
NeuroImage 231 (2021) 117853 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Behavioral validation of novel high resolution attention decoding method 

from multi-units & local field potentials 

Carine De Sousa 

1 , ∗ , C. Gaillard 

1 , F. Di Bello, S. Ben Hadj Hassen, S. Ben Hamed 

∗ 

Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France 

a r t i c l e i n f o 

Keywords: 

Monkey 

Prefrontal cortex 

Attention 

LFP 

Machine learning 

Decoding 

a b s t r a c t 

The ability to access brain information in real-time is crucial both for a better understanding of cognitive functions 

and for the development of therapeutic applications based on brain-machine interfaces. Great success has been 

achieved in the field of neural motor prosthesis. Progress is still needed in the real-time decoding of higher-order 

cognitive processes such as covert attention. Recently, we showed that we can track the location of the attentional 

spotlight using classification methods applied to prefrontal multi-unit activity (MUA) in the non-human primates. 

Importantly, we demonstrated that the decoded (x,y) attentional spotlight parametrically correlates with the 

behavior of the monkeys thus validating our decoding of attention. We also demonstrate that this spotlight is 

extremely dynamic. Here, in order to get closer to non-invasive decoding applications, we extend our previous 

work to local field potential signals (LFP). Specifically, we achieve, for the first time, high decoding accuracy 

of the (x,y) location of the attentional spotlight from prefrontal LFP signals, to a degree comparable to that 

achieved from MUA signals, and we show that this LFP content is predictive of behavior. This LFP attention- 

related information is maximal in the gamma band (30–250 Hz), peaking between 60 to 120 Hz. In addition, 

we introduce a novel two-step decoding procedure based on the labelling of maximally attention-informative 

trials during the decoding procedure. This procedure strongly improves the correlation between our real-time 

MUA and LFP based decoding and behavioral performance, thus further refining the functional relevance of this 

real-time decoding of the (x,y) locus of attention. This improvement is more marked for LFP signals than for 

MUA signals. Overall, this study demonstrates that the attentional spotlight can be accessed from LFP frequency 

content, in real-time, and can be used to drive high-information content cognitive brain-machine interfaces for 

the development of new therapeutic strategies. 
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. Introduction 

Accessing cognitive functions in real time, using machine learning
ethods applied to ongoing brain signals is considered as one of the ma-

or challenges of modern neurosciences, in order to enhance and restore
uman brain capacities ( Astrand et al., 2014b; Cinel et al., 2019; Dresler
t al., 2018 ). Indeed, the ability to decode brain information in real-time
s expected to allow for a better characterization of cognitive functions
nd development of therapeutic applications based on brain-machine
nterfaces. While great success has been achieved in the field of neural
otor prosthesis ( Prochazka, 2017 ), real-time decoding of higher-order

ognitive processes such as spatial attention is still hampered by the
omplexity of these mechanisms. One major issue in this respect is the
act that cognitive functions are mostly covert and can only be inferred
ransiently through subjects’ behaviors. Another crucial issue is the fact
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hat cognitive processes are highly dynamic, irrespectively of behavioral
oals or instructions ( Gaillard et al., 2020 ). 

In the last years, we have recorded multi-unit activity (MUA) signals
rom prefrontal frontal eye fields (FEF), a cortical region at the core of
ttention selection ( Buschman and Miller, 2007; Ekstrom et al., 2008;
regoriou et al., 2009; Ibos et al., 2013; Moore and Fallah, 2001; War-
ak et al., 2006 ). We report real-time access to the (x,y) coordinates of
ttentional spotlight from these ongoing prefrontal neuronal population
piking activity, at high spatial and temporal resolution ( Astrand et al.,
020; Di Bello et al., 2020; Gaillard et al., 2020 ). Importantly, we show
 strong correlation between the decoded (x,y) attentional spotlight in
eal-time and subjects’ behavioral performance on a complex perceptual
ask. 

In the following, we extend this (x,y) decoding of the attentional
potlight to local field potential (LFPs) signals, moving a step closer to
eal-time EEG based decoding of the attentional function. Indeed, LFP
ignals reflect the spiking activity that are summed over a large pop-
(S. Ben Hamed). 
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lation of neurons while MUA refers to the activity of individual neu-
ons or of a local population of neurons. While MUA activity is often
est analyzed in the time-amplitude domain, LFPs are often analyzed
n the time-frequency domain. Besides, we present a novel two-step de-
oding procedure optimizing correlation between decoded information
nd ongoing behavior. Specifically, we apply machine learning meth-
ds to neuronal population activities recorded from the FEF, bilaterally,
hile monkeys performed a cued spatial target detection task. The FEF

s an oculomotor structure located in the prefrontal cortex ( Bruce et al.,
985 ; Bruce and Goldberg, 1985 ) that plays a central role in the control
f spatial attention ( Buschman and Miller, 2007 ; Ekstrom et al., 2008 ;
regoriou et al., 2009 ; Ibos et al., 2013 ; Wardak et al., 2006 ). We report

or the first-time (x,y) decoding accuracy (i.e.; a quantifiable continuous
easure of accuracy) of attentional spotlight location from LFP signals.
onfirming recent reports highlighting the contribution of gamma fre-
uencies to attentional process ( Fries et al., 2001 ; Gregoriou et al., 2009 ;
andy et al., 2017 ; Paneri and Gregoriou, 2017 ; Richter et al., 2017 ), we

urther show that LFP attention-related informational content is greater
n the gamma frequency band relative to lower frequency bands. The
eal-time attention decoding accuracies for LFP are comparable to what
e achieved from MUA and are highly correlated with behavioral per-

ormance. Based on the observation that the (x,y) attention spotlight
ocation estimated from both MUA and LFP signals correlate with behav-
or, we introduce a novel attentional position decoding method based
n a distinction between trials with high and low attention related in-
ormation content. We demonstrate that this procedure improves de-
oding accuracies obtained from LFP and MUA signals and importantly,
mproves their correlation with behavior. Overall, this study provides
ethodological bases to drive high attention-information content cog-
itive brain machine interfaces from both MUA or LFP activities. It also
pens the way to targeting other cognitive functions such as working
emory, and possibly extend this approach to non-invasive signals such

s EEG or fMRI signals. 

. Methods 

.1. Subjects and surgical procedures 

Two adult male rhesus monkeys (Macaca mulatta) were used in this
xperiment. All surgical and experimental procedures were approved
y the local animal care committee (C2EA42–13–02–0401–01) in com-
liance with the European Community Council, Directive 2010/63/UE
n Animal Care. The surgical procedures, the FEF location, and visual
timulation techniques have been described elsewhere ( Astrand et al.,
016 ). Briefly, the FEF was defined as the anterior bank of the arcu-
te sulcus and we specifically targeted those sites in which a signifi-
ant visual and/or oculomotor activity was observed during a memory
uided saccade task at 10 to 15° of eccentricity from the fixation point.
n order to maximize task-related neuronal information at each of the
4-contacts of the recording probes, we only recorded from sites with
ask-related activity observed continuously over at least 3 mm of depth.

.2. Behavioral task 

The task is a 100% validity endogenous cued spatial target detec-
ion task ( Fig. 1 A). The animals were placed in front of a PC mon-
tor (1920 × 1200 pixels and a refresh rate of 60 Hz), at a distance
f 57 cm, with their heads fixed. The stimuli presentation and behav-
oral responses were controlled using Presentation (Neurobehavioral
ystems R ○, https://www.neurobs.com/ ). To start a trial, the bar placed
n front of the animal’s chair had to be held by the monkeys, thus inter-
upting an infrared beam. The onset of a central blue fixation cross (size
.7° × 0.7°) instructed the monkeys to maintain gaze position inside a
° × 2° window, defined around the fixation cross. To avoid the abort of
he ongoing trial, fixation had to be maintained throughout trial dura-
ion. Eye fixation was controlled thanks to a video eye tracker (Iscan TM ).
2 
our gray square (size 0.5° × 0.5°) were displayed, all throughout the
rial, at the four corners of a 20° x 20° hypothetical square centered
nto the fixation cross. Thus, the four squares (up-right, up-left, down-
eft, down-right) were placed at the same distance from the center of the
creen having an eccentricity of 14° (absolute x- and y-deviation from
he center of the screen of 10°). After a variable delay from fixation
nset, ranging between 700 – 1200 ms, a small green square, the cue
size 0.2° × 0.2°) was presented, for 350 ms, close to the fixation cross
at 0.3°) in the direction of one of the grey squares. Monkeys were re-
arded for detecting a subtle change in luminosity of this cued square -

.e., the target. The change in target luminosity occurred unpredictably
etween 350 to 3300 ms from the cue off time. In order to receive a re-
ard (drop of juice), the monkeys were required to release the bar in a

imited time window (150 - 750 ms) after the target onset (hit trials). In
rder to make sure that the monkeys did use the cue instruction, on half
f the trials, distractors were presented during the cue to target inter-
al. Two types of distractors could be presented: (i) an uncued distractor
33% of trials with distractor) - that could take place equiprobably at
ny of the uncued locations; (ii) a workspace distractor (67% of trials
ith distractor) - that correspond to a small square presented randomly

n the workspace defined by the four target locations. The contrast of
he square with respect to the background was the same as the contrast
f the target against the grey square. The monkeys had to ignore all of
hese distractors. Responding to any of them interrupted the trial. If the
esponse occurred in the same response widow as for correct detection
rials (150 - 750 ms), the trial was counted as a false alarm (FA) trial.
ailing to respond to the target (Miss) similarly aborted the ongoing
rial. Overall, data was collected for 19 sessions (M1: 10 sessions, M2:
 sessions). The behavioral performance of each animal is presented in
ig. 1 B (proportion of hits over miss and FA trials). 

.3. Recording techniques and data analyses 

Bilateral simultaneous recordings in the two frontal eye fields (FEF)
ere carried out using two 24- contact Plexon U-probes ( Fig. 1 C). The

ontacts had an interspacing distance of 250 𝜇m. Neural data was
cquired with the Plexon Omniplex R ○ neuronal data acquisition sys-
em. The data was amplified 400 times and digitized at 40.000 Hz. A
hreshold defining the multi-unit activity (MUA) was applied indepen-
ently for each recording contact before the actual task-related record-
ngs started, as follows. A first automatic step placed the threshold at
ean + 3 ∗ s.d. of the signal in time. A second step was sometimes re-

uired, involving a manual adjustment of the threshold. This second
tep was rarely needed and involved channels with sparse task-related
UA activity. Local field potentials (LFP) were recorded simultaneously

n the same electrodes as MUA. The neuronal properties of the recorded
euronal sample have already been described elsewhere ( Astrand et al.,
020 ; Gaillard et al., 2020 ). Supplementary figures S1 and S2 represent,
or all trials, and sub-trial categories discussed in the main Fig. 4 , aver-
ge neuronal responses (Figure S1) and averaged time frequency spectra
Figure S2), for the preferred and non-preferred positions, aligned to cue
nd target presentation, across the 5 most responsive channels of each
ecording session. 

.4. Neuronal decoding procedure 

All analyses were performed in Matlab 2017. MUA and LFP signals
ere aligned on the target presentation time and sorted according to

he monkey’s behavioral response (hits and misses). Fast Fourier trans-
orm analyses were performed on LFP signals recorded on each ses-
ion, on each of the 48 channels in order to quantify the signal power
pectrum from 1 Hz to 250 Hz. Specifically, each trial power spec-
rum was normalized using its own baseline calculated as the 300 ms
rior to cue presentation power spectrum (fixation period). Time fre-
uency analyses were performed using a hanning taper based on the
eldtripft_freqanalysis Matlab function ( Oostenveld et al., 2011 ) with a

https://www.neurobs.com/
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Fig. 1. Task design and behavioral performance. (A) 100% validity cued spatial target detection task with distractors. Monkeys had to hold a bar and fixate a 

central cross on the screen for a trial to be initiated. Monkeys received a liquid reward for releasing the bar 150 - 750 ms after target presentation. Target location 

was indicated by a cue (green square, second screen). Monkeys had to ignore any uncued event. (B) Behavioral performance of monkeys M1 and M2 at detecting the 

target in the presence or absence of a distractor (median% hits + /- median absolute deviations, dot correspond to individual sessions). (C) Recording sites. On each 

session, 24-contact recording probes were placed in each FEF. 
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xed parameter of 7 cycles per time window (frequency dependent win-
ow length). Decoding from LFP signals was then performed either on
nfiltered data or on eight independent frequency bands: 𝛿 (0–4 Hz), 𝜃
4–8 Hz), 𝛼 (8–12 Hz), low 𝛽 (12–20 Hz), high 𝛽 (20–30 Hz), low 𝛾 (30–
0 Hz), mid 𝛾 (60–120 Hz), high 𝛾 (120–250 Hz). To avoid any border
hase distortion effect or inter-frequency influences of filtering (Butter-
orth filter), we applied Fast-Fourier Transform algorithm on the raw
etrended LFP data and isolated frequency bands of interest indepen-
ently (and not from the full power frequency spectrum). 

As in Astrand et al. (2016 , 2015 ), a regularized linear decoder is
sed to associate, on hit trials, the neuronal activity with one of the
our possible target locations. Specifically, this decoder is defined by
he following equation: C = W 

∗ ( R + b ), where C corresponds to the
ormalized (x,y) coordinates of the target (four possibilities: (1, 1), (1,
 1),( − 1,1),(1, − 1)), W represents the weight matrix, R refers to the neu-

onal response (48-channel by N-trial matrix, corresponding to the av-
rage neuronal signal computed over the time interval of interest, for
ach of the 48 recording channels and each of the N training trials),
nd b is the bias. In order to avoid over-fitting, a Tikhonov regulariza-
ion was used, defined by the following minimization equation: norm
W 

∗ ( R + b ) – C) + 𝜆 ∗ norm(W). The scaling factor 𝜆 was chosen to
llow for a good compromise between learning and generalization. Dur-
ng training, the decoder associated, on correct trials, the neuronal ac-
ivity (R) to one of the four possible target locations (C) to calculate the
orresponding weight matrix (W). Decoder input signals corresponded
ither to the number of spikes for MUA or to the normalized instan-
aneous power of all frequencies or specific frequency bands for LFPs,
omputed over the specified time window. On each given time interval
efore target presentation, the decoder was trained on a random set of
0% of hit trials and then tested on the 30% remaining hit trials and
ll misses, with activities sampled at the same interval as the training
nterval. Trial order were equalized in the training set to avoid any de-
oding bias. To avoid overfitting, training and testing were performed
rom different sets of trials. During training, the input of the classifier
as a 48-channel by N-trial matrix, corresponding to the average neu-

onal signal computed over the time interval of interest as well as the
ormalized (x,y) coordinates of the target for each of these N training
rials. During testing, for each trial, new to the classifier, the output of
he classifier was estimated from a 48-channel vector corresponding to
he average neuronal signal on the time interval of interest, on each of
3 
he 48 recording channels, on the considered testing trial. The output
alculated by the decoder corresponds to an (x,y) coordinate. This out-
ut could either be used to assign attention to a specific visual quadrant,
hanks to a hardlim function (i.e. a decoder output of (0.2, 1.2) could
e assigned to the upper right quadrant, while a decoder output of (0.2,
 0.1) would be assigned to the lower left quadrant), thus producing a
lassification readout ( Astrand et al., 2014b , 2015 ). Alternatively, the
utput of the decoder, can be read as a spatial estimate of the locus of
ttention in the normalized decoding visual space (as in Astrand et al.,
016 , 2020 ; Gaillard et al., 2020 ). Thus an output of (0.5, 0.6) estimates
ttention in the upper left quadrant, at a coordinate of (0.5, 0.6) in the
ormalized decoding visual space, irrespective of where attention was
ctually cued. These coordinates can be transformed in visual degrees
y a simple linear transformation. Thus, for targets located at (10°, 10°),
 − 10°, 10°), ( − 10°, − 10°), and (10°, − 10°), the attention readout in this
pecific case would be (5°, 6°). Training and testing were performed
n neuronal signals from 10 ms to 1200 ms before target presentation
ith a time step of 20 ms. Indeed, on such trials, the neuronal activ-

ties aligned onto target presentation can be analyzed on the longest
200 ms windows without the risk of contamination of the attention-
elated information on or off cue-related neuronal responses. All trials
ith cue-to-target intervals shorter than 1700 ms were excluded from

his analysis. For each interval, training and testing steps were repeated
00 times, then averaged to define a decoding performance correspond-
ng to the number of correct classifications according to quadrant cat-
gories. We estimated the 95% confidence interval to verify the sta-
istical significance of our decoding performance. The same decoding
nalyses as described above were used with a training set based on ran-
om labels. In other words, the decoder used the same neuronal sig-
al, but the coordinates of the target were randomized and thus did not
orrespond to the actual condition in which the neuronal signal was
ecorded. 

On each given time interval before target presentation, the decoder
s trained on a random set of 70% of hit trials (mean = 765, s.e. = 35)
nd then tested on the 30% remaining hit trials (mean = 328, s.e. = 15)
nd all misses (mean = 657, s.e. = 81), with activities sampled from
he same interval as the training interval. The (x,y) location of the at-
entional spotlight is calculated from a leave-one-out decoding strategy
i.e., training was performed on all hit trials (mean = 1093, s.e. = 51)
xcept one, used for the testing). For misses, the decoder is trained on all
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it trials (mean = 1094, s.e. = 51) and tested on all misses (mean = 657,
.e. = 81). 

Importantly, all decoding procedures were applied independently for
ach session and each subject. Indeed, recordings were performed on a
aily session basis, at different FEF cortical locations. As a direct result
f the spatiotopic organization of the FEF ( Bruce et al., 1985 ; Bruce and
oldberg, 1985 ), each different electrode location resulted in a different

et of weights (W) associating recorded neuronal activity to attentional
osition. Therefore, cross subject/session decoding procedure produces
ery low decoding performances. 

.5. Behavioral correlation 

In order to validate the decoding procedure, we investigated the
orrelation between the (x,y) attentional spotlight decoded from neu-
onal signals with monkey’s behavioral response (Percentage of hits over
it + miss trials). Specifically, the relative distance between the actual
arget location and the decoded attentional spotlight location was cal-
ulated for each trial. Percentage of hits over miss trials was then cal-
ulated over 0.5° distance vectors. To avoid biases, total number of hits
nd misses were equalized and then binned - the whole procedure was
epeated 100 times. The X and Y location of attentional spotlight was
alculated from a leave-one-out decoding strategy (i.e., training was per-
ormed on all hit trials except one used for the testing). For misses, the
ecoder was trained on all hit trials and tested on all misses. Training
nd testing were performed on a 150 ms time window prior to target
resentation. Statistical analyses were carried out using linear regres-
ion model. 

.6. Two-step decoding procedure 

In this part, we dissociate high attention-related informational spa-
ial content trials from low attention-related informational content tri-
ls. We use the relative distance calculated between the decoded (x,y)
ttentional spotlight (AS) and the real target location (T) for hit tri-
ls, as described above. Two categories of hit trials were identified from
his first decoding: 1) trials in which the decoded attentional spotlight is
lose to target location (i.e. HighContent trials) and 2) trials in which the
ecoded attentional spotlight is far from target location (i.e. LowCon-
ent trials). HighContent and LowContent trials were defined according
o a threshold of 7° between real target location and decoded attentional
potlight (HighContent trials: |AS-T| < 7°; LowContent trials: |AS-T| ≥
°). Given the high difficulty of the task, monkeys cannot succeed in
he trial if they are not orienting their attention near to the target loca-
ion ( Astrand et al., 2016 ). Thus, we hypothesized that these differences
etween HighContent and LowContent trials was due to differences in
patial attention informational content between these two types of hit
rials, and that signals were more representative of the expected tar-
et location in HighContents trials than in LowContent trials. Decoding
erformance and behavioral correlation were thus calculated a second
ime as follows. In order to evaluate classification performance, training
as performed on all HighContent trials and testing was performed on
ifferent percentages of HighContent trials over LowContent trials (0%
o 100% ratio). The proportion 70/30 of trials used for training and
esting was conserved. Once training and testing sets were selected, the
ecoding procedure applied was the same as the procedure described in
he previous section. In order to evaluate the correlation between de-
oded attention position and behavioral performance, we performed a
rial by trial (x,y) estimation of attentional position. More specifically,
or HighContent trials position decoding, the decoder was trained on all
ighContent trials except one and tested on the remaining one (leave
ne out strategy). For LowContent trials and misses, the decoder was
rained on all HighContent trials and tested on LowContent trials and
isses. Training and testing were performed 150 ms before target pre-

entation. The relative distance between AS and T was calculated and
ssociated with the percentage of hit trials with respect to misses. Hit
4 
rials included 50% of LowContent trials and 50% of HighContent trials.
or each signal (MUA and LFP), we compared the effect of HighContent
rials on decoding performance and behavioral correlation. Statistical
omparisons were performed using non parametric tests (Wilcoxon rank
um test) and linear regression models (F-tests). 

. Results 

In order to access the location of the attentional spotlight, a linear
ecoder was used to estimate the (x,y) coordinates of attention based on
UA and LFP signals, recorded from the prefrontal cortex (FEF, bilat-

rally, Fig. 1 C) while monkeys performed a cued target detection task
 Fig. 1 A). The readout of this linear decoding procedure can be classi-
ed in one of four possible classes indicating whether attention is cor-
ectly oriented to the cued visual quadrant (correct classification), or
o one of the three other quadrants (incorrect classification, Astrand
t al., 2014, Tremblay et al., 2015 ). Alternatively, the readout of the
inear decoding can be taken as an error to the cued location and trans-
ormed into an (x,y) continuous coordinate ( Astrand et al., 2020 , 2016 ;
aillard et al., 2020 ). In the first part of the results, we report for the
rst time continuous attentional spotlight position decoding from LFP
ignals, with performance accuracy levels similar to MUA based decod-
ng. We then analyze how the continuous (x,y) estimates of attentional
potlight based on prefrontal MUA and LFP signals predict behavioral
erformance, thus validating the decoding procedure. Finally, we de-
elop a decoding method that optimizes the spatial decoding of atten-
ion from MUA and LFP signals and highlights qualitative variability in
refrontal attention related information. 

.1. Classifying spatial attention from prefrontal MUA and LFP 

Fig. 2 A and B represent the classification performance based respec-
ively on FEF recorded MUAs and LFPs (irrespective of frequency con-
ent). Neuronal activity (decoder input) was averaged just prior to tar-
et presentation, calculated across varying time windows ranging from
0 ms to 1200 ms. Decoding accuracy on hit trials is significantly higher
han chance level (25%) and higher than the 95% confidence interval
 Fig. 2 , light blue curves) for both MUA ( Fig. 2 A, blue, significance rep-
esented by the black line) and LFP signals ( Fig. 2 B, blue, significance
epresented by the black line). Thus, on hit trials, spatial attention can
e successfully classified from both MUA and LFP signals. It is worth
oting that attention decoding accuracy is only partially (though sta-
istically significantly) degraded when considering channels from only
he ipsilateral FEF relative to the contralateral FEF (supplementary fig-
re S3). This is probably due to two specificities in the FEF receptive
eld properties ( Bruce and Goldberg, 1985 ; Bruce et al., 1985 ). First,
hese receptive fields often expand into the ipsilateral visual hemifield.
econd, visual stimuli, as well as spatial attention oriented in the ipsi-
ateral visual hemifield often evoke inhibitory neuronal responses. This
nformation appears sufficiently precise for the decoder to extract infor-
ation about spatial attention including in the ipsilateral visual field. 

Interestingly, decreasing time intervals before target presentation
ighly impacts decoding accuracies. Performances decrease from 77%
o 40% for MUA ( Fig. 2 A, blue, Wilcoxon rank sum test, p < 0.05) and
rom 71% to 29% for LFPs ( Fig. 2 B, blue, Wilcoxon rank sum test, p <
.05). Compared to short time windows, longer time windows reflect
verage spatial attention location, and thus yield higher classification
ates. On both signals, window size thus implies a trade-off between
emporal resolution and overall classification accuracy. 

While MUA signals are processed in the time-amplitude domain, LFP
ignals are processed in the time-frequency domain. In the following
art, we segregated the different functional frequency bands of LFPs to
nvestigate their specific impact on classification performances. Fig. 2 C
epresents the decoding accuracy in time as a function of specific LFP
unctional frequency band content. As observed on the overall decoding
ccuracy from all LFP frequency content decomposition, larger window
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Fig. 2. Spatial attention decoding accuracies from (A) multi-unit activity 

(MUA) or (B) local field potentials (LFP), as a function of averaging time window 

size from target onset (0 ms), on hits (blue, mean + /- s.e.) and miss trials (red, 

mean + /- s.e.). Black dashed line (25%): absolute chance level; dashed blue and 

red curves: 95% C.I. for hit and miss trials. (C) Spatial attention decoding accu- 

racy from LFP signals per LFP frequency band, as a function of averaging time 

window size from target onset (0 ms), on hit (left) and miss trials (right). Shaded 

gray area: no significant difference in performance as assessed by a Wilcoxon 

rank sum test (M1: 10 sessions, M2: 9 sessions). 
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izes yield higher decoding accuracies in all frequency bands ( Fig. 2 C).
owever, information about spatial location of attention is mainly con-

ained in the gamma frequency bands (30–250 Hz). Specifically, on
it trials, for the largest window sizes, decoding accuracies are below
0% for all frequency bands < 30 Hz ( 𝛿 = 40%; 𝜃 = 42%; 𝛼 = 36%;
ow 𝛽 = 35%; high 𝛽 = 39%) and reach a maximum of 54% for low

(30–60 Hz), 66% for mid 𝛾 (60–120 Hz) and 65% for high 𝛾 (120–
50 Hz, Fig. 2 C). Specifically, decoding performances were not signif-
cantly higher than 95% CI for the 𝜃, 𝛼 and low 𝛽 bands. In addition,
ull spectrum LFP decoding accuracy is statistically higher than each LFP
and-specific decoding accuracies, except for the mid gamma frequency
and from which it is statistically undistinguishable (supplementary fig-
re S4B, Wilcoxon rank sum test, p < 0.05) 

In order to quantify the level of attentional information shared by
he selected frequency bands of interest, we analyzed the correlation
etween decoded (x,y) positions for each frequency pair ( 𝛿, Θ, 𝛼, low 𝛽,
igh 𝛽, low 𝛾, mid 𝛾, high 𝛾, and full LFP spectrum, figure S5, Spearman
orrelation coefficient, n = 20,778 trials, 19 sessions). This analysis re-
eals significant correlations between attentional (x,y) position decoded
cross the lower frequency bands ( 𝛿 & Θ (corr. coef. 0.641, p < 0.001),
& 𝛼 (corr. coef. 0.654, p < 0.001)) as well as across the higher fre-

uency bands (mid 𝛾 & high 𝛾 (corr. coef. 0.551, p < 0.001), mid 𝛾 &
ull LFP (corr. coef. 0.733, p < 0.001), high 𝛾 & full LFP (corr. coef.
.8653, p < 0.001)). Overall, this indicates some level of dependency in
ttention-related information within these groups of frequency bands. 

For both MUA and LFP signals, decoding is significantly more re-
iable on hit trials than on misses at all window sizes (e.g. window
ize = 1200 ms, MUA: Fig. 2 A, blue, mean = 77%, s.e. = 2.1% vs. red,
ean = 67%, s.e. = 2.4%; LFP: Fig. 2 B, blue, mean = 71%, s.e. = 2.1% vs.

ed, mean = 61%, s.e. = 2.4%, Fig. 2 , Wilcoxon rank sum test, p < 0.05).
his holds true for all LFP frequency bands, although impact of negative
rial outcome is stronger on higher LFP frequency bands as compared to
5 
ower ( Fig. 2 C, supplementary figure S4A). Overall, this supports that
patial attention is miss allocated during miss trials ( Astrand et al., 2016 ;
aillard et al., 2020 ), subsequently interfering with perception ( Astrand
t al., 2020 ). 

.2. The decoded (x,y) attentional spotlight predicts behavior 

In order to validate attentional decoding procedure, correlations be-
ween decoded positions and subjects’ behavioral performances were
nvestigated. In the following, attention to target distance is defined,
n each trial, as the distance between expected target location and the
orresponding decoded (x,y) attentional spotlight, 150 ms before target
nset. This distance parameter is then correlated to a behavioral perfor-
ance calculated as the percentage of hits over hit + miss trials. For all

ignal types, we observe that monkeys produce more hits when their at-
entional spotlight is deployed closer to target location. Specifically, we
emonstrate a significant linear correlation between the distance of de-
oded attentional spotlight to target and the hit rate, when using MUA
ased decoding ( Fig. 3 A. linear regression: r 2 = 0.48, F = 86, p-value
 0.005) as well as when using LFP based decoding ( Fig. 3. B linear

egression: r 2 = 0.65, F = 174, p-value < 0.005). This observation is re-
roduced on reaction times, such that, reaction times are significantly
horter when the MUA-based attentional spotlight is closer to the target
supplementary figure S6A). This also hold true to the LFP-based atten-
ional spotlight (supplementary figure S6B). This indicates that similarly
o MUAs, LFPs spatial attention information predicts behavior. 

In order to better understand which frequency bands held the most
eliable spatial information, the above described correlation analysis
s reproduced for each independent functional LFP frequency band
 Fig. 3 C). Overall, correlations are weak for the lower frequency bands
nd increase for the higher frequency ranges ( Fig. 4 C: 𝛿: r 2 = 0.18,
 = 0.0, p-value < 0.005/ 𝜃: r 2 = 0.13, F = 0.0, p-value < 0.005/ 𝛼:
 

2 = 0.26, F = 0.0, p-value < 0.005 / low 𝛽: r 2 = 0.13, F = 0.0, p-value
 0.005/ high 𝛽: r 2 = 0.17, F = 0.0, p-value < 0.005/ low 𝛾: r 2 = 0.29,
 = 0.0, p-value < 0.005 / mid 𝛾: r 2 = 0.42, F = 0.0, p-value < 0.005 /
igh 𝛾: r 2 = 0.40, F = 59.3, p-value < 0.005). 

These analyses bring about two important observations. First, spa-
ial attention LFP-based decoding correlates with behavior to the same
xtent as MUA-based decoding. Second, this is mostly due to the gamma
requency LFP power content. 

.3. Optimizing (x,y) access to attentional spotlight using a two-step 

ecoding procedure 

From the above correlation between decoded attentional spotlight
istance to expected target location and hit rate, we observe that for
 proportion of hit trials, the decoded (x,y) attentional spotlight is es-
imated close to the expected target location, while for the rest of the
rials, the decoded attentional spotlight is estimated far away from the
xpected target ( Fig. 4 A). Based on the observation that decoded loca-
ion accounts for behavior, we reasoned that when training our decoder
n hit trials, we are actually training it on suboptimal conditions, pre-
enting it with both trials in which attention is close to the expected tar-
et location, and trials in which attention is farther away. We thus here
efine two different categories of trials: HighContent trials ( Fig. 4 A),
efined by decoded attentional spotlight to expected target distance in-
erior to 7° and LowContent trials ( Fig. 4 A), defined by decoded atten-
ional spotlight to expected target distance superior to 7° Please note
hat this nomenclature does not assume in any way that the decoder is
ully capturing all attention-related information. Rather it is assuming
hat this information is, on some trials, better captured than on oth-
rs. Supplementary figures S1 and S2 represent, for all trials, as well as
or HighContent and LowContent sub-trial categories, average neuronal
esponses (figure S1) and average time frequency spectra (figure S2),
or the preferred and non-preferred positions, aligned to cue and target
resentation, across the 5 most responsive channels of each recording
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Fig. 3. Correlation between behavioral performances & distance between the attentional spotlight and the target location estimated from (A) multi-unit activity 

(MUA), (B) local field potentials (LFP), on all frequency power content or (C) as a function of specific frequency ranges (( 𝛿 (0–4 Hz), 𝜃 (4–8 Hz), 𝛼 (8–12 Hz), low 𝛽

(12–20 Hz), high 𝛽 (20–30 Hz), low 𝛾 (30–60 Hz), mid 𝛾 (60–120 Hz), high 𝛾 (120–250 Hz)). Blue dots: binned data points; black line: best linear fit; gray shaded 

area: 95% C.I. F and p-values are indicated in the main text. Behavioral performance, y-axis: ratio between hit and hit + miss trials in%. Distance between the decoded 

attentional spotlight (AS) and actual target presentation location, x-axis: normalized distance. (M1: 10 sessions, M2: 9 sessions). 
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ession. The decoder captures the difference in population information
ontent between these two categories of trials from both MUAs and LFPs.

In a first analysis, all decoders are trained on exclusively HighCon-
ent trials. As predicted by the rationale behind dividing trials on High-
ontent and LowContent attentional trials, testing the decoder on vary-

ng proportions of HighContent trials relative to LowContent trials criti-
ally impacts spatial attention decoding performance. Using 100% High-
ontent trials testing set from MUA signal leads to an average increase

n decoding of 27% (s.e. = 0.8%) between 10 ms to 600 ms pre-target
veraging window sizes and an average increase of 18.7% (s.e. = 0.3%)
etween 600 ms to 1200 ms pre-target ( Fig. 4 B, Wilcoxon rank sum
est, p-value < 0.05) relative to a regular decoding procedure involving
nly step one. Using 100% HighContent trials testing set from LFP sig-
al leads to an average increase in decoding of 34% (s.e. = 0.9%) and
5% (s.e. = 0.7%), respectively for the short and long pre-target aver-
ging window sizes ( Fig. 4 B, Wilcoxon rank sum test, p-value < 0.05).
his effect was particularly striking for smaller window sizes. A signif-

cant increase of performances with respect to a randomly distributed
ataset is observed for a minimum threshold of 70% of HighContent
rials in the MUA testing set and 50% in the LFP testing set ( Fig. 4 B,

ilcoxon rank sum test, p-value < 0.05). In addition, and in contrast
ith what is described in Fig. 2 , decoding accuracy increment is most
arked for shorter than for longer time intervals. Overall, the higher

he HighContent testing trials rate, the higher the gain in attention clas-
ification performance. In contrast, the higher the LowContent testing
rials rate, the higher the loss in overall spatial attention decoding per-
ormance. A testing set of 100% LowContent trials leads to a drastic
eduction of decoding performance compared to a randomly distributed
esting set both for MUA signals ( Fig. 4 B, − 13% (s.e. = 0.4%) between
0 ms to 600 ms and − 16% (s.e. = 0.1%) between 600 ms to 1200 ms,
ilcoxon rank sum test, p-value < 0.05) and LFP signals ( Fig. 4 B, − 10%

s.e. = 0.8%) and − 12% (s.e. = 0.6%), Wilcoxon rank sum test, p-value
 0.05). A significant decrease in spatial attention decoding accuracy as
ompared to a random training dataset is observed for MUA (resp. LFP)
esting sets starting from 80% or more LowContent trials (resp. 90%,
ig. 4 B, Wilcoxon rank sum test, p-value < 0.05). Thus, LowContent tri-
ls are detrimental to spatial attention decoding accuracy. Importantly,
he positive effect of HighContent testing trials on decoding performance
s more marked for LFP signals than MUA signals (Wilcoxon rank sum
est, p-value < 0.005). Moreover, LFP signals are less impacted by the
ower ratios of HighContent trials over LowContent trials than MUA
ignals - thus resulting in a lower decrease in decoding performance
Wilcoxon rank sum test, p-value < 0.005). In other words, while the
wo-step decoding improves attention decoding accuracies, this impact
s more pronounced on LFP signals than on MUAs. 
6 
In order to assess the impact of the proportion of HighContent trials
elative to LowContent trials in the training set, we further estimated,
or neuronal activities averaged over 150 ms prior to target presen-
ation, the decoding accuracies obtained for varying HighContent vs.
owContent trials in both the training and testing sets (supplementary
gure S7). Overall, both ratios were critical to optimal decoding per-

ormance. However, confirming the logic of the proposed two-step de-
oding, overall decoding accuracies are highest (figures S7AC) and sig-
ificantly above the standard decoding accuracies (figures S7BD), for
oth MUA and LFP signals, when HighContent trial proportion is high
n both the training and testing sets. In mirror to this, overall decoding
ccuracies are lowest and significantly below the standard decoding ac-
uracies when LowContent trial proportion is high in both the training
nd testing sets (figure S7).In particular, when training is performed ex-
lusively onto LowContent trials, no information can be recovered from
ovel testing trials, including when testing is performed on HighCon-
ent trials, most probably due to the fact that on LowContent training
rial sets, decoded attention location is uncorrelated with cue instruc-
ion. As a result, no learning can take place. Overall, this confirms that
rior selection of a spatial information rich training dataset is crucial to
ptimize access to prefrontal attentional encoding and further improve
lassification performances on remaining trials. 

Functional validity of this two-step decoding procedure implies that
xclusive training on HighContent trials, whether in MUA or LFP sig-
als, maximizes the correlation between the decoded attentional spot-
ight to expected target distance and behavioral performance ( Astrand
t al., 2016 ). We thus trained a decoder using only HighContent tri-
ls and tested it on misses and remaining HighContent trials (50% of
it testing trials) and LowContent trials (50% of hit testing trials) to
imulate a balanced proportion of hit trials categories and misses. As
xpected, HighContent trials based decoding increases the linear rela-
ionship between attentional spotlight to target distance and behavioral
erformance. Specifically, in the MUAs, r 2 value increased from 0.48
 Fig. 3 A linear regression: r 2 = 0.48, F = 85.8912, p-value < 0.05) to
.91 ( Fig. 4 C, linear regression: r 2 = 0.91, F = 962, p-value < 0.005), and
orrelation slope becomes markedly more steep ( Fig. 4 C, linear regres-
ion: a = − 0.3, vs. Fig. 3 A linear regression: a = − 0.12). In the LFPs, r 2 

alues increase from 0.65 ( Fig. 3 B linear regression: r 2 = 0.65, F = 174,
-value < 0.005) to 0.86 ( Fig. 4 D linear regression: r 2 = 0.86, F = 569,
-value < 0.005), and correlation slope also becomes steeper ( Fig. 4 D
inear regression: a = 0.27, vs. Fig. 3 B linear regression: a = 0.10). Over-
ll, this thus confirms the functional validity of this two-step decoding
rocedure, both for MUA-based decoding of spatial attention, as well as
or LFP-based decoding of spatial attention. Crucially, we demonstrate
hat using spatial information enriched trials (i.e. HighContent trials)
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Fig. 4. Two-step decoding procedure im- 

proves correlation between behavioral per- 

formance & distance between the attentional 

spotlight and the target location. (A) Following 

the first decoding step, hit trials can be subdi- 

vided into HighContent and LowContent trials 

based on how close decoded attentional spot- 

light is to the actual target location (mid panel). 

HighContent trials consistently fall in the cued 

quadrant (left panel) while LowContent trials 

don’t. Note that the tendency of decoded at- 

tention to over-explore the center of the screen 

on LowContent trials can be attributed to the 

fact that attention is dynamic and globally has 

a higher probability to sample the portion of 

the screen lying more central to the expected 

target location rather than more peripheral. Al- 

ternatively, this can be due to the fact that at- 

tention is not properly focused in a spotlight 

fashion. (B-C) Following the second decoding 

step, the higher the proportion of HighContent 

trials in the testing set, the higher the atten- 

tion decoding accuracy on novel trials. This 

improvement in attention decoding accuracy 

is more marked when decoding from LFP sig- 

nals (C) than from MUA signals (B) (HighCon- 

tent trials (HighC.); LowContent trials (LowC.); 

Shaded gray are: no significant difference in 

performance as assessed by Wilcoxon rank sum 

test; Shaded black are: time intervals excluded 

due to absence of HighContent trials for 5 ses- 

sions). (D-E) This two-step decoding procedure 

improves the correlation between overt perfor- 

mance (Hits/Hits + Misses) and the distance of 

the decoded attentional spotlight (AS) to the 

target location (Higher R 2 , steeper slope) for 

both MUA signals (D) and LFP signals (E). (M1: 

10 sessions, M2: 9 sessions). 
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llows to better account for the relationship between observed behavior
nd the (x,y) decoded attentional spotlight. 

. Discussion 

In this manuscript we report for the first time high decoding accuracy
f the (x,y) location of the attentional spotlight based on prefrontal LFP
ignals, to a comparable degree to that achieved from MUA signals. We
how that both decoded information (MUA and LFP signals) are predic-
ive of behavioral content and that LFP attention-related information is
aximal in the gamma band. In addition, we show that selecting max-

mally attention-informative trials (HighContent trials) during the de-
oding procedure strongly improves the correlation between our MUA
nd LFP based decoding and behavioral performance, thus further re-
7 
ning the functional relevance of this decoding of the (x,y) locus of the
ttentional spotlight. This improvement is more marked for LFP signals
han for MUA signals. In the following, these findings are discussed in
he light of the current literature. 

.1. Decoding attentional information from LFP signals 

The neural bases of spatial attention in the prefrontal cortex have
een extensively studied based both on neuronal spiking activity,
ocal field potentials and interferential studies ( Ibos et al., 2013 ;
uschman and Miller, 2007 ; Wardak et al., 2006 ). In recent years,
his accumulated knowledge has set the grounds for real time decod-
ng of attention both from invasively recorded spiking activity ( Astrand
t al., 2014a, 2016, 2020; Farbod Kia et al., 2011; Gaillard et al., 2020;
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2  
remblay et al., 2015 ) and non-invasive brain signals ( Andersson et al.,
011, 2012; Thiery et al., 2016; van Gerven and Jensen, 2009 ). At-
entional decoding methods from MUA signal have made substantial
rogress, moving from the classification of attention into subspace sec-
ors to the actual decoding of the (x,y) position of the attentional spot-
ight ( Astrand et al., 2016 ; Tremblay et al., 2015 ). However, progress
as been much slower in the decoding of attention from non-invasive
RI or EEG signals. Decoding of attention from LFP signals and develop-

ng novel decoding strategies on this type of signals can be considered as
n intermediate step towards improving the decoding of attention from
ess invasive signals. 

To our knowledge, only one study to date has addressed the decoding
f spatial attention from prefrontal LFP, based on a four spatial quad-
ant classification approach ( Tremblay et al., 2015 ). Here, we report,
or the first time the real-time tracking of the (x,y) attentional spot-
ight locus from prefrontal LFPs. Crucially, we show that the extracted
x,y) locus of the attentional spotlight is highly predictive of the behav-
oral performance, such that the closer the attentional spotlight to the
arget presentation location, the higher the correct detection rate. In
ontrast, the further away the attentional spotlight to the target presen-
ation location, the higher the miss rate. This is important in two ways.
irst, this result validates the behavioral relevance of the decoding pro-
edure, describing a direct behavioral relationship between where the
ecoded attentional spotlight is in space relative to where the target is
resented and the detection rate of the subject. Second, this indicates
hat very much like has been described from MUA-based attentional
potlight tracking, the LFP-based attentional spotlight is highly dynamic
nd explores space even when cued towards a specific location. Indeed,
he LFP-based decoded attentional spotlight is not anchored at the ex-
ected target location following cue presentation, but can be more or
ess close to this task-relevant location, in spite of the fact that behav-
oral performance is enhanced when the attentional spotlight is closest
o the cued location. 

As previously described by Tremblay et al. (2015) , we confirm that
ttention-related information is maximal in the LFP gamma frequency
and (above 30 Hz, and maximally between 60 and 120 Hz). Attention-
elated information can still be extracted above chance in lower LFP
requency bands, though at much lower accuracies. These results are
n agreement with the contribution of gamma frequency bands to at-
entional processes. Indeed, in V1, attention is shown to selectively de-
rease LFP gamma synchronization as well as gamma spike field coher-
nce, in the low gamma band ( Chalk et al., 2010 ). In contrast, attention
rientation enhances low gamma synchronization and perception in V4
 Fries et al., 2001 ), and enhances low gamma band oscillatory coupling
etween the FEF and V4 ( Gregoriou et al., 2009 ). This indicates that
amma mechanisms are different across cortical areas. Within the FEF,
 strong phase-amplitude coupling is observed in the LFP theta content
nd the low gamma band during attention orientation ( Fiebelkorn et al.,
018 ). Most of these studies highlight the long range functional role
f low gamma band. Only few studies have addressed the distinctive
unctional contribution of low gamma band ( ≤ 60 Hz) relative to higher
amma band LFP content (mid and high gamma in our analyses). Several
ypotheses are proposed to address the function of these high gamma
hythms in attentional process. Recording from the somatosensory cor-
ex, Ray et al. (2008) elegantly show that high-gamma power in the LFP
trongly correlates with the average spiking firing rate, both in time and
n a trial-by-trial basis. In contrast, the correlation between firing rate
nd low-gamma power (40–60 Hz) is much smaller. Using a modelling
pproach, the authors show that high-gamma power is more sensitive to
hanges in spiking rate than to changes in neuronal synchrony. More re-
ently, Leszczy ń ski et al. (2020) show that, in primary visual cortex V1
nd primary auditory cortex A1, high gamma can be divided into two
ndependent components, a deep and a superficial component, only the
ormer being strongly associated with MUA activity. This thus suggests
hat the second component reflects dendritic processes that are disso-
iable from local neuronal firing. This most probably accounts for the
8 
act that the attention decoding accuracies from the mid gamma band
ower is indistinguishable from the decoding accuracies from average
FP frequencies. Interestingly, attention-related information can still be
xtracted above chance in lower or higher LFP frequency bands, though
t lower accuracies. Therefore, from a methodological point of view,
here is no benefit in decoding attention-related information from spe-
ific independent frequency bands. Indeed, average power LFP decod-
ng accuracy is higher or equal to gamma specific LFP power. Overall,
his result suggests that attention related information is not fully re-
undant across frequency and stresses the notion of functional rhythms
 Fries, 2015 ; Gaillard et al., 2020 ). 

The correlation between decoding and behavior is further enhanced
sing the two-step decoding procedure that we introduce here and that is
iscussed below. This latter point is crucial for neurofeedback and cog-
itive brain-machine interfaces ( Andersen et al., 2010; Astrand et al.,
014b; Enriquez-Geppert et al., 2017; Jiang et al., 2017; Ordikhani-
eyedlar et al., 2016 ), where one wants to work with information of
aximal behavioral relevance. Interestingly, Salari et al. (2014) demon-

trate a modulation of perception by a neurofeedback manipulation
ased on EEG gamma power. This is possibly in agreement with our
bservation that gamma frequency contains high attention-related in-
ormation. However, these studies are based on direct modulation of
urface gamma power, independently from behavioral performance or
 global extraction of attentional spotlight locus. Our approach allows to
rack the dynamic attentional spotlight with a high temporal resolution
down to 30 ms). We expect this type of approach to provide subjects
ith more informative and reliable neurofeedback to work on. 

.2. Comparing to EEG studies 

Several studies both in humans and non-human primates report
ccess to a two or a four quadrant classification of subject’s atten-
ion location while performing a simple cognitive task with eyes fixed
 Andersson et al., 2011 ; Astrand et al., 2014a , 2014b ; Rotermund et al.,
013 ; Tremblay et al., 2015 ; Zhang et al., 2011 ). Brain activity decod-
ng approaches have been applied to numerous signal types, ranging
rom EEG ( Morioka et al., 2014 ; O’Sullivan et al., 2015 ; Treder et al.,
011 ; van Gerven and Jensen, 2009 ) to ECoG ( Gunduz et al., 2012 )
nd fMRI ( Andersson et al., 2012 , 2011 ). In particular, the EEG litera-
ure, has followed two distinct approaches at decoding visuospatial at-
ention. The first one is based on the decoding of occipito-parietal ERP
mplitude in the presence or absence of attention. This has led to the
evelopment of such tools as the P300 Speller tool as well as to the
xploration of the temporal dynamics or goal-relevant representations
 Hubbard et al., 2019 ). It is important to note that this approach does
ot allow to track covert attention stricto sensu , as it relies on the inter-
retation of the modulation of the response to a visual probe, which can
e attended or not attended. The second approach is based on an actual
racking of covert attention, mostly based on the topographical organi-
ation of the power of the occipito-parietal alpha band ( Samaha et al.,
016 ). Desantis et al. (2020) , additionally show that alpha power is
ore associated with the orientation of covert attention in space, while

aw EEG activity is more associated with the influence of attention on
erception. Likewise ( Bae and Luck, 2018 ) show that alpha band oscil-
ations primarily carry information about spatial attention orientation,
hile sustained potentials carry information about the information held

n working memory. 
Most of these EEG studies rely on occipito-parietal alpha. In mon-

eys, converging evidence suggest that the prefrontal cortex (PFC), and
pecifically the frontal eye fields (FEF) is at the origin of attentional spot-
ight control, gating neuronal activity in the parietal and occipital cor-
ex ( Buschman and Miller, 2007 ; Ekstrom et al., 2008 ; Gregoriou et al.,
009 ; Ibos et al., 2013 ; Wardak et al., 2006 ), the PFC controlling atten-
ional modulation of alpha and gamma oscillations in lower order corti-
al regions ( Fiebelkorn et al., 2018 ; Kerkoerle et al., 2014 ; Kienitz et al.,
018 ). While accessing precise attention-related information from the



C. De Sousa, C. Gaillard, F. Di Bello et al. NeuroImage 231 (2021) 117853 

p  

t  

t  

i  

t  

r  

t  

p  

b  

p  

2  

b  

t  

b  

a  

p

4

a

 

m  

t  

s  

c  

(  

i  

t  

fi  

s  

t  

t  

T  

o  

a  

p  

a  

s  

(  

p
 

(  

d  

s  

t  

t  

m  

t  

t  

b  

o  

t  

w  

t  

t  

o  

d  

f  

t  

r  

i  

w  

t  

p  

t  

L  

L  

o  

p  

t  

b  

p  

c  

f  

p  

r  

c  

b  

b  

t  

t  

i  

o  

s  

v  

f  

h  

p
 

t  

t  

S  

e  

M  

m  

c

D

 

c  

a  

T  

t

C

 

S  

C  

W  

S

A

 

&  

0  

d  

s  

#  

p  

c  

1  

E

S

 

t

refrontal cortex might remain challenging using EEG recordings, due
o the intrinsic properties of this methodology, targeting prefrontal at-
ention information actually has major advantages over decoding occip-
tal information. The first important advantage is, as described above,
he fact that PFC the source of attentional orientation signals. Attention-
elated signal-to-noise ratio in that region is thus expected to be higher
han in down-stream regions. In addition, and actually related to the
revious point, occipital alpha power is not of unique origin, but should
e considered as a compound signal, arising from the influence of multi-
le cortical ( Gregoriou et al., 2009 ; Kerkoerle et al., 2014 ; Kienitz et al.,
018 ) and subcortical sources ( Saalmann et al., 2012 ). This difference
etween prefrontal and occipital attention-related information is impor-
ant for decoding applications. It however becomes crucial in neurofeed-
ack applications, whereby targeting prefrontal attentional processes
re expected to have a stronger behavioral influence than targeting com-
ound occipital processes. 

.3. Exploiting attention dynamics to improve real-time attention decoding 

ccuracies 

There is a crucial need in the field of machine learning to develop
ethods to isolate a small set of critical samples (referred to as represen-

ative dataset) that best describes an unknown process. Several recent
tudies in the machine learning field report high increase in classifi-
ation performances using re-training procedures based on sub data-set
 Kitamura and Deible, 2020 ; Niu et al., 2020 ), as proposed here. Indeed,
t has been shown that huge training data libraries used to train decoders
o dissociate between multiple features, while allowing to avoid over-
tting, may actually lead to under-fitting. In contrast, small specific sub-
ets of training data prevent under-fitting while not necessarily leading
o over-fitting if well designed. In addition, one important limitation
o huge training datasets is the cost of building such labelled libraries.
his cost turns out to be crucial when dealing with physiological data
f high intrinsic variability (as compared to dataset that can be labelled
utomatically, such as pictures or words for instance). Recent studies re-
ort that training dataset size can be compressed by up to 95% without
ny drop in classification performance, by identifying “representative
amples ” in the training dataset (i.e. high informational content trial)
 Ghadikolaei et al., 2019 ). This is very similar to the two-step decoding
rocedure proposed here. 

The fact that the attentional spotlight is extremely dynamic
 Gaillard et al., 2020 ) suggest that not all hit trials are equivalent. In-
eed, we observe that some hit trials take place when the attentional
potlight is successfully located where the target appears and other hit
rials in contrast happen when attention is far away from target presen-
ation location. This has a direct impact on decoding performances. The
ore space sampled, less stable the information in the neuronal popula-

ion, thus impairing resulting decoding performance. On the contrary, a
rial with less exploration and a more stable spotlight will lead to a sta-
le neuronal information and more accurate decoding. Based on these
bservations, we reasoned that training our classifier on all of these hit
rials is suboptimal as compared to training the classifier on hit trials in
hich attention was properly oriented. We thus use a first decoding step

o identify such good trials (i.e., high attention-related information con-
ent or HighContent trials) and specifically use them to train the decoder
n a second decoding round. This significantly increases the attention
ecoding accuracies. Several points need to be noted. First, as expected
rom our initial hypothesis, the higher the proportion of HighContent
rials used for the training the higher the relative gain in decoding accu-
acies. Strikingly, for both MUA and LFP signals, decoding improvement
s higher when considering short time interval compared to longer time
indow. This observation could be explained by the fact that the longer

he time window, the more attention is expected to explore the target
osition, this both on HighContent and LowContent trials. Quite impor-
antly, this increment in decoding accuracies was more marked for the
FP decoding than for the MUA decoding. This possibly indicates that
9 
FP signals multiplex attention related information with other sources
f information, contributing to LFP signal variability, and that are more
revalent on LowContent than on HighContent trials. Last but not least,
his two-step decoding procedure drastically improves the correlation
etween the (x,y) attentional spotlight real-time estimate and behavioral
erformance, whether from MUA or LFP signals. In other words, the de-
oded attentional spotlight better explains behavior, both as assessed
rom the strength of the correlation and from its slope. The real-time
erformance of the decoder is impacted by two main factors: the neu-
onal averaging window and the test time (usually less than 5 ms). In the
ase of neurofeedback applications, an additional communication cost
etween the processing hardware and the presentation hardware must
e added (typically in the range of 10 to 70 ms, depending on multiple
echnical parameters). An important aspect of this two-step decoding is
hat it doesn’t impact this real-time performance. Indeed, the first decod-
ng step needs to be performed after collecting a representative number
f trials (typically, 60 for 4 attention positions). The second decoding
tep can be performed directly after this first step. These two steps are
ery easily performed during an inter-trial interval that typically lasts
or 200 to 500 ms. In other words, the proposed two-step decoding en-
ances the attention decoding accuracy, with no impact on the real-time
erformance of the decoder. 

Overall, our work presents two major advances in the field of real-
ime access to the attentional spotlight locus. First we demonstrate that
his spotlight location can be estimated from both MUA and LFP signals.
econd, we introduce a novel two-step decoding method that further
nhances the behavioral relevance of the decoded attentional spotlight.
ost crucially, our work illustrates the tremendous benefit of adapting
achine learning strategies to the specific functional properties of the

ognitive function under study. 
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