recovery from cleaning is reduced with time
due to degradation, therefore, cleaning frequency would vary
depending on Rd patterns and other financial metrics [16].
However, in the case of high dc/ac ratios, significant levels of
soiling can be tolerated in the early years of the PV plants due
to clipping, while in later years soiling can actually have more
impact as the system degrades and clips less often.

The most commonly used assumption to statistically extract
the Rd is of a linear performance drop over time. Operational data
demonstrate that this is unrealistic in some cases [17] mainly due
to the initial and wear-out degradation that may occur [18]. For
example, light and elevated temperature induced degradation
[19] and light induced degradation [20] may occur initially in the
PV module lifetime and then cease once an equilibrium has been
reached, directly affecting the Rd. Nonlinear PV degradation
behavior and its corresponding financial impacts have been
reported in numerous studies [11], [18], [21]. However, it was
only recently that change-point methodologies were introduced
to analyze nonlinear degradation [17], [22]–[24] and soiling
[25], [26] in PV systems. Such methodologies can automatically
detect changes in PV time-series/profiles and quantify the
loss rates for different time periods. Some change-point
methods were also applied on real PV performance data
verifying that some systems may exhibit nonlinear performance
loss [17].

Although these methods make use of open-source libraries
from Python and R (which are commonly used for statistical
analysis) they have never been extensively compared “side-by-
side” against PV time-series of known degradation behavior.
This can only be achieved by leveraging synthetic PV perfor-
mance datasets, because it is impossible to know the “real”
values of Rd in field data. This work expands on a previous
study where three methods were compared using five synthetic
datasets from a single location and PV module technology [22].
Here, 960 synthetic datasets are generated for six different
locations and two PV technologies in order to compare the
performance of six different open-source libraries. The reason
for using a much larger amount of datasets is to test the algo-
rithms against different conditions (two- and three-step degra-
dation profiles, seasonality in different climate zones and mod-
ule technology differences) and analysis methodologies (i.e.,
aggregation, temperature correction) enabling a robust compar-
ative investigation. It should be noted that only degradation is
synthesized in this article, and therefore the term Rd is used.
The presented models, however, can also be applied on field
data to extract the performance loss rate (PLR); a metric used to
represent all performance losses.

II. METHODOLOGY

In statistics, a change-point (or switch-point, or break-point)
refers to a change in time-series properties (e.g., mean, variance,
correlation, etc.) [17]. Such changes can be either continuous
or discontinuous and in the case of nonlinear degradation, the
change is considered as continuous since the segments have the
same Rd value at the change-point [18].

Fig. 1. Probability histogram of randomly sampled degradation rates.
The minimum and maximum absolute Rd were 0.5%/year and 2.9%/year,
respectively.

Trend extraction and change-point detection methods are fre-
quently used statistical tools and several open-source algorithms
are available in Python and R. Six of these algorithms were
selected in this study based on the hypothesis that they can be
applied to PV performance data.

A. Generation of Synthetic Datasets

Six locations (i.e., Bangkok, Phoenix, Albuquerque, Berlin,
Moscow, Minneapolis) were selected to include weather clas-
sification indices from all Koppen–Geiger-PV (KGPV) climate
zones except polar [27].

Long-term meteorological data (hourly over 30 years) were
sourced from the global reanalysis ERA5 of the European Centre
for Medium-Range Weather Forecasts [28]. These data were
used as inputs to PV performance models of a monocrystalline
silicon (c-Si) and cadmium telluride (CdTe) modules using the
Sandia PV array performance model [29] from pvlib-python
[30]. Nonlinear Rds were then applied randomly (see Fig. 1) to
the performance data based on two- and three-step profiles (i.e.,
one change-point [cp1] and two change-points [cp2]). Although
any number of change-points can be synthesized, in this article,
the Rds and change-point locations were selected in a way to
emulate the reliability bathtub curve with higher absolute Rds in
the beginning- and end-of-life. To ensure realistic scenarios, the
following boundaries were set: total performance loss between
20% and 30% in 30 years of operation; Rd from −0.5 to
−3%/year depending on segment (i.e., Rd1 and Rd3 between
−0.5 and −3%/year and Rd2 between −0.5 and −1.5%/year);
and avoid change-points in the first and last year due to the
difficulty of such models to detect change-points in those
locations.

The “raw” power time-series were then normalized using
the performance ratio [31] and aggregated monthly/weekly,
with/without temperature correction. Only a nighttime filter
was applied to the “raw” time-series (plane-of-array irradiance
from 100–1200 W/m2). Ten different Rds were applied for
every possible combination of location, technology, degradation
pattern, aggregation and temperature correction resulting in
960 synthetic datasets. The six open-source libraries were then
applied and their performance and effectiveness was evaluated
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TABLE I
LIST OF LOCATIONS, LIBRARIES, AND VARIED PARAMETERS

∗First letter of KGPV classification [27] represents temperature and precipitation (A:
Tropical, B: Desert, C: Steppe, D: Temperate, and E: Cold); the second letter is based
on solar irradiation (L: Low, M: Medium, H: High, and K: Very high).
∗∗Ten different nonlinear degradation rates for each combination.

based on the ability to detect the number and position(s) of
change-point(s) and also the precision errors in estimating the
Rd values. The list of locations, libraries and varied parameters
are given in Table I.

Besides knowing the “real” Rd values and change-point posi-
tions, synthetic data also have the advantage of being indepen-
dent of sensor drift, temperature uncertainty, soiling, mainte-
nance issues etc., that may affect the accuracy and/or uncertainty
of the calculations. Typically, when Rd or PLR methodologies
are compared using field data, the “true” value is considered to
be the mean of all estimates; assuming that this is the closest to
the “real” value [8]. However, caution is recommended in the
presence of outliers, which can dominate the mean value; in this
case, the median should be used.

B. Description of Modeling Approaches

Breakpoint (bkp) is a function within the R package “struc-
change” for testing, monitoring, and dating structural changes
in linear regression models [32]. This function implements the
algorithm described by Bai and Perron [33] for the simultaneous
estimation of multiple break-points in time-series regression
models. The bkp algorithm estimates the break-points by mini-
mizing the residual sum of squares of the regression model. A
dynamic programming approach based on the Bellman’s prin-
ciple of optimality [34] is followed for estimating the optimum
break-points, given the number of breaks (which was the only
input parameter requirement for the execution of this algorithm).

In this article, the given time-series were initially decomposed
into seasonal, trend and irregular components through the sea-
sonal and trend decomposition by Loess [35] method and then
the bkp algorithm was applied to the extracted trend component.

Sequential and Batch Change Detection Using Parametric
and Nonparametric Methods (cpm) [36]: Different change-
point models for performing both parametric and nonparametric
change detection on univariate data are implemented in the R
package “cpm.” In this study, the “detectChangePointBatch”
function was used to detect a single change-point in the given
time-series and estimate its location using the Mann–Whitney
test statistic. This detects location shifts in a stream with a
possibly unknown distribution by testing a hypothesis. The
data are processed in one batch and information regarding the
existence of a change-point are returned.

The “processStream” function was initially tested for detect-
ing multiple change-points resulting in large errors. For this
reason, the cpm algorithm was only used for detecting one
change-point. The algorithm requires as input the desired value
of “alpha”, which was set to 0.05 in this study. The null hypoth-
esis of no change is rejected when the length of the sequence
(Dn) is greater than the upper alpha percentile of the test statistic
distribution (hn).

Facebook prophet algorithm (fbp) [37] is an open-source
library, available in Python and R, used to forecast time-series
based on an additive decomposition model, which combines
trend, seasonality and holidays (not considered). Once the
trend is extracted for the PR time-series, change-point anal-
ysis is performed to identify the number and location(s) of
change-point(s) by capturing statistical changes in the slopes
of predefined segments of the time-series. In order to detect
the most significant change-points in an automated manner, the
SciPy.signal.find_peaks [38] function was implemented. Once
the nonlinear trend is “sliced,” the methodology treats each
segment in a linear manner. This is achieved by applying the
ordinary least squares method [39] in order to compute the
different Rds for each segment, accordingly.

In order to setup fbp to provide meaningful results for PV
behavior at the lowest possible computational burden, the flexi-
bility of the extracted trend, number of potential change-points,
and range had to be adjusted. With respect to the monthly
aggregation, similar settings as in Theristis et al. [17] were used
with a changepoint_prior_scale = 0.07 whereas for the weekly
aggregation, the changepoint_prior_scale was modified to 0.04
in order to reduce the trend’s flexibility (weekly aggregation
fluctuates more than monthly). The number of potential change-
points was set to 100 for both weekly and monthly aggregation
to lower computational burden; when not batch analyzing a large
number of datasets, a higher number of potential change-points
could be used to potentially improve the results even further.

Piecewise regression (pw-p [python version] [40] and pw-R
[R version] [41]): In piecewise linear regression (or segmented
regression), the data points are fitted through a sequence of linear
functions. Each function is assigned to a specific time period. In
this case, each pair of consecutive functions was fitted to have
the same value at the change-point in order to model a con-
tinuous trend. Compared to other change-point algorithms, this
approach allows one to simultaneously identify change-points
and corresponding slopes (i.e., Rds).

This pw-p model was implemented using the NumPy’s piece-
wise function [40] and the SciPy’s curve_fit function [38]
whereas the pw-R utilized the segmented function implemented
in the R package “segmented” [41]. One of the drawbacks
in the formulation of pw-p is that it is only able to identify
a predetermined number of change-points whereas pw-R can
utilize the “selgmented: selecting number of breakpoints in
segmented regression” function, which automatically selects the
number of change-points according to a sequential hypothesis
testing (via the Score test). In this study, however, pw-p was also
automated and customized by examining the standard deviation
returned for the date of each detected change-point. For each
time-series, the cpx and cpx+1 scenarios were iteratively ran,
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starting from x= 1 and using incremental steps of 1 (x represents
the number of change-points). The iteration stopped and the
number of change-points was set to x when cpx+1 exhibited
standard deviations higher than one year on at least one of
the detected change-point dates. It is worth mentioning that no
seasonal decomposition was employed in pw-R and pw-p, which
were directly fed with the raw synthetic datasets.

The main difference between the pw-p and pw-R is that the
latter implements a bootstrap restarting algorithm. The pw-R
implementation requires the class of the model (set to standard
linear) and the number of bootstrap samples (set to 10), given
that the segmented model fitting process was set to “true.”

Bayesian estimation of abrupt change, seasonality and trend
(RBeast) [42] applies the Bayesian ensemble time-series de-
composition algorithm. By utilizing the ensemble modeling
technique, the results of the multiple fitted models are de-
termined and incorporated into the final averaged Bayesian
model. Rbeast enables the determination of abrupt changes
(i.e., change-points), cyclic variations (e.g., seasonality) and
nonlinear trends in time-series observations by decomposing the
time-series data into three components: abrupt changes, trends
and cyclic/seasonal variations. The algorithm also quantifies the
likelihood of the detected changes.

In this study, the period of the cyclic/seasonal component
of the time-series was either set to 12 or 52 depending on the
aggregation level (i.e., monthly or weekly). The optimal number
of change-points was selected by iteratively distributing 0 to 60
change-points on the trend; once all change-point combinations
are executed, the one with the highest probability is selected.

III. RESULTS AND DISCUSSION

The application of the six approaches on the 960 synthetic
datasets resulted in 5760 simulations revealing different slopes,
mutually verifying the presence of nonlinear, two- and three-
step behaviors. The comparison utilizes the mean absolute errors
(MAEs) of change-point location in Years (i.e., mean of absolute
error of |CPι,true – CPι,calculated| where ι is 1, 2) and Rds at each
segment in %/year (i.e., mean of absolute error of |Rdκ,true –
Rdκ,calculated| where κ is 1, 2, 3 depending on the segment). The
boxplots do not include outliers for clarity; instead, the mean
values are indicated by the green triangles.

A. Two-Step and Three-Step Nonlinearity

With respect to the ability of these models to locate the
change-point(s) location(s) in two- (i.e., one change-point) and
three-step (i.e., two change-points) nonlinear patterns (see Fig. 2,
top), the mean MAE varied from 0.55 to 9.50 Years whereas the
median MAE varied from 0.26 to 9.76 Years. The pw-R model
seems to perform equally with either one or two change-points
whereas the bkp exhibits a significantly better performance with
two change-points, although the median is still high (around 3.2
Years).

The most critical part of the performance comparison in
this study is the prediction error in quantifying the Rd at each
segment. As shown in Fig. 2 (bottom), the Rd MAE ranged from
0.08 to 0.39%/year (mean) and 0.04 to 0.31%/year (median).

Fig. 2. MAE comparison of change-point detection in Years (top) and non-
linear degradation rate estimation (bottom) using all methods and two- and
three-step degradation patterns; cpm was applied for one change-point only.
The green triangles indicate mean values and the red dashed horizontal line
indicates the 0.5 Year as a reference. The methods are sorted by their median
values.

Overall, all methods except bkp exhibited mean and median
MAE within 0.3%/year. The piecewise linear regression models
(both pw-R and pw-p) and fbp outperformed the others in both
detection of change-point locations (median within 6 Months)
and Rd extraction, independently of the number of change-points
in the time-series.

B. Aggregation Level

When comparing the impact of aggregation (i.e., weekly
or monthly) the mean and median MAE ranged from 0.59 to
6.43 Years and 0.25 to 6.06 years, respectively (see Fig. 3,
top). Overall, the majority of methods seem to perform slightly
better when time-series are aggregated monthly with up to ∼1.6
year improvements in the mean values (in the case of cpm) as
compared to weekly. This is contradictive because conventional
statistical models for linear Rd extraction perform better with
larger amounts of data and hence, lower-than-monthly aggrega-
tion levels. However, since change-point techniques try to detect
statistical changes in the time-series, they are not favored by the
higher oscillations caused by lower aggregation levels.

With respect to the Rd estimations (see Fig. 3, bottom), the
influence of aggregation seems to be relatively low with median
differences up to 0.04%/year (in the case of cpm). However,
mean differences of up to 0.12%/year were exhibited by the
pw-R, which was due to the influence of outliers. The mean
and median MAE ranged from 0.09 to 0.31%/year and 0.06 to
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Fig. 3. MAE comparison of change-point detection in years (top) and nonlinear
degradation rate estimation (bottom) using all methods for weekly and monthly
aggregation. The green triangles indicate mean values and the red dashed
horizontal line indicates the 0.5 year as a reference. The methods are sorted
by their median values.

0.27%/year, respectively and, again, there is a clear differen-
tiation of best- and worst-performing methods with piecewise
linear regression models and fbp outperforming Rbeast, cpm,
and bkp.

C. Temperature Correction

Temperature correction in time-series provided great im-
provements in both change-point detection (see Fig. 4, top)
and Rd extraction (see Fig. 4, bottom). This aligns with the
conventional Rd models and data pipelines since temperature
correction reduces signal fluctuations. Specifically, with respect
to change-point detection, the mean and median MAE varied
from 0.39 to 6.42 years and 0.21 to 6.02 years, respectively. All
methods except the bkp improved significantly with temperature
correction with up to a 3.37 Years reduction in mean MAE in
the case of cpm. The best performing models, pw-R, pw-p, fbp,
exhibited median MAE improvements of 0.22, 0.44, and 0.35
Years, respectively.

The Rd estimation was also improved with temperature cor-
rection as shown in Fig. 4 (bottom). Mean and median MAE
ranged from 0.07 to 0.32%/year and 0.04 to 0.27%/year, re-
spectively. Maximum absolute differences between temperature
corrected and uncorrected time-series were exhibited by the cpm
model with a 0.16%/year decrease in mean Rd estimation.

Fig. 4. Comparison of MAE of change-point detection in years (top) and
nonlinear degradation rate estimation (bottom) using all methods with and
without temperature correction. The green triangles indicate mean values and
the red dashed horizontal line indicates the 0.5 year as a reference. The methods
are sorted by their median values.

D. Different PV Technologies

With respect to the influence of different PV technologies
(e.g., c-Si and CdTe) on the change-point detection ability of the
investigated methods, the mean and median MAE values varied
from 0.31 to 6.45 years and 0.23 to 6.01 years, respectively, (see
Fig. 5, top). Although all methods exhibited lower median MAE
values in the case of CdTe, the differences were marginal for
bkp and cpm with 0.03 and 0.07 years, respectively whereas the
largest improvements of 0.64 Years occurred with Rbeast.

As can be seen in Fig. 5 (bottom), the prediction of the
corresponding Rd values at each segment varied from 0.08
to 0.32%/year (mean MAE) and 0.04 to 0.26%/year (median
MAE). As expected, Rd in c-Si PV modules is more difficult
to be estimated compared to CdTe. This is due to the different
seasonal behavior (e.g., magnitude of temperature coefficient)
of c-Si modules compared to CdTe. Specifically, all methods
besides bkp were more accurate in predicting Rd by up to
0.14%/year absolute difference in median MAE. This indicates
that seasonal fluctuations also affect the prediction ability of
such models, which raises a concern when applying methods
and data analysis pipelines that are not technology-independent
and require additional training.

E. Different Geographic Locations

Perhaps the most important criterion for an Rd extraction
model in general, is whether it is location-independent or not.
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Fig. 5. Comparison of MAE of change-point detection in years (top) and
nonlinear degradation rate estimation (bottom) using all methods for different
PV technologies: c-Si and CdTe. The green triangles indicate mean values and
the red dashed horizontal line indicates the 0.5 year as a reference. The methods
are sorted by their median values.

Here, the performance of the models under investigation was
compared at six different KGPV climates. In Fig. 6 (left), most
of the models exhibited different climatic dependence with
mean and median MAE ranging from 0.24 to 6.52 Years and
0.17 to 7.31 Years, respectively. More specifically, the most
climate-dependent methods defined as the ones that exhibit the
maximum mean and median MAE differences are the cpm and
bkp, respectively with 3.44 and 1.78 Years. Piecewise regression
models (pw-R and pw-p) and fbp proved to be the most robust
with respect to their climate-dependence with median MAE
differences from 0.12 (fbp) to 0.30 (pw-p) Years. However, mean
MAE differences increase to 1.28 Years for the fbp model when
comparing Bangkok and Phoenix. Overall, Minneapolis (EM,
cold with medium irradiation) was the most challenging location
for all models with a mean and median MAE values of 3.19 and
1.90 years, respectively. On the other hand, locations with lower
seasonal fluctuations such as Bangkok (AH, tropical with high
irradiation) and Phoenix (BK, desert with very high irradiation),
were the least challenging locations with a mean MAE of 2.17
Years in Bangkok, and a median MAE of 1.47 Years in the case
of Phoenix.

With respect to the Rd quantification, the mean and me-
dian MAE values varied from 0.07 to 0.34%/year and 0.04
to 0.28%/year, respectively (see Fig. 6, right). All mean and
median MAE fluctuations (i.e., absolute difference of maximum
and minimum MAE for each method) were within 0.15%/year.
Furthermore, Moscow (EL, cold with low irradiation) and

TABLE II
QUALITATIVE CLASSIFICATION OF EXECUTION TIME

Minneapolis were the most challenging locations/climates with
mean MAE of 0.21%/year whereas Phoenix was as low as
0.12%/year. Nevertheless, MAE within 0.2%/year should be
considered as acceptable since this is within the commonly
reported statistical uncertainty.

F. Overall Comparison and Discussion

The models under investigation were naturally grouped based
on their performance into two categories: best- and worst per-
forming models. Best-performing models include the piecewise
linear regression models in both R (pw-R) and Python (pw-p) as
well as fbp whereas the list of worst-performing models includes
cpm, Rbeast and bkp. In Fig. 7 (top), all models are summarized
with respect to their ability to detect the change-point locations
using all 960 synthetic datasets. It can be seen that the mean
and median MAE ranged from 0.62 to 6.41 years and 0.29 to 6
years, respectively. The best-performing models exhibited me-
dian MAE values below 0.5 year, whereas the worst-performing
model (bkp) reached median values of up to 6 Years. Further-
more, the mean values provide information on the influence of
outliers that cause more skewed distributions, especially in the
case of pw-p and cpm, whereas the pw-R proves to be the most
robust in this case.

On the other hand, with respect to the Rd estimation (see
Fig. 7, bottom), most methods demonstrated relatively low
prediction errors, even when the change-point detection error
was relatively high. Mean and median MAE ranged from 0.10
to 0.31%/year and 0.06 and 0.26%/year. The best-performing
models exhibited median MAE within 0.1%/year, whereas the
worst-performing models were between 0.16 (Rbeast, cpm) and
0.26%/year (bkp).

The computational burden of each model is qualitatively cate-
gorized in Table II. The reason for not quantifying the execution
time is because the assessment is based on the execution of
960 datasets in a loop using different machines, whereas in
real applications a much lower number of datasets, or more
optimized loops or higher performance computers may be used.
Nevertheless, the piecewise linear regression models and cpm
provided the fastest results whereas fbp and Rbeast suffer from
high computational burden.

Originally, all libraries required pre-knowledge of the num-
ber of change-points, which is not a reasonable approach for
measured PV data. For this reason, the best four among the
six methods (pw-R, pw-p, fbp, and Rbeast) were customized in
this study to automatically detect the number of change-point(s).
The remaining two methods (cpm and bkp) were not customized
because even in the perfect scenario where they were fed with the
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Fig. 6. Comparison of MAE of change-point detection in years (left) and nonlinear degradation rate estimation (right) at different locations. The green triangles
indicate mean values and the red dashed horizontal line indicates the 0.5 year as a reference. The methods are sorted by their median values.

Fig. 7. Overall comparison of MAE for change-point detection in years (top)
and nonlinear degradation rate estimation (bottom) using all 960 synthetic
datasets. The green triangles indicate mean values and the red dashed horizontal
line indicates the 0.5 year as a reference. The methods are sorted by their median
values.

real number of change-point(s), they failed to accurately detect
change-point(s) and/or calculate the corresponding Rds. Further-
more, although the ability to detect only one change-point might
be limiting, the cpm library was included in this comparative
analysis due to its high speed and simplicity in its implemen-
tation (only time-series are required as input). Therefore, such
libraries may be beneficial for applications of e.g., real-time
monitoring where speed might be more important than accuracy
(given that the accuracy is reasonable). In this case, the median
MAE of cpm was within 0.2%/year for all locations except
Moscow, which might be reasonable for some applications.

This study focused on irreversible effects characterized by
the synthesized degradation. With real field data, degrada-
tion is masked by other effects, which can also be reversible,
such as soiling, snow, partial shading due to vegetation, etc.
Since reversible and irreversible effects vary or fluctuate dif-
ferently in PV performance time-series (e.g., soiling fluctu-
ates differently and at different magnitudes compared to snow
and/or degradation), change-point models would require sepa-
rate tuning in order to differentiate and quantify each individ-
ual loss. Otherwise, the same models can be applied to field
data to extract the PLR metric, which considers all losses as
a whole. However, existing pipelines and trend-based perfor-
mance loss differentiation algorithms (e.g., [43]) can be cou-
pled to the investigated models for detecting and quantifying
nonlinear Rds.

IV. CONCLUSION

A comparative analysis was performed to investigate differ-
ent open-source methodologies for detecting and quantifying
nonlinear PV Rds. Since the real change-point location(s) and
Rds are unknown, synthetic datasets from six locations were
generated using different analysis pipelines.

Based on this analysis and considering accuracy in change-
point detection, Rd extraction and computational time, piece-
wise linear regression libraries in R and Python are clearly the
winners. Other models with additional functionalities, such as
forecasting in the case of fbp can also be used with the cost of
high computational burden.

Overall, it was shown that monthly aggregation, temperature
correction and locations/climates and PV module technologies
with lower seasonality favor the change-point algorithms. These
outcomes raise concerns when applying methods and data anal-
ysis pipelines that are not technology- and climate-independent
or extensively verified. Since such large-scale datasets are not
readily available, and considering that the real Rd values and
change-point locations are unknown, implementing synthetic
datasets proved to be a good solution.

Future work will examine the robustness of the top performing
algorithms against noisy datasets.
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