
Noname manuscript No.
(will be inserted by the editor)

Computing mixed strategies equilibria in presence of switching
costs by the solution of nonconvex QP problems

G. Liuzzi · M. Locatelli · V. Piccialli · S. Rass

Received: date / Accepted: date

Abstract In this paper we address game theory problems arising in the context of network se-
curity. In traditional game theory problems, given a defender and an attacker, one searches for
mixed strategies which minimize a linear payoff functional. In the problems addressed in this
paper an additional quadratic term is added to the minimization problem. Such term represents
switching costs, i.e., the costs for the defender of switching from a given strategy to another one
at successive rounds of a Nash game. The resulting problems are nonconvex QP ones with linear
constraints and turn out to be very challenging. We will show that the most recent approaches for
the minimization of nonconvex QP functions over polytopes, including commercial solvers such as
CPLEX and GUROBI, are unable to solve to optimality even test instances with n = 50 variables. For
this reason, we propose to extend with them the current benchmark set of test instances for QP
problems. We also present a spatial branch-and-bound approach for the solution of these prob-
lems, where a predominant role is played by an optimality-based domain reduction, with multiple
solutions of LP problems at each node of the branch-and-bound tree. Of course, domain reductions
are standard tools in spatial branch-and-bound approaches. However, our contribution lies in the
observation that, from the computational point of view, a rather aggressive application of these
tools appears to be the best way to tackle the proposed instances. Indeed, according to our exper-
iments, while they make the computational cost per node high, this is largely compensated by the
rather slow growth of the number of nodes in the branch-and-bound tree, so that the proposed
approach strongly outperforms the existing solvers for QP problems.

G. Liuzzi
Istituto di Analisi dei Sistemi ed Informatica ”Antonio Ruberti” (IASI)
Consiglio Nazionale delle Ricerche (CNR)
Via dei Taurini 19, 00185 Rome - Italy
Tel.: +0039 06 4993 7129
E-mail: giampaolo.liuzzi@cnr.iasi.it

M. Locatelli
Università degli Studi di Parma
Parco Area delle Scienze, 181/A - I 43124 Parma
E-mail: marco.locatelli@unipr.it

V. Piccialli
DICII - University of Rome Tor Vergata
via del Politecnico 1
00133 Roma
E-mail: veronica.piccialli@uniroma2.it

S. Rass
Universität Klagenfurt, Institute of Applied Informatics, System Security Group,
Klagenfurt, Austria,
E-mail: stefan.rass@aau.at

ar
X

iv
:2

00
2.

12
59

9v
2

 [
m

at
h.

O
C

]
 2

0
Se

p
20

20

2 G. Liuzzi et al.

Keywords Game Theory · Nonconvex Quadratic Programming Problems · Branch-and-Bound ·
Bound-Tightening

1 Introduction

Consider a finite two-person zero-sum game Γ , composed from a player set N = {1, 2}, each
member thereof having a finite strategy space S1, S2 associated with it, and a utility function
ui : S1 × S2 → R for all i ∈ N . We assume a zero-sum Nash game, making u2 := −u1 hereafter,
and letting the players choose their actions simultaneously and stochastically independent of one
another (contrary to a Stackelberg game, where one player would follow the other, which we do
not consider here). The game is then the triple Γ = (N,S = {S1, S2}, H = {u1,−u1}), and is most
compactly represented by giving only the payoff function u1 in matrix form (since the strategy
spaces are finite) as

A ∈ R|S1|×|S2| = (u1(x, z))(x,z)∈S1×S2
.

An equilibrium in Γ is a simultaneous optimum for both players w.r.t. u1. Assuming a maxi-
mizing first player, an equilibrium is a pair (x∗, z∗) satisfying the saddle-point condition

u1(x, z∗) ≤ u1(x∗, z∗) ≤ u1(x∗, z) ∀(x, z) ∈ S1 × S2.

It is well known that many practical games do not have such an equilibrium point; as one of
the simplest instances, consider the classical rock-scissors-paper game, represented by the payoff
matrix

rock scissors paper()rock 0 1 −1
scissors −1 0 1

paper 1 −1 0

.

This game has no equilibria in pure strategies: any fixed choice of rock, scissors or paper would
imply a constant loss for the first player (and likewise for the second player). This means that
player 1 is forced to randomize its actions in every round of the game, and this concept leads to
the idea of mixed extensions of a game, which basically changes the above optimization problem
into one over the convex hulls ∆(S1), ∆(S2) of the action spaces, rather than the finite sets S1, S2.
An element of ∆(Si) is then a probability distribution over the elements of the support Si, and
prescribes to pick a move at random whenever the game is played.

The game rewards its players after each round, and upon every new round, both players are
free to choose another element from their action space at random. Implicitly, this choice is with-
out costs, but what if not? Many real life instances of games do incur a cost for changing one’s
action from a1 ∈ S1 in the first to some distinct a2 ∈ S1 in the next round. Matrix games cannot
express such costs in their payoff functions, and more complex game models such as sequential or
stochastic games come with much more complicated models and equilibrium concepts. The goal
of this work is to retain the simplicity of matrix games but endow them with the ability to include
switching costs with the minimal natural (modeling) effort.

The area of system security [1,20] offers rich examples of such instances, such as (among many):

– Changing passwords [16]: if the currently chosen password is p1 and we are obliged to pick
a fresh password (say, different from the last couple of passwords that we had in the past),
the use of the new password p2 6= p1 induces quite some efforts, as we have to memorize the
password, while choosing it as hard as possible to guess. The “cost” tied to the change is thus
not monetary, but the cognitive efforts to create and memorize a new password. This effort can
make people reluctant to change their passwords (or write them down, or use a very similar
password for the new one).

Title Suppressed Due to Excessive Length 3

– Changing computer/server configurations: this usually means taking a computer (e.g., a server)
offline for a limited time, thus cutting down productivity perhaps, and hence causing costs.
If security is drawn from randomly changing configurations (and passwords, resp. password
changing rules are only one special case here), then this change incurs costs by temporal outages
of IT infrastructure for the duration of the configuration change, and the efforts (person-hours)
spent on applying this change. This is why server updates or patches are usually done over
nights or weekends, when the loads are naturally low. If the optimization would, however,
prescribe a rather frequent change of configurations at random intervals, this can quickly
become a practical inhibitor, unless the switching costs are accounted for by optimization.

– Patrolling and surveillance [2,15]: consider a security guard on duty to repeatedly check a few
locations, say A, B, . . . , E, which are connected at distances as depicted in Fig. 1. This is a

A

CB

D

E

4

3

21

7

1

Fig. 1: Example of spot checking game on a graph

chasing-evading game with the guard acting as player 1 against an intruder being player 2,
and with the payoff function u being an indicator of whether the guard caught the intruder at
location i ∈ {A,. . . ,E}, or whether the two missed each other. This is yet another instance of a
game with all equilibria in mixed strategies, but with the unpleasant side-effect for the guard
that gets the prescription to randomly spot check distant locations to “play” the equilibrium
x∗, the guard would have to move perhaps long distances between the locations. For example,
if it is at A in round 1 and the next sample from the random distribution x∗ ∈ ∆({A,. . . ,E})
tells to check point E next, the shortest path would be of length 1 + 3 + 2 = 6 over C. Starting
from A, however, it would be shorter and hence more convenient for the guard to check location
B first along the way, but this would mean deviating from the equilibrium! A normal game
theoretic equilibrium calculation does not consider this kind of investment to change the current
strategy. This may not even count as bounded rationality, but simply as acting “economic”
from the guard’s perspective. But acting economically here is then not governed by a utility
maximizing principle, but rather by a cost minimization effort.

– Generalizing the patrolling game example, the issue applies to all sorts of moving target defense:
for example, changing the configuration of a computer system so as to make it difficult for an
attacker to break in, often comes with high efforts and even risks for the defending player 1
(the system administrator), since it typically means taking off machines from the network,
reconfiguring them to close certain vulnerabilities, and then putting them back to work hoping
that everything restarts and runs smoothly again. A normal game theoretic model accounts
only for the benefits of that action, but not for the cost of taking the action.

Including the cost to switch from one action to the next is more complicated than just as-
signing a cost function c : S1 → R and subtracting this from the utilities to redefine them as
u′1(i, j) = u1(i, j)− c(i), since the cost to play ai will generally depend on the previous action aj
played in the previous round.

4 G. Liuzzi et al.

We can model this sort of payoff by another function s : S1 × S1 → R that we call the switching
cost. The value of s(i, j) is then precisely the cost incurred to change the current action i ∈ S1 into
the action j ∈ S1 in the next round of the game. Intuitively, this adds another payoff dimension
to the game, where a player, w.l.o.g. being player 1 in the following, plays “against itself”, since
the losses are implied by its own behavior. While the expected payoffs in a matrix game A under
mixed strategies x ∈ ∆(S1), z ∈ ∆(S2) are expressible by the bilinear functional xTAz, the same
logic leads to the hypothesis that the switching cost should on average be given by the quadratic
functional xTSx, where the switching cost matrix is given, like the payoff matrix above, as

S ∈ R|S1|×|S1| = (s(x,w))(x,w)∈S1×S1
.

This intuition is indeed right [17], but for a rigorous problem statement, we will briefly recap the
derivation given independently later by [23] to formally state the problem.

1.1 Paper Outline

The paper is structured as follows. In Section 2 we give a formal description of the problem as a
nonconvex QP one with linear constraints, and we report a complexity result, proved in Appendix
A. In Section 3 we present a (spatial) branch-and-bound approach for the problem, putting a
particular emphasis on the bound-tightening procedure, which turns out to be the most effective
tool to attack it. In Section 4 we present some computational experiments. We first describe the
set of test instances. Next, we discuss the performance of existing solvers over these instances.
Finally, we present and comment the computational results attained by the proposed approach.
In Section 5 we draw some conclusions and discuss possible future developments.

1.2 Statement of contribution

The main contributions of this work are:

– addressing an application of game theory arising in the context of network security, where
switching costs come into play, and showing that the resulting problem can be reformulated as
a challenging nonconvex QP problem with linear constraints;

– introducing a large set of test instances, which turn out to be very challenging for existing QP
solvers and, for this reason, could be employed to extend the current benchmark set of QP
problems (see [7]);

– proposing a branch-and-bound approach for the solution of the addressed QP problems, based
on standard tools, but with the empirical observation that a very aggressive use of bound-
tightening techniques, with a high computational cost per node of the branch-and-bound tree,
is the key for an efficient solution of these problems.

2 Formal description of the problem

Let the game come as a matrix A ∈ Rn×m, where n and m are the number of strategies for player
1 and 2, respectively, with equilibrium (x∗, z∗), and let it be repeated over the time t ∈ N. At each
time t, let Xt ∼ x∗ be the random action sampled from the equilibrium distribution over the action
space (with x∗ being the optimal distribution). In a security setting and zero-sum game, neither
player has an interest of being predictable by its opponent, so we assume stochastic independence
of the action choices by both players between any two repetitions of the game. Then, we have
Pr(Xt−1 = i,Xt = j) = Pr(Xt−1 = i) · Pr(Xt = j), so that any future system state remains
equally predictable whether or not the current state of the system is known. Hence, the switching

Title Suppressed Due to Excessive Length 5

cost can be written as

s(Xt−1, Xt) =

n∑
i=1

n∑
j=1

sij · Pr(Xt−1 = i,Xt = j)

=

n∑
i=1

n∑
j=1

sij · Pr(Xt−1 = i) · Pr(Xt = j) = xTSx.

With this, player 1’s payoff functional becomes vector-valued now as

u1 : ∆(S1)×∆(S2)→ R2, (x, z) 7→
(
u1(x, z) = xTAz
s(x, z) = xTSx

)
, (1)

and the game is multi-objective for the first player. As we are interested mostly in the best behavior
for player 1 and the analysis would be symmetric from player 2’s perspective, we shall not explore
the view of the second player hereafter.

Remark 1 The game could be equally well multi-objective for the second player too, and in fact a
practical instance of such a situation may also come from security: it could be in an adversary’s
interest to “keep the defender busy”, thus causing much friction by making the defender move
fast from one place to the other. This is yet just another instance of a denial-of-service attack, to
which such a game model would apply.

For the sake of computing a multi-objective equilibrium, more precisely a Pareto-Nash equilib-
rium, the algorithm in [18] based on the method laid out in [12] proceeds by scalarizing (1) by
choice of some α ∈ (0, 1), to arrive at the real-valued goal function

α · xTAz + (1− α) · xTSx,

for the first player to optimize. Now, the usual way from here to an optimization problem for player
1 involving a rational opponent applies as for standard matrix games [17]: let ei ∈ Rm be i-th unit
vector, then arg maxz∈∆(S2)(x

TAz) = arg maxi(x
TAei). After introducing the additional variable

v, the resulting problem becomes

min (1− α) · xTSx + αv

s.t. v ≥ xTAei i = 1, . . . ,m∑n
j=1 xj = 1

xj ≥ 0 j = 1, . . . , n,

(2)

which is almost the familiar optimization problem to be solved for a Nash equilibrium in a finite
matrix game. It differs from the well known linear program only in the quadratic term, and, in
fact, the equilibrium problem for matrix games is recovered by substituting α = 1 in (2). The
problem would again become trivial for α = 0, since in that case, only the switching cost matters
and hence every degenerate distribution corresponding to a strategy i ∈ S1 that never changes is
directly an equilibrium. Excluding the standard equilibria obtained at α = 1 and the meaningless
results expected for α = 0, problem (2) is interesting only for values of α strictly between 0 and 1.
Note that the matrix S in the quadratic term will (in most cases) have a zero diagonal, nonnegative
off-diagonal entries, be indefinite and not symmetric in general (patrolling game example given
above already exhibits a variety of counterexamples leading to nonsymmetric distance matrices S
if the graph is directed). Of course, symmetry of S can be easily recovered, so in what follows we
will assume that S is symmetric. As already commented, the two extreme values α = 0 and α = 1
give rise to simple problems. Indeed, for α = 1 the problem is an LP one, while for α = 0 is a
Standard QP (StQP) problem, which is in general NP-hard (e.g., in view of the reformulation of
the max clique problem as an StQP problem, see [22]), but is trivial in the case of zero diagonal and

6 G. Liuzzi et al.

nonnegative off-diagonal entries (each vertex of the unit simplex is a globally optimal solution).
For what concerns the intermediate values α ∈ (0, 1) we can prove the following result, stating the
complexity of problem (2) .

Theorem 1 Problem (2) is NP-hard.

Proof. See Appendix A. �

Remark 2 Observe the interesting effect that the two extreme instances at α = 0 and α = 1 are
solvable in polynomial time, while any intermediate instance with 0 < α < 1 is NP-complete.
The jump in the complexity thus cannot be attributed to either term alone, but only to their
coincidental presence.

Remark 3 The dependence of next actions on past ones extends to other scenarios too: for example,
if the game is about coordination in wireless settings (e.g., collaborative drones), the players, e.g.,
drones, share a common communication channel. Every exchange of information occupies that
channel for a limited period of time, thus constraining what the other players can do at the
moment. Such effects can be described by stochastic games, but depending on how far the effect
reaches in the future, backward inductive solution methods may become computationally infeasible
[10]; likewise, extending the strategy space to plan ahead a fixed number of k steps (to account
for one strategy determining the next k repetitions of the game) may exponentially enlarge the
strategy space (by a factor of 2O(k), making the game infeasible to analyze if k is large). Games
with switching cost offer a neat bypass to that trouble: if an action is such that it occupies lots of
resources for a player, thus preventing it from taking further moves in the next round of the game,
we can express this as a switching cost. Assume, for instance, that an action in a game Γ is such
that the player is blocked for the next k rounds, then the switching cost is k-times the expected
utility u (with the expectation taken over the equilibrium distribution played by the participants)
that these next k rounds would give. Virtually, the situation is thus like if the player would have
paid the total average gain over the next rounds where it is forced to remain idle (thus gaining
nothing):

u −k · u︸ ︷︷ ︸
switching cost

+ u+ · · ·+ u︸ ︷︷ ︸
virtual payoffs

over k rounds

= u+ 0 + 0 + . . .+ 0︸ ︷︷ ︸
practical payoffs

by being idle

for k rounds

(3)

Expression (3) will in practice be only an approximate identity, since we assumed that the game,
viewed as a stochastic process, has already converged to stationarity (so that the equilibrium
outcome u is actually rewarded). The speed of convergence, indeed, can itself be of interest to be
controlled in security applications using moving target defenses [23]. The crucial point of modeling
a longer lasting effect of the current action like described above, however, lies in the avoidance of
complexity: expression (3) has no issues with large k, while more direct methods of modeling a
game over k rounds, or including a dependency on the last k moves, is relatively more involved
(indeed, normal stochastic games consider a first-order Markov chain, where the next state of the
game depends on the last state; the setting just described would correspond to an order k chain,
whose conversion into a first order chain is also possible, but complicates matters significantly).

3 A branch and bound approach

After incorporating parameter α into the definitions of matrix S and vectors Aj , j = 1, . . . ,m, and
after introducing the vector of variables y, problem (2) can be rewritten as the following problem

Title Suppressed Due to Excessive Length 7

with bilinear objective function and linear constraints:

min F (x,y, v) := 1
2

∑n
i=1 xiyi + v

v ≥ AT
j x j = 1, . . . ,m

yi = Six i = 1, . . . , n

x ∈ ∆n,

(4)

where Si denotes the i-th row of matrix S and ∆n denotes the n-dimensional unit simplex. In
what follows we will denote by P the feasible region of this problem, and by Px,y its projection
over the space of x and y variables.

Each node of the branch-and-bound tree is associated to a box B = [`x,ux] × [`y,uy], where
`x,ux and `y,uy denote lower and upper bound vectors for variables x and y, respectively. An
initial box B0, containing Px,y is easily computed. It is enough to set `x = 0, ux = e (the vector
whose entries are all equal to one), and

`yi = min
k=1,...,n

Sik, `ui = max
k=1,...,n

Sik.

Note that, although not strictly necessary, we can also bound variable v to belong to an interval.
Indeed, we can impose v ≥ 0 (due to nonnegativity of the entries of vectors Aj , j = 1, . . . ,m),
and

v ≤ max
j=1,...,m, k=1,...,n

Ajk,

which certainly holds at optimal solutions of problem (4). In what follows we describe in detail each
component of the branch-and-bound approach, whose pseudo-code is then sketched in Algorithm
1.

3.1 Lower bounds

Given box B = [`x,ux]× [`y,uy], then the well known McCormick underestimating function (see
[13])

max {`xi
yi + `yixi − `xi

`yi , uxi
yi + uyixi − uxi

uyi} ,
can be employed to limit from below the bilinear term xiyi over the rectangle [`xi

, uxi
]×[`yi , uyi]. In

fact, it turns out that McCormick underestimating function is the convex envelope of the bilinear
term over the given rectangle. Then, after introducing the additional variables fi, we have that
the optimal value of the following LP problem is a lower bound for problem (4) over the box B:

L(B) = min
1

2

n∑
i=1

fi + v (5a)

x ∈ ∆n (5b)

v ≥ AT
j x j = 1, . . . ,m (5c)

yi = Six i = 1, . . . , n (5d)

(x,y) ∈ B (5e)

fi ≥ `yixi + `xi
yi − `xi

`yi i = 1, . . . , n (5f)

fi ≥ uxi
yi + uyixi − uyiuxi

i = 1, . . . , n. (5g)

The optimal solution of the LP problem will be denoted by (x?(B),y?(B), f?(B), v?(B)).

8 G. Liuzzi et al.

3.2 Upper bound

The global upper bound (GUB in what follows) can be initialized with +∞ or, alternatively, if
a local search procedure is available, one may run a few local searches from randomly generated
starting points, and take the lowest local minimum value as initial GUB value, although, according
to our experiments, there is not a significant variation in the computing times if such local searches
are performed. During the execution of the branch-and-bound algorithm, each time we compute
the lower bound (5) over a box B, its optimal solution is a feasible solution for problem (4) and,
thus, we might update the upper bound as follows:

GUB = min{GUB,F (x?(B),y?(B), v?(B))}.

3.3 Branching

The branching strategy we employed is a rather standard one. Given node B, we first compute
the quantities:

gi = x?i (B)y?i (B)− f?i (B), (6)

measuring the error of McCormick underestimator for each bilinear term xiyi at the optimal solu-
tion of the relaxed problem (5). Then, we select r ∈ arg maxi=1,...,n gi, i.e., the index corresponding
to the bilinear term where we have the largest error at the optimal solution of the relaxation. Next,
we might define the following branching operations for box B:

Branching on x and y: Define four children nodes by adding constraints {xr ≤ x?r(B), yr ≤
y?r (B)}, {xr ≤ x?r(B), yr ≥ y?r (B)}, {xr ≥ x?r(B), yr ≤ y?r (B)}, {xr ≥ x?r(B), yr ≥ y?r (B)},
respectively (quaternary branching);

Branching on x: Define two children nodes by adding constraints xr ≤ x?r(B) and xr ≥ x?r(B),
respectively (binary branching);

Branching on y: Define two children nodes by adding constraints yr ≤ y?r (B) and yr ≥ y?r (B),
respectively (binary branching).

Note that all choices above, with the new McCormick relaxation given by the new limits on the
variables, reduce to zero the error for bilinear term xryr at the optimal solution of problem (5).
It is worthwhile to remark that the computed lower bound tends to become exact even when
branching is always performed with respect to variables of the same type (say, always variables xi,
i = 1, . . . , n). Indeed, it is enough to have that ‖ux−`x‖ → 0 or, alternatively, that ‖uy−`y‖ → 0
in order to let the underestimating function values converge to the original objective function
values. This is a consequence of the fact that the McCormick underestimation function tends to
the value of the corresponding bilinear term even when only one of the two intervals on which it is
defined shrinks to a single point. In the computational experiments we tried all three possibilities
discussed above and it turns out that the best choice is the binary branching obtained by always
branching on y variables.

3.4 Bound-tightening technique

A reduction of the boxes merely based on the above branching strategy would lead to a quite inef-
ficient algorithm. It turns out that performance can be strongly enhanced by an Optimality-Based
Bound-Tightening (OBBT in what follows) procedure (see, e.g., [5,21]). An OBBT procedure re-
ceives in input a box B and returns a tightened box in output, removing feasible points which
do not allow to improve the current best feasible solution. More formally, let B be the set of
n-dimensional boxes. Then:

OBBT : B → B : OBBT (B) ⊆ B and F (x,y, v) ≥ GUB ∀ (x,y) ∈ [B ∩Px,y] \OBBT (B).

Title Suppressed Due to Excessive Length 9

In our approach, we propose to employ an OBBT procedure, which is expensive but, as we will
see, also able to considerably reduce the number of branch-and-bound nodes. The lower and upper
limits `xi , `yi , uyi , uxi , i = 1, . . . , n are refined through the solution of LP problems having the
feasible set defined by constraints (5b)-(5g) and the additional constraint

1

2

n∑
i=1

fi + v ≤ GUB, (7)

stating that we are only interested at feasible solutions where the underestimating function, i.e.,
the left-hand side of the constraint, corresponding to the objective function (5a), is not larger than
the current upper bound GUB. Thus, each call of this OBBT procedure requires the solution of
4n LP problems with the following objective functions:

`xi
/uxi

= min /max xi, `yi/uyi = min /max yi, i = 1, . . . , n.

Note that all these problems are bounded in view of the fact that x is constrained to belong
to the unit simplex. In fact, what we observed through our computational experiments is that
it is not necessary to solve all 4n LPs but it is enough to concentrate the effort on the most
’critical’ variables. More precisely, in order to reduce the number of LPs without compromising
the performance, we employed the following strategies (see also [8] for strategies to reduce the
effort). Taking into account the quantities gi computed in (6), we notice that the larger the gi
value, the higher is the need for a more accurate underestimation of the corresponding bilinear
term. Then, we solved the following LP problems.

– d0.2ne LP problems with objective function min yi, for all i corresponding to the d0.2ne largest
gi values;

– a fixed number d0.1ne of LP problems with objective function max yi, for all i corresponding
to the d0.1ne largest gi values;

– again d0.1ne LP problems with objective function max xi, for all i corresponding to the d0.1ne
largest gi values;

– no LP problem with objective function min xi.

These choices have been driven by some experimental observations. In particular, we noticed that
the lower limit for yi is the most critical for the bound computation or, stated in another way,
constraint

fi ≥ `yixi + `xi
yi − `xi

`yi ,

is often the active one. For this reason a larger budget of LP problems is allowed to improve this
lower limit with respect to the upper limits. Instead, we never try to improve the lower limit `xi

because it is experimentally observed that this limit can seldom be improved.
This way, the overall number of LPs to be solved at each call of the OBBT procedure is reduced to
approximately 0.4n. Note that rather than solving all LP problems with the same feasible set, we
could solve each of them with a different feasible region by incorporating all previously computed
new limits in the definition of the feasible region for the next limit to be computed. That leads to
sharper bounds, however we excluded this opportunity since we observed that LP solvers strongly
benefit from the opportunity of solving problems over the same feasible region.

The underestimating function depends on the lower and upper limits `xi
, `yi , uyi , uxi

. Thus, once
we have updated all such limits, we can call procedure OBBT again in order to further reduce
the limits. These can be iteratively reduced until some stopping condition is fulfilled. Such it-
erative procedure has been proposed and theoretically investigated, e.g., in [5]. That obviously
increases the computational cost per node, since the overall number of LPs to be solved at each
node is now approximately 0.4n times the number of calls to the procedure OBBT, which de-
pends on the stopping condition. But, again, we observed that the additional computational cost
is compensated by a further reduction of the overall number of nodes in the branch-and-bound tree.

10 G. Liuzzi et al.

It is important to stress at this point that OBBT procedures in general and the one proposed
here in particular, are not new in the literature. The main contribution of this work lies in the ob-
servation that a very aggressive application of the proposed OBBT, while increasing considerably
the computational cost per node, is the real key for an efficient solution of the addressed problem.
Indeed, we will see through the experiments, that our approach is able to significantly outperform
commercial QP solvers like CPLEX and GUROBI, and a solver like BARON, which is strongly based
on tightening techniques. This fact suggests that the intensive application of OBBT procedures
might enhance the performance of QP solvers not only over the addressed QP problems but also
over more general ones.

3.5 Pseudo-code of the branch-and-bound approach

In this section we collect all the previously described tools and present the pseudo-code of the
proposed branch-and-bound approach. In Line 1 an initial box B0 is introduced and the collection
of branch-and-bound nodes C still to be explored is initialized with it. In Line 2 a lower bound
over B0 is computed, while in Line 3 the current best observed feasible point z? and the current
GUB value are initialized. Take into account that such values can also be initialized after running
a few local searches from randomly generated starting points. Lines 4–21 contain the main loop of
the algorithm. Until the set of nodes still to be explored is not empty, the following operations are
performed. In Line 5 one node in C with the lowest lower bound is selected. In Line 6 the index k
of the branching variable is selected as the one with the largest gap gi as defined in (6). In Line 7
the branching operation is performed. In Line 8 the selected node B̄ is removed from C, while in
Lines 9–19 the following operations are performed for each of its child nodes. In the loop at Lines
10–17, first procedure OBBT is applied and then the lower bound over the tightened region is
computed, until a stopping condition is satisfied. In particular, in our experiments we iterate until
the difference between the (non-decreasing) lower bounds at two consecutive iterations fall below
a given threshold ε (ε = 10−3 in our experiments). In Lines 13–16 both z? and GUB are possibly
updated through the optimal solution of the relaxed problem. In Line 18 we add the child node to
C. Finally, in Line 20 we remove from C all nodes with a lower bound not lower than (1− ε)GUB,
where ε is a given tolerance value. In all the experiments, we fixed a relative tolerance ε = 10−3,
which is considered adequate for practical applications.

Note that we do not discuss convergence of the proposed branch-and-bound approach, since it
easily follows by rather standard and general arguments which can be found in [11].

In Algorithm 1 we highlighted with a frame box, both the stopping condition in Line 10 and
the call to the OBBT procedure at Line 11, since the performance of the proposed algorithm
mainly depends on how these two lines are implemented.

In what follows, in order to stress the importance of bound-tightening, we will refer to the
proposed approach as Branch-and-Tight (B&T), which belongs to the class of Branch-and-Cut
approaches, since tightening the bound of a variable is a special case of cutting plane.

4 Numerical Results

4.1 Test instances description

The game is about spot checking a set of n places to guard them against an adversary. The places
are spatially scattered, with a directed weighted graph describing the connections (direct reacha-
bility) of place v from place u by an edge v → u with a random length.

Title Suppressed Due to Excessive Length 11

Data : S ∈ Rn×n, A ∈ Rm×n, ε > 0;
Let B0 be an initial box and set C = {B0} ;1

Compute the lower bound L(B0) through (5) ;2

z? = x?(B0) and GUB = F (x?(B0),y?(B0), v?(B0)) ;3

while C 6= ∅ do4

B̄ ∈ arg minB∈C L(B) ;5

k ∈ arg maxi=1,...,n x
?
i (B̄)y?i (B̄)− f?i (B̄) ;6

Branch B̄ into B1 = B̄ ∩ {yk ≤ y?k(B̄)} and B2 = B̄ ∩ {yk ≥ y?k(B̄)} ;7

C = C \ {B̄} ;8

for i ∈ {1, 2} do9

while A stopping condition is not satisfied do10

Bi = OBBT (Bi) ;11

Compute the lower bound L(Bi) through (5) ;12

if F (x?(Bi),y
?(Bi), v

?(Bi)) < GUB then13

z? = x?(Bi) ;14

GUB = F (x?(Bi),y
?(Bi), v

?(Bi)) ;15

end16

end17

C = C ∪ {Bi} ;18

end19

C = C \ {B ∈ C : L(B) ≥ (1− ε)GUB} ;20

end21

return z?, GUB;22

Algorithm 1: Branch-and-bound algorithm

The payoffs in the game are given by an n × n matrix A (so m = n in the above description),
and are interpreted as the loss that the defending player 1 suffers when checking place i while the
attacker is at place j. Thus, the defender can:

– either miss the attacker (i 6= j) in which case there will be a Weibull-distributed random loss
with shape parameter 5 and scale parameter 10.63 (so that the variance is 5);

– or hit the attacker at i = j, in which case there is zero loss.

The defender is thus minimizing, and the attacker is maximizing. The problem above is that of
the defender. The Nash equilibrium then gives the optimal random choice of spot checks to mini-
mize the average loss. To avoid trivialities, the payoff matrices are constructed not to admit pure
strategy equilibria, so that the optimum (without switching cost) is necessarily a mixed strategy.

As for the switching cost, if the defender is currently at position i and next – according to the
optimal random choice – needs to check the (non-adjacent) place j, then the cost for the switch
from i to j is the shortest path in the aforementioned graph (note that, since the graph is directed,
the matrix S is generally nonsymmetric).

For the random instances, the matrix S is thus obtained from a (conventional) all-shortest path
algorithm applied to the graph. Note that the graph is an Erdös-Renyi type graph with n nodes
and p = 0.3 chance of any two nodes having a connection.

Remark 4 The Erdös-Renyi model is here a suitable description of patrolling situations in areas
where moving from any point to any other point is possible without significant physical obstacles
in between. Examples are water areas (e.g., coasts) or natural habitats (woods, . . .), in which
guards are patrolling. It goes without saying that implementing the physical circumstances into the
patrolling problem amounts to either a particular fixed graph topology or class of graphs (e.g., trees
as models for harbor areas, or general scale-free networks describing communication relations).
Such constrained topologies, will generally induce likewise constrained and hence different (smaller)
strategy spaces, but leave the problem structure as such unchanged, except for the values involved.

The weights in the graph were chosen exponentially distributed with rate parameter λ = 0.2, and
the Weibull distribution for the losses has a shape parameter 5 and scale parameter ∼ 10.63, so
that both distributions have the same variance of 5.

12 G. Liuzzi et al.

Remark 5 The choice of the Weibull distribution is because of its heavy tails, useful to model
extreme events (in actuarial science, where it appears as a special case of the generalized extreme
value distribution). If the graph is an attack graph, we can think of possibly large losses that
accumulate as the adversary traverses an attack path therein (but not necessarily stochastically
independent, which the Weibull-distribution sort of captures due to its memory property). Besides,
both the exponential and the Weibull distribution only take non-negative values, and thus lend
themselves to a meaningful assignment of weights as “distances” in a graph.

The graph sizes considered are n = 50, 75, 100 and for each graph size we consider ten random
instances. We restricted the attention to α values in {0.3, 0.4, . . . , 0.9} since problems with α values
smaller than 0.3 and larger than 0.9 turned out to be simple ones. The overall number of instances
is, thus, 210 (70 for each size n = 50, 75, 100).

Note that all the data of the test instances are available at the web site http://www.iasi.

cnr.it/~liuzzi/StQP.

4.2 Description of the experiments

The problem discussed in this paper belongs to the class of nonconvex QP problems with linear
constraints, which is a quite active research area. Even well-known commercial solvers, like CPLEX

and GUROBI, have recently included the opportunity of solving these problems. In [24] different
solution approaches have been compared over different nonconvex QP problems, namely: Standard
Quadratic Programming problems (StQP), where the feasible region is the unit simplex; BoxQP,
where the feasible region is a box; and general QPs, where the feasible region is a general polytope
(in [4] an extensive comparison has also been performed more focused on BoxQPs). The approaches
tested in [24] have been the nonconvex QP solver of CPLEX, quadprogBB (see [6]), BARON (see [19]),
and quadprogIP, introduced in [24]. According to the computational results reported in that work,
solvers quadprogIP and quadprogBB have quite good performance on some subclasses. More pre-
cisely, quadprogIP works well on StQP problem (see also [9] for another approach working well
on this subclass), while quadprogBB performs quite well on BoxQPs, especially when the Hessian
matrix of the objective function is dense. However, they do not perform very well on QP problems
with general linear constraints. Some experiments we performed show that their performance is
not good also on the QP subclass discussed in this paper. For this reason we do not include their
results in our comparison. Thus, in the comparison we included: the nonconvex QP solver of CPLEX,
the best performing over QPs with general linear constraints according to what reported in [24];
the nonconvex QP solver of GUROBI, which has been recently introduced and is not tested in that
paper; BARON, since bound-tightening, which, as we will see, is the most relevant operation in the
proposed approach, also plays a central role in that solver.

We performed three different sets of experiments:

– Experiments to compare our approach B&T with the above mentioned existing solvers over
the subclass of QP problems discussed in this paper (only at dimension n = 50, which, as we
will see, is already challenging for all the competitors);

– Experiments with B&T by varying the intensity of bound-tightening (no bound-tightening,
light bound-tightening, strong bound-tightening), in order to put in evidence that (strong)
bound-tightening is the key operation in our approach;

– Experiments with B&T at dimensions n = 50, 75, 100, in order to see how it scales as the
dimension increases.

All the experiments have been carried out on an Intel R© Xeon R© gold 6136 CPU at 3GHz with
48 cores and 256GB main memory. The algorithm has been coded using the Julia [3] language
(version 1.3.1). Doing the implementation we parallelized as much as possible the bound-tightening
procedure discussed in Section 3.4, where many LPs with the same feasible region need to be solved.
The code is available for download at the URL http://www.iasi.cnr.it/~liuzzi/StQP.

http://www.iasi.cnr.it/~liuzzi/StQP
http://www.iasi.cnr.it/~liuzzi/StQP
http://www.iasi.cnr.it/~liuzzi/StQP

Title Suppressed Due to Excessive Length 13

4.2.1 Comparison with the existing literature

As a first experiment, we compare our method with the commercial solvers BARON, CPLEX and
Gurobi. We run all these methods over ten instances at dimension n = 50 with α ∈ {0.3, 0.4, . . . , 0.9}
(thus, overall, 70 instances). We set a time limit of 600 seconds. A relative tolerance ε = 10−3

is required for all solvers. In Table 1, we report the average performance. For each method we
report the number of nodes (column nn), the percentage gap after the time limit and in brack-
ets the computational time needed to reach it (column GAP % (s)), and finally the percentage
of success, i.e. the percentage of instances solved to optimality within the time limit (column
Succ %). In our opinion, this table reports the most important finding of this paper. It can be
seen that all the commercial solvers fail on most of the instances (apart from a small number
with α = 0.9), whereas our approach solves all the instances with an average time of less than
30 seconds (the complete results are reported in Appendix B). These results show that, although
commercial solvers are fully developed, there is still room for improvements. In particular, it seems
that performing bound-tightening in a very intensive way can strongly enhance the performance
of a solution approach. It might be the case that even commercial solvers may strongly benefit
from an intensive application of this procedure. In fact, as previously recalled, BARON already in-
corporates bound-tightening techniques but, as we will see in the following set of experiments, the
intensity with which bound-tightening is applied also makes a considerable difference.

α BARON CPLEX GUROBI B&T
nn GAP % (s) % nn GAP % (s) % nn GAP % (s) Succ % nn GAP % (s) Succ %

0.3 555 4.27(600) 0 254487 1.59(600) 0 1072784 3.01(600) 0 11.2 0 (6.701) 100
0.4 511 6.33(600) 0 241266 2.79(600) 0 933319 5.03(600) 0 70 0 (32.576) 100
0.5 496 8.91(600) 0 233058 4.81(600) 0 912301 7.25(600) 0 80.6 0 (32.661) 100
0.6 432 11.29(600) 0 936364 7.37(600) 0 990219 9.59(600) 0 45.8 0 (18.46) 100
0.7 449 14.2(600) 0 1040716 9.73(600) 0 1118815 11.93(600) 0 57.6 0 (17.973) 100
0.8 350 16.31(600) 0 1060996 10.51(600) 0 1323985 11.94(600) 0 54.6 0 (11.199) 100
0.9 156 4.79(491.65) 40 1012193 2.31(444.41) 50 650214 0.27(600) 90 61.6 0 (7.562) 100

Table 1: Average performance of all the solvers on ten instances for each value of α when n =
50. The column nn represents the average number of nodes, the column GAP%(s) reports the
percentage GAP after at most 600 seconds and in brackets the average CPU time in seconds. The
column Succ% represents the percentage of success among the ten instances.

4.2.2 Importance of bound-tightening

As already stressed many times, the quite good performance of B&T is due to the bound-tightening
procedure. It is now time to show it with numbers. To this end, besides the already proposed setting
for our approach, we ran it under two different settings:

No bound-tightening at each node we do not apply the procedure OBBT , but we simply
compute the lower bound by solving problem (5);

Light Bound-Tightening at each node we only solve the following LPs once (and, consequently,
we compute the solution of problem (5) only once)
– d0.1ne LP problems with objective function min yi, for all i corresponding to the d0.1ne

largest gi values;
– a fixed number d0.05ne of LP problems with objective function max yi, for all i correspond-

ing to the d0.05ne largest gi values;
– again d0.05ne LP problems with objective function max xi, for all i corresponding to the
d0.05ne largest gi values;

– no LP problem with objective function min xi.

Of course, this strongly reduces the effort per node. With no bound-tightening a single LP is
solved per node, while with light bound-tightening d0.2ne + 1 LPs are solved at each node. In

14 G. Liuzzi et al.

fact, light bound-tightening already requires a considerable computational effort per node (and, as
we will see, it is already enough to perform better than existing solvers). However, the originally
proposed strong bound-tightening procedure, where the OBBT procedure is iteratively applied and
at each iteration d0.4ne LPs are solved, delivers better results. In Table 2, we report the average
performance on the instances with n = 50 in terms of number of nodes, number of LPs solved,
CPU time in seconds and percentage gap of the three levels of bound-tightening. It is evident from
the table that the OBBT procedure is what really makes the difference: most of the instances are
not solved without bound-tightening, whereas the number of nodes and the CPU time needed to
solve the instances decrease as we increase the level of bound-tightening. In Appendix B we also
report the full table with all the results.

No Bound Tightening Light Bound Tightening Strong Bound Tightening
α nn #LPs time GAP% nn #LPs time GAP% nn #LPs time GAP%
0.3 106934.8 106937.8 600 1.899 423 19252.7 26.24 0 11.2 4665 6.7 0
0.4 111981.2 111984.2 600 2.93 2883.4 129670.2 169.431 1.3×10−2 70 27077.5 32.58 0
0.5 117565.6 117568.6 600 4.19 1949.8 83921.9 108.489 0 80.6 26668.6 32.661 0
0.6 117942.4 117945.4 600 4.932 1106.8 45581.3 57.73 0 45.8 14882.5 18.46 0
0.7 113859.4 113862.4 600 6.601 813.8 30621.5 39.447 0 57.6 14604.9 17.973 0
0.8 90646.8 90649.8 600 6.77 307 10600.6 13.23 0 54.6 9247 11.199 0
0.9 89502.6 89505.6 531.13 1.48 183.2 5810.2 7.43 0 61.6 6477.2 7.56 0

Table 2: Average performance on all the 10 instances for each value of α when n = 50 for the
different levels of bound tightening.

4.2.3 Computational results over the proposed test instances as n increases

As a final experiment, we show the behavior of B&T as the dimension n increases. We have solved
ten instances for three different sizes n = 50, 75, 100 and the usual values of α = {0.3, 0.4, . . . , 0.9}
(thus, overall 210 instances). Note that, for all the different values of n, lower and larger values
of α with respect to those we tested give rise to much simpler instances (recall that the problem
becomes polynomially solvable for the extreme values α = 0 and α = 1). We set a time limit of
10800s for all instances. For n = 50 and n = 75 we solve all the instances to optimality (in fact, the
largest time to solve an instance with n = 50 is about 2 minutes, whereas for n = 75 the largest
time is below 1 hour, but most of the problems are solved within 10 minutes). In Figures 2a-2c
we report the box plot of number of nodes, number of LPs and CPU time needed for the different
values of α when n = 50. The figure shows that the hardest instances are the ones corresponding to
the central values of α and this will turn out to hold true also at larger dimensions. We also observe
that the overall number of nodes is extremely limited, thus confirming that, while computationally
expensive, the bound-tightening procedure allows to considerably reduce the size of the branch-
and-bound tree (again, this fact is observed also at larger dimensions). In Figures 3, we report the
different box plots for all the instances at n = 75. It is worthwhile to remark that we solve most
of them within ten minutes and exploring less than 300 nodes. Finally, in Figure 4 we report the
performance of B&T on problems of dimension n = 100. In this case there are seven instances
we are not able to solve within the time limit. These occur for values α ∈ {0.6, 0.7, 0.8}, thus
confirming that the central values of this parameter give rise to the most challenging instances.
With respect to n = 50 and n = 75, we have the additional box plot displayed in Figure 4d
reporting the final percentage gap when the time limit is reached. Note that it is never larger than
1.2% and most of the times it is lower than 0.5%, thus showing that, even when the algorithm
does not terminate, the quality of the returned solution is guaranteed to be high.

Title Suppressed Due to Excessive Length 15

(a) Total number of nodes for n = 50 (b) Number of LPs solved for n = 50

(c) CPU times in seconds

Fig. 2: Box plots for different performance measures for n = 50

5 Conclusions and future work

In this paper we addressed some game theory problems arising in the context of network security.
In these problems there is an additional quadratic term, representing switching costs, i.e.. the
costs for the defender of switching from a given strategy to another one at successive rounds of
the game. The resulting problems can be reformulated as nonconvex QP with linear constraints.
Test instances of these problems turned out to be very challenging for existing solvers, and we
propose to extend with them the current benchmark set of test instances for QP problems. We
presented a spatial branch-and-bound approach to tackle these problems and we have shown that
a rather aggressive application of an OBBT procedure is the key for their efficient solution. The
procedure is expensive, since it requires multiple solutions of LP problems at each node of the
branch-and-bound tree. But we empirically observed that the high computational costs per node
of the branch-and-bound tree are largely compensated by the low number of nodes to be explored.
As a topic for future research, we would like to further investigate the use of OBBT procedures
in the solution of QP problems, and we would like to identify other cases, besides those addressed
in this paper, where their intensive application may considerably enhance the performance of
branch-and-bound approaches.

References

1. Alpcan, T., Başar, T.: Network security: A decision and game-theoretic approach. Cambridge University Press
(2010)

2. Alpern, S., Morton, A., Papadaki, K.: Patrolling games. Operations Research 59(5), 1246–1257 (2011)

16 G. Liuzzi et al.

(a) Total number of nodes for n = 75 (b) Number of LPs solved for n = 75

(c) CPU times in seconds

Fig. 3: Box plots for different performance measures for n = 75

3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing. SIAM
review 59(1), 65–98 (2017). URL https://doi.org/10.1137/141000671

4. Bonami, P., Günlük, O., Linderoth, J.: Globally solving nonconvex quadratic programming problems with box
constraints via integer programming methods. Mathematical Programming Computation 10, 333–382 (2018)

5. Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. Mathematical
Programming 125(1), 123–137 (2010)

6. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive
programming. Mathematical Programming Computation 4(1), 33–52 (2012)

7. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi, A., Misener, R.,
Mittelmann, H., et al.: Qplib: a library of quadratic programming instances. Mathematical Programming
Computation 11(2), 237–265 (2019)

8. Gleixner, A., Berthold, T., Müller, B., Weltge, S.: Three enhancements for optimization-based bound tightening.
Journal of Global Optimization 67, 731–757 (2017)

9. Gondzio, J., Yildirim, E.A.: Global solutions of nonconvex standard quadratic programs via mixed integer
linear programming reformulations. arXiv preprint arXiv:1810.02307 (2018)

10. Hansen, K.A., Koucky, M., Lauritzen, N., Miltersen, P.B., Tsigaridas, E.P.: Exact algorithms for solving stochas-
tic games. In: Proceedings of the forty-third annual ACM symposium on Theory of computing, pp. 205–214
(2011)

11. Horst, R., Tuy, H.: Global optimization: Deterministic approaches (2nd edition). Springer Science & Business
Media (2013)

12. Lozovanu, D., Solomon, D., Zelikovsky, A.: Multiobjective games and determining pareto-nash equilibria. Bulet-
inul Academiei de Ştiinţe a Republicii Moldova. Matematica 3, 115–122 (2005)

13. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part iconvex underes-
timating problems. Mathematical Programming 10(1), 147–175 (1976)

14. P.M., P., S.A., V.: Quadratic programming with one negative eigenvalue is NP-hard. Journal of Global Opti-
mization 1(1), 15–22 (1991)

15. Rass, S., Alshawish, A., Abid, M.A., Schauer, S., Zhu, Q., De Meer, H.: Physical intrusion gamesoptimizing
surveillance by simulation and game theory. IEEE Access 5, 8394–8407 (2017)

16. Rass, S., König, S.: Password security as a game of entropies. Entropy 20(5), 312 (2018)
17. Rass, S., König, S., Schauer, S.: On the cost of game playing: How to control the expenses in mixed strategies.

In: International Conference on Decision and Game Theory for Security, pp. 494–505. Springer (2017)

https://doi.org/10.1137/141000671

Title Suppressed Due to Excessive Length 17

(a) Total number of nodes for n = 100 (b) Number of LPs solved for n = 100

(c) CPU times in seconds (d) % Gap at the time limit

Fig. 4: Box plots for different performance measures for n = 100

18. Rass, S., Rainer, B.: Numerical computation of multi-goal security strategies. In: International Conference on
Decision and Game Theory for Security, pp. 118–133. Springer (2014)

19. Sahinidis, N.V.: Baron: A general purpose global optimization software package. Journal of Global Optimization
8(2), 201–205 (1996)

20. Tambe, M.: Security and game theory: algorithms, deployed systems, lessons learned. Cambridge University
Press (2011)

21. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: A theoretical and
computational study. Mathematical Programming 99(3), 563–591 (2004)

22. T.S., M., E.G., S.: Maxima for graphs and a new proof of a theorem of Turán. Canadian Journal of Mathematics
17(4), 533–540 (1965)

23. Wachter, J., Rass, S., König, S.: Security from the adversarys inertia–controlling convergence speed when
playing mixed strategy equilibria. Games 9(3), 59 (2018)

24. Xia, W., Vera, J.C., Zuluaga, L.F.: Globally solving nonconvex quadratic programs via linear integer program-
ming techniques. INFORMS Journal on Computing 32(1), 40–56 (2020)

A Proof of Theorem 1

In this section we consider the complexity of problem (2). Such problem is a nonconvex QP with linear constraints.
NP-hardness of QP problems has been established for different special cases like, e.g., the already mentioned StQP
problems (see [22]) and the Box QP problems (see, e.g., [14]). However, due to its special structure, none of the
known complexity results can be applied to establish the NP-hardness of problem (2). Thus, in what follows we
formally prove that its corresponding decision problem is NP-complete. Let

f(x) =
1

2
xTSx + max

k=1,...,m
AT
k x, (8)

where Sii = 0 for each i = 1, . . . , n and Sij ≥ 0 for each i 6= j, while Ak ≥ 0, k = 1, . . . ,m. Moreover, let

∆n = {x ∈ Rn+ : eTx = 1},

18 G. Liuzzi et al.

be the n-dimensional unit simplex. After incorporating α and (1 − α) respectively into S and Ak, k = 1, . . . ,m,
problem (2) is equivalent to minx∈∆n f(x). Then, we would like to establish the complexity of the following decision
problem:

Given a constant ξ ≥ 0 ∃ x ∈ ∆n : f(x) ≤ ξ? (9)

We prove the result by providing a polynomial transformation of the max clique decision problem: Given a graph
G = (V,E) and a positive integer k ≤ |V |, does there exist a clique C in G with cardinality at least k? We define
the following instance of the decision problem (9). Let

Sij =

 0 if i = j or (i, j) ∈ E

n4 otherwise.

Moreover, let m = n and for each k = 1, . . . , n let Ak = ek, where ek is the vector with all components equal to 0,
except the k-th one, which is equal to 1. Stated in another way, the piece-wise linear part is maxk=1,...,n xk. Finally,

let ξ = 1
k

. We claim that the minimum value of f over ∆n is not larger than ξ = 1
k

if and only if G contains a clique

with cardinality k. The if part is very simple. Indeed, let us consider the feasible solution xi = 1
k

if i ∈ C, where C

is a clique of cardinality k, and let xi = 0 otherwise. Then, the value of f at this point is equal to 1
k

. Indeed , the

value of the quadratic part is 0, while the value of the piece-wise linear part is 1
k

. The proof of the only if part is
a bit more complicated. We would like to prove that, in case no clique with cardinality at least k exists, then the
minimum value of f over the unit simplex is larger than 1

k
. Let us denote by x∗ the minimum of f over the unit

simplex. Let
K = supp(x∗) = {i : x∗i > 0},

and let C be the maximum clique over the sub-graph induced by K, whose cardinality is at most k − 1. We first
remark that if, for some i ∈ K \ C, it holds that

x∗i ≥
1

n2
and

∑
j∈C : (i,j) 6∈E

x∗j ≥
1

n2
,

then the quadratic part contains the term

n4x∗i

 ∑
j∈C : (i,j)6∈E

x∗j

 ≥ 1,

which concludes the proof. Therefore, for i ∈ K \ C we assume that either x∗i <
1
n2 or

∑
j∈C : (i,j)6∈E

x∗j <
1

n2
. (10)

Now, let

K1 =

{
i : i ∈ K \ C and x∗i ≥

1

n2

}
.

If ∃ k1, k2 ∈ K1 and (k1, k2) 6∈ E, then n4x∗k1x
∗
k2
≥ 1, which concludes the proof. Then, we assume that for each

k1, k2 ∈ K1, (k1, k2) ∈ E, i.e., K1 itself is a clique. Now let us consider the following subset of C

C1 = {i ∈ C : (i, k) 6∈ E for at least one k ∈ K1} .

It must hold that |C1| ≥ |K1|. Indeed, if |C1| < |K1|, then (C \ C1) ∪K1 is also a clique with cardinality larger
than C, which is not possible in view of the fact that C has maximum cardinality. Then, in view of (10) we have
that

x∗i <
1

n2
∀ i ∈ C1,

and, moreover, by definition of K1, we also have

x∗i <
1

n2
∀ i ∈ K \ (K1 ∪ C).

Since |C1| ≥ |K1|, we have that

T =

{
i ∈ K : x∗i ≥

1

n2

}
,

is such that |T | ≤ |K1|+ |C \ C1| ≤ |C1|+ |C \ C1| = |C| ≤ k − 1. Thus, taking into account that

∑
i∈K\T

x∗i <
1

n
,

Title Suppressed Due to Excessive Length 19

we must have that ∑
i∈T

x∗i > 1−
1

n
,

and, consequently, taking into account that |T | ≤ k − 1, for at least one index j ∈ T it must hold that

x∗j >
1− 1

n

k − 1
≥

1

k
,

so that the piece-wise linear part of f is larger than 1
k

, which concludes the proof.

B Detailed numerical results

20 G. Liuzzi et al.

α BARON CPLEX GUROBI Our approach
nodes time GAP % nodes time GAP% nodes time GAP% nodes time GAP%

0.3 503 600 3.94 264068 600 1.55 1088008 600 2.80 3 8 0.0
0.3 514 600 3.05 306808 600 0.88 1325693 600 1.81 5 4 0.0
0.3 625 600 5.29 190794 600 2.90 871168 600 4.16 3 2 0.0
0.3 560 600 4.87 216867 600 2.08 987370 600 3.52 25 14 0.0
0.3 550 600 4.53 260776 600 1.45 1060202 600 3.56 39 17 0.0
0.3 525 600 5.14 269112 600 1.56 1071177 600 3.29 15 6 0.0
0.3 584 600 4.57 197166 600 2.78 846598 600 3.50 9 6 0.0
0.3 692 600 3.85 196197 600 1.65 1061279 600 2.79 5 4 0.0
0.3 448 600 3.59 315456 600 0.39 1271259 600 2.05 5 5 0.0
0.3 545 600 3.90 327630 600 0.68 1145088 600 2.61 3 2 0.0
0.4 494 600 5.85 256185 600 2.39 905790 600 4.65 3 2 0.0
0.4 541 600 4.72 253367 600 1.84 1030448 600 3.61 11 6 0.0
0.4 609 600 7.71 153412 600 5.66 806007 600 6.65 19 9 0.0
0.4 600 600 7.36 198531 600 4.48 839475 600 6.07 135 73 0.0
0.4 416 600 6.16 314293 600 0.61 971486 600 5.32 271 116 0.0
0.4 545 600 7.30 247658 600 3.12 1091092 600 5.23 9 4 0.0
0.4 481 600 7.07 171085 600 4.71 715587 600 6.06 79 34 0.0
0.4 501 600 6.05 201533 600 3.00 895046 600 4.78 107 51 0.0
0.4 487 600 5.05 320172 600 0.43 1156723 600 3.27 61 28 0.0
0.4 436 600 6.01 296422 600 1.65 921533 600 4.70 5 3 0.0
0.5 527 600 7.81 289631 600 2.71 872174 600 6.63 9 6 0.0
0.5 540 600 7.06 217761 600 3.98 1005368 600 5.54 9 4 0.0
0.5 577 600 10.99 181633 600 8.32 756893 600 9.44 41 18 0.0
0.5 466 600 10.32 185921 600 6.74 828527 600 8.92 155 66 0.0
0.5 399 600 8.69 285081 600 4.01 1112264 600 6.33 93 42 0.0
0.5 516 600 9.95 229517 600 6.27 1029917 600 7.92 5 3 0.0
0.5 532 600 9.93 177439 600 6.56 722884 600 8.80 167 61 0.0
0.5 492 600 8.37 185644 600 5.41 800682 600 7.00 137 53 0.0
0.5 413 600 6.80 312503 600 0.71 1072587 600 4.79 179 68 0.0
0.5 498 600 9.14 265445 600 3.35 921716 600 7.16 11 6 0.0
0.6 410 600 9.58 267100 600 4.59 943087 600 8.81 19 10 0.0
0.6 457 600 9.72 235091 600 5.93 982814 600 7.90 7 4 0.0
0.6 482 600 13.91 185440 600 11.24 803205 600 12.28 35 13 0.0
0.6 539 600 13.32 210315 600 10.59 953491 600 11.90 129 54 0.0
0.6 430 600 11.04 284537 600 5.83 1238524 600 8.07 77 27 0.0
0.6 381 600 12.34 3257574 600 7.32 1161734 600 10.01 19 13 0.0
0.6 482 600 11.51 210088 600 8.49 782945 600 11.59 29 13 0.0
0.6 404 600 11.32 4197474 600 8.19 946277 600 8.59 35 7 0.0
0.6 338 600 8.61 294116 600 3.60 1139723 600 5.89 83 31 0.0
0.6 392 600 11.57 221902 600 7.95 950386 600 10.87 25 12 0.0
0.7 388 600 10.65 274783 600 6.39 1111097 600 10.00 25 9 0.0
0.7 437 600 12.04 1248035 600 7.93 1148012 600 9.02 9 3 0.0
0.7 465 600 18.34 174297 600 15.30 779013 600 17.12 31 12 0.0
0.7 512 600 16.44 231018 600 12.05 1175087 600 13.98 275 85 0.0
0.7 417 600 13.66 273481 600 7.23 1502260 600 9.33 57 14 0.0
0.7 478 600 15.70 3252290 600 10.15 1265411 600 13.15 29 7 0.0
0.7 379 600 13.71 248709 600 8.22 901649 600 14.50 47 16 0.0
0.7 499 600 14.11 4225837 600 10.31 1029597 600 11.14 21 4 0.0
0.7 435 600 11.55 260515 600 7.41 1248500 600 7.51 37 11 0.0
0.7 479 600 15.76 218194 600 12.32 1027522 600 13.59 45 19 0.0
0.8 190 600 11.31 269689 600 4.56 1254085 601 6.79 13 4 0.0
0.8 349 600 13.71 1249086 600 9.74 1241374 600 11.32 19 5 0.0
0.8 404 600 19.46 242645 600 14.33 1079730 600 14.08 43 7 0.0
0.8 350 600 18.80 283263 600 12.32 1400882 600 14.89 21 7 0.0
0.8 248 600 12.14 301559 600 4.03 1874137 600 7.84 91 15 0.0
0.8 435 600 20.38 3257129 600 13.67 1360080 600 14.44 25 4 0.0
0.8 373 600 15.30 231575 600 11.75 1175845 600 13.51 143 37 0.0
0.8 423 600 18.67 4240437 600 14.09 1286691 600 11.36 51 6 0.0
0.8 360 600 14.59 285433 600 7.82 1325850 600 9.56 47 10 0.0
0.8 363 600 18.74 249145 600 12.84 1241172 600 15.59 93 17 0.0
0.9 129 600 3.43 279839 600 7.02 333869 94 0.00 27 7 0.0
0.9 247 600 13.69 1294713 600 3.66 2118555 600 2.69 47 6 0.0
0.9 57 239 0.10 79764 170 0.0 184514 58 0.00 47 6 0.0
0.9 177 600 1.60 123932 209 0.0 314744 80 0.00 5 2 0.0
0.9 102 334 0.10 74031 115 0.0 148576 38 0.00 101 8 0.0
0.9 74 297 0.10 3220333 441 0.0 230267 69 0.00 55 7 0.0
0.9 112 600 0.82 201689 444 0.0 172017 52 0.00 63 8 0.0
0.9 295 600 14.90 4282430 611 3.91 1440695 424 0.00 97 11 0.0
0.9 236 600 13.04 302915 600 7.21 1208680 371 0.00 85 12 0.0
0.9 131 447 0.10 262283 600 0.77 350219 100 0.00 89 10 0.0

Title Suppressed Due to Excessive Length 21

No bound tightening Light bound tightening Strong bound tightening
α nodes #lps time GAP% nodes #lps time GAP% nodes #lps time GAP%
0.3 110411 110414 600 1.38 45 2081 7.73 0.0 3 1389 7.54 0.0
0.3 104983 104986 600 1.37 117 5275 7.21 0.0 5 2382 3.65 0.0
0.3 108667 108670 600 1.15 75 3343 4.83 0.0 3 1259 2.23 0.0
0.3 103993 103996 600 2.66 1333 61116 83.63 0.0 25 11219 14.24 0.0
0.3 105677 105680 600 2.29 911 41552 53.47 0.0 39 13992 16.67 0.0
0.3 109691 109694 600 2.12 229 10158 13.09 0.0 15 4617 6.15 0.0
0.3 108237 108240 600 2.29 489 21752 29.30 0.0 9 4199 5.65 0.0
0.3 105505 105508 600 2.43 521 23854 31.75 0.0 5 3101 4.37 0.0
0.3 102763 102766 600 1.91 455 20895 27.91 0.0 5 3387 4.67 0.0
0.3 109421 109424 600 1.39 55 2501 3.51 0.0 3 1105 1.84 0.0
0.4 114313 114316 600 1.96 65 2953 3.92 0.0 3 1381 2.49 0.0
0.4 110321 110324 600 2.17 341 14440 19.52 0.0 11 3998 5.79 0.0
0.4 114203 114206 600 1.96 769 33128 44.17 0.0 19 6852 8.79 0.0
0.4 110271 110274 600 4.17 7603 346771 459.69 0.0 135 60330 73.05 0.0
0.4 110005 110008 600 3.88 10303 463434 600 1.3e-03 271 99345 115.94 0.0
0.4 112983 112986 600 2.63 123 5224 7.01 0.0 9 2404 3.58 0.0
0.4 113319 113322 600 3.41 3113 137531 177.20 0.0 79 28258 33.54 0.0
0.4 113269 113272 600 3.77 4597 206674 270.09 0.0 107 42825 51.43 0.0
0.4 108125 108128 600 3.07 1835 82792 107.60 0.0 61 23760 28.38 0.0
0.4 113003 113006 600 2.28 85 3755 5.10 0.0 5 1622 2.77 0.0
0.5 118889 118892 600 2.72 233 9712 13.19 0.0 9 3874 5.63 0.0
0.5 115619 115622 600 3.02 207 8398 11.43 0.0 9 2965 4.23 0.0
0.5 117685 117688 600 3.18 1785 76149 98.70 0.0 41 14242 18.15 0.0
0.5 117515 117518 600 5.66 3939 174038 220.90 0.0 155 55206 65.84 0.0
0.5 116919 116922 600 5.70 3231 141810 177.74 0.0 93 35390 41.94 0.0
0.5 120505 120508 600 3.34 123 4958 6.74 0.0 5 1925 3.04 0.0
0.5 117217 117220 600 4.81 3369 139806 185.61 0.0 167 48601 60.57 0.0
0.5 117795 117798 600 5.42 2623 110557 144.71 0.0 137 42937 52.99 0.0
0.5 114831 114834 600 4.30 3717 162722 210.93 0.0 179 57501 68.47 0.0
0.5 118681 118684 600 3.75 271 11069 14.94 0.0 11 4045 5.75 0.0
0.6 122649 122652 600 3.79 343 13535 18.47 0.0 19 6893 9.60 0.0
0.6 120833 120836 600 3.83 113 4353 6.06 0.0 7 2361 3.88 0.0
0.6 122259 122262 600 4.10 961 40108 50.37 0.0 35 10673 13.14 0.0
0.6 112075 112078 600 8.07 4449 184494 235.41 0.0 129 45165 54.31 0.0
0.6 114885 114888 600 7.75 1931 81916 98.60 0.0 77 23555 27.16 0.0
0.6 117107 117110 600 4.89 505 18465 25.44 0.0 19 9271 13.02 0.0
0.6 117699 117702 600 0.05 885 35256 44.75 0.0 29 10215 13.19 0.0
0.6 122133 122136 600 5.69 227 9312 11.05 0.0 35 6269 7.24 0.0
0.6 116661 116664 600 5.50 1081 46073 57.46 0.0 83 25607 31.10 0.0
0.6 113123 113126 600 5.65 573 22301 29.69 0.0 25 8816 11.96 0.0
0.7 118717 118720 600 5.33 405 15074 20.44 0.0 25 6485 8.75 0.0
0.7 125675 125678 600 3.40 65 2426 3.32 0.0 9 1992 2.81 0.0
0.7 127137 127140 600 4.47 341 13609 16.54 0.0 31 9504 11.91 0.0
0.7 125293 125296 600 10.91 3671 140527 179.20 0.0 275 70938 85.43 0.0
0.7 126751 126754 600 9.02 821 31203 37.62 0.0 57 13047 14.34 0.0
0.7 128313 128316 600 4.95 255 8927 11.85 0.0 29 5343 6.72 0.0
0.7 128455 128458 600.02 6.75 805 29345 38.77 0.0 47 12328 15.88 0.0
0.7 86603 86606 600 6.19 133 5124 6.12 0.0 21 3327 4.02 0.0
0.7 85403 85406 600 6.42 307 12083 14.88 0.0 37 9075 10.66 0.0
0.7 86247 86250 600 8.57 1335 47897 65.73 0.0 45 14010 19.21 0.0
0.8 87179 87182 600 6.49 147 5264 6.91 0.0 13 2828 3.63 0.0
0.8 92415 92418 600 2.64 63 2326 2.94 0.0 19 3719 4.93 0.0
0.8 92645 92648 600 3.22 187 6850 8.20 0.0 43 5984 6.88 0.0
0.8 90021 90024 600.02 11.63 233 8261 10.29 0.0 21 5408 6.98 0.0
0.8 89669 89672 600 9.09 515 17362 21.23 0.0 91 13655 15.06 0.0
0.8 91903 91906 600 4.36 131 4484 5.79 0.0 25 3540 4.34 0.0
0.8 91247 91250 600 9.23 827 26964 35.37 0.0 143 28591 36.72 0.0
0.8 90817 90820 600 5.39 141 5029 5.95 0.0 51 5923 6.49 0.0
0.8 89261 89264 600 6.20 321 11617 14.22 0.0 47 8291 9.83 0.0
0.8 91311 91314 600 9.41 505 17849 21.37 0.0 93 14531 17.13 0.0
0.9 88037 88040 600 6.67 165 5300 6.88 0.0 27 4879 6.54 0.0
0.9 105609 105612 600 0.16 189 5922 7.50 0.0 47 4956 5.58 0.0
0.9 72451 72454 399.49 0.00 265 8503 10.78 0.0 47 5669 6.33 0.0
0.9 93485 93488 600 5.33 35 1229 1.74 0.0 5 999 1.56 0.0
0.9 93089 93092 553.74 0.00 177 5565 7.06 0.0 101 7728 8.37 0.0
0.9 97929 97932 600 2.60 175 5352 7.02 0.0 55 6067 7.05 0.0
0.9 74985 74988 439.06 0.00 185 5849 7.42 0.0 63 7175 8.22 0.0
0.9 81611 81614 473.46 0.00 165 5212 6.57 0.0 97 9225 10.84 0.0
0.9 86963 86966 474.28 0.00 265 8471 10.81 0.0 85 9562 11.54 0.0
0.9 100867 100870 571.30 0.00 211 6699 8.55 0.0 89 8512 9.59 0.0

	1 Introduction
	2 Formal description of the problem
	3 A branch and bound approach
	4 Numerical Results
	5 Conclusions and future work
	A Proof of Theorem 1
	B Detailed numerical results

