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ABSTRACT

Single-molecule break-junction measurements are intrinsically stochastic in nature, requiring the acquisition of large datasets of “breaking
traces” to gain insight into the generic electronic properties of the molecule under study. For example, the most probable conductance value
of the molecule is often extracted from the conductance histogram built from these traces. In this letter, we present an unsupervised and
reference-free machine learning tool to improve the determination of the conductance of oligo(phenylene ethynylene)dithiol from mechani-
cally controlled break-junction (MCBJ) measurements. Our method allows for the classification of individual breaking traces based on an
image recognition technique. Moreover, applying this technique to multiple merged datasets makes it possible to identify common breaking
behaviors present across different samples, and therefore to recognize global trends. In particular, we find that the variation in the extracted
molecular conductance can be significantly reduced resulting in a more reliable estimation of molecular conductance values from MCBJ data-
sets. Finally, our approach can be more widely applied to different measurement types which can be converted to two-dimensional images.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5089198

The development of experimental tools for the collection of large
datasets plays a key role in molecular electronics.1–4 In particular,
recent technological advancements in break-junction (BJ) techniques
such as the scanning tunneling microscopy one (STM-BJ)2,4 or the
mechanically controlled one (MCBJ)5 have made it possible to acquire
statistically relevant datasets. Their measurement principle consists of
repeatedly forming a quantum point contact in the presence of mole-
cules while at the same time measuring the current flowing through it.
Each breaking trace provides information about the conformation and
configuration of the junction.6 However, it is only through the statisti-
cal analysis of thousands of such traces, that an in-depth mapping of
the breaking dynamics7–9 and a meaningful interpretation of the
molecular junction behavior can be obtained.10–12

In break-junction measurements, molecules are usually identified
by the presence of plateau-like features after the breaking point of the
last gold-gold atom connection, which has conductance equal to the

conductance quantum (G0 ¼ 2e2=h, where e is the elementary charge
and h is Planck’s constant). Since the behavior of the molecules in the
junction can vary from one breaking trace to another (e.g., due to dif-
ferent injection points, number of molecules, electrode shapes, anchor-
ing configuration, electronic coupling, level alignments, etc…), the
recorded breaking traces may exhibit diverse features. A common way
to process these traces and obtain statistical information about the
most probable conductance value of the molecule (GM) is by building
a conductance histogram and fitting the prominent peak with a log-
normal distribution.13

In the following, we illustrate why this approach may lead to
inaccurate data interpretation and conclusions. For this purpose, we
use a dataset recorded on an oligo(phenylene ethynylene)dithiol
(OPE3) molecule consisting of more than 50 000 breaking curves.

These curves are obtained from six MCBJ samples and recorded
at different breaking speeds and bias voltages [see details in Table S1
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in Sec. II of the supplementary material), forming in total 16 datasets,
all carried out at room temperature and under ambient conditions.
Figure 1 shows two examples of conductance histograms built from
these 16 datasets of breaking curves recorded at 100mV. Although
both datasets are recorded with the same experimental settings, they
exhibit different molecular yields14 (details about the calculation of the
molecular yield are given in Sec. IV of the supplementary material).
From this comparison plot, two main observations can be made: (i)
the peak shapes and relative amplitudes are different for the two data-
sets, even though the same molecule is measured and (ii) the extracted
values of GM are not the same and differ by up to a factor of 4, when
comparing the two most extreme values.

In total, 11 different datasets have been recorded with a bias volt-
age of 100mV, each exhibiting different molecular yields, varying
from 3% to 63%.14 The inset of Fig. 1 presents the extracted value of
GM for all of them. The graph shows a considerable spread of about
half an order of magnitude in conductance, and an apparent increase
in GM for the increasing molecular yield. The dependence of GM on
the molecular yield raises an important point about the correct inter-
pretation of the extracted GM values. This is particularly important for
datasets exhibiting various types of breaking curves in which the most
probable conductance value obtained from the raw histogram cannot
be attributed to a unique molecular conformation, and more impor-
tantly, cannot be considered as a universal conductance value associ-
ated with that of a single and fully stretched molecule.

The problem of classification of breaking traces has recently been
tackled using machine learning (ML) tools.15,16 Generally speaking,
ML algorithms can be subdivided into two main categories: supervised
and unsupervised learning.17,18 Supervised learning is used when the
nature of the desired ML model output is known. For example,
recently, supervised learning was used to train an artificial neural net-
work for classifying experimental breaking curves of gold break-
junctions based on labeled traces obtained by molecular dynamics

simulations.19 Moreover, a “deep” neural network has recently been
applied to single-molecule measurements for DNA sequencing applica-
tions.20 In contrast to that, the outcome of the unsupervised ML model
is not predefined and the ML algorithms are used to detect the underly-
ing structures of a given dataset. This approach allows, e.g., to classify
the data according to specific characteristic features. Unsupervised
learning has successfully been applied to the classification of breaking
curves,15,21,22 highlighting the importance of using more sophisticated
tools to identify different types of breaking behavior in a given set of
traces. However, the classification algorithm applied in those studies
needed a reference vector, the choice of which may affect the clustering
outcome, as shown in Fig. S2 of the supplementary material. Recently,
an unsupervised clustering approach to identify the hierarchical data
structure has been reported,23 but in this case, the clustering required
several parameters, and was performed on the 2D conductance-
displacement histograms, and not on the individual breaking traces.

Our approach, schematically depicted in Fig. 2(a), aims to iden-
tify features in the experimental breaking traces and group the traces
accordingly. The general workflow for the unsupervised ML classifica-
tion can be summarized as follows: (i) construction of the feature space
containing the relevant information about the shape of every breaking
curve and (ii) applying a ML clustering algorithm in the constructed
feature space that groups feature vectors into clusters. In the following,
the workflow is explained in detail. The starting point of the method is
the set of individual breaking traces, of which several examples are pre-
sented in Fig. 2(b). Each trace exhibits a specific shape and corre-
sponds to a different breaking scenario of the junction. The blue trace,
for example, shows a sharp conductance drop below 1G0 followed by
an exponential conductance decrease as a function of the electrode dis-
placement. This behavior is indicative of tunneling across a barrier
when no molecule is bridging the electrodes. On the other hand, the
green and red traces exhibit a step-like behavior below 1G0, which is
associated with at least one OPE3 molecule trapped between the elec-
trodes. However, the two curves do not have the same shape. The
green trace has a conductance plateau around 1� 10�3 G0, while the
red one exhibits a longer plateau at a lower conductance (�1� 10�4

G0). These two traces exemplify the variability of molecular junctions
during breaking and illustrate how MCBJ measurements allow to sto-
chastically probe different molecular conformations/behaviors.

The creation of the applied feature space is partly inspired by the
well-known MNIST dataset for handwritten digits, in which the
images of the digits are reduced to 28� 28 pixel images.17 The MNIST
dataset is often used to train various supervised ML models to identify
handwritten digit images. During the learning process, the ML model
identifies relevant features related to each digit in the training set using
the discretized images. We employ the same principle to construct the
feature space for our breaking trace classification approach, even
though it is an unsupervised learning problem. As any image consti-
tutes a two-dimensional (2D) representation of the shape of an object,
one can naturally think of transforming every breaking curve into an
individual 2D image. In our case, the created images are individual 2D
histograms. Figure 2(c) illustrates how a breaking curve is transformed
into an image by defining a region of interest (ROI), i.e., the bound-
aries of the final image. In the case of the OPE3 dataset, the ROI is
defined in a conductance range between 1� 10�6 and 1G0 and an
electrode displacement range of 0–2 nm. The conductance range
excludes the behavior of the metallic contact and of the measurement

FIG. 1. Two unfiltered one-dimensional conductance histograms of the OPE3 mole-
cule. The red and blue curves are built from breaking traces of the datasets related
to samples 1b and 5a (see Table S1 in Sec. II of the supplementary material),
respectively. The black dashed lines and the red/blue shaded regions correspond
to log-normal distribution fits to the red/blue curves. The red/blue dots highlight the
maximum of the log-normal distribution fits allowing to extract GM. The inset shows
GM for all samples as a function of the molecular yield. The red/blue data points
highlight the extracted GM values using the red/blue histograms.
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noise-floor, while focusing purely on the behavior after the breaking of
the junction. In addition to the ROI, the number of bins along the con-
ductance and displacement axes is defined, i.e., the resolution of the
individual 2D histograms. For instance, the breaking curve shown in
Fig. 2(c) is transformed into an M�N pixel image. To construct the
feature space, every 2D histogram is converted into a feature vector
associated with a specific breaking curve. Each component of the
obtained vectors represents one dimension in the feature space, mean-
ing that one has to deal with a high-dimensional space. For example,
in the case of 28� 28 pixel images [Fig. 2(c)], the resulting feature
space has 784 dimensions.

The last step of the classification task is to choose an appropriate
clustering algorithm for the created feature space. For this work, we

use the K-meansþþ method (from the Scikit-Learn Python library),
which is one of the most popular clustering techniques (see details
about the algorithm principle in Sec. VIII of the supplementary mate-
rial). Its popularity is mainly due to its conceptual simplicity, low com-
putational cost, and scalability, unlike more advanced clustering
techniques. Another important advantage of the K-meansþþ algo-
rithm is its ability to deal with high-dimensional spaces, which is a
necessary requirement for our feature space. We note that other more
advanced algorithms, e.g., taking into account nonisotropic cluster
shapes, have been tested but fail in the case of such a high-dimensional
feature space (see details in Sec. IX of the supplementary material).

To obtain a reduced representation of the high-dimensional
space while preserving the maximum data variance, we employ a
method called principal component analysis (PCA). This technique
consists in projecting every feature vector onto the first three eigenvec-
tors of the covariance matrix of the analyzed data. Figure 2(d) displays
the reduced feature vector distribution, as well as the classification
results obtained for one of the OPE3 datasets (sample 5a, see Table S1
in Sec. II of the supplementary material). We note that the PCA is not
used in the clustering algorithm but only to reduce the 784-dimen-
sional feature vectors to three dimensions for visualization purposes.
The three clusters obtained from the high-dimensional clustering algo-
rithm are plotted in different colors. It is important to realize that each
point in the scatter plot corresponds to a single breaking trace. The
clusters can subsequently be used to construct the 2D histograms
belonging to the different classes, as shown in Fig. 2(d). The plot shows
that the blue cluster (class 1) mainly contains breaking traces without
any molecular signatures, while the green (class 2) and red (class 3)
clusters are related to curves with plateau-like features. The green clus-
ter contains breaking traces with conductance plateaus around
1� 10�3 G0, while for the red class, longer plateaus are observed at
lower conductance values (� 1� 10�4 G0).

We now apply this approach to investigate the influence of the
molecular yield on the most probable conductance value. For this pur-
pose, we group all the datasets recorded at a fixed bias voltage (V) of
100mV, i.e., in 11 sets with a cumulative amount of traces exceeding
40 000 curves (see Table S1 in the supplementary material). The con-
ductance and 2D histograms for the full dataset are shown in Fig. 3(a),
alongside the histograms of the three classes identified using our clus-
tering method [see Figs. 3(b)–3(d)]. The obtained classes are similar to
those previously obtained with a single OPE3 dataset [see Fig. 2(d)].
Class 1 contains curves without distinct molecular signatures [Fig.
3(b)], class 2 exhibits slanted plateaus starting around 1� 10�3 G0

[Fig. 3(c)], while the histograms of class 3 show flat and long plateau-
like features around 1� 10�4 G0 [Fig. 3(d)]. In the following, we focus
on class 2 and class 3.

As the clustering algorithm has been applied to the full dataset,
and all the classes were found in all the datasets, the three identified
clusters are universal, allowing for tracking of these classes and their
respective occurrence across them (see details in Sec. V of the supple-
mentary material). The extracted values of GM for classes 2 and 3 as a
function of the molecular yield are shown in Fig. 4(a). For both classes,
GM remains largely unaffected by the molecular yield, with extracted
values of 5.06 1.1� 10�4 G0 and 1.16 0.1� 10�4 G0 for class 2 and
class 3, respectively. The horizontal red dashed line indicates the most
probable conductance value obtained by considering all curves belong-
ing to class 3, while the shaded area corresponds to the standard

FIG. 2. (a) Schematic of the clustering algorithm. (b) Examples of breaking curves
from the OPE3 dataset. For clarity, the traces are offset horizontally. (c) From left to
right, transformation of a breaking trace into an individual 2D histogram. (d) Reduced
feature space obtained using the principle component analysis in the case of the
OPE3 dataset of sample 5a (see Table S1 of the supplementary material). The blue,
green, and red points correspond to the reduced feature vectors related to the three
different clusters/classes formed after using the K-meansþþ method. The 2D histo-
grams built from the breaking curves of each class are displayed according to the
cluster color.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 114, 143102 (2019); doi: 10.1063/1.5089198 114, 143102-3

VC Author(s) 2019

ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-004914
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-004914
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-004914
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-004914
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-004914
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-004914
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-004914
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-004914
https://scitation.org/journal/apl


deviation of the red data points in Fig. 4(a). The plot also shows that
the most probable conductance value of the unfiltered histogram is
dominated by class 3, consisting of long traces up to 1.5 nm around
1� 10�4 G0. Such traces are commonly considered to originate from a
single and fully stretched molecule bridging the two electrodes.
However, the plot also demonstrates that it is only after the removal of
class 1 and class 2 that the molecular conductance of these “ideal”
molecular junctions is unraveled.

In contrast to the unfiltered data, the systematic dependence of
GM on the molecular yield is now absent for classes 2 and 3. In addi-
tion, the standard deviation in GM for class 3 is about 5 times smaller
than for the unfiltered dataset, allowing for a more accurate determi-
nation of the molecular conductance of the fully stretched molecule.
Moreover, a large portion of the unfiltered conductance values lies out-
side the standard deviation of the conductance of class 3. These obser-
vations highlight the importance of data classification methods in
break-junction measurements.

Finally, we also apply our method to a second dataset series with
the aim to investigate the influence of the bias voltage on the determi-
nation of GM. For this study, to avoid sample-to-sample variations, six
OPE3 datasets successively recorded on the same sample for different
bias voltages (V¼ 50, 100, 150, 200, 250, and 300mV) are merged to
obtain a dataset containing more than 10 000 curves [see the conduc-
tance and 2D histograms in Fig. S5(a) in Sec. VI of the supplementary
material]. Three classes are formed using our clustering method, of
which the conductance and 2D histograms are displayed in Figs.
S5(b)–S5(d) in Sec. VI of the supplementary material. The resulting
classes strongly resemble those obtained in Figs. 2(d), and 3(b)–3(d).

The extracted GM values vs bias voltage are shown in Fig. 4(b). When
considering the unfiltered data, a pronounced increase in GM is
observed for an increasing bias voltage. Classes 2 and 3, on the other
hand, exhibit a smaller dependence. As a comparison, the graph high-
lights the extracted conductance range of class 3 for the yield depen-
dence. While the most probable conductance of class 3 recorded at 50
mV and 100mV lie at the edge of the conductance range, the extracted
GM in a bias voltage range of 150–300mV lie outside. This observation
suggests that the bias voltage indeed has the effect of increasing the
conductance, as expected in the case of electron tunneling through a
single, broadened level.

In our analysis, similar to previous studies,15 the number of clus-
ters is a free parameter and needs to be defined empirically. For the
purpose of this letter, we have used 3 clusters. Nevertheless, this choice
can be rationalized as follows: one can assume that each cluster corre-
sponds to one particular molecular configuration with a distinct con-
ductance. However, each cluster still includes local conformational
and configurational changes which may lead to conductance
fluctuations.

In our case, class 1 corresponds to the formation of junctions in
which only single-barrier tunneling is observed, without any molecule
bridging the gap. On the other hand, classes 2 and 3 show molecular
signatures such as the formation of well-defined plateaus. Even though
both classes have a molecular origin, clear differences between the two
are observed. Class 2 is characterized by a slanted plateau with a higher
conductance, whereas class 3 exhibits flat plateaus at lower conduc-
tance values. A possible explanation of this behavior may be related to
variations in the anchoring of the molecule to the electrodes and the
resulting changes in the injection point of the charges into the mole-
cules. The long and flat plateaus present in class 3 are commonly
believed to originate from a single-molecule bound to the two electro-
des. In this scenario, charge transport occurs via the covalent bonds
Au-S. For class 2, on the other hand, charges may also be injected
through-space into the benzene rings via the overlap between its p-
orbitals and the gold electrode wavefunctions. In this case, the sliding
of the molecule on top of the electrodes and the resulting change in
the orbital overlap may explain the gradual decay in conductance and

FIG. 3. (a) 2D (right panel) and 1D (left panel) conductance histograms built from
all the breaking curves recorded at V¼ 100mV, corresponding to 41 916 traces.
(b)–(d) 2D (right panel) and 1D (left panel) conductance histograms built from the
breaking curves of classes 1, 2, and 3, respectively, obtained with the clustering
method. The black dashed lines and green/red shaded regions in (c) and (d),
respectively, show log-normal distribution fits to the prominent peak in the histo-
grams. The horizontal green/red dashed lines in (c) and (d), respectively, corre-
spond to the mean of the log-normal distribution fits.

FIG. 4. (a) Most probable conductance GM as a function of molecular yield. The
orange, green, and red points are the extracted GM in the case of the unfiltered
data, class 2 and class 3, respectively. The horizontal red dashed line indicates the
mean of the log-normal distribution fit obtained in Fig. 3(d) and the shaded area to
the standard deviation of the red data points in (a). (b) GM as a function of bias volt-
age. The orange, green, and red points are the extracted GM in the case of the
unfiltered data and classes 2 and 3, respectively. The red shaded region corre-
sponds to the same conductance range of class 3 depicted in (a).
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the shorter plateaus. To gain more insights into the junction forma-
tion, density functional theory and/or molecular dynamics calculations
would be required. Such calculations, however, are beyond the scope
of this letter.

To summarize, we demonstrated that unsupervised ML methods
applied to MCBJ measurements allow for significant improvements in
the extraction of the molecular conductance. Using our reference-free
approach, we identify different molecular classes, which we track
across several datasets. As such, we find that the two identified molec-
ular classes are largely independent on the molecular yield, in contrast
to the unfiltered data. Moreover, we find that the standard deviation of
the extracted molecular conductance of the fully stretched molecule
can be reduced by a factor of 5. Finally, by applying our approach on
datasets with varying bias voltages, we observe a small dependence on
the molecular conductance. The obtained results highlight the impor-
tance of using advanced and appropriate tools, such as ML algorithms,
to efficiently analyze break-junction data and extract meaningful sta-
tistical molecular information.

See supplementary material for the influence of the reference vec-
tor in the method proposed by Lemmer et al.,15 a description of the
whole OPE3 datasets, the extraction of the most probable conduc-
tance, and the calculation of the molecular yield. A more detailed
description of the clustering algorithm and results are also presented.

This work was partially funded by the FET open project
QuIET (No. 767187). M.P. acknowledges the funding by the
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