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A new scaling is derived that yields a Reynolds number independent profile for all
components of the Reynolds stress in the near-wall region of wall bounded flows, including
channel, pipe and boundary layer flows. The scaling demonstrates the important role
played by the wall shear stress fluctuations and how the large eddies determine the
Reynolds number dependence of the near-wall turbulence behavior.

1. Introduction

Here, we examine the near-wall scaling behavior of canonical turbulent flows on smooth
surfaces. These flows include two-dimensional zero-pressure gradient boundary layers,
and fully developed pipe and channel flows. The focus is on the region y+ < 100, which
includes the peaks in the streamwise and spanwise turbulent stresses. Here, y is the
distance form the wall, and the superscript + denotes non-dimensionalization using the
fluid kinematic viscosity ν and the friction velocity uτ =

√
τw/ρ, where τw is the mean

wall shear stress and ρ is the fluid density.
For isothermal, incompressible flow, it is commonly assumed that for the region close

to the wall

[Ui, uiuj ] = f(y, uτ , ν, δ),

where Ui and ui are the mean and fluctuating velocities in the ith direction. The overbar
denotes time averaging, and the outer length scale δ is, as appropriate, the boundary
layer thickness, the pipe radius, or the channel half-height. That is,

[U+
i , (uiuj)

+] = f(y+, Reτ ). (1.1)

where the friction Reynolds number Reτ = δuτ/ν.
By all indications, the streamwise mean velocity U in the region y/δ / 0.15 is a unique

function of y+ that is independent of Reynolds number (see, for example, Zagarola &
Smits 1998, and McKeon et al. 2004). In contrast, the Reynolds stresses in the near-wall
region exhibit a significant dependence on Reynolds number, as illustrated in figure 1
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Figure 1. Profiles of turbulent stresses in channel flow, as computed by direct numerical
simulations (DNS) by Lee & Moser (2015).

for channel flow. Here, u2, v2 and w2 are in the streamwise, wall-normal and spanwise
directions, respectively, and −uv is the Reynolds shear stress.

The behavior of the streamwise component u2+ has been a particular focus of attention,

especially its peak value u2p
+ located at y+ ≈ 15. By experiment, Samie et al. (2018)

showed that in a boundary layer over a wide range of Reynolds numbers u2p
+ follows a

logarithmic variation given by

u2p
+ = β + α ln(Reτ ). (1.2)

with α = 0.646 and β = 3.54. Lee & Moser (2015) found a very similar result from DNS
of a channel flow (using only the data for y+ ≥ 1000) with α = 0.642 and β = 3.66, very
much in line with the result reported by Lozano-Durán & Jiménez (2014), also obtained
by DNS of channel flow, who found α = 0.65 and β = 3.63. Finally, Pirozzoli et al. (2021)
found α = 0.612 and β = 3.75 from DNS for pipe flow at Reτ up to 6000.

We now examine the scaling of the stresses in the near-wall region using DNS for
channel flows (Lee & Moser 2015), pipe flows (Pirozzoli et al. 2021) and boundary layers
(Wu et al. 2017). Couette flows were also considered but it turns out that their behavior
is very different from the other canonical flows (Pirozzoli et al. 2014; Lee & Moser 2017,
2018), and therefore they will be considered separately in a future study.

Need to refer to Monkewitz (2021); Smits & Hultmark (2021); Hultmark & Smits
(2021).
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Reτ fu2 103fv2 fw2 −102f2
uv Ref.

Channel 544 0.164 0.140 0.0679 0.0975 Lee & Moser (2015)
1000 0.175 0.158 0.0764 0.102 Lee & Moser (2015)
1995 0.187 0.176 0.0835 0.107 Lee & Moser (2015)
5186 0.200 0.189 0.0894 0.110 Lee & Moser (2015)

Pipe 495 0.149 0.118 0.0589 0.101 Pirozzoli et al. (2021)
1137 0.168 0.147 0.0718 0.113 Pirozzoli et al. (2021)
1976 0.178 0.158 0.0770 0.120 Pirozzoli et al. (2021)
3028 0.185 0.164 0.0797 0.125 Pirozzoli et al. (2021)
6022 0.195 0.171 0.0837 0.127 Pirozzoli et al. (2021)

Boundary layer 500 0.179 0.199 0.0778 Wu et al. (2017)
1000 0.183 0.207 0.0843 Wu et al. (2017)

Table 1. Flow and Reynolds number dependence of the functions f . Data only for Reτ > 200.

2. Taylor Series expansions

We begin by writing the Taylor series expansions for ui in the vicinity of the wall.
Instantaneously (Pope 2000; Bewley & Protas 2004),

u+ = a1 + b1y
+ + c1y

+2
+ d1y

+3
+O(y+

4
) (2.1)

v+ = a2 + b2y
+ + c2y

+2
+ d2y

+3
+O(y+

4
) (2.2)

w+ = a3 + b3y
+ + c3y

+2
+ d3y

+3
+O(y+

4
) (2.3)

where u = U + u, etc. The no-slip condition gives a1 = a2 = a3 = 0, and by continuity
∂v/∂y|w = b2 = 0. Also

b1 = (∂u+/∂y+)w, (2.4)

b3 = (∂w+/∂y+)w, (2.5)

c2 = 1
2 (∂2v+/∂y+

2
)w = − 1

2 (∂b1/∂x
+ + ∂b3/∂z

+). (2.6)

For the corresponding time-averaged quantities

u2+/y+
2

= fu2 + 2b1c1 y
+ +O(y+

2
) (2.7)

v2+/y+
4

= fv2 + 2c2d2 y
+ +O(y+

2
) (2.8)

w2+/y+
2

= fw2 + 2b3c3 y
+ +O(y+

2
) (2.9)

uv+/y+
3

= fuv + (b1d2 + c1c2) y+ +O(y+
2
) (2.10)

where we use the notation fu2 = b21, fv2 = c22, fw2 = b23, and fuv = b1c2.
These functions all become constant as the wall is approached, and the values of fu2 ,

fv2 , fw2 and fuv are given by their intercepts at y+ = 0, as illustrated in figure 2 for
channel flow. Similar results are obtained for the other two flows, and the values are
listed in table 1. For the boundary layer flow the values were acquired by fitting the DNS
data in the region y+ < 3 with a fourth-order polynomial.

The Reynolds number dependence of the functions f is shown in figure 3. They all
increase with Reynolds number, but at a given Reynolds number their values increase
as we move from pipe to channel to boundary layer, except for fuv where the pipe flow
values are larger than the channel flow values. These trends will be discussed further in
§ 4.
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Figure 2. Top left: Profiles of u+2/y+
2
; intercept at y+ = 0 is fu2 . Top right: Profiles of

v+2/y+
4
; intercept at y+ = 0 is fv2 . Bottom left: Profiles of w+2/y+

2
; intercept at y+ = 0 is

fw2 . Bottom right: Profiles of (−uv+)/y+
3
; intercept at y+ = 0 is −fuv. From DNS of channel

flow (Lee & Moser 2015).

3. Scaling the streamwise stress profiles

If we now scale each u+2 profile with the value of fu2 at the same Reynolds number,
we obtain the results shown in figure 4. For all three flows, the collapse of the data for
y+ < 20 is impressive, including the almost exact agreement on the scaled inner peak
value. In fact, from table 2 it is evident that with increasing Reynolds number fu2 and

u+p
2

for the channel and pipe flows approach a constant ratio to each other such that

u+p
2 ≈ 46fu2 . (3.1)

A similar conclusion was made previously by Agostini & Leschziner (2018) and Chen &
Sreenivasan (2021). In other words, the magnitude of the peak at y+ ≈ 15 tracks almost
precisely with fu2 , a quantity that is evaluated at y+ = 0.

What about the scaling of u+p
2

in boundary layers? Although the collapse of the data
shown in figure 4 is encouraging, the DNS data only cover a small Reynolds number
range, too small to make any definite conclusions about the scaling. We can use high
Reynolds number experimental data instead, but we need to know what values of fu2

should be used. The highest Reynolds number experiments that are fully resolved are
those by Samie et al. (2018), but even then data are not available for y+ < 5, so the
values of fu2 cannot be obtained directly from the data. In this respect, we note that for
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Figure 3. Reynolds number variations of functions f . Top left: fu2 . Top right: 103fv2 . Bottom
left: fw2 . Bottom right: 102fuv. �, channel; ◦, pipe; 4, boundary layer. Lines for visual aid
only. Values given in table 1.

channel flow the variation of fu2 for Reτ > 1000 is close to logarithmic, so that

fu2 = βf + αf lnReτ (3.2)

where βf = 0.08 and αf = 0.0139. For pipe flow, a similar relationship with a slightly
smaller offset (0.074) appears to fit the data for Reτ > 3000, but the Reynolds number
range is too small to make any definite conclusions. If we simply assume that the channel
flow relationship given by equation 3.2 can be used to find the right values of fu2 for high
Reynolds number boundary layers, then we obtain the results shown in figure 5. We see
a clear collapse of the data for y+ < 20, and so it appears that the near-wall profiles of

u2+ for boundary layers, pipes and channel flows all collapse in this scaling.
What about the inverse? Figure 6 shows the variation of the peak streamwise turbu-

lence intensity u2+p with Reτ for boundary layers at lower Reynolds numbers. It is seen
that the correlation developed by (Samie et al. 2018) based on experimental data from
6000 < Reτ < 20000 agrees very well for the DNS data over a much lower Reynolds
number range (at least for Reτ > 400). It is thus reasonable to expect the channel flow
DNS correlation developed by Lee & Moser (2015) for 544 < Reτ < 5186 can be used to

predict the behavior of u2+p in turbulent channel flows at much higher Reynolds numbers.
We can now make some observations on mixed flow scaling. DeGraaff & Eaton (2000)

proposed that the correct scaling for u2 in boundary layers should be u2+
√
Cf/2, where

the skin friction coefficient Cf = 1
2τw/ρU

2
e and Ue is the mean velocity at the edge of
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Figure 4. Profiles of streamwise stresses. Left column: conventional scaling. Right column:
f -scaling. Top row: channel flow (Lee & Moser 2015). Second row: pipe flow (Pirozzoli et al.
2021). Third row: boundary layer flow (Wu et al. 2017).
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Figure 5. Scaled boundary layer experiments. Left: From Vallikivi et al. (2015) for Reτ =
2,622 to 72,526. Right: From Samie et al. (2018) for Reτ = 6,123 to 19,680.
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Reτ u+
p

2
y+up

u+
p

2

fu2

fu2uτ
Ub

w+
p

2 w+
p

2

fw2
−uv+p (−uv+p )s v+p

2

Channel 544 7.65 14.8 46.7 0.00890 1.87 27.5 0.862 1.00 1.07
1000 8.10 15.2 46.2 0.00877 2.14 28.0 0.903 1.01 1.17
2003 8.58 15.3 45.9 0.00858 2.42 29.0 0.932 1.00 1.23
5186 9.14 15.7 45.8 0.00828 2.76 30.8 0.956 1.00 1.28

Pipe 495 7.35 14.3 49.4 0.00867 1.78 30.3 0.852 1.00 1.05
1137 8.00 15.5 47.7 0.00865 2.15 20.0 0.907 1.00 1.18
1976 8.40 16.0 47.2 0.00854 2.37 30.7 0.931 1.00 1.23
3028 8.68 16.4 46.8 0.00844 2.52 31.7 0.943 1.00 1.26
6022 9.12 16.2 46.7 0.00824 2.77 33.0 0.959 1.00 1.29

Boundary layer 500 7.66 13.9 42.7 0.00817 1.86 23.9 0.917 1.07 1.12
(DNS) 1000 7.99 14.8 43.7 0.00737 2.11 25.0 0.935 1.04 1.25

Boundary layer 6123 9.16 14.3
(Experiment) 10100 9.44 14.5

14680 9.75 13.6
19680 9.85 14.8

Table 2. Scaling the inner peak maximum values u+
p

2
, w+

p
2
, −uv+p and v+p

2
. Here,

(−uv+p )s = −uv+p /(1− 2/
√
κReτ ) with κ = 0.384. Channel flow data from Lee & Moser (2015);

pipe flow data from Pirozzoli et al. (2021); boundary layer data from Wu et al. (2017) and
Samie et al. (2018). Xiaohua, I thought uv data is not available because I didn’t see it in the
previous table. Is it available?
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Figure 6. Variation of u2+
p with Reynolds number in boundary layers. Blue line: DNS (Wu et al.

2017); orange line: experiment (Samie et al. 2018). Shouldn’t this be marked as equation 1.2
with α = 0.646 and β = 3.54.? The one that fits Samie’s experimental data and everybody else?

the layer. This is equivalent to scaling u2 with uτUe (hence the term mixed scaling). If
this is correct, then fu2uτ/Ue needs to be invariant with Reynolds number. As seen from
table 2 this is not so, and despite the apparent collapse of their data for 540 < Reτ <
10,000 using uτUe, mixed scaling is only an approximation to the correct scaling for the
inner region. Note differences between f and Cf in going from internal flows to external
flows, and whether it affects the mixed scaling analysis. That is, Ue versus UCL or Ub.

We should also note that the position of the peak in the streamwise stress, denoted by
y+up, is listed in table 2. For all flows, including the high Reynolds number experiments,
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Figure 7. Profiles of spanwise stresses. Left column: conventional scaling. Right column:
f -scaling. Top row: channel flow (Lee & Moser 2015). Second row: pipe flow (Pirozzoli et al.
2021). Third row: boundary layer flow (Wu et al. 2017).

the value is constant at 15 ±1.5 (the uncertainty is similar to that set by the resolution
of the data in this region). This value is in accord with most previous estimates.

4. Scaling the other stress profiles

When the w+2 profiles are scaled with the value of fw2 at the same Reynolds number,
we obtain the results shown in figure 7. The data collapse well for y+ < 20, but the scaling

does not capture the peak value. From table 2 we see that the ratio between w+
p
2

and
fw2 is a slowly increasing function of Reynolds number, and no asymptotic behavior is
apparent, at least over this Reynolds number range. In addition, the location of the peak
moves away from the wall with increasing Reynolds number for all three flows. Thus, for
the streamwise and spanwise stresses, the scaling is appropriate only for y+ < 20 (hence

it can capture the peak for u+2 but not for w+2).

As for the v+2 profiles shown in figure 8, scaling by fv2 brings no particular improve-
ment over the unscaled data, even for y+ < 20. An explanation for this behavior is
advanced in § 4. However, it is clear that the unscaled data develops a plateau with in-
creasing Reynolds number. The height of this plateau may be characterized by the peak

value of v+2, and these values are given in table 2 as v+p
2
. For the channel and pipe flows,
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Figure 8. Profiles of wall-normal stresses. Left column: conventional scaling. Right column:
f -scaling. Top row: channel flow (Lee & Moser 2015). Second row: pipe flow (Pirozzoli et al.
2021). Third row: boundary layer flow (Wu et al. 2017).

the level of the plateau appear to approach about 1.3 with increasing Reynolds number.
The experiments by DeGraaff & Eaton (2000) at Reynolds numbers up to 10,070 suggest
a slightly higher level, closer to about 1.4. This number corresponds to the constant A2 in
Townsend’s scaling of the wall-normal fluctuations in the logarithmic region, as derived
from the attached eddy hypothesis (Townsend 1976).

The shear stress profiles shown in figure 8 display a somewhat similar behavior to the
normal stress distributions, in that the proposed scaling does not offer much improvement
over the unscaled data, and that a broad plateau appears with increasing Reynolds
number. However, for the pipe and channel flows the extent of the plateau must be
bounded at its outer limit by the linear decrease in shear stress dictated by the streamwise
pressure gradient. Its maximum value also cannot exceed one. However, it is rather
satisfying to see that the scaling for the peak value proposed by Lee & Moser (2015) for

channel flow, that is, (−uv+p )s = −uv+p /(1 − 2/
√
κReτ ) with κ = 0.384 works very well

for both channel and pipe flow, as shown in table 2.
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5. What does it all mean?

The Taylor series expansion revealed that

fu2 = b21 =

(
∂u+

∂y+

)2

w

=
τ ′wx

2

τ2w
(5.1)

fw2 = b23 =

(
∂w+

∂y+

)2

w

=
τ ′wz

2

τ2w
. (5.2)

For wall-bounded flows, therefore, the controlling parameter in the near-wall scaling for
u is the mean square of the fluctuating wall stress in the x-direction τ ′wx, and for w it is
the mean square of the fluctuating wall stress in the z-direction τ ′wz.
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For the other two functions, the Taylor series expansion gives

fv2 = c22 = 1
4

(
∂2v+

∂y+2

)2

w

= − 1
2

(
∂b1
∂x+

+
∂b3
∂z+

)2

(5.3)

fuv = b1c2 (5.4)

where b1, b3 and c2 are the fluctuating parts of b1, b3 and c2, as given in equations 2.4-2.6.
The functions fv2 and fuv therefore express correlations between spatial gradients of the
instantaneous wall stress fluctuations, as well as the fluctuating wall stress itself, and so
it is more difficult to give a precise meaning to fv2 and fuv, but they are clearly more
connected to the small-scale motions than either fu2 or fw2 . However, by continuity, we
see that it is essentially the gradients of the fluctuating shear stress (b1 and b2) that give
rise to the wall-normal motion through continuity.

This connection with the fluctuating wall stress helps to explain the Reynolds number
dependence of the functions f shown in figure 3 because with increasing Reynolds number
the large-scale (outer layer) motions contribute more and more to the fluctuating wall
stress by modulation and superimposition of the near-wall motions (Marusic et al. 2010;
Agostini & Leschziner 2018), as may be seen from the pre-multiplied wall stress spectra
shown in figure 12. Of course, it is the turbulence that controls the wall stress, and
not vice versa, but the main point is that the whole of the region y+ < 20 (including

the peak in u2+) scales with the velocity scale us = uτ
√
fu2 , which can be determined

by measuring the fluctuating wall stress, a clear indication of the increasingly important
contribution of the large-scale motions on the near wall behavior as the Reynolds number
increases. Because fv2 and fuv are more connected to the small-scale motions than either
fu2 and f2w, it might be expected that they feel the effects of modulation more than
superimposition by the large-scale motions (Marusic et al. 2010).

An interpretation based on dissipation scaling rather than wall stress scaling was of-

fered by Chen & Sreenivasan (2021). By using the energy budget for u2+, they noted
that

√
f2u equals the dissipation rate at the wall, ε+uw . What’s more, close to the wall, the

dissipation is balanced by viscous transport, and all other terms are small, as illustrated
for channel flow in figure 13. According to Chen & Sreenivasan (2021), this leads to two
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Figure 12. Pre-multiplied spectra of the wall stress fluctuations τ ′w at Reτ ≈ 103, 104, and 105

(T+ = 1/f+ = u2
τ/(fν), f is the frequency in Hz). Data taken from DNS of del Álamo et al.

(2004), hot-wire measurements, and predictive models (Marusic et al. 2010; Mathis et al. 2013;
Chandran et al. 2020). From Marusic et al. (2020).

Figure 13. Energy budgets for turbulent stresses in channel flow at Reτ = 5186 (Lee & Moser

2015). Top left: u2+. Top right: v2+. Bottom left: w2+. Bottom right: −uv+.

conclusions. The first is that the order of the peak value of u2+ can be estimated as
ε+uwy

+
p , which yields the same result given in equation 3.1. The second is that the dis-

sipation must be bounded at infinite Reynolds number, and so the logarithmic increase

in
√
f2u (equation 3.2), and by extension the logarithmic increase in u2p

+ (equation 1.2),
need to be reconsidered. They then suggest an alternative formulation for the peak mag-
nitude that approaches a finite limit at infinite Reynolds number, based on the Reynolds
number dependence of the dissipation.

However, figure 13 shows that the energy balance for u2+ changes rapidly with distance
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from the wall, so that by y+ = 10 the production dominates, and that the viscous
transport has actually changed sign. It is not clear, therefore, why a dissipation scaling
should persist all the way to y+ = 20, as demonstrated here. Our interpretation, based on
the wall stress signature, has the benefit of reflecting more accurately the influence of the
large-scale motions in the near-wall region, and so may offer a more robust explanation
for the near-wall scaling. Note that the dissipation of u2 also shows Re dependencies
(Figure ??) and it is mainly from the contribution of large-scale motions increases with
Re. Interestingly, this behavior diminishes at y+ ≈ 20 (Lee & Moser 2019). As Re
increases, the energy in large-scale motions produced in the log-layer transported to the
buffer layer by turbulent transport and the energy in large-scale motions are transported
to the viscous sublayer by viscous transport mechanism. Finally, the energy in large-scale
motions get dissipated by high (∂u/∂y)2. Note also that the produced energy in relatively
small scale motions, which has peak at y+ ≈ 15, is transfered to the large-scale motion
by inverse energy transfer mechanism in the near-wall region (Lee & Moser 2019).

The energy budget for w2+ also shows that very close to the wall that the viscous
transport is balanced by dissipation ε+ww . However, by about y+ ≈ 3, the balance changes
so that now pressure strain balances the dissipation and all other terms are small. It
seems more natural therefore to build a scaling argument on the behavior of the wall
stress fluctuations rather than the dissipation.

The energy budgets for v2+ and −uv+ (also shown in figure 13) show that for both
stresses very close to the wall the pressure strain is balanced by pressure transport,

which must go to zero at the wall which is explained as ‘splat’ effect. For v2+, the
balance changes rapidly with distance from the wall so that by y+ > 10 the pres-
sure strain/dissipation balance dominates. Even more interestingly, for −uv+ dissipa-
tion is not important anywhere in the near-wall region and for y+ > 10 the pressure
strain/production balance dominates.

6. Two-dimensional spectral density of fu2, fv2, fw2, fuv

To understand more deeply the influence of the large scale motions on the fluctuations
in the wall stress, we examine the spectral structure of the proposed scaling parameters.
The spectral densities of the functions f ’s are given by

Efu2 (kx, kz) = 2Re{b̂1b̂∗1} (6.1)

Efv2 (kx, kz) = 2Re{ĉ2ĉ∗2} (6.2)

Efw2 (kx, kz) = 2Re{b̂3b̂∗3} (6.3)

Efuv
(kx, kz) = 2Re{b̂1ĉ∗2} (6.4)

where ·̂ denotes Fourier transformation in the x and z directions, and ·̂∗ denotes the
complex conjugate of ·̂. Also, kx and kz are the wavenumbers in the x and z directions,
respectively. We will use the polar-log coordinate system introduced by Lee & Moser
(2019) to investigate the spectral structure in terms of length scales and anisotropy. In
this approach, the two-dimensional spectral densities in Cartesian coordinates (kx, kz) are
mapped to the polar-log coordinates (k]x, k

]
z) with corresponding Jacobians. For example,

fu2 =

∫∫
Efu2 dkxdkz =

∫∫ |k|2
ξ
Efu2 dk#x dk#z , (6.5)
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Figure 14. Two-dimensional spectral density of fu2 in channel flow, using the DNS by Lee &
Moser (2015). Left: Reτ = 1000. Right: Reτ = 5186

and

k#x =
kx
|k|ξ, k#z =

kz
|k|ξ, (6.6)

where

|k| =
√
k2z + k2z and ξ = log10

|k|
kref

. (6.7)

In this form, the anisotropy of the spectral density and the contributions of kx = 0 and
kz = 0 are clearly represented. The more commonly used premultiplied two-dimensional
spectral density, kxkzE(log kx, log kz) suppresses the contribution to the spectral density
when either kx or kz is small, thereby masking the influence of the large scale motions.
We will choose the reference wavenumber kref = 50000/Reτ . More details on the rep-
resentation of two-dimensional spectral densities in the polar-log coordinate system are
given by Lee & Moser (2019).

The spectral densities of fu2 , shown in figure 14, clearly indicate that streamwise
elongated motions (2kx < kz) dominate the energy content. Also, motions with λ+ ≈ 100
make the largest contributions, which is consistent with the spectral density of u′2 has
a peak at λ+z = 100 in the near-wall flows, corresponding to the spacing of the near-
wall streaks. Furthermore, with increasing Reynolds number the contributions by the
large-scale motions increase; compare, for example, the contributions by motions with
λ+ > 1000, a trend that is consistent with previous work (Cimarelli et al. 2015; Lee &
Moser 2019).

to quantify the contributions of large-scale motions and small-scale motions to Efu2 ,
we use a high-pass filter according to

f2u,SS =

∫

|k|>kc
Efu2 dk, (6.8)

where kc is the cut-off frequency. For the high Reynolds number case shown in figure 14b,
a convenient demarcation between small-scale and large-scale motions occurs at λ+ ≈
1000, and so we choose k+c = 2π/1000. The results are given in figure 15. Whereas fu2

increases with Reynolds number, as shown earlier in figure 3, the small-scale contribution
f2u,SS is almost invariant. Because the small-scale motions (λ+ < 1000) are universal in
the near-wall region (Lee & Moser 2019), we conclude that fu2 is the correct scaling
parameter for near-wall flows at high Reynolds number since it correctly measures the
contributions by large-scale motions.
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Figure 15. Contribution of small-scale motions to f2
u in channel flow, using the DNS by Lee

& Moser (2015).

The spectral densities of fv2 , fw2 and fuv are shown in figure 16. Only fw2 shows an
increasing contribution of large-scale motions as the Reynolds number increases, but it
is weak relative to what was seen for fu2 . Both fv2 and fw2 has growing peak intensities
with Re at the fixed length scales. The peaks of Efw2 are in smaller length scale than
λ+ = 100, which is the peak location of Efu2 , and the peaks of Efv2 are in much smaller
length scales. Also, although Efv2 and Efw2 shows strong streamwise-elongated structure,
the relative contributions of spanwise elongated motions are greater in Efw2 and greatest
in Efv2 .

As to the spectral densities of fuv, there is a negative contribution where 2kx > kz.
Similar features are seen in the spectral densities of u′v′ (Lee & Moser 2019), but the
underlying mechanism of this negative contribution is not clear.

7. Conclusions

By expanding the velocity in a Taylor Series with distance from the wall, the Reynolds
number dependence of the near-wall distributions of the Reynolds stresses was traced to
the magnitude of the fluctuating wall shear stress and its spatial gradients, which are
increasingly affected by the superimposition and modulation of the near-wall motions
due to large-scale, outer-layer motions as the Reynolds number increases (Marusic et al.
2010).

The Taylor series expansion also suggests a separate scaling for each component of the
Reynolds stress. For the streamwise and spanwise components, the scaling collapses the

data for y+ < 20, a region that includes the near-wall peak in u2+ but not the one in w22.
For the wall-normal component and the Reynolds shear stress, the proposed scaling does
not especially improve the collapse of the data, but neither does it degrade the collapse.

Revisiting the dimensional analysis given in equation 1.1, we can now be more precise
and write for the Reynolds stresses in a two-dimensional wall-bounded flow, for the region
y+ < 20,

(uiuj)+ = f(Reτ )g(y+), (7.1)

That is, it is possible to separate the dependence on Reynolds number from the depen-
dence on wall distance.

It may also be remarked that because the scaling is different for each component of the
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Figure 16. 2D spectral density of fs in channel flow (Lee & Moser 2015). Left: Reτ = 1000.
Right: Reτ = 5186. Top row: 103fv2 . Middle row: fw2 . Bottom row: −102fuv.

stress, any isotropic definition of eddy viscosity will obviously fail in the near-wall region.
In this respect, Hultmark et al. (2013) noted that in the overlap region, where both the

mean velocity U and the streamwise stress u2+ follow a logarithmic distribution, u2+

depends on U rather than its gradient.
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