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Abstract: Energy disaggregation, known in the literature as Non-Intrusive Load Monitoring (NILM),
is the task of inferring the power demand of the individual appliances given the aggregate power
demand recorded by a single smart meter which monitors multiple appliances. In this paper,
we propose a deep neural network that combines a regression subnetwork with a classification
subnetwork for solving the NILM problem. Specifically, we improve the generalization capability of
the overall architecture by including an encoder–decoder with a tailored attention mechanism in the
regression subnetwork. The attention mechanism is inspired by the temporal attention that has been
successfully applied in neural machine translation, text summarization, and speech recognition. The
experiments conducted on two publicly available datasets—REDD and UK-DALE—show that our
proposed deep neural network outperforms the state-of-the-art in all the considered experimental
conditions. We also show that modeling attention translates into the network’s ability to correctly
detect the turning on or off an appliance and to locate signal sections with high power consumption,
which are of extreme interest in the field of energy disaggregation.

Keywords: attention mechanism; deep neural network; energy disaggregation; non-intrusive load
monitoring

1. Introduction

Non-Intrusive Load Monitoring (NILM) is the task of estimating the power demand
of each appliance given aggregate power demand signal recorded by a single electric meter
monitoring multiple appliances [1]. In the last years, machine learning and optimiza-
tion played a significant role in the research on NILM [2,3]. In the literature, solutions
based on k-Nearest Neighbor(k-NN), Support Vector Machine (SVM), Matrix Factoriza-
tion have been proposed [4,5]. A practical approach to NILM has to handle real power
measurements sampled at intervals of seconds or minutes. In this setting, one of the most
popular approaches is based on the Hidden Markov Model (HMM) [6], because of its
ability to model transitions in consumption levels of real energy consumption for target
appliances. Some successive papers focused on enhancing the expressive power of this
class of methods [7,8]. Recently, the energy disaggregation problem has been reformulated
as a multi-label classification problem [9]. In order to detect the active appliances at each
time step, the idea is to associate each value of the main power to a vector of labels of
length equal to the number of appliances, that are set to 1 if the appliance is active and 0
otherwise. The reformulated problem has been solved with different approaches [10–12].
However, there is no direct way to derive the power consumption for each appliance at
that time step. During the last years, approaches based on deep learning have received
particular attention as they exhibited noteworthy disaggregation performance. Deep Neu-
ral Networks (DNNs) have been successfully applied for the first time to NILM by Kelly
and Knottenbelt in [13], who coined the term “Neural NILM”. Neural NILM is a nonlinear
regression problem that consists of training a neural network for each appliance in order
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to predict a time window of the appliance load given the corresponding time window
of aggregated data. Kelly and Knottenbelt proposed three different neural networks to
perform NILM with high-frequency time series data: a recurrent neural network (RNN)
using Long Short-Term Memory units (LSTM); a Denoising Autoencoder (DAE); and a
regression model that predicts the start time, end time, and average power demand of each
appliance. The capability of LSTMs to successfully learn long-range temporal dependencies
of time series data makes it a suitable candidate for NILM. Their first approach is based on
stacked layers of LSTM units combined with a Convolutional Neural Network (CNN) at
the beginning of the network to automatically extract features from the raw data. In the
same paper, NILM is treated as a noise reduction problem, in which the disaggregated
load represents the clean signal, and the aggregated signal is considered corrupted by the
presence of the remaining appliances and by the measurement noise. For this purpose,
noise reduction is performed by means of a DAE composed of convolutional layers and
fully connected layers. In the experiments conducted by the authors, the DAE network
outperforms the LSTM-based architecture and the other approaches frequently employed
for this problem, such as HMMs and Combinatorial Optimization. In [14], an empiri-
cal investigation of deep learning methods is conducted by using two types of neural
network architectures for NILM. The first neural network solves a regression problem
which estimates the transient power demand of a single appliance given the whole series
of the aggregate power. The second type of network is a multi-layer RNN using LSTM
units, which is similar to the structure used in [13]. Zhang et al. [15] proposed instead a
sequence-to-point learning for energy disaggregation where the midpoint of an appliance
window is treated as classification output of a neural network with the aggregate window
being the input. Bonfigli et al. [16] proposed different algorithmic and architecture im-
provements to the DAE for NILM, showing that the Neural NILM approach improves on
the best known NILM approaches not based on DNNs like Additive Factorial Approximate
Maximum A Posteriori estimation (AFAMAP) by Kolter and Jaakkola [6]. Compared to the
work in [13], their DAE approach is improved by introducing pooling and upsampling
layers in the architecture and a median filter in the disaggregation phase to reconstruct the
output signal from the overlapped portions of the disaggregated signal. Shin et al. [17]
proposed a subtask gated network (SGN) that combines two CNNs, namely, a regression
subnetwork and a classification subnetwork. The building block of the two subnetworks is
the sequence-to-sequence CNN proposed in [15]. In their work, the regression subnetwork
is used to infer the initial power consumption, whereas the classification subnetwork
focuses on the binary classification of the appliance state (on/off). The final estimate of the
power consumption is obtained by multiplying the regression output with the probability
classification output. In the experiments conducted by the authors, the SGN outperforms
HHMs and state-of-the-art CNN architectures that have been proposed recently [13,15].
Chen et al. [18] adopted the structure of the SGN proposed in [17] and added to the SGN
backbone a Generative Adversarial Network (GAN). In their model, the disaggregator
for a given appliance is followed by a generator that produces the load pattern for that
appliance. They show that adding the adversarial loss can help the model to produce more
accurate result with respect to the basic SGN architecture. None of these state-of-the art
deep learning models use RNNs. In fact, in the NILM literature, CNNs have always shown
better performance than RNNs, even though RNNs are still widely employed for sequence
modeling tasks. In [19], a CNN-based DNN has been combined with data augmentation
and an effective postprocessing phase, improving its ability to correctly detect the activation
of each appliance with a small amount of data available. The attention mechanism applied
to NILM is a relatively new idea [20]. The DNN in [20] remarkably improves over Kelly’s
DAE when trained and tested on the same house. On the other hand, the generalization
capability on houses not seen during the training is modest. Moreover, training and testing
for the NILM task are time-consuming as they used the same architecture proposed in [21]
for machine translation which consists of RNN layers in both the encoder and the decoder.
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In this paper, we propose a RNN-based encoder–decoder model to extract appliance
specific power usage from the aggregated signal and we enhance it with a scalable and
lightweight attention mechanism designed for the energy disaggregation task. More in
detail, we substantially improve the generalization capability of the SGN by Shin et al.
by encapsulating our model in the regression subnetwork and by combining it with the
classification subnetwork. The implemented attention mechanism has the function to
strengthen the representational power of the neural network to locate the positions of
the input sequence where the relevant information is present. The intuition is that our
attention-based model could help the energy disaggregation task by assigning importance
to each position of the aggregated signal which corresponds to the position of a state
change of the target appliance. This feature is crucial for developing appliance models that
generalize well on buildings not seen during the training.

The proposed DNN is tested on two publicly available datasets—REDD and UK-
DALE—and the performance is evaluated using different metrics. The obtained results
show that our algorithm outperforms state-of-the-art DNNs in all the addressed experimen-
tal conditions. The paper is organized as follows. Section 2 describes the NILM problem.
Section 3 presents our DNN architecture. Section 4 describes the experimental procedure
and the obtained results. Finally, Section 5 concludes the paper.

2. NILM Problem

Given the aggregate power consumption (x1, . . . , xT) from N active appliances at the
entry point of the meter, the task of the NILM algorithm is to deduce the contribution
(yi

1, . . . , yi
T) of appliance i = 1, . . . , N, such that at time t = 1, . . . , T, the aggregate power

consumption is given by the sum of the power consumption of all the known appliances
plus a noise term. The energy disaggregation problem can be stated as

xt =
N

∑
i=1

yi
t + εt, (1)

where xt is the aggregated active power measured at time t, yi
t is the individual contribution

of appliance i, N is the number of appliances, and εt is a noise term. In a denoised scenario,
there is no noise term, whereas in a noised scenario, εt is given by the total contribution
from appliances not included and the measurement noise. Similarly to the work in [13], we
refer to the power over a complete cycle of an appliance as an appliance activation.

3. Encoder–Decoder with Attention Mechanism

In this section, we describe the adopted attention mechanism and DNN architecture
for solving the NILM problem.

3.1. Attention Mechanism

In the classical setting, a sequence-to-sequence network is a model consisting of two
components called the encoder and decoder [22]. The encoder is an RNN that takes an
input sequence of vectors (x1, . . . , xT), where T is the length of input sequence, and encodes
the information into fixed length vectors (h1, . . . , hT). This representation is expected to
be a good summary of the entire input sequence. The decoder is also an RNN which
is initialized with a single context vector c = hT as its inputs and generates an output
sequence (y1, . . . , yN) vector by vector, where N is the length of output sequence. At each
time step, ht and σt denote the hidden states of the encoder and decoder, respectively. There
are two well-known challenges with this traditional encoder–decoder framework. First,
a critical disadvantage of single context vector design is the incapability of the system to
remember long sequences: all the intermediate states of the encoder are eliminated and
only the final hidden state vector is used to initialize the decoder. This technique works
only for small sequences, however, as the length of the sequence increases, the vector
becomes a bottleneck and may lead to loss of information [23]. Second, it is unable to
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capture the need of alignment between input and output sequences, which is an essential
aspect of structured output tasks such as machine translation or text summarization [24].
The attention mechanism, first introduced for machine translation by Bahdanau et al. [21],
was born to address these problems. The novelty in their approach is the introduction
of an alignment function that finds for each output word significant input words. In this
way, the neural network learns to align and translate at the same time. The central idea
behind the attention is not to discard the intermediate encoder states but to combine and
utilize all the states in order to construct the context vectors required by the decoder to
generate the output sequence. This mechanism induces attention weights over the input
sequence to prioritize the set of positions where relevant information is present. Following
the definition from Bahdanau et al., attention-based models compute a context vector ct for
each time step as the weighted sum of all hidden states of the encoder. Their corresponding
attention weights are calculated as

etj = f (σt−1, hj), αtj =
exp(etj)

∑T
k=1 exp(etk)

, ct =
T

∑
j=1

αtjhj, (2)

where f is a learned function that computes a scalar importance value for hj given the value
of hj and the previous state σt−1 and each attention weight αtj determines the normalized
importance score for hj. As shown in Figure 1, the context vectors ct are then used to
compute the decoder hidden state sequence, where σt depends on σt−1, ct, and yt−1.
The attention weights can be learned by incorporating an additional feed-forward neural
network that is jointly trained with encoder–decoder components of the architecture.

Figure 1. Original graphical representation of the attention model by Bahdanau et al. in [21].

The intuition is that an attention-based model could help in the energy disaggregation
task by assigning importance to each position of the aggregated signal which corresponds
to the position of an activation, or more generally, to a state change of the target appliance.
This allows the neural network to focus its representational power on selected time steps
of the target appliance in the aggregated signal, rather than on the activations of non-
target appliances, hopefully yielding more accurate predictions. In fact, some events (e.g.,
turning on or off an appliance) or signal sections (e.g., high power consumption) are more
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important than other parts within the input signal. For this reason, being able to correctly
detect the corresponding time steps can play a key role in the disaggregation task. In neural
machine translation, languages are typically not aligned because of the word ordering
between the source and the target language. For the NILM problem, the aggregated power
consumption is perfectly aligned with the load of the corresponding appliance and the
alignment is known ahead of time. For this reason, to amplify the contribution of an
appliance activation in the aggregated signal, we use a simplified attention model inspired
by Raffel and Ellis [25], that combines all the hidden states of the encoder using their
relative importance. The attention mechanism can be formulated as

et = a(ht), αt =
exp(et)

∑T
j=1 exp(ej)

, c =
T

∑
t=1

αtht, (3)

where a is a learnable function the depends only on the hidden state vector of the encoder
ht. The function a can be implemented with a feed-forward network that learns a particular
attention weight αt that determines the normalized importance score for hj. This allows
the network to recognize the time steps that are more important to the desired output as
the ones having higher attention value.

3.2. Model Design

From a practical point of view, DNNs use partial sequences obtained with a sliding
window technique. The duration of an appliance activation is used to determine the
size of the window that selects the input and output sequences for the NILM modeling.
To be precise, let xt,L = (xt, . . . , xt+L−1) and yi

t,L = (yi
t, . . . yi

t+L−1) be, respectively, the
partial aggregate and appliance sequences of length L starting at time t. In addition,
we build the auxiliary state sequence (si

1, . . . , si
T), where si

t ∈ {0, 1} represent the on/off
state of the appliance i at time t. The state of an appliance is considered “on” when the
consumption is greater than some threshold and “off” when the consumption is less or
equal the same threshold. We use the notation si

t,L = (st, . . . , st+L−1) for the partial state
sequences of length L starting at time t. Our idea is to exploit the structure of the SGN
architecture proposed in [17] as the building block of the model. This general framework
uses an auxiliary sequence-to-sequence classification subnetwork that is jointly trained
with a standard sequence-to-sequence regression subnetwork. The difference here is
that we generate a more accurate estimate of the power consumption by performing the
regression subtask with a scalable RNN-based encoder–decoder with attention mechanism.
The intuition behind the proposed model is that the tailored attention mechanism allows
the regression subnetwork to implicitly detect and assign more importance to some events
(e.g., turning on or off of the appliance) and to specific signal sections (e.g., high power
consumption), whereas the classification subnetwork helps the disaggregation process by
enforcing explicitly the on/off states.

Differently from the DNN in [20], the scalability of the overall architecture is ensured
by the regression subnetwork where no RNN is needed in the decoder. In fact, the adopted
attention mechanism allows one to decouple the input representation from the output and
the structure of the encoder from the structure of the decoder. We exploit these benefits and
we design a hybrid encoder–decoder which is based on a combination of convolutional
layers and recurrent layers for the encoder and fully connected layers for the decoder.

3.3. Network Topology

Let f i
reg : RL

+ → RL
+ be the appliance power estimation model, then the regression sub-

network learns the mapping p̂i
t,L = f i

reg(xt,L). The topology of the regression subnetwork
is as follows.



Energies 2021, 14, 847 6 of 16

Encoder: The encoder network is composed by a CNN with 4 one-dimensional
convolutional layers (Conv1D) with ReLU activation function that processes the input
aggregated signal and extracts the appliance-specific signature as a set of feature maps.
Finally, a RNN takes as input the set of feature maps and produces the sequence of
the hidden states summarizing all the information of the aggregated signal. We use
Bidirectional LSTM (BiLSTM) in order to get the hidden states ht that summarize the
information from both directions. A bidirectional LSTM is made up of a forward LSTM −→g
that reads the sequence from left to right and a backward LSTM←−g that reads it from right
to left. The final sequence of the hidden states of the encoder is obtained by concatenating
the hidden state vectors from both directions, i.e., ht = [

−→
ht ;
←−
ht ]T .

Attention: The attention unit between the encoder and the decoder consists of a single
layer feed-forward neural network that computes the attention weights and returns the
context vector as a weighted average of the output of the encoder over time. Not all the
feature maps produced by the CNN have equal contribution in the identification of the ac-
tivation of the target appliance. Thus, the attention mechanism captures salient activations
of the appliance, extracting more valuable feature maps than others for the disaggregation.
The implemented attention unit is shown in Figure 2, and it is mathematically defined as

et = VT
a tanh(Waht + ba), (4)

αt = so f tmax(et), (5)

c =
T

∑
t=1

αtht, (6)

where Va, Wa, and ba are the attentions parameters jointly learned with the other compo-
nents of the architecture. The output of the attention unit is the context vector c that is used
as the input vector for the following decoder.

Figure 2. Graphical illustration of the implemented attention unit.

Decoder: The decoder network is composed by 2 fully connected layers (Dense).
The second layer has the same number of units of the sequence length L.

The exact configuration of regression subnetwork is as follows:
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1. Input (sequence length L determined by the appliance duration)
2. Conv1D (convolutional layer with F filters, kernel size K, stride 1, and ReLU activation

function)
3. Conv1D (convolutional layer with F filters, kernel size K, stride 1, and ReLU activation

function)
4. Conv1D (convolutional layer with F filters, kernel size K, stride 1, and ReLU activation

function)
5. Conv1D (convolutional layer with F filters, kernel size K, stride 1, and ReLU activation

function)
6. BiLSTM (bidirectional LSTM with H units, and tangent hyperbolic activation function)
7. Attention (single layer feed-forward neural network with H units, and tangent hyper-

bolic activation function)
8. Dense (fully connected layer with H units, and ReLU activation function)
9. Dense (fully connected layer with L units, and linear activation function)
10. Output (sequence length L)

Let f i
reg : RL

+ → [0, 1]L be the appliance state estimation model, then the classification
subnetwork learns the mapping ŝi

t,L = f i
cls(xt,L). We use the sequence-to-sequence CNN

proposed in [15] consisting of 6 convolutional layers followed by 2 fully connected layers.
The exact configuration of the classification subnetwork is the following:

1. Input (sequence length L determined by the appliance duration)
2. Conv1D (convolutional layer with 30 filters, kernel size 10, stride 1, and ReLU activa-

tion function)
3. Conv1D (convolutional layer with 30 filters, kernel size 8, stride 1, and ReLU activa-

tion function)
4. Conv1D (convolutional layer with 40 filters, kernel size 6, stride 1, and ReLU activa-

tion function)
5. Conv1D (convolutional layer with 50 filters, kernel size 5, stride 1, and ReLU activa-

tion function)
6. Conv1D (convolutional layer with 50 filters, kernel size 5, stride 1, and ReLU activa-

tion function)
7. Conv1D (convolutional layer with 50 filters, kernel size 5, stride 1, and ReLU activa-

tion function)
8. Dense (fully connected layer with 1024 units, and ReLU activation function)
9. Dense (fully connected layer with L units, and sigmoid activation function)
10. Output (sequence length L)

The final estimate of the power consumption is obtained by multiplying the regression
output with the probability classification output:

ŷi
t.L = f i

out(xt,L) = p̂t,L � ŝt,L, (7)

where � is the component-wise multiplication. The overall architecture is shown in
Figure 3, and we call it LDwA, that is, Load Disaggregation with Attention.



Energies 2021, 14, 847 8 of 16

Regression Subnetwork

Dense Layer

Dense Layer

Attention Layer

−−−→
LSTM

←−−−
LSTM

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

gClassification Subnetwork

Dense Layer

Dense Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

xt,L

·
p̂t,L ŝt,L

ŷt,L

Figure 3. Proposed Load Disaggregation with Attention (LDwA) architecture used in our experi-
ments.

4. Experiments

In this section, we show the experiments performed to evaluate our LDwA approach.
First, we describe the datasets, the performance metrics, and the experimental procedure
adopted. Then, we present and discuss the obtained results.

4.1. Datasets

In order to evaluate our algorithm and perform a fair comparison with state-of-the-
art methods, we choose two publicly available real-world datasets and adopt the same
partition into training and test sets of the previous studies [15,17,18]. The Reference Energy
Disaggregation Data Set (REDD) [26] contains data for six houses in the USA at 1 second
sampling period for the aggregate power consumption, and at 3 s for the appliance power
consumption. Following the previous studies, we consider the 3 top-consuming appliances:
dishwasher (DW), fridge (FR), and microwave (MW). We use the data of houses 2–6 to build
the training set, and house 1 as the test set. The preprocessed REDD dataset is provided by
the authors of [17]. The second dataset, the Domestic Appliance-Level Electricity dataset
UK-DALE [27], contains over two years of consumption profiles of five houses in UK, at a
6 s sampling period. Here, the experiments are conducted using the 5 top-consuming
appliances: dishwasher (DW), fridge (FR), kettle (KE), microwave (MW), and washing
machine (WM). For evaluation, we use houses 1, 3, 4, and 5 for training and house 2 for
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testing as in the previous works [15,17,18]. The UK-DALE dataset has been preprocessed by
the authors of [13]. We stress that for both datasets we consider the unseen setting in which
we train and test on different households. In fact, the best way to test the generalization
capability of a model is to use the model on a building not seen during the training. This is
a particularly desirable property for a NILM algorithm since the unseen scenario is more
likely in the real world application of the NILM service.

4.2. Metrics

In order to evaluate our NILM approach, we recall specific metrics that allow to capture
significant performance of the algorithm. Following the previous studies in [15,17,18], we
use the Mean Absolute Error (MAE) and the Signal Aggregate Error (SAE). Let yi(t) and
ŷi(t) be the true power and the estimated power at time t for the appliance i, respectively.
The MAE for the appliance i is defined as

MAEi =
1
T

T

∑
t=1
|yi(t)− ŷi(t)|. (8)

Give a predicted output sequence of length T, the SAE for the appliance i is defined as

SAEi =
1
N

N

∑
τ=1

1
K
|ri(τ)− r̂i(τ)|, (9)

where N is the number of disjoint time periods of length K, T = K · N, and ri(τ) and r̂i(τ)
represent the sum of the true power and the sum of the predicted power in the τth time
period, respectively . In our experiments, we set N = 1200 which corresponds to a time
period of approximately one hour for the REDD dataset and two hours for the UK-DALE
dataset. For both metrics, lower values indicate better disaggregation performance.

In order to measure how accurately each appliance is running in on/off states, we use
classification metrics such as the F1-score, that is, the harmonic mean of precision (P) and
recall (R):

F1 =
2P · R
P + R

, P =
TP

TP + FP
, R =

TP
TP + FN

, (10)

where TP, FP, and FP stand for true positive, false positive, and false negative, respectively.
An appliance is considered “on” when the active power is greater than some threshold and
“off” when it is less or equal the same threshold. The threshold is assumed to be the same
value used for extracting the activations [17,18]. In our experiments, we use a threshold of
15 Watt for labeling the disaggregated loads. Precision, recall, and F1-score return a value
between 0 and 1 where a higher number corresponds to better classification performance.

4.3. Network Setup

According to the Neural NILM approach, we train a network for each target appli-
ance. A mini-batch of 32 examples is fed to each neural network, and mean and variance
standardization is performed on the input sequences. For the target data, min-max normal-
ization is used where minimum and maximum power consumption values of the related
appliance are computed in the training set. The training phase is performed with a sliding
window technique over the aggregated signal, using overlapped windows of length L with
hop size equal to 1 sample. As stated in [13], the window size for the input and output pairs
has to be large enough to capture an entire appliance activation, but not too large to include
contributions of other appliances. In Table 1, we report the adopted window length L for
each appliance that is related to the dataset sampling rate. The state classification label is
generated by using a power consumption of 15 Watt as threshold. Each network is trained
with the Stochastic Gradient Descent (SGD) algorithm with Nesterov momentum [28] set
to 0.9. The loss function used for the joint optimization of the two subnetworks is given by
L = Lout +Lcls, where Lout is the Mean Squared Error (MSE) between the overall output of
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the network and the ground truth of a single appliance, and Lcls is the binary cross-entropy
(BCE) that measures the classification error of the on/off state for the classification subnet-
work. The maximum number of epochs is set to 100, the initial learning rate is set to 0.01,
and it is reduced by a decay factor equal to 10−6 as the training progresses. Early stopping
is employed as a form of regularization to avoid overfitting since it stops the training
when the error on the validation set starts to grow [29]. For the classification subnetwork,
we adopt the hyperparameters from in [17] as our focus is only the effectiveness of the
proposed components. The hyperparameter optimization of the regression subnetwork
regards the number of filters (F), the size of each kernel (K), and the number of neurons in
the recurrent layer (H). Grid search is used to perform the hyperparameter optimization,
which is simply an exhaustive search through a manually specified subset of points in the
hyperparameter space of the neural network where F = {16, 32, 64}, K = {4, 8, 16} and
H = {256, 512, 1024}. We evaluate the configuration of the hyperparameters on a held-out
validation set and we choose the architecture achieving the highest performance on it.
The disaggregation phase, also carried out with a sliding window over the aggregated
signal with hop size equal to 1 sample, generates overlapped windows of the disaggre-
gated signal. Differently from what proposed in [13], where the authors reconstruct the
overlapped windows by aggregating their mean value, we adopt the strategy proposed
in [16] in which the disaggregated signal is reconstructed by means of a median filter on
the overlapped portions. The neural networks are implemented in Python with PyTorch,
an open source machine learning framework [30] and the experiments are conducted on
a cluster of NVIDIA Tesla K80 GPUs. The training time requires several hours for each
architecture depending on the network dimension and on the granularity of the dataset.

Table 1. Sequence length (L) for the LDwA architecture.

Dataset DW FR KE MW WM

REDD 2304 496 - 128 -
UK-DALE 1536 512 128 288 1024

4.4. Results

We compare our approach with the HMM implemented in [31] and the DNNs recently
proposed: DAE, Seq2Point, S2SwA, SGN, and SCANet. We report the MAE, SAE, and F1-
score for the REDD and the UK-DALE datasets in Tables 2 and 3, respectively. The results
show that our approach turns out to be by far the best for both datasets. Apart from
us, the two most competitive methods are SGN and SCANet, which share the same
backbone we drew inspiration from. Results show that our network is better than both SGN
and SCANet, implying that the differences introduced in our approach are significantly
beneficial. In particular, our network outperforms SGN, showing that including our
regression network significantly improves both the estimate of the power consumption
and the load classification, and thus the overall disaggregation performance. More in
detail, for the dataset REDD the improvement in terms of MAE (SAE) with respect to
SGN ranges from a minimum of 24.13% (23.44%) on the fridge to a maximum of 45.15%
(54.4%) on the dishwasher, with an average improvement of 32.64% (39.33%). As for the
F1-score, the classification performance increase from a minimum of 6.67% on the fridge
to a maximum of 24.03% on the microwave, with an average increase of 15.45%. For
the UK-DALE dataset instead, the improvement in terms of MAE (SAE) with respect to
SGN ranges from a minimum of 18.62% (8.93%) on the fridge to a maximum of 39.78%
(50.25%) on the dishwasher, with an average improvement of 27.84% (30.65%). The F1-score
increases from a minimum of 2.49% on the kettle to a maximum of 10.82% on the washing
machine, with an average increment of the accuracy of 6.79%. Moreover, our method
outperforms the more recent SCANet getting better disaggregation performance on all the
appliances for both the datasets and both the metric. Looking at the tables, we see that
for the REDD dataset the improvement in terms of MAE (SAE) with respect to SCANet
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ranges from a minimum of 9% (5.84%) on the fridge to a maximum of 18.76% (28.59%)
on the microwave, with an average improvement of 13.21% (15.03%). The improvement
of the F1-score ranges from a minimum of 3.64% on the fridge to maximum of 11.58%
on the microwave, with an average increment of 6.81% of the accuracy. Finally, on the
UK-DALE dataset, the improvement in terms of MAE (SAE) with respect to SCANet ranges
from a minimum of 7.33% (7.2%) on the kettle to a maximum of 24.57% (19.55%) on the
dishwasher, with an average improvement of 15.69% (14%). The F1-score increases from a
minimum of 0.92% on the kettle to a maximum of 8.85% on the washing machine, with an
overall improvement of 4.41%.

In order to evaluate the computational burden of the proposed LDwA, we report in
Tables 4 and 5 the training time with respect to the most accurate DNNs. Clearly, LDwA is
less efficient than SGN as LSTM layers have larger number of trainable parameters than the
convolutional ones. However, the efficiency of our architecture with respect to the attention-
based S2SwA is remarkable. This is explained by the presence of the tailored attention
mechanism that does not require additional recurrent layers in the decoder. There is also
a huge improvement in the training time with respect to the SCANet. We achieve better
performance without the need to train a Generative Adversarial Network, that requires a
significant amount of computational resources and has notorious convergence issues.

The profiles related to the dishwasher, microwave, fridge, and kettle are shown in
Figures 4–7, respectively, where each appliance activation is successfully detected by the
LDwA in the disaggregated trace.

Table 2. Disaggregation performance for the REDD dataset. We report in boldface the best approach.

Model Metric DW FR MW Overall

FHMM [31]
MAE 101.30 98.67 87.00 95.66
SAE 93.64 46.73 65.03 68.47

F1 (%) 12.93 35.12 11.97 20.01

DAE [16]
MAE 26.18 29.11 23.26 26.18
SAE 21.46 20.97 19.14 20.52

F1 (%) 48.81 74.76 18.54 47.37

Seq2Point [15]
MAE 24.44 26.01 27.13 25.86
SAE 22.87 16.24 18.89 19.33

F1 (%) 47.66 75.12 17.43 46.74

S2SwA [20]
MAE 23.48 25.98 24.27 24.57
SAE 22.64 17.26 16.19 18.69

F1 (%) 49.32 76.98 19.31 48.57

SGN [17]
MAE 15.77 26.11 16.95 19.61
SAE 15.22 17.28 12.49 15.00

F1 (%) 58.78 80.09 44.98 61.28

SCANet [18]
MAE 10.14 21.77 13.75 15.22
SAE 8.12 14.05 9.97 10.71

F1 (%) 69.21 83.12 57.43 69.92

Proposed LDwA
MAE 8.65 19.81 11.17 13.21
SAE 6.94 13.23 7.12 9.10

F1 (%) 74.41 86.76 69.01 76.73
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Table 3. Disaggregation performance for the UK-DALE dataset. We report in boldface the best ap-
proach.

Model Metric DW FR KE MW WM Overall

FHMM [31]
MAE 48.25 60.93 38.02 43.63 67.91 51.75
SAE 46.04 51.90 35.41 41.52 64.15 47.80

F1 (%) 11.79 33.52 9.35 3.44 4.10 12.44

DAE [16]
MAE 22.18 17.72 10.87 12.87 13.64 15.46
SAE 18.24 8.74 7.95 9.99 10.67 11.12

F1 (%) 54.88 75.98 93.43 31.32 24.54 56.03

Seq2Point [15]
MAE 15.96 17.48 10.81 12.47 10.87 13.52
SAE 10.65 8.01 5.30 10.33 8.69 8.60

F1 (%) 50.92 80.32 94.88 45.41 49.11 64.13

S2SwA [20]
MAE 14.96 16.47 12.02 10.37 9.87 12.74
SAE 10.68 7.81 5.78 8.33 8.09 8.14

F1 (%) 53.67 79.04 94.62 47.99 45.79 64.22

SGN [17]
MAE 10.91 16.27 8.09 5.62 9.74 10.13
SAE 7.86 6.61 5.03 4.32 7.14 6.20

F1 (%) 60.02 84.43 96.32 58.55 61.12 72.09

SCANet [18]
MAE 8.71 15.16 6.14 4.82 8.48 8.67
SAE 4.86 6.54 4.03 3.81 5.77 5.00

F1 (%) 63.30 85.77 98.89 62.22 63.09 74.65

Proposed LDwA
MAE 6.57 13.24 5.69 3.79 7.26 7.31
SAE 3.91 6.02 3.74 2.98 4.87 4.30

F1 (%) 68.99 87.01 99.81 67.55 71.94 79.06

Table 4. Training time in hours for the REDD dataset.

Model DW FR MW

S2SwA [20] 8.91 5.75 3.93
SGN [17] 3.31 2.43 0.57

SCANet [18] 6.44 3.24 2.68
Proposed LDwA 5.37 3.07 1.88

Table 5. Training time in hours for the UK-DALE dataset.

Model DW FR KE MW WM

S2SwA [20] 14.53 9.42 5.02 6.21 6.12
SGN [17] 5.43 3.11 2.43 2.76 3.78

SCANet [18] 8.01 7.98 6.41 5.77 7.11
Proposed

LDwA 6.21 4.93 3.65 3.37 5.87

The tailored attention mechanism inserted into the regression branch of the network
allows us to correctly identify the relevant time steps in the signal and generalize well
in unseen houses. Furthermore, modeling attention is particularly interesting from the
perspective of the interpretability of deep learning models because it allows one to directly
inspect the internal working of the architecture. The hypothesis is that the magnitude of
the attention weights correlates with how relevant the specific region of the input sequence
is, for the prediction of the output sequence. As shown in Figures 4–7, our network is
effective at predicting the activation of an appliance and the attention weights present a
peak in correspondence of the state change of that appliance.
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Figure 4. REDD dishwasher load and the heatmap of the attention weights at 3 s resolution.

Figure 5. REDD microwave load and the heatmap of the attention weights at 3 s resolution.
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Figure 6. UK-DALE fridge load and the heatmap of the attention weights at 6 s resolution.

Figure 7. UK-DALE kettle load and the heatmap of the attention weights at 6 s resolution.

In conclusion, our approach does not only predict the correct disaggregation in terms
of scale, but is also successful at deciding if the target appliance is active in the aggregate
load at a given time step.

5. Conclusions

This paper proposes LDwA, a new deep neural network architecture for the NILM
problem that features a tailored attention mechanism with the encoder–decoder framework
to extract appliance specific power usage from the aggregated signal. The integration of
convolutional layers and recurrent layers in the regression subnetwork facilitates feature
extraction and allows to build better appliance models where the locations of relevant
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features are successfully identified by the attention mechanism. The use of the proposed
model for the regression subtask increases the network’s ability to extract and exploit
information dramatically. The proposed system is tested on two real-world datasets with
different granularity, REDD and UK-DALE. The experimental results demonstrate that the
proposed model significantly improves accuracy and generalization capability for load
recognition of all the appliances for both datasets compared to the deep learning state-of-
the-art.
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