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Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

Solal Perrin-Roussel‡

ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
(Dated: March 25, 2022)

We review Kitaev’s celebrated “periodic table” for topological phases of condensed matter, which
identifies ground states (Fermi projections) of gapped periodic quantum systems up to continuous
deformations. We study families of projections which depend on a periodic crystal momentum and
respect the symmetries that characterize the various classes of topological insulators. Our aim is to
classify such families in a systematic, explicit, and constructive way: we identify numerical indices
for all symmetry classes and provide algorithms to deform families of projections whose indices
agree. Aiming at simplicity, we illustrate the method for 0- and 1-dimensional systems, and recover
the (weak and strong) topological invariants proposed by Kitaev and others.

I. INTRODUCTION

The goal of the present article is to re-derive the classification of topological phases of quantum matter proposed
by Kitaev in his “periodic table” [27] by means of basic tools from the topology (in particular homotopy theory)
of classical groups, and standard factorization results in linear algebra. Kitaev’s table classifies ground states of
free-fermion systems according to their symmetries and the dimension of the configuration space. We reformulate the
classification scheme in terms of homotopy theory, and proceed to investigate the latter issue in dimension d ∈ {0, 1}.
We restrict ourselves to low dimensions in order to illustrate our approach, and to provide constructive proofs for
all the classes, using explicit factorization of the matrices that appear. Our intent is thus similar to previous works
by Zirnbauer and collaborators [19, 24, 25], which however formulate the notion of free-fermion ground state in a
different way, amenable to the investigation of many-body systems.
The Kitaev classification can be obtained in various ways, using different mathematical tools. Let us mention for

instance derivations coming from index theory [17], K-theory [31, 34] and KK-theory [4]. In addition to this (non-
exhaustive) list, one should add the numerous works focusing on one particular case of the table. Our goal here is to
provide a short and synthetic derivation of this table, using simple linear algebra.

A. Setting

Let H be a complex Hilbert space of finite dimension dimH = N . For 0 ≤ n ≤ N , n-dimensional subspaces of H
are in one-to-one correspondence with elements of the Grassmannian

Gn(H) :=
{
P ∈ B(H) : P 2 = P = P ∗, Tr(P ) = n

}

which is comprised of rank-n orthogonal projections in the algebra B(H) of linear operators on H. In this paper we
are interested in orthogonal-projection-valued continuous functions P : Td → Gn(H) which satisfy certain symmetry
conditions (to be listed below), and in classifying homotopy classes of such maps. Here Td = Rd/Zd is a d-dimensional
torus, which we often identify with [− 1

2 ,
1
2 ]

d with periodic boundary conditions. We write k ∋ Td 7→ P (k) ∈ Gn(H)
for such maps, or {P (k)}k∈Td .

∗Electronic address: gontier@ceremade.dauphine.fr
†Electronic address: monaco@mat.uniroma1.it
‡Electronic address: solal.perrin-roussel@ens-paris-saclay.fr

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
84

32
6

mailto:gontier@ceremade.dauphine.fr
mailto:monaco@mat.uniroma1.it
mailto:solal.perrin-roussel@ens-paris-saclay.fr


2

It is well known [28] that such families of projections arise from the Bloch-Floquet representation of periodic
quantum systems on a lattice, in the one-body approximation. In this case, H is the Hilbert space accounting for
local degrees of freedom in the unit cell associated to the lattice of translations, Td plays the role of the Brillouin
torus in (quasi-)momentum space, k is the Bloch (quasi-)momentum, and P (k) is the spectral subspace onto occupied
energy levels of some H(k), the Bloch fibers of a periodic lattice Hamiltonian H . Two Hamiltonians H0 and H1 are
commonly referred to as being in the same topological insulating class if they share the same discrete symmetries
(see below) and if they can be continuously deformed one into the other while preserving the symmetries and without
closing the spectral gap. This implies that their associated spectral projections P0 and P1 below the spectral gap are
homotopic. We thus investigate this homotopy classification directly in terms of projections in momentum space.
The discrete symmetries that one may want to impose on a family of projections come from those of the underlying

quantum-mechanical system. We set the following definitions. Recall that a map T : H → H is anti-unitary if it is
anti-linear (T (λx) = λT (x)) and

∀x, y ∈ H, 〈Tx, T y〉H = 〈y, x〉H (= 〈x, y〉H).

Definition I.1 (Time-reversal symmetry). Let T : H → H be an anti-unitary operator such that T 2 = εT IH with
εT ∈ {−1, 1}. We say that a continuous map P : Td → Gn(H) satisfies time-reversal symmetry, or in short
T -symmetry, if

T−1P (k)T = P (−k), (T -symmetry).

If εT = 1, this T -symmetry is said to even, and if εT = −1 it is odd.

Definition I.2 (Charge-conjugation/particle-hole symmetry). Let C : H → H be an anti-unitary operator such that
C2 = εCIH with εC ∈ {−1, 1}. We say that a continuous map P : Td → Gn(H) satisfies charge-conjugation

symmetry (also called particle-hole symmetry), or in short C-symmetry, if

C−1P (k)C = IH − P (−k), (C-symmetry).

If εC = 1, this C-symmetry is said to even, and if εC = −1 it is odd.

Definition I.3 (Chiral symmetry). Let S : H → H be a unitary operator such that S2 = IH. We say that P : Td →
Gn(H) satisfies chiral or sublattice symmetry, or in short S-symmetry, if

S−1P (k)S = IH − P (k), (S-symmetry).

The simultaneous presence of two symmetries implies the presence of the third. In fact, the following assumption
is often postulated [32]:

Assumption I.4. Whenever T− and C− symmetries are both present, we assume that their product S := TC is an
S-symmetry, that is, S is unitary and S2 = IH.

We are not aware of a model in which this assumption is not satisfied, i.e. in which the S symmetry is unrelated
to the T− and C− ones.

Remark I.5. This assumption is tantamount to require that the operators T and C commute or anti-commute among
each other, depending on their even/odd nature. Indeed, the product of two anti-unitary operators is unitary, and the
requirement that S := TC satisfies S2 = IH reads

TCTC = IH ⇐⇒ TC = C−1T−1 = εT εCCT.

The same sign determines whether S commutes or anti-commutes with T and C. Indeed, we have

SC = TC2 = εCT, CS = CTC = T−1C−1C = εTT so SC = εT εCCS,

and similarly ST = εT εCTS.

Taking into account all possible types of symmetries leads to 10 symmetry classes for maps P : Td → Gn(H), the
famous tenfold way of topological insulators [32]. The names of these classes are given in Table I, and are taken from the
original works of E. Cartan [5, 6] for the classification of symmetric spaces, which were originally mutuated in [1, 19]
in the context of random-matrix-valued σ-models. For a dimension d ∈ N ∪ {0} and a rank n ∈ N, and for a Cartan
label X of one of these 10 symmetry classes, we denote by X(d, n,N) the set of continuous maps P : Td → Gn(H),
with dim(H) = N , and respecting the symmetry requirements of class X.
Given two continuous maps P0, P1 ∈ X(d, n,N), we ask the following questions:
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• Can we find explicit Index ≡ IndexXd maps, which are numerical functions (integer- or integer-mod-2-valued) so
that Index(P0) = Index(P1) iff P0 and P1 are path-connected in X(d, n,N)?

• If so, how to compute this Index?

• In the case where Index(P0) = Index(P1), how to construct explicitly a path Ps, s ∈ [0, 1] connecting P0 and P1

in X(d, n,N)?

In this paper, we answer these questions for all the 10 symmetry classes, and for d ∈ {0, 1}. We analyze the classes
one by one, often choosing a basis for H in which the different symmetry operators T , C and S have a specific normal
form. In doing so, we recover Cartan’s symmetric spaces as X(d = 0, n,N) – see the boxed equations in the body of the
paper. The topological indices that we find are summarized in Table I (we make no claim on the group-homomorphism
nature of the Index maps we provide). Our findings agree with the previously mentioned “periodic tables” from the
physics literature [27, 32] if one also takes into account the weak Z2 invariants (see Remark III.8). We note that the
d = 0 column is not part of the original table. It is related (but not equal) to the d = 8 column by Bott periodicity [3].
For our purpose, it is useful to have it explicitly in order to derive the d = 1 column.

Symmetry Constraints Indices

Cartan label T C S n N d = 0 d = 1

A 0 0 0 0 0

AIII 0 0 1 N = 2n 0 Z

AI 1 0 0 0 0

BDI 1 1 1 N = 2n Z2 Z2 × Z

D 0 1 0 N = 2n Z2 Z2 × Z2

DIII −1 1 1 n = 2m ∈ 2N N = 2n = 4m 0 Z2

AII −1 0 0 n = 2m ∈ 2N N = 2M ∈ 2N 0 0

CII −1 −1 1 n = 2m ∈ 2N N = 2n = 4m 0 Z

C 0 −1 0 N = 2n 0 0

CI 1 −1 1 N = 2n 0 0

Table I: A summary of our main results on the topological “Indices” of the various symmetry classes of Fermi
projections. In the “Symmetry” column, we list the sign characterizing the symmetry as even or odd; an entry “0”
means that the symmetry is absent. Some “Constraints” may be needed for the symmetry class X(d, n,N) to be

non-empty.

B. Notation

For K ∈ {R,C}, we denote byMN (K) the set of N ×N K-valued matrices. We denote by K ≡ KN : CN → CN

the usual complex conjugation operator. For a complex matrix A ∈MN (C), we set A := KAK and AT := A∗, where
A∗ is the adjoint matrix of A for the standard scalar product on CN .
We then denote by SN (K) the set of hermitian matrices (A = A∗), and by AN (K) the one of skew-hermitian

matrices (A = −A∗). When K = C, we sometimes drop the notation C. Also, we denote by SRN (C) and AR

N (C) the set
of symmetric (AT = A) and antisymmetric matrices (AT = −A). We denote by U(N) the subset of unitary matrices,
by SU(N) the set of unitaries with determinant 1, by O(N) the subset of orthogonal matrices, and by SO(N) the
subset of orthogonal matrices with determinant 1.
We denote by I ≡ IN the identity matrix of CN . When N = 2M is even, we also introduce the symplectic matrix

J ≡ J2M :=

(
0 IM

−IM 0

)
.

The symplectic group Sp(2M ;K) is defined by

Sp(2M ;K) :=
{
A ∈M2M (K) : ATJ2MA = J2M

}
. (I.1)

The compact symplectic group Sp(M) is

Sp(M) := Sp(2M ;C) ∩ U(2M) =
{
U ∈ U(2M) : UTJ2MU = J2M

}
.
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C. Structure of the paper

We study the classes one by one. We begin with the complex classes A and AIII in Section II, where no anti-unitary
operator is present. We then study non-chiral real classes (without S-symmetry) in Section III, and chiral classes in
Section IV. In Appendix A, we review some factorizations of matrices, which allow us to prove our results.

II. COMPLEX CLASSES: A AND AIII

The symmetry classes A and AIII are often dubbed as complex, since they do not involve any antiunitary symmetry
operator, and thus any “real structure” induced by the complex conjugation. By contrast, the other 8 symmetry
classes are called real. Complex classes where studied, for example, in [10, 31].

A. Class A

In class A, no discrete symmetry is imposed. We have in this case

Theorem II.1 (Class A). The sets A(0, n,N) and A(1, n,N) are path-connected.

Proof. Since no symmetry is imposed and T0 = {0} consists of a single point, we have A(0, n,N) = Gn(H). It is
known [22, Ch. 8, Thm. 2.2] that the complex Grassmannian is connected, hence so is A(0, n,N). This property
follows from the fact that the map U(N)→ Gn(H) which to any N ×N unitary matrix associates the linear span of
its first n columns (say in the canonical basis for H ≃ CN ), viewed as orthonormal vectors in H, induces a bijection

A(0, n,N) ≃ Gn(H) ≃ U(N)/U(n)×U(N − n). (II.1)

Since U(N) is connected, so is A(0, n,N).

To realize this explicitly, we fix a basis of H ≃ CN . Let P0, P1 ∈ A(0, n,N). For j ∈ {0, 1}, we choose a unitary
Uj ∈ U(N) such that its n first column vectors span the range of Pj . We then choose a self-adjoint matrix Aj ∈ SN
so that Uj = eiAj . We now set, for s ∈ (0, 1),

Us := eiAs , As := (1− s)A0 + sA1.

The map s 7→ Us is continuous, takes values in U(n), and connects U0 and U1. The projection Ps on the first n
column vectors of Us then connects P0 and P1, as wanted.

We now prove our statement concerning A(1, n,N). Let P0, P1 : T
1 → Gn(H) be two periodic families of projections.

Recall that we identify T1 ≃ [−1/2, 1/2]. Consider the two projections P0(− 1
2 ) = P0(

1
2 ) and P1(− 1

2 ) = P1(
1
2 ), and

connect them by some continuous path Ps(− 1
2 ) = Ps(

1
2 ) as previously. The families P0(k) and P1(k), together with

the maps Ps(− 1
2 ) and Ps(

1
2 ), define a continuous family of projectors on the boundary ∂Ω of the square

Ω := [− 1
2 ,

1
2 ]× [0, 1] ∋ (k, s). (II.2)

It is a standard result (see for instance [15, Lemma 3.2] for a constructive proof) that such families can be extended
continuously to the whole set Ω. This gives an homotopy Ps(k) = P (k, s) between P0 and P1.

B. Class AIII

In class AIII, only the S-symmetry is present. It is convenient to choose a basis in which S is diagonal. This is
possible thanks to the following Lemma, which we will use several times in classes where the S-symmetry is present.

Lemma II.2. Assume AIII(d = 0, n,N) is non-empty. Then N = 2n, and there is a basis of H in which S has the
block-matrix form

S =

(
In 0

0 −In

)
. (II.3)
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In this basis, a projection P satisfies S−1PS = IH − P iff it has the matrix form

P =
1

2

(
In Q

Q∗ In

)
with Q ∈ U(n). (II.4)

Proof. Let P0 ∈ AIII(0, n,N). Since S−1P0S = IH − P0, P0 is unitarily equivalent to IH − P0, hence H = Ran P0 ⊕
Ran (IH − P0) is of dimension N = 2n.
Let (ψ1, ψ2, · · · , ψn) be an orthonormal basis for RanP0. We set

∀i ∈ {1, · · · , n}, φi :=
1√
2
(ψi + Sψi), φn+i =

1√
2
(ψi − Sψi).

The family (φ1, · · · , φ2n) is an orthonormal basis of H, and in this basis, S has the matrix form (II.3).

For the second point, let P ∈ AIII(0, n, 2n), and decompose P in blocks:

P =
1

2

(
P11 P12

P ∗
12 P22

)
.

The equation S−1PS = IH − P implies that P11 = P22 = In. Then, the equation P 2 = P shows that P12 =: Q is
unitary, and (II.4) follows.

The previous Lemma establishes a bijection P ←→ Q, that is

AIII(0, n, 2n) ≃ U(n).

For P ∈ AIII(d, n, 2n), we denote by Q : Td → U(n) the corresponding periodic family of unitaries.
For a curve C homeomorphic to S1, and for Q : C → U(n), we denote by Winding(C, Q) the usual winding number

of the determinant of Q along C.

Theorem II.3 (Class AIII). The set AIII(d, n,N) is non-empty iff N = 2n.

• The set AIII(0, n, 2n) is path-connected.

• Define the index map IndexAIII
1 : AIII(1, n, 2n)→ Z by

∀P ∈ AIII(1, n, 2n), IndexAIII
1 (P ) := Winding(T1, Q).

Then P0 is homotopic to P1 in AIII(1, n, 2n) iff IndexAIII
1 (P0) = IndexAIII

1 (P1).

Proof. We already proved that N = 2n. Since U(n) is connected, so is AIII(0, n, 2n). A constructive path can be
constructed as in the previous section using exponential maps.
We now focus on AIII(d = 1, n, 2n). Analogously, the question of whether two maps in AIII(1, n, 2n) are continuously

connected by a path can be translated in whether two unitary-valued maps Q0, Q1 : T
1 → U(n) are homotopic to

each other. As in the previous proof, consider the unitaries Q0(− 1
2 ) = Q0(

1
2 ) ∈ U(n) and Q1(− 1

2 ) = Q1(
1
2 ) ∈ U(n).

Connect them by some Qs(− 1
2 ) = Qs(

1
2 ) in U(n). This defines a U(n)-valued map on ∂Ω, where the square Ω is

defined in (II.2).
It is well known that one can extend such a family of unitaries to the whole Ω iff Winding(∂Ω, Q) = 0 (see [15,

Section IV.B] for a proof, together with a constructive proof of the extension in the case where the winding vanishes).
In our case, due to the orientation of the boundary of Ω and of the periodicity of Q0(k), Q1(k), we have

Winding(∂Ω, Q) = Winding(T1, Q1)−Winding(T1, Q0),

which is independent of the previously constructed path Qs(
1
2 ). The conclusion follows.
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III. REAL NON-CHIRAL CLASSES: AI, AII, C AND D

Next we consider those symmetry classes which are characterized by the presence of a single anti-unitary symmetry:
a T -symmetry (which even in class AI and odd in class AII) or a C-symmetry (whih is even in class D and odd in
class C). In particular, these classes involve anti-unitarily intertwining P (k) and P (−k). For these symmetry classes,
the analysis of their path-connected components in dimension d = 1 is reduced to that of dimension d = 0, thanks to
the following Lemma.

Lemma III.1 (Real non-chiral classes in d = 1). Let X ∈ {AI,AII,C,D}. Then P0 and P1 are in the same connected
component of X(1, n,N) iff

• P0(0) and P1(0) are in the same connected component in X(0, n,N), and

• P0(
1
2 ) and P1(

1
2 ) are in the same connected component in X(0, n,N).

Proof. We give the argument for the class X = D, but the proof is similar for the other classes. First, we note that
if Ps(k) connects P0 and P1 in D(1, n,N), then for k0 ∈ {0, 12} one must have C−1Ps(k0)C = IH − Ps(k0), so Ps(k0)
connects P0(k0) and P1(k0) in D(d = 0, n,N).
Let us prove the converse. Assume that P0 and P1 are two projection-valued maps in D(1, n,N) so that there exist

paths Ps(k0) connecting P0(k0) and P1(k0) in D(0, n,N), for the high symmetry points k0 ∈ {0, 12}. Denote by Ω0

the half-square

Ω0 := [0, 12 ]× [0, 1] ∋ (k, s), (III.1)

(compare with (II.2)). The families

{P0(k)}k∈[0,1/2] , {P1(k)}k∈[0,1/2] , {Ps(0)}s∈[0,1] and
{
Ps(

1
2 )
}
s∈[0,1]

,

together define a continuous family of projectors on the boundary ∂Ω0. As was already mentioned in Section IIA,
this family can be extended continuously on the whole set Ω0.
This gives a continuous family {Ps(k)}k∈[0,1/2], s∈[0,1] which connects continuously the restrictions of P0 and P1 to

the half-torus k ∈ [0, 12 ]. We can then extend the family of projections to k ∈ [− 1
2 , 0] by setting

∀k ∈ [− 1
2 , 0], ∀s ∈ [0, 1], Ps(k) := C

[
IH − Ps(−k)

]
C−1.

By construction, for all s ∈ [0, 1], the map Ps is in D(1, n,N). In addition, since at k0 ∈ {0, 12} we have Ps(k0) ∈
D(0, n,N), the above extension is indeed continuous as a function of k on the whole torus T1. This concludes the
proof.

A. Class AI

In class AI, the relevant symmetry is an anti-unitary operator T with T 2 = IH. This case was studied for instance
in [9, 13, 30].

Lemma III.2. If T is an anti-unitary operator on H such that T 2 = IH, then there is a basis of H in which T has
the matrix form T = KN .

Proof. We construct the basis by induction. Let ψ1 ∈ H be a normalized vector. if Tψ1 = ψ1, we set φ1 = ψ1,
otherwise we set

φ1 := i
ψ1 − Tψ1

‖ψ1 − Tψ1‖
.

In both cases, we have Tφ1 = φ1 and ‖φ1‖ = 1, which gives our first vector of the basis. Now take ψ2 orthogonal to
φ1. We define φ2 as before. If φ2 = ψ2, then φ2 is automatically orthogonal to φ1. This also holds in the second case,
since

〈ψ2 − Tψ2, φ1〉 = −〈Tψ2, φ1〉 = −〈Tφ1, T 2ψ2〉 = −〈φ1, ψ2〉 = 0,

where we used twice that 〈ψ2, φ1〉 = 0. We go on, and construct the vectors φk inductively for 1 ≤ k ≤ N . This gives
an orthonormal basis in which T = K.
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Theorem III.3 (Class AI). The sets AI(0, n,N) and AI(1, n,N) are path-connected.

Proof. In a basis in which T = KN , we have the identification

AI(0, n,N) =
{
P ∈ Gn(CN ) : P = P

}
.

In other words, AI(0, n,N) consists of real subspaces of H, i.e. those that are fixed by the complex conjugation
T = K. One can therefore span such subspaces (as well as their orthogonal complement) by orthonormal real vectors.
This realizes a bijection similar to (II.1), but where unitary matrices are replaced by orthogonal ones: more precisely

AI(0, n,N) ≃ O(N)/O(n)×O(N − n).

We adapt the argument in the proof of Theorem II.1 to show that the latter space is path-connected. Let P0, P1 ∈
AI(0, n,N). We choose two real bases of H, which we identify with columns of orthogonal matrices U0, U1 ∈ O(N),
so that the first n vectors of Uj span the range of Pj , for j ∈ {0, 1}. In addition, by flipping the first vector, we may
assume U0, U1 ∈ SO(N). Then there is A0, A1 ∈ AN (R) so that Uj = eAj for j ∈ {0, 1}. We then set Us := eAs with
As = (1 − s)A0 + sA1. The projection Ps on the first n column vectors of Us then interpolates between P0 and P1,
as required. In view of Lemma III.1, the path-connectedness of AI(0, n,N) implies the one of AI(1, n,N).

B. Class AII

In class AII we have T 2 = −IH. This case was studied for instance in [7, 11, 14, 16, 29].

Lemma III.4. There is an anti-unitary map T : H → H with T 2 = −IH iff dimH = N = 2M is even. In this case,
there is a basis of H in which T has the matrix form

T =

(
0 KM

−KM 0

)
= J2M K2M . (III.2)

Proof. First, we note that Tψ is always orthogonal to ψ. Indeed, we have

〈ψ, Tψ〉 = 〈T 2ψ, Tψ〉 = −〈ψ, Tψ〉, hence 〈ψ, Tψ〉 = 0. (III.3)

We follow the strategy employed e.g. in [16] and [7, Chapter 4.1], and construct the basis by induction. Let ψ1 ∈ H
be any normalized vector, and set ψ2 := Tψ1. The family {ψ1, ψ2} is orthonormal by (III.3). If H 6= Span{ψ1, ψ2},
then there is ψ3 ∈ H orthonormal to this family. We then set ψ4 = Tψ3, and claim that ψ4 is orthonormal to the
family {ψ1, ψ2, ψ3}. First, by (III.3), we have 〈ψ3, ψ4〉 = 0. In addition, we have

〈ψ4, ψ1〉 = 〈Tψ3, ψ1〉 = 〈Tψ1, T
2ψ3〉 = −〈ψ2, ψ3〉 = 0,

and, similarly,

〈ψ4, ψ2〉 = 〈Tψ3, Tψ1〉 = 〈T 2ψ1, T
2ψ3〉 = 〈ψ1, ψ3〉 = 0.

We proceed by induction. We first obtain that the dimension of H is even, N = 2M , and we construct an explicit
basis {ψ1, · · · , ψ2M} for H. In the orthonormal basis {ψ1, ψ3, ψ5, · · · , ψ2M−1, ψ2, ψ4, · · ·ψ2M}, the operator T has the
matrix form (III.2).

Theorem III.5 (Class AII). The sets AII(0, n,N) and AII(1, n,N) are non-empty iff n = 2m ∈ 2N and N = 2M ∈
2N. Both are path-connected.

Proof. The proof follows the same lines as that of Theorems II.1 and III.3. The condition T−1PT = P for P ∈
AII(0, n,N) means that the range of the projection P is stable under the action of T . This time, the operator T
endows the Hilbert space H with a quaternionic structure, namely the matrices {iIH, T, iT } satisfy the same algebraic
relations as the basic quaternions {i, j,k}: they square to −IH, they pairwise anticommute and the product of two
successive ones cyclically gives the third. This allows to realize the class AII(0, 2m, 2M) as

AII(0, 2m, 2M) ≃ Sp(M)/Sp(m)× Sp(M −m).

Matrices in Sp(M) are exponentials of Hamiltonian matrices, that is, matrices A such that J2MA is symmetric [18,
Prop. 3.5 and Coroll. 11.10]. Such matrices form a (Lie) algebra, and therefore the same argument as in the proof
of Theorem III.3 applies, yielding path-connectedness of AII(0, 2m, 2M). This in turn implies, in combination with
Lemma III.1, that AII(1, 2m, 2M) is path-connected as well.
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C. Class D

We now come to classes where the C-symmetry is present. We first focus on the even case, C2 = +IH, characterizing
class D. One of the most famous models in this class is the 1-dimensional Kitaev chain [26]. We choose to work in the
basis of H in which C has the form C = KN (see Lemma III.2). This is different from the “energy basis”, of common
use in the physics literature, in which C is block-off-diagonal, mapping “particles” to “holes” and vice-versa. We find
this other basis more convenient for our purpose.

Lemma III.6. The set D(0, n,N) is non-empty iff N = 2n. In this case, and in a basis where C = KN , a projection
P is in D(0, n, 2n) iff it has the matrix form

P =
1

2
(IN + iA), with A ∈ O(2n) ∩ A2n(R).

Proof. A computation shows that





P ∗ = P

P 2 = P

C−1PC = I− P
⇐⇒





A∗ = −A
A2 = −IN
A = A

⇐⇒
{
A∗A = IN

A = A = −AT .

This proves that P ∈ D(0, n,N) iff A ∈ O(N) ∩ AN (R). In particular, we have det(A) = (−1)Ndet(−A) =
(−1)Ndet(AT ) = (−1)Ndet(A), so N = 2m is even. Finally, since the diagonal of A is null, we have n = Tr(P ) =
1
2Tr(IN ) = m.

In Corollary A.4 below, we prove that a matrix A is in O(2n) ∩ A2n(R) iff it is of the form

A =WTJ2nW, with W ∈ O(2n).

In addition, we have WT
0 J2nW0 = WT

1 J2nW1 with W0,W1 ∈ O(2n) iff W0W
∗
1 ∈ Sp(n) ∩O(2n). Finally, in Proposi-

tion A.5, we show that Sp(n) ∩O(2n) ≃ U(n). Altogether, this shows that

D(0, n, 2n) ≃ O(2n) ∩ A2n(R) ≃ O(2n)/U(n).

To identify the connected components of this class, recall that for an anti-symmetric matrix A ∈ AR

2n(C), we can
define its Pfaffian

Pf(A) :=
1

2nn!

∑

σ

sgn(σ)

n∏

i=1

aσ(2i−1),σ(2i), (III.4)

where the above sum runs over all permutations over 2n labels and sgn(σ) is the sign of the permutation σ. The
Pfaffian satisfies

Pf(A)2 = det(A).

On the other hand, if A ∈ O(2n), then det(A) ∈ {±1}, so if A ∈ O(2n) ∩ A2n(R), we must have det(A) = 1 and
Pf(A) ∈ {±1}.

Theorem III.7 (Class D). The set D(d, n,N) is non-empty iff N = 2n.

• The set D(0, n, 2n) has two connected components. Define the index map IndexD0 : D(0, n, 2n)→ Z2 ≃ {±1} by

∀P ∈ D(0, n, 2n), IndexD0 (P ) := Pf(A).

Then P0 is homotopic to P1 in D(0, n, 2n) iff IndexD0 (P0) = IndexD0 (P1).

• The set D(1, n, 2n) has four connected components. Define the index map IndexD1 : D(1, n, 2n)→ Z2 × Z2 by

∀P ∈ D(1, n, 2n), IndexD1 (P ) :=
(
Pf(A(0)),Pf(A(12 ))

)
.

Then P0 is homotopic to P1 in D(1, n, 2n) iff IndexD1 (P0) = IndexD1 (P1).
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Proof. We start with D(0, n,N = 2n). Let P0, P1 ∈ D(0, n, 2n). It is clear that if Pf(A0) 6= Pf(A1), then P0 and P1

are in two different connected components (recall that Pf(·) is a continuous map, with values in {±1} in our case).
It remains to construct an explicit homotopy in the case where Pf(A0) = Pf(A1). In Corollary A.4 below, we recall

that a matrix A is in O(2n) ∩ A2n(R) iff there is V ∈ SO(2n) so that

A = V TDV, with D = (1, 1, · · · , 1,Pf(A))⊗
(

0 1

−1 0

)
.

So, if A0, A1 ∈ O(2n)∩A2n(R) have the same Pfaffian, it is enough to connect the corresponding V0 and V1 in SO(2n).
The proof follows since SO(2n) is path-connected (compare with the proof of Theorem III.3).
The case for D(d = 1, n, 2n) is now a consequence of Lemma III.1.

Remark III.8. For 1-dimensional translation-invariant systems, one can distinguish between a weak (i.e., lower-
dimensional, depending solely on P (k) at k = 0) index

IndexD0 (P (0)) = Pf(A(0)) ∈ Z2

and a strong (i.e., “truly” 1-dimensional) index

˜IndexD0 (P ) := Pf(A(0)) · Pf(A(12 )) ∈ Z2.

Only the latter Z2-index appears in the periodic tables for free ground states [27]. Our proposed index

IndexD1 (P ) =
(
Pf(A(0)),Pf(A(12 ))

)
∈ Z2 × Z2

clearly contains the same topological information of both the weak and strong indices.
A similar situation will appear in class BDI (see Section IVA).

D. Class C

We now focus on the odd C-symmetry class, where C2 = −IH. Thanks to Lemma III.4, N = 2M is even, and we
can choose a basis of H in which C has the matrix form

C =

(
0 KM

−KM 0

)
= J2M K2M .

Recall that Sp(n) := Sp(2n;C) ∩ U(2n).

Lemma III.9. The set C(0, n,N) is non-empty iff N = 2n (hence n = M). A projection P is in C(0, n, 2n) iff it
has the matrix form

P =
1

2
(I2n + iJ2nA) , with A ∈ Sp(n) ∩ SR2n(C).

Proof. With this change of variable, we obtain that




P = P ∗

P 2 = P

C−1PC = I2n − P
⇐⇒





A∗J2n = J2nA

J2nAJ2nA = −I2n
AJ2n = J2nA.

With the two first equations, we obtain AA∗ = I2n, so A ∈ U(2n). With the first and third equations, we get AT = A,
so A ∈ SR2n(C), and with the two last equations, AT J2nA = J2n, so A ∈ Sp(2n;C). The result follows.

In Corollary A.2 below, we prove that a matrix A is in Sp(n) ∩ SR2n(C) iff it is of the form

A = V TV, for some V ∈ Sp(n).

In addition, A = V T
0 V0 = V T

1 V1 with V0, V1 ∈ Sp(n) iff V1V
∗
0 ∈ Sp(n) ∩ O(2n) ≃ U(n) (see the already mentioned

Proposition A.5 for the last bijection). This proves that

C(0, n,N) ≃ Sp(n) ∩ SR2n(C) ≃ Sp(n)/U(n).

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
84

32
6



10

Theorem III.10 (Class C). The sets C(0, n,N) and C(1, n,N) are non-empty iff N = 2n. Both are path-connected.

Proof. For C(d = 0, n, 2N), it is enough to prove that Sp(n) ∩ SR2n(C) is path-connected. To connect A0 and A1 in
Sp(n) ∩ S2n(C) it suffices to connect the corresponding V0 and V1 in Sp(2n). This can be done as we already saw in
the proof of Theorem III.5. Invoking Lemma III.1 allows to conclude that C(1, n, 2n) is path-connected as well.

IV. REAL CHIRAL CLASSES: BDI, DIII, CII AND CI

We now focus on the chiral real classes; by Assumption I.4, the chiral symmetry operator S will come from the
combination of a T -symmetry with a C-symmetry. In what follows, we will always find a basis for H in which S := TC
has the form (II.3). In particular, Lemma II.2 applies, and any P ∈ X(d, n, 2n) for X ∈ {BDI,DIII,CII,CI} will be of
the form

P (k) =
1

2

(
In Q(k)

Q(k)∗ In

)
with Q(k) ∈ U(n). (IV.1)

The T -symmetry (or equivalently the C-symmetry) of P (k) translates into a condition for Q(k), of the form

FT (Q(k)) = Q(−k). (IV.2)

With these remarks, we are able to formulate the analogue of Lemma III.1 for real chiral classes.

Lemma IV.1 (Real chiral classes in d = 1). Let X ∈ {BDI,DIII,CII,CI}. Then P0 and P1 are in the same connected
component in X(1, n, 2n) iff

• P0(0) and P1(0) are in the same connected component in X(0, n, 2n),

• P0(
1
2 ) and P1(

1
2 ) are in the same connected component in X(0, n, 2n), and

• there exists a choice of the above interpolations Ps(0), Ps(
1
2 ), s ∈ [0, 1], and therefore of the corresponding

unitaries Qs(0), Qs(
1
2 ) as in (IV.1), such that

Winding(∂Ω0, Q) = 0,

where Ω0 is the half-square defined in (III.1), and where Q is the continuous family of unitaries defined on ∂Ω0

via the families

{Q0(k)}k∈[0,1/2] , {Q1(k)}k∈[0,1/2] , {Qs(0)}s∈[0,1] , and
{
Qs(

1
2 )
}
s∈[0,1]

.

Proof. As was already mentioned, the vanishing of the winding in the statement is equivalent to the existence of a
continuous extension of the map Q(k, s) ≡ Qs(k) to (k, s) ∈ Ω0. For k ∈ [− 1

2 , 0] and s ∈ [0, 1], we define

Qs(k) := FT (Qs(−k)),

where FT is the functional relation in (IV.2). Using (IV.1), we can infer the existence of a family of projections
{Ps(k)}k∈T1 which depends continuously on s ∈ [0, 1], is in X(1, n, 2n) for all s ∈ [0, 1], and restricts to P0 and P1 at
s = 0 and s = 1, respectively. This family thus provides the required homotopy.

A. Class BDI

We start from class BDI, characterized by even T - and C-symmetries.

Lemma IV.2. Assume BDI(0, n,N) is non empty. Then N = 2n, and there is a basis of H in which

T =

(
Kn 0

0 Kn

)
, C =

(
Kn 0

0 −Kn

)
, so that S = TC =

(
In 0

0 −In

)
.
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Proof. Let P0 ∈ BDI(0, n, 2n), and let {φ1, · · · , φn} be an orthonormal basis for RanP0 such that Tφj = φj for all
1 ≤ j ≤ n (see Lemma III.2). We set

∀1 ≤ j ≤ n, φn+j = Cφj .

Since C is anti-unitary, and maps RanP0 into Ran (I − P0), the family {φ1, · · · , φ2n} is an orthonormal basis for H.
Since T and C commute, we have for all 1 ≤ j ≤ n,

Tφn+j = TCφj = CTφj = Cφj = φn+j , and Cφn+j = C2φj = φj . (IV.3)

Therefore in this basis the operators T and C take the form

T =

(
Kn 0

0 Kn

)
, C =

(
0 Kn

Kn 0

)
and S =

(
0 In

In 0

)
.

We now change basis via the matrix U := 1√
2

(
In In

In −In

)
to obtain the result.

Using Lemma IV.2, one can describe a projection P (k) with its corresponding unitary Q(k). The condition
T−1P (k)T = P (−k) reads

Q(−k) = Q(k).

So a projection P is in BDI(0, n, 2n) iff the corresponding matrix Q ∈ U(n) satisfies Q = Q, that is Q ∈ O(n). This
proves that

BDI(0, n, 2n) ≃ O(n).

Recall that O(n) has two connected components, namely det−1{±1}.

Theorem IV.3 (Class BDI). The set BDI(d, n,N) is non-empty iff N = 2n.

• Let IndexBDI
0 : BDI(0, n, 2n)→ Z2 be the index map defined by

∀P ∈ BDI(0, n, 2n), IndexBDI
0 (P ) = det(Q).

Then P0 is homotopic to P1 in BDI(0, n, 2n) iff IndexBDI
0 (P0) = IndexBDI

0 (P1).

• There is an index map IndexBDI
1 : BDI(1, n, 2n) → Z2 × Z such that P0 is homotopic to P1 in BDI(1, n, 2n) iff

IndexBDI
1 (P0) = IndexBDI

1 (P1).

Proof. Recall that SO(n) is path-connected, see the proof of Theorem III.3. The complement O(n) \ SO(n) is in
bijection with SO(n), by multiplying each orthogonal matrix with determinant −1 by the matrix diag(1, 1, . . . , 1,−1).
This proves the first part.

We now focus on dimension d = 1. Let P (k) be in BDI(1, n, 2n), and let Q(k) be the corresponding unitary. Let
α(k) : [0, 12 ]→ R be a continuous map so that

∀k ∈ [0, 12 ], detQ(k) = eiα(k).

Since Q(0) and Q(12 ) are in O(n), we have detQ(0) ∈ {±1} and detQ(12 ) ∈ {±1}. We define

W1/2(P ) :=W1/2(Q) :=
1

π

(
α(12 )− α(0)

)
∈ Z.

The number W1/2(Q) ∈ Z counts the number of half turns that the determinant is winding as k goes from 0 to 1
2 .

We call this map the semi-winding. We finally define the index map IndexBDI
1 : BDI(1, n, 2n)→ Z2 × Z by

∀P ∈ BDI(1, n, 2n), IndexBDI
1 (P ) :=

(
detQ(0), W1/2(P )

)
∈ Z2 × Z.
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Let P0, P1 be in BDI(1, n, 2n) such that IndexBDI
1 (P0) = IndexBDI

1 (P1), and let us construct an homotopy between P0

and P1. First, we have detQ0(0) = detQ1(0), and, since W1/2(P0) =W1/2(P1), we also have detQ0(
1
2 ) = detQ1(

1
2 ).

Let Qs(0) be a path in O(n) connecting Q0(0) and Q1(0), and let Qs(
1
2 ) be a path connecting Q0(

1
2 ) and Q1(

1
2 ).

This defines a continuous family of unitaries on the boundary of the half-square Ω0 := [0, 12 ]× [0, 1]. Since Qs(0) and

Qs(
1
2 ) are in O(n) for all s, their determinants are constant, equal to {±1}, and they do not contribute to the winding

of the determinant of this unitary-valued map. So the winding along the boundary equals

Winding(∂Ω0, Q) =W1/2(P0)−W1/2(P1) = 0.

Lemma IV.1 allows then to conclude the proof.

B. Class CI

In class CI, the T -symmetry is even (T 2 = IH) while the C-symmetry is odd (C2 = −IH).

Lemma IV.4. Assume CI(0, n,N) is non empty. Then N = 2n, and there is a basis of H in which

T =

(
0 Kn

Kn 0

)
, C =

(
0 −Kn

Kn 0

)
so that S = TC =

(
In 0

0 −In

)
. (IV.4)

Proof. The proof is similar to the one of Lemma IV.2. This time, since C2 = −I and TC = −CT , we have, instead
of (IV.3),

Tφn+j = TCφj = −CTφj = −Cφj = −φn+j , and Cφn+j = C2φj = −φj .
Using again Lemma IV.2, we describe a projection P (k) with its corresponding unitary Q(k). The condition

T−1P (k)T = P (−k) gives
Q(−k)T = Q(k).

In particular, if P ∈ CI(0, n, 2n), the corresponding Q satisfies QT = Q. In Corollary A.2 below, we prove that a
matrix Q is in U(n) ∩ SRn (C) iff it is of the form

Q = V TV, for some V ∈ U(n).

In addition, we have Q = V T
0 V0 = V T

1 V1 with V0, V1 ∈ U(n) iff V0V
∗
1 ∈ O(n). This proves that

CI(0, n, 2n) ≃ U(n) ∩ SRn (C) ≃ U(n)/O(n).

Theorem IV.5 (Class CI). The set CI(d, n,N) is non-empty iff N = 2n. It is path-connected both for d = 0 and for
d = 1.

Proof. Given two matrices Q0, Q1 in U(n) ∩ SRn (C), we can connect them in U(n) ∩ SRn (C) by connecting the corre-
sponding V0 and V1 in U(n). This proves that CI(0, n, 2n) is connected.

We now focus on the case d = 1. Let P0(k) and P1(k) be two families in CI(1, n), with corresponding unitaries Q0

and Q1. Let V0(0), V1(0) ∈ U(n) so that

Q0(0) = V0(0)
TV0(0), and Q1(0) = V1(0)

TV1(0).

Let Vs(0) be a homotopy between V0(0) and V1(0) in U(n), and set

Qs(0) := Vs(0)
TVs(0).

Then, Qs(0) is a homotopy between Q0(0) and Q1(0) in CI(0, n, 2n). We construct similarly an homotopy between
Q0(

1
2 ) and Q1(

1
2 ) in CI(0, n, 2n). This gives a path of unitaries on the boundary of the half-square Ω0. We can extend

this family inside Ω0 iff the winding of the determinant along the boundary loop vanishes.

Let W ∈ Z be this winding. There is no reason a priori to have W = 0. However, if W 6= 0, we claim that we can
cure the winding by modifying the path Vs(0) connecting V0(0) and V1(0). Indeed, setting

Ṽs(0) = diag(eiWπs/2, 1, 1, · · · , 1)Vs(0), and Q̃s(0) := Ṽs(0)
T Ṽs(0),

we can check that the family Q̃s(0) also connects Q0(0) and Q1(0) in CI(0, n, 2n), and satisfies

det Q̃s(0) = eiWπs det Qs(0).

This cures the winding, and Lemma IV.1 allows to conclude that the class CI(1, n, 2n) is path-connected.
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C. Class DIII

The class DIII mirrors CI, since here the T -symmetry is odd (T 2 = −IH) while the C-symmetry is even (C2 = IH).
This class has been studied e.g. in [12].

Lemma IV.6. Assume DIII(0, n,N) is non empty. Then n = 2m is even, and N = 2n = 4m is a multiple of 4.
There is a basis of H in which

T =

(
0 KnJn

KnJn 0

)
, C =

(
0 KnJn

−KnJn 0

)
, and S =

(
In 0

0 −In

)
.

Proof. Let P0 ∈ DIII(0, n, 2n). Since T is anti-unitary, leaves RanP0 invariant, and satisfies T 2 = −IRanP0
there, one

can apply Lemma III.4 to the restriction of T on RanP0. We first deduce that n = 2m is even, and that there is a
basis for RanP0 of the form {ψ1, . . . , ψ2m}, with ψm+j = Tψj. Once again we set ψ2m+j := Cψj . This time, we have
TC = −CT , so, in the basis {ψ1, . . . , ψ4m}, we have

T =

(
KJn 0

0 −KJn

)
, C =

(
0 K

K 0

)
hence S = TC =

(
0 Jn
−Jn 0

)
,

A computation reveals that

U∗

(
0 Jn
−Jn 0

)
U =

(
In 0

0 −In

)
, with U :=

1√
2




Im 0 −Im 0

0 −Im 0 Im

0 Im 0 Im

Im 0 Im 0


 ,

and that U is unitary. With this change of basis, we obtain the result.

In this basis, we have that T−1P (k)T = P (−k) iff the corresponding Q satisfies

JnQ
T (−k)Jn = −Q(k).

In dimension d = 0, the condition becomes JnQ
TJn = −Q, which can be equivalently rewritten as

AT = −A, with A := QJn.

The matrix A is unitary and skew-symmetric, A ∈ U(n) ∩ AR

n(C). In particular, the Pfaffian of A is well-defined. In
Corollary A.4 below, we recall that a matrix A is in U(n) ∩ AR

n(C) iff it is of the form

A = V T JnV, with V ∈ U(n).

In addition, we have A = V T
0 JnV0 = V T

1 JnV1 with V0, V1 ∈ U(n) iff V0V
∗
1 ∈ Sp(m). Therefore

DIII(0, 2m, 4m) ≃ U(2m) ∩ AR

2m(C) ≃ U(2m)/Sp(m).

Theorem IV.7 (Class DIII). The set DIII(d, n,N) is non-empty iff n = 2m ∈ 2N and N = 2n = 4m.

• The set DIII(0, 2m, 4m) is path-connected.

• There is a map IndexDIII
1 : DIII(1, 2m, 4m) → Z2 such that P0 is homotopic to P1 in DIII(1, 2m, 4m) iff

IndexDIII
1 (P0) = IndexDIII

1 (P1).

The index IndexDIII
1 is defined below in (IV.5). It matches the usual Teo-Kene formula in [33, Eqn. (4.27)].

Proof. For the first part, it is enough to connect the corresponding matrices V ’s in U(n), which is path-connected.
Let us focus on the case d = 1. Let P (k) ∈ DIII(1, 2m, 4m) with corresponding matrices Q(k) ∈ U(2m) and

A(k) := JT
2mQ(k) ∈ U(2m) ∩ AR

2m(C). Let α(k) : [0, 1/2]→ R be a continuous phase so that

∀k ∈ [0, 12 ], det A(k) = eiα(k).
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For k0 ∈ {0, 1/2}, A(k0) is anti-symmetric, so we can define its Pfaffian, which satisfies Pf(A(k0))
2 = det A(k0) =

eiα(k0). Taking square roots shows that there are signs σ0, σ1/2 ∈ {±1} so that

Pf A(0) = σ0e
i
1
2α(0), and Pf A(12 ) = σ1/2e

i
1
2α(

1
2 ).

We define the Index as the product of the two signs σ0 · σ1/2. Explicitly,

IndexDIII
1 (P ) :=

ei
1
2α(0)

Pf A(0)
· e

i
1
2α(

1

2
)

Pf A(12 )
∈ {±1}. (IV.5)

Note that this index is independent of the choice of the lifting α(k). Actually, this index is 1 if, by following the

continuous map ei
1
2α(k), that is a continuous representation of

√
det(A(k)), one goes from Pf A(0) to Pf A(12 ), and is

−1 if one goes from Pf A(0) to −PfA(12 ).
Let us prove that if P0, P1 ∈ DIII(1, 2m, 4m), then IndexDIII

1 (P0) = IndexDIII
1 (P1) iff there is an homotopy between

the two maps. Let V0(0), V1(0) ∈ U(n) be so that

A0(0) = V0(0)
TJnV0(0), and A1(0) = V1(0)

TJnV1(0).

Let Vs(0) be a homotopy between V0(0) and V1(0) in U(n), and set

As(0) := Vs(0)
T JnVs(0).

This gives a homotopy between A0(0) and A1(0) in DIII(0, n, 2n). We construct similarly a path As(
1
2 ) connecting

A0(
1
2 ) and A1(

1
2 ) in DIII(0, n, 2n).

Define continuous phase maps α0(k), α̃s(
1
2 ), α1(k) and α̃s(0) so that

∀k ∈ [0, 12 ], det A0(k) = eiα0(k) and det A1(k) = eiα1(k),

while

∀s ∈ [0, 1], det As(0) = eiα̃s(0) and det As(
1
2 ) = eiα̃s(

1
2 ),

together with the continuity conditions

α0(k = 1
2 ) = α̃s=0(

1
2 ), α̃s=1(

1
2 ) = α1(k = 1

2 ), and α1(k = 0) = α̃s=1(0).

With such a choice, the winding of det(A) along the loop ∂Ω0 is

W :=
1

2π
[α̃0(0)− α0(0)] ∈ Z.

We claim that W ∈ 2Z is even iff IndexDIII
1 (P0) = IndexDIII

1 (P1). The idea is to follow a continuation of the phase of√
detA along the boundary. For j ∈ {0, 1}, we denote by εj := IndexDIII

1 (Pj) the index for the sake of clarity.
By definition of the Index, we have

ei
1

2
α0(

1
2 )

Pf A0(
1
2 )

=
ei

1

2
α0(0)

Pf A0(0)
ε0, and, similarly,

ei
1

2
α1(

1
2 )

Pf A1(
1
2 )

=
ei

1

2
α1(0)

Pf A1(0)
ε1

On the segment (k, s) = { 12} × [0, 1], the map s 7→ Pf As(
1
2 ) is continuous, and is a continuous representation of the

square root of the determinant. So

ei
1
2 α̃0(

1
2 )

Pf A0(
1
2 )

=
ei

1
2 α̃1(

1
2 )

Pf A1(
1
2 )
, and similarly,

ei
1
2 α̃0(0)

Pf A0(0)
=

ei
1
2 α̃1(0)

Pf A1(0)
.

Gathering all expressions, and recalling the continuity conditions, we obtain

ei
1
2 α̃0(0)

Pf A0(0)
= ε0ε1

ei
1
2α0(0)

Pf A0(0)
, so eiπW = ε0ε1.
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This proves our claim.
If the indices differ, then we have ε0ε1 = −1, hence W is odd. In particular, W 6= 0, and one cannot find an

homotopy in this case. Assume now that that two indices are equal, so that ε0ε1 = 1 and W ∈ 2Z is even. There is
no reason a priori to have W = 0, but we can cure the winding. Indeed, we set

Ãs(0) := Ṽs(0)
TJnṼs(0), with Ṽs(0) := diag(eiπWs, 1, · · · , 1)Vs(0).

The family As(0) is a continuous family connecting A0(0) and A1(0) in DIII(0, n, 2n). In addition, we have det Ãs(0) =
e2iπWsdetAs(0), so this new interpolation cures the winding. Invoking Lemma IV.1 concludes the proof.

D. Class CII

Finally, it remains to study the class CII, in which we have both T 2 = −IH and C2 = −IH.

Lemma IV.8. Assume CII(0, n,N) is non empty. Then n = 2m is even, and N = 2n = 4m is a multiple of 4.
There is a basis of H in which

T =

(
−KnJn 0

0 −KnJn

)
, C =

(
KnJn 0

0 −KnJn

)
, and S =

(
In 0

0 −In

)
.

Proof. The proof is similar to the one of Lemma IV.6. Details are left to the reader.

In this basis, the condition T−1P (k)T = P (−k) reads, in terms of Q,

JnQ(k)Jn = −Q(−k), or equivalently Q(k)TJnQ(−k) = Jn.

In particular, in dimension d = 0, we have Q ∈ U(2m) ∩ Sp(2m;C) = Sp(m). So

CII(0, 2m, 4m) ≃ Sp(m).

Theorem IV.9 (Class CII). The set CII(d, n,N) is non-empty iff n = 2m ∈ 2N and N = 2n = 4m.

• The set CII(0, 2m, 4m) is path-connected.

• Define the map IndexCII
1 : CII(1, 2m, 4m)→ Z by

∀P ∈ CII(1, 2m, 4m), IndexCII
1 (P ) := Winding(T1, Q).

Then P0 is homotopic to P1 in CII(1, 2m, 4m) iff IndexCII
1 (P0) = IndexCII

1 (P1).

Proof. We already proved in Theorem III.5 that Sp(m) is connected, which yields the first part.
For the d = 1 case, we first note that if Q ∈ Sp(m), we have QTJnQ = Jn. Taking Pfaffians, we get det(Q) = 1.

As in the proof of Theorem IV.3, we deduce that any path Qs(0) connecting Q0(0) and Q1(0) in Sp(m) has a
determinant constant equal to 1, hence does not contribute to the winding. The proof is then similar to the one of
Theorem IV.3.

Appendix A: Matrix factorizations

In this appendix, we show how to factorize certain classes of matrices we encountered in the main body of the
paper. The first result has been discovered many times, and is known as the Autonne–Tagaki factorization [2]. The
proof we present is found in [20, Cor. 4.4.4] for the complex case, and in [8] for the symplectic case. For the sake of
the reader, we give a unified proof which employs also tools from [23] in the symplectic case.
Recall that we denote by SRn (C) the set of n×n (complex) matrices, symmetric in the sense A = AT , and by AR

n(C)
the anti-symmetric ones, satisfying A = −AT .

Theorem A.1 (Autonne–Tagaki factorization). Let A ∈ SRn (C), and let Λ be the diagonal matrix composed of the
(non-negative) singular values of A. Then there is a unitary U ∈ U(n) such that A = UΛUT .
If n = 2m and A is also symplectic, i.e. AT JnA = Jn, then U and Λ can be chosen to be symplectic as well.
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The above factorization is not a spectral decomposition, which involves similarities of the form U∗AU rather than
congruences of the form UTAU .

Proof. By definition, singular values of A are the (non-negative) square roots of the eigenvalues of the positive
Hermitian operator H := A∗A. The operator H is hermitian, hence diagonalizable, of the form H = WΛ2W ∗ for
some W ∈ U(n). Define

L :=WTAW

and observe that LT = L. Using the unitarity of W and the symmetry of A, we have

L∗L =W ∗A∗WWTAW =W ∗A∗AW = Λ2,

LL∗ =WTAWW ∗A∗W =WTAAW =W ∗A∗AW = Λ2 = Λ2,

as Λ2 is real-valued. So LL∗ = L∗L, i.e. the operator L is normal, thus admits a polar decomposition L = V P with
P := (L∗L)1/2 = Λ and V ∈ U(n) which commute among each other. As Λ is diagonal and V commutes with it, we
may choose V to be diagonal as well. In particular, it is symmetric, V = V T . If V = diag(eiφ1 , . . . , eiφn), denote by
V 1/2 := diag(eiφ1/2, . . . , eiφn/2). This gives

WTAW = L = V Λ = V 1/2ΛV 1/2 hence A = UΛUT with U :=WV 1/2.

In the symplectic case, we can prove that each matrix appearing previously can be chosen symplectic as well. For
the matrices W and Λ2, this follows from [23, Prop. 3]. We directly check that L is symplectic if A is, and its polar
decomposition L = V P can be chosen with V and P symplectic [23, Prop. 4].

We deduce the following useful corollary. The fact that Sp(m)∩O(2m) ≃ U(m) is proved below in Proposition A.5.

Corollary A.2.

• A matrix A is in U(n) ∩ SRn (C) iff it is of the form

A = V TV with V ∈ U(n).

In addition, A = V T
0 V0 = V T

1 V1 with V0, V1 ∈ U(n) iff V0V
∗
1 ∈ O(n). In particular, U(n) ∩ SRn (C) ≃ U(n)/O(n).

• A matrix A is in O(n) ∩ SRn (C) iff there is 0 ≤ j ≤ n so that A is of the form

A = V TDjV with V ∈ SO(n), and Dj := diag(1, · · · , 1︸ ︷︷ ︸
j

,−1, · · · ,−1︸ ︷︷ ︸
n−j

).

The set O(n) ∩ SRn (C) has n+ 1 connected components, labeled by the signature.

• Assume n = 2m. A matrix A is in Sp(m) ∩ SR2m(C) iff it is of the form

A = V TV with V ∈ Sp(m).

In addition, A = V T
0 V0 = V T

1 V1 with V0, V1 ∈ Sp(m) iff V0V
∗
1 ∈ Sp(m) ∩ O(2m) ≃ U(m). In particular, Sp(m) ∩

SR2m(C) ≃ Sp(m)/U(m).

Proof. If A ∈ U(n) ∩ SRn (C), its singular values are all equal to 1, so the Autonne–Tagaki factorization of A is of the
form A = UUT = V TV with V = UT .
If A = V T

0 V0 = V T
1 V1 with V0, V1 ∈ U(n), then Z := V0V

∗
1 is unitary, and satisfies Z = (Z∗)T = Z, that is Z is

real-valued. So Z ∈ O(n) as wanted.
The proof in the symplectic case is similar.
If A ∈ O(n)∩SRn (C), then the usual diagonalization of A shows that A is of the form A = V TDV with V ∈ SO(n), and
D the diagonal matrix with the eigenvalues of A, counting multiplicities, and ranked in decreasing order. Since the
eigenvalues of A ∈ O(n) are ±1, we haveD = Dj with j = dimKer(A−1). If A0 and A1 have different signatures, they
are in different connected components of O(n) ∩ SRN (C), and if they have the same signature, they can be connected
by connecting the corresponding V ’s. This concludes the proof.

The anti-symmetric analogue of the Autonne–Tagaki factorization is known as Hua’s decomposition [21, Thm. 7].

We set J2 =

(
0 1

−1 0

)
.
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Theorem A.3 (Hua’s decomposition). Let A ∈ AR

n(C) and assume that A is non-degenerate. Then n = 2m and all
singular values of A have even multiplicities. In addition, if D is the m×m diagonal matrix, composed of “half” the
singular values of A, then there is U ∈ U(n) such that A = U (D ⊗ J2)UT .
If A is real-valued, then U is orthogonal.

Recall that if n is odd, then A = −AT is never non-degenerate, since det(A) = det(AT ) = (−1)ndet(A) = −det(A),
hence det(A) = 0.

Proof. Consider the positive Hermitian matrix H := A∗A. Observe that, in view of the non-degeneracy of A,

det (A∗A− λIn) = det
(
A∗ − λA−1

)
det(A) = Pf(A)2

[
Pf
(
A∗ − λA−1

)]2
,

where we used that A∗ − λA−1 ∈ AR

n(C). Therefore, the characteristic polynomial of H is a perfect square. This
implies that its roots (i.e. the singular values of A) are of even multiplicity, and in particular their number, which is
n, must be even.
Consider now Λ := D ⊗ J2 as in the statement. If D = diag(λ1, . . . , λm), then

Λ∗Λ = ΛTΛ = diag(λ21, λ
2
1, . . . , λ

2
m, λ

2
m).

The spectral decomposition of H implies the existence of W ∈ U(m) such that H = WΛ∗ΛW ∗. As in the proof of
Theorem A.1, set

L :=WTAW.

Using that AT = −A, we have LT = −L. We also have L∗L = Λ∗Λ, which can be recast as

(LΛ−1)−1 = ΛL−1 = (Λ∗)−1L∗ = (LΛ−1)∗,

that is, the matrix LΛ−1 =: V is unitary. The skew-symmetry of L and of Λ also gives

V Λ = L = −LT = −ΛTV T = ΛV T .

Diagonalize now the unitary matrix V :

V = Γ∆Γ∗ with Γ ∈ U(n), ∆ := diag
(
eiφ1 , . . . , eiφn

)
.

Set also

∆1/2 := diag
(
eiφ1/2, . . . , eiφn/2

)
, V 1/2 := Γ∆1/2Γ∗.

Clearly, (V 1/2)2 = V and, by functional calculus, V 1/2Λ = Λ(V 1/2)T . We obtain

WTAW = L = V Λ = V 1/2Λ(V 1/2)T

that is

A = U (D ⊗ J2)UT , with U := (WT )∗V 1/2.

This concludes the proof for the complex case. The real case follows immediately, upon noticing that a real-valued
unitary matrix is automatically orthogonal.

Corollary A.4.

• A matrix A is in U(2m) ∩ AR

2m(C) iff it is of the form

A = V TJ2mV with V ∈ U(2m).

In addition, A = V T
0 J2mV0 = V T

1 J2mV1 with V0, V1 ∈ U(2m) iff V0V
∗
1 ∈ Sp(m). In particular,

U(2m) ∩AR

2m(C) ≃ U(2m)/Sp(m).

• A matrix A is in O(2m) ∩ AR

2m(C) iff it is of the form

A =WTJ2mW with W ∈ O(2m). (A.1)

and, setting ΛA := diag(1, 1, · · · , 1,Pf(A)) ⊗ J2, iff it is also of the form

A = V TΛAV with V ∈ SO(2m). (A.2)

If A = WT
0 J2mW0 = WT

1 J2mW1 with W0,W1 ∈ O(2m), then W0W
∗
1 ∈ Sp(2m;R) ∩ O(2m) ≃ U(m). In particular,

O(2m) ∩ AR

2m(C) ≃ O(2m)/U(m).
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Proof. Let A ∈ U(2m) ∩ AR

2m(C). First, since A ∈ U(2m), it is invertible, and its singular values are all equal to 1.
The previous result gives U ∈ U(2m) so that

A = U (Im ⊗ J2)UT . (A.3)

Upon reshuffling the columns of Im ⊗ J2, we can transform Im ⊗ J2 into J2m. We deduce that there is V ∈ U(2m) so
that A = V TJ2mV . If A = V T

0 J2mV0 = V T
1 J2mV1, with V0, V1 ∈ U(2m), then Z := V0V

∗
1 is in U(2m), and satisfies

ZTJ2mZ = J2m, that is, Z is symplectic.
The proof for (A.1) is similar. It remains to prove (A.2). Let A ∈ O(2m) ∩ AR

2m(C). Using (A.3) in the real case,
we see that there is U ∈ O(2m) so that A = UT (In ⊗ J2)U with U ∈ O(2m). We have det(U) ∈ {±1}, and

Pf(A) = Pf(UT (In ⊗ J2)U) = det(U)Pf((In ⊗ J2)) = det(U).

If det(U) = 1, we simply take V := U , otherwise we take

V = diag(1, 1, · · · , 1,−1)U.

We end this Appendix with the following result.

Proposition A.5. The group Sp(2m;R) ∩O(2m) = Sp(2m;C) ∩O(2m) ⊂ Sp(m) is isomorphic to U(m).

Proof. If U ∈ Sp(2m;R) ∩O(2m), then J2m = UTJ2mU = U−1J2mU hence UJ2m = J2mU . Decomposing U in block
form, this condition is equivalent to

U =

(
A B

−B A

)
= U with ATA+BTB = Im, ATB −BTA = 0.

These conditions are equivalent to the fact that the m×m matrix V := A+ iB is unitary. Indeed

(A+ iB)∗(A+ iB) = (AT − iBT )(A + iB) = (ATA+BTB) + i(ATB −BTA) = Im.

This concludes the proof.
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