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Abstract—This article aims to investigate how circuit-based hy-
brid quantum convolutional neural networks (QCNNs) can be
successfully employed as image classifiers in the context of remote
sensing. The hybrid QCNNs enrich the classical architecture of
convolutional neural networks by introducing a quantum layer
within a standard neural network. The novel QCNN proposed in
this work is applied to the land-use and land-cover classification,
chosen as an Earth observation (EO) use case, and tested on the
EuroSAT dataset used as the reference benchmark. The results of
the multiclass classification prove the effectiveness of the presented
approach by demonstrating that the QCNN performances are
higher than the classical counterparts. Moreover, investigation of
various quantum circuits shows that the ones exploiting quantum
entanglement achieve the best classification scores. This study
underlines the potentialities of applying quantum computing to
an EO case study and provides the theoretical and experimental
background for future investigations.

Index Terms—Earth observation (EO), image classification,
land-use and land-cover (LULC) classification, machine learning
(ML), quantum computing (QC), quantum machine learning
(QML), remote sensing.

I. INTRODUCTION

EARTH observation (EO) has consistently leveraged tech-
nological and computational advances helping in devel-

oping novel techniques to characterize and model the human
environment [1]–[3]. Given that many remote sensing missions
are currently operative, carrying on board multispectral, hyper-
spectral, and radar sensors, and the improved capabilities in
transmitting and saving a continuously increasing number of
images, nowadays estimated in over 150 terabytes per day [4],
the amount of data from EO applications have reached impres-
sive volumes so that they are referred to as Big Data. At the
same time, advances in computational technologies and analysis
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methodologies have also progressed to accommodate larger and
higher resolution datasets. Image classification techniques are
constantly being improved to keep up with the ever expanding
stream of Big Data, and as a consequence, artificial intelli-
gence (AI) techniques are becoming increasingly necessary
tools [5], [6].

Given the need to help expand the processing techniques to
deal with these high-resolution Big Data, EO is now looking
toward new and innovative computation technologies [7]. This
is where quantum computing (QC) will play a fundamental
role [8]. Today, there is a number of differing quantum devices,
such as programmable superconducting processors [9], quantum
annealers [10], and photonic quantum computers [11]. However,
QC still presents some technological limitations, as reported
in [12] with a special concern with noise and limited error correc-
tion. Specific algorithms, namely, the noisy intermediate-scale
quantum (NISQ) computing algorithms, have been designed to
tackle these issues [13].

Quantum computers promise to efficiently solve important
problems that are intractable on a conventional computer. For
instance, in quantum systems, due to the exponentially growing
physical dimensions, finding the eigenvalues of certain opera-
tors is one such intractable problem, which can be solved by
combining a highly reconfigurable photonic quantum processor
with a conventional computer [14], [15].

Another example is the case of the variational quantum
eigensolver (VQE) algorithm used to solve combinatorial op-
timization problems such as finding the ground state energy
of a molecule. The algorithm finds a bound to the lowest
eigenenergy of a given Hamiltonian [15]. This is, in essence,
a kind of cost function, which is defined by the expectation of
the molecular Hamiltonian of a given prepared eigenstate. The
goal of the VQE is to minimize this cost function by varying
the parameters θ used to prepare the ansatz eigenstate often
representative of a molecule. This hybrid algorithm prepares
and determines eigenenergies through quantum circuits, and
then, it varies the parameter classically. By iterating through
these classical variations and quantum calculations, a hybrid
minimization process is established [14]. This approximation of
critical minima is analogous to the gradient descent.

In QC, a qubit or quantum bit is the basic unit of quantum
information, i.e., the quantum version of the classic binary bit.
A qubit is one of the simplest quantum systems that display
the peculiarity of quantum mechanics. Indeed, it is a two-state
quantum mechanical system, e.g., an electron in two possible
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levels (spin up and spin down) or a single photon in one of the
two possible states (vertical and horizontal polarization). While
in a classical system, a bit can be in one state or the other, qubit
exists in a coherent superposition of both states simultaneously,
a property that is fundamental to quantum mechanics. Quantum
computers utilize the principles of superposition and entangle-
ment to streamline computation [16]–[18]. For every n qubits,
2n possible states can be represented. This is an exponential
improvement with respect to the classical systems, which can
only represent n states for every n bits. Moreover, quantum
systems exist in a high-dimensional space, known as a Hilbert
space, whose inherent properties lend themselves to a complex
linear optimization.

The application of quantum technology for remote sensing
has been considered for at least last 20 years. In [19], an active
imaging information transmission technology for satellite-borne
quantum remote sensing is proposed, providing solutions
and technical basis for realizing active imaging technology
relying on quantum mechanics principles. Another application
discussed in the literature is related to interferometric synthetic
aperture radars [20], [21]. In [20], Otgonbaatar and Datcu
describe a residue connection problem in the phase unwrapping
procedure as quadratic unconstrained binary optimization
problem, which is solved by using the D-Wave quantum
annealer. The same authors in [21] present a quantum annealer
application for subset feature selection and the classification of
hyperspectral images.

The research presented in this article focuses on the possibility
to use quantum computers to enhance the performances of
machine learning (ML) algorithms when applied to land-use
and land-cover (LULC) classification, chosen as an EO use case.
The results of the multiclass novel QCNN classifier prove the
effectiveness of the proposed approach, which is able to achieve
better results with standard models of comparable complexity
and on-par results with best standard models of the state of the
art.

It is worth to highlight that only very few works have ad-
dressed the application of quantum machine learning (QML)
to remote sensing in the current state of the art. For instance,
quantum computers and convolutional neural networks (CNNs)
are considered together for accelerating geospatial data process-
ing in [22], where quanvolutional layers [23] are used. These
layers contain several quanvolutional filters that transform the
input data into different output feature maps by using a number
of random quantum circuits, in an analogous way to standard
convolutional networks. Quantum-circuit-based neural network
classifiers for multispectral land-cover classification have been
introduced in preliminary proof-of-concept applications, as pre-
sented in [24], and an ensemble of support vector machines
running on the D-Wave quantum annealer has been proposed for
remote sensing image classification in [25]. In our preliminary
work [26], hybrid quantum–classical neural networks for remote
sensing applications are discussed, and a proof of concept for bi-
nary classification, using multispectral optical data, is reported.
Finally, Otgonbaatar and Datcu [27] proposed a binary classifier
based on a very deep convolutional network and a 17-qubit
quantum circuit.

In this article, different circuit-based hybrid quantum convo-
lutional neural networks (QCNNs) are discussed, and a remote
sensing image classification use case is considered, exceeding
the simple binary classification presented in [26] and the more
complex presented in [27]. Namely, hybrid networks based both
on classical and QC will be used, and a comparison of provided
performances will be made, when dealing with different quan-
tum circuits applied to classification of remote sensing images.

The main contributions of this work are as follows.
1) QC is applied to land-cover classification on the reference

benchmark EuroSAT dataset [28] for optical multispectral
images, thus by going further than initial proofs of concept
on a few images [24], [25].

2) QCNN multiclass classification is tackled with respect to
the simple binary classification already discussed in [26],
and better results are obtained through the quantum-based
networks with respect to their fully classical counterpart.

3) A comparative and critical analysis is carried out to ana-
lyze the performances of different gate-based circuits for
hybrid QCNN, showing the advantages of the architecture
with entanglement.

4) A structured prediction setting, with coarse-to-fine clas-
sification, has been implemented to further challenge the
capacities brought by entanglement.

Moreover, it is worth to highlight that each model we pro-
posed has been implemented and designed from scratch. This
process also involves the adaptation of the classical and quantum
networks to fit the requirements imposed by the used dataset.

It is also worth to mention that this article can represent
a useful tool for ML and remote sensing scientists looking
at the way quantum circuits and their parameters work when
applied to practical EO problems, since it describes the necessary
mathematical and physical elements for the understanding of the
quantum approach.

The rest of this article is organized as follows. In Section II, an
overview of LULC classification in the field of remote sensing
is given by highlighting the main issues and difficulties in
LULC tasks for remote sensing interpretation. In Section III,
the applications of ML in the domain of QC are introduced, and
in Section IV, the mathematical and physical background to QC
is provided. The proposed methodology and the hybrid QCNNs
are presented in Section V, while the results are reported in
Section VI. Finally, Section VII concludes this article.

II. LULC CLASSIFICATION OVERVIEW

LULC classification using remote sensing imagery has been
playing an important role in sustaining, monitoring, and plan-
ning the usage of natural resources since years. LULC classifica-
tion has reached a crucial scope in the management of land use,
agricultural sector, forest areas, and biological resources [29],
and it has a direct impact on atmosphere, soil erosion, and water,
while it is indirectly connected to global environmental prob-
lems [30], by helping in delivering up-to-date and large-scale
information on surface conditions.

A general overview of supervised object-based land-cover
image classification techniques is reported in [31], whereas
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a more comprehensive and recent review of challenges and
state-of-the-art techniques for LULC classification is provided
by Talukdar et al. [32].

For years, classical techniques mainly based on pixel or object
analysis in terms of reflectance or local texture have been used
for LULC classification [33], [34]. Yet, they have shown several
issues since they are extremely affected by the data acquisition
issues (such as cloud cover and regional fog, adaptation to new
sensors) and environmental changes, which make it difficult to
design a generic classifier suitable for every object or land class
everywhere in the world.

Several new methodologies have been developed by the
researchers to address those issues by building on more ro-
bust statistical models and, in particular, the well-known deep
learning (DL). Two trends have emerged: object-based image
analysis (OBIA) or patchwise classification, and dense pixelwise
classification.

Generally, patchwise approaches focus on local neighbor-
hoods, which correspond to semantically meaningful objects to
build the classifiers. The task to achieve is to give a label to a
patch, which corresponds to a small region of a complete aerial
or satellite image, as in the popular EuroSAT [35] or BigEarth-
Net [36] benchmarks. Dedicated OBIA methods can then be
applied, which look for relevant objet borders for example, as
the DOTA baseline, which is based on a region-based CNN [37].

On the contrary, pixelwise approaches follow the historical
remote sensing way of modeling local appearance statistics. In
the last decade, the use of fully convolutional networks (FCNs)
have proved to be extremely efficient by relying on very large
models able to capture the diversity of possible inputs, and,
thus, for a large variety of LULC classes: CNNs and random
fields [38], multimodal multiscale FCNs [39], and ensemble of
CNNs [40].

Finally, among the new techniques adopted to deal with
LULC problems, we must include strategies based on capsule
networks [41], recurrent networks [42], and graph convolu-
tional networks [43], which have been applied to hyperspectral
imagery for instance, and transformers, which has been more
recently applied to both patchwise and pixelwise classifica-
tion [44], [45]. Building on this set of powerful tools, new
challenges can now be addressed, which include explainable
and interpretable classification [46], weakly supervised classi-
fication [47], self-supervised classification, or semisupervised
classification [48].

After DL, which has proved to be a relevant tool for improving
pre-existing classical models, the beginning of the era of QC has
brought new ideas to solve the LULC classification problems, as
new opportunities (the amount of data available), but also new
issues (large-scale processing, variety of sensors, and very high
resolution) have appeared.

III. QUANTUM MACHINE LEARNING

As already underlined before, the research presented in this
article focuses on the possibility to demonstrate how the use of
quantum computers can help in enhancing the performance of
ML algorithms when applied to LULC classification.

In this section, a brief review of the recent results and research
open questions concerning QML is first reported. The benefits
of QC for ML applications are explained, by highlighting the
general advantages of QML and by also presenting some ap-
plications. Finally, the open challenges of these approaches and
existing systems are discussed.

A. Need for QC

Given the premises of the Introduction section concerning the
disruptive potentialities of QC, and the issues discussed in the
previous section on the difficulties in LULC tasks for remote
sensing interpretation, QML has quickly become a topic of
interest for the information science [49]–[52] since the 1990s. As
already anticipated, with the continuously increasing volume of
data requiring classification-related processing tasks, computers
have had to adapt themselves to process these larger and more
complex sets of information. This is why quantum solutions
are gaining attention and being explored. Moreover, for ML
applications, quantum computers may provide an added benefit
since they can avoid getting stuck at relative minima in gradient
descent, by quantum tunneling through “hills” [53]. Practically,
quantum computers are likely to reach a better solution than
classical computers. Moreover, QC provides many other benefits
for ML, such as fast linear algebra, quantum sampling, quan-
tum optimization, and quantum artificial neural networks [54].
Despite the still unsolved limitations, quantum resources are
expected to provide advantages for learning problems.

B. Advantages of QML

As briefly mentioned at the end of the previous subsection,
there are several advantages in using the QC applied to ML,
and some examples are found in the literature. In [55], for
instance, Cong et al. introduce and analyze the QCNN as an
ML-inspired quantum circuit model and demonstrate its ability
to solve important classes of intrinsically quantum many-body
problems. They consider two classes of problems, where QC
offers some advantages: 1) the quantum phase recognition,
which asks whether a given input quantum state belongs to a
particular quantum phase of matter, and 2) the quantum error
correction (QEC) optimization, where an optimal QEC code is
chased, for a given, a priori unknown, error model, such as
dephasing or potentially correlated depolarization in realistic
experimental settings.

Currently, different quantum algorithms that could act as
building blocks of ML programs have been developed, some-
times related to hardware and software challenges that are not
yet completely solved [50]. Given that ML and AI can play
fundamental roles in the quantum domain [52], the main benefits
of QML, as already summarized in [56], are the following: 1)
improvements in runtime; 2) learning capacity improvements;
and 3) learning efficiency improvements.

However, there is not a shared consensus on how and when
QML can be advantageous with respect to its classical coun-
terpart on general classes of problems. For instance, in [57], it
is shown how the quality and the amount of data can sensibly
affect the performance of classical and QML models in such a
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way that the quantum advantage is not always guaranteed. With
this regard, this article adds an important element of discussion
with respect to the state of the art, by demonstrating how QML
could help when dealing with real remote sensing images for a
classification problem where multiple classes are used.

C. QML Applications

Currently, there are several general methods for implementing
quantum circuits into ML models, as it can be found in the liter-
ature. For instance, in [58], image classification is performed via
a QML, while in [59], a quantum support vector machine is used
for Big Data classification. In [23], quanvolutional neural net-
works are employed to carry out image recognition, and instead,
variational quantum circuits for inductive Grover oracularization
are presented in [60]. Lithology interpretation from well logs
is discussed in [61], and a quantum variational autoencoder is
presented in [62]. Quantum neural networks (QNNs) are often
presented as hybrid algorithms that leverage quantum nodes
throughout the networks [63]–[65]. QNNs develop a network
of both quantum and classical nodes with some given activation
functions, convolutional connections, and weighted edges. Here,
the quantum nodes can be represented by single qubits or clusters
of qubits. QNNs can also present a more complexly integrated
circuit with entanglement, where correlations between quantum
nodes can be exploited to speed up computation.

D. QML Challenges

Trying to create complex quantum networks, which link
together layers of quantum nodes, still represents a research
challenge. Despite the many possible theoretical applications of
quantum computers, there is still significant progress that must
be made toward more reliable computation. The QC industry
currently finds itself in the NISQ era, where there is a limit to
the number of operations that can be performed on a quantum
computer before the stored information becomes useless [13].
Currently, these limitations contribute to the difficulties in scal-
ing up quantum computers. However, all the work in progress
is not useless since as soon as scaling quantum computers
become viable, they will be able to represent exponentially more
information than the classical ones. Fortunately, recent events
show promising evidence for moving ahead and away from the
NISQ era. In particular, by using QCNN models, researchers
have been able to create an optimal QEC scheme for a given
error mode [55], and moreover, many QC companies are also
projecting similar timelines for developing their architecture.
Some companies are planning to release error-corrected and
fault-tolerant commercial quantum computers by 2025 [66],
[67].

IV. MATHEMATICAL BACKGROUND ON QC

In this section, the basic notions of QC are introduced. Further
information can be retrieved in [17] and [18].

Qubits are the fundamental units of information held in quan-
tum computers. A physical qubit exists in a superposition of two
states, |0〉 and |1〉, as shown in Fig. 1 referring to a hydrogen

Fig. 1. Qubit modeling as hydrogen atom, with electron ground state |0〉 and
first exited state |1〉.

atom with ground and excited states. The state |ψ〉 of the qubit
describes the probability distribution of the state and is expressed
as

|ψ〉 = α|0〉+ β|1〉. (1)

Quantum measurement is an irreversible operation, in which
information is gained about the state of a single qubit, and
superposition is lost. Mathematically speaking, in (1), |ψ〉 can
be viewed as a vector in a Hilbert Space (i.e., a vector space
equipped with an inner product operation), where

|0〉 =
(
1

0

)
, |1〉 =

(
0

1

)
(2)

α, β ∈ C represent the probability of measuring the states |0〉
and |1〉, respectively, with the constraint |α2|+ |β2| = 1. For the

state |ψ〉 =
√

1
3 |0〉+

√
2
3 |1〉, the probabilities of measuring |0〉

and |1〉 are 1
3 and 2

3 , respectively. Moreover, the measurement
process does irreversibly modify the qubit, so that after the
measurement, the qubit can be |ψ〉 = |0〉 with probability α2

and |ψ〉 = |1〉 with probability β2.
When considering a system of two qubits with states α0|0〉+

α1|1〉 and β0|0〉+ β1|1〉, the state evaluated by means of the
tensor product is the superposition given by

|ψ〉 = α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉 (3)

where αi, βj ∈ C and
∑
αiβj = 1. The state |00〉, for instance,

is given as |0〉 ⊗ |0〉, where ⊗ is the tensor product. It turns out
that, in general, you cannot factorize the state in (3) in terms of
the original qubits. This phenomenon, known as entanglement,
has an important consequence in the measurement process.
Indeed, considering the Bell state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉 (4)

if the measurement of the first qubit returns the state |0〉 (with
probability 0.5), then the entangled state collapses to |00〉. At
this point, the second qubit is completely known as it is in the
state |0〉 as well. This result is true even when the two qubits
are separated by a very large (theoretically infinite) distance,
leading to the violation of the locality principle of classical
mechanics. By using the Schmidt decomposition theorem, it can
be shown that a quantum system can have different degrees of en-
tanglement [68]. By exploiting superposition and entanglement,
quantum computers can perform operations that are difficult to
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Fig. 2. Bloch sphere representing the probabilistic space in which the quantum
state can exist. Gate operations rotate |ψ〉 about the Bloch sphere, changing the
phase and the probability amplitudes of the qubit.

emulate on a large scale with classical computers, cutting down
computational time and power to process information.

The qubit state in (1) can be expressed as a function of two
angles ϑ and ϕ, i.e.,

|ψ〉 = cos
ϑ

2
|0〉+ eiϕ sin

ϑ

2
|1〉 (5)

and represented as a point sitting on the surface of a unitary 3-D
sphere, named the Bloch sphere, as shown in Fig. 2. With this
notation, ϑ describes the probability of the qubit to result in |0〉
or |1〉 and the angle ϕ describes the phase the qubit is in.

Quantum gates, denoted by U in the following, are basic
quantum circuits operating on a small number of qubits. They
are the building blocks of quantum circuits, such as classical
logic gates are for conventional digital circuits. Quantum gates
are unitary operators, i.e.,U †U = UU † = I , where the symbol †
denotes the conjugate transpose, and U is described as a unitary
matrix relative to some basis. Important properties are that 1)
U preserves the inner product of the Hilbert space and 2) qubit
gate operations can also be visualized as rotations of the quantum
state vector in the Bloch sphere.

The standard quantum gates used in this article are introduced
hereafter.

1) Hadamard gate, a single qubit gate described by the matrix

H =
1√
2

(
1 1

1 −1

)
. (6)

Starting from the single state qubit |0〉, the Hadamard gate
return the superposition of two states, namely the so-called
plus state |+〉, i.e.,

H|0〉 = 1√
2

(
1 1

1 −1

)(
1

0

)
=

1√
2

(
1

1

)

=
1√
2

(
1

0

)
+

1√
2

(
0

1

)

=
1√
2
|0〉+ 1√

2
|1〉 = |+〉. (7)

2) Rotation gates, Rx(θ), Ry(θ), Rz(θ), i.e., single-qubit
gates described by rotation matrices about the x̂, ŷ, and
ẑ axes of the Bloch sphere, respectively. The gate Ry(θ),

Fig. 3. CNOT gate with two input qubits and measurement output.

Fig. 4. Quantum circuit to create Bell state.

which will be used in the following, takes the form

Ry(θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
. (8)

3) CNOT gate, which is a two-qubit gate described by the
matrix

U =

⎛
⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ (9)

and represented in Fig. 3. When the input are basis states
|0〉 and |1〉, the CNOT gate transforms the state

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉
into

α00|00〉+ α01|01〉+ α10|11〉+ α11|10〉
i.e., it flips the second qubit (the target qubit) if and only
if the first qubit (the control qubit) is |1〉.

The combination of Hadamard and CNOT gates is used to cre-
ate an entangled Bell state, as defined in (4). The corresponding
circuit shown in Fig. 4 is the basic building block of the quantum
circuits investigated in this article, as it introduces entanglement
in the circuit by enhancing the computation performances.

V. METHODOLOGY

In this section, a selected number of quantum circuits, in-
vestigated as potential quantum layers in the proposed hybrid
network, are described. First, the integration of the quantum
part into the classical architecture is discussed, by presenting
the “Data Embedding” operation and showing an example of
interface between classical and quantum layers. At the end
of the section, the hybrid QCNN is presented, and the model
optimization and inference are discussed. Although the quantum
circuits presented in the following are standardly used in QC
for data processing and they are fundamental units of IBM
Qiskit [69], [70], it is worth to highlight that all codes have been
realized from scratch by the authors and released open access in
a public repository [71].
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A. Data Embedding

To create a hybrid QNN, a parameterized quantum circuit is
typically used as a hidden layer for the neural network. Yet,
with respect to classical network architectures, right in order to
integrate the quantum part into the classical architecture, it is
critical to realize a higher dimensional quantum representation
of classical data in the creation of the hybrid model. In this
section, a brief description on how to prepare a quantum state at
this end is given.

A feature mapping is first run through a unitary operator
applied to a set ofN |0〉 quantum nodes as a method of encoding
the classical information in the new N -qubit space. A unitary
matrix, needed to encode the information, must be classically
derived before applying it to the quantum circuit. Its parameters
are determined by the values of the preceding classical nodes at
the point of insertion. This operation is referred to as data em-
bedding, where the preceding classical activation is represented
through the related amplitude probability of measuring |1〉 in
the quantum state.

Different gate operations can be used to encode a quantum
representation of classical information. For instance, Abbas
et al. [51] show how that can be done by first applying a
Hadamard gate to put the qubits in a superposition state and
then by applying RZ-gate rotations to the qubits, with angles
equivalent to the feature values of preceding inputs. Alternate
gate operations can be used to encode a quantum representation
of classical information. Yet, the interpretation of the prepared
state must be self-consistent, which means to consider the encod-
ing system valid as long as the input operations and the output
measurement accurately represent the classical information.

Proceeding the classical encoding, the parameterized quan-
tum circuit is then applied. A parameterized quantum circuit
is a quantum circuit, where the rotation angles for each gate
are specified by the components of a classical input vector.
The outputs from the neural network’s previous layer will be
collected and used as the inputs for the parameterized circuit.
The measurement statistics of the quantum circuit can then be
collected and used as inputs for the following hidden layer. As a
demonstrative example in Fig. 5, the interface between classical
and quantum layers is sketched.

B. Selected Quantum Circuits for Image Classification

Three types of circuits, selected among the possible quantum
circuits and to be used in the proposed hybrid QCNN, are
presented. Their structure reflects the adopted implementation
with four qubits, which represents a more complex architecture
with respect to simpler ones where fewer qubits are used [26].
Far from being an exhaustive comparison of all possible quantum
configurations, the description of the adopted circuits will allow
us to get an insight on how their gates can influence the final
results and help speed up certain computational processes. To
better understand how the entangled qubits, introduced in Sec-
tion IV, can affect the classification performance, it is necessary
to clarify that the first circuit has no entanglement, whereas en-
tanglement is introduced in the remaining ones through different
gate connections.

Fig. 5. Interface between classical and quantum layers.

Fig. 6. No entanglement circuit.

1) No Entanglement Circuit: In the simple QCNN presented
in [26], there is no entanglement, and classical nodes are merely
replaced by a parameter’s quantum node [63]. As seen in Fig. 6,
the qubits are first placed in superposition through the applica-
tion of a Hadamard gate.

Next, the quantum nodes undergoRy gate rotations about the
parameters θ. This whole process is ultimately representative
of quantum node activation, which simply encodes the sum of
the weighted activations from preceding classical nodes that are
mapped into the quantum nodes. If only one qubit is considered,
the effect of the Hadamard and rotation gates on the qubit |0〉 is
summarized as

Ry(θ)H|0〉 = 1√
2

(
cos( θ2 ) − sin( θ2 )

sin( θ2 ) cos( θ2 )

)(
1 1

1 −1

)(
1

0

)

Eq. (7)
=

1√
2

(
cos( θ2 ) − sin( θ2 )

sin( θ2 ) cos( θ2 )

)
(|0〉+ |1〉)

=
cos( θ2 ) + sin( θ2 )√

2
|0〉+ cos( θ2 )− sin( θ2 )√

2
|1〉.

(10)
The overall gate composed of four Hadamard and four ro-

tation gates can be built by using the matrix multiplication for
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TABLE I
F1 SCORE + ACCURACY

Fig. 7. Bellman circuit.

successive gates and the tensor product for parallel gates; hence,
the final unitary transformation U is

U ∗ =
i=3⊗
i=0

(Ry(θi) ·H) . (11)

The entire circuit returns the state

|ψ〉 = U ∗(|ψ0〉 ⊗ |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉) (12)

which, when considering |0〉 as inputs, is

|ψ〉 = U ∗|0000〉. (13)

2) Bellman Circuit: The Bellman Circuit shown in Fig. 7
leverages a basic system of entanglement to encode classical
information into a quantum space. Here, the speedup may lie in
the fact that the quantum states are prepared first through entan-
glement (by means of the Hadamard and CNOT gates) leading to
correlational associations. Following the entanglement process,
the parameterization using angular rotations predefined by clas-
sical information once more translates the classical information
as a quantum activation.

The qubits are first entangled through the application of a
Hadamard gate and then sequential CNOT gates. Following this,
the qubits are rotated about the y-axis using parameters θ. This
is the basis of the activation process. Then, the CNOT application
process is reversed, but the superposition is never removed. The
benefit of this process seems to lie in the variation of the encoding
and rotation process, as it is now not just a projection of the
classical information into a quantum space, but rather a transfor-
mation of this information that exploits quantum feature space.

Considering the four inputs as |0〉, before entering into the
rotation gates, the state of the four qubits is given as

|ψ〉 = 1√
2
|0000〉+ 1√

2
|1111〉. (14)

Fig. 8. Real Amplitudes Circuit.

The four rotation gates applied to the entangled state corre-
spond to the application of the gate

R⊗4
y (θ0, θ1, θ2, θ3) =

i=3⊗
i=0

Ry(θi) (15)

corresponding to a 16 × 16 matrix. Finally, the rotated entangled
state passes through three more CNOT gates, and then, it is
measured. Supposing that the four rotations are identities (i.e.,
θi = 0, i = 1, . . . , 4), the effect of the three CNOT gates is

1√
2
|0000〉+ 1√

2
|1111〉 1st CNOT−−−−−→ 1√

2
|0000〉+ 1√

2
|1110〉

1√
2
|0000〉+ 1√

2
|1110〉 2nd CNOT−−−−−−→ 1√

2
|0000〉+ 1√

2
|1100〉

1√
2
|0000〉+ 1√

2
|1100〉 3rd CNOT−−−−−→ 1√

2
|0000〉+ 1√

2
|1000〉.

3) Real Amplitudes Circuit: As shown in Fig. 8, breaking
down the circuit, each qubit passes through a Hadamard gate
and then undergoes a gate rotation with parameters θ (this value
is derived from the result of the preceding classical node). This
is the process by which the classical information is turned
into quantum information. Then, the qubits are all mutually
entangled using CNOT gates. For instance, considering identity
rotations, i.e., Ry(θi) = I, i = 0, . . . , 3, the state before the
CNOT gates is

|Ψ1〉 =
(

i=3⊗
i=0

H

)
|0000〉 =

i=3⊗
i=0

(H|0〉)

=

(
1√
2

)4 i=3⊗
i=0

(|0〉+ |1〉)

= 0.25(|0000〉+ |0010〉+ |0011〉+ |0001〉
+ |0100〉+ |0110〉+ |0111〉+ |0101〉
+ |1000〉+ |1010〉+ |1011〉+ |1001〉
+ |1100〉+ |1110〉+ |1101〉+ |1111〉).

1QNN graphics made with PlotNeuralNet [76].
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TABLE II
PRECISION

TABLE III
RECALL

TABLE IV
COARSE CLASSIFICATION REPORT

TABLE V
VEGETATION FINE-GRAIN CLASSIFICATION REPORT

After the CNOT gates, one can easily verify that this example
state is unchanged, i.e., |Ψ1〉 = |Ψ2〉 (but in the general case
it varies). Finally, the quantum parameters θi, i = 4, . . . , 7, are
implemented by means of the final four rotations. By using (15),
the final state is

|Ψ3〉 = R⊗4
y |Ψ2〉.

During the validation and testing process, the second θ pa-
rameters are used as the “quantum weights” mapping to the
following classically fully connected layer of the nodes.

C. Hybrid QNN Classifier

Differently from fully quantum AI models, the proposed
QCNN classifier is based on recent hybrid QML models, and
it consists of the combination of classical ML and quantum
layers [53], [72]. This kind of paradigm [73], [74], mostly used in

the computer vision domain, in this article has been transferred
and adapted to the remote sensing domain. Moreover, it is worth
highlighting that the hybrid solutions are the preferred ones in
the current stage of QML, mostly due to technology bottlenecks
and limitations [26], [27].

Fig. 9 shows the QCNN structure, where the classical part
consists of a CNN derived from the LeNet-5 [75], in which both
the number of convolutional layers and the input dimension were
changed to fit the input image size. Moreover, with respect to the
original LeNet-5 design, the proposed model contains only two
fully connected layers, stacked before and after the quantum
layer. These two layers are used, respectively, for adapting
the input size, needed by the quantum layer, and the quantum
layer output size to match the number of classes imposed by
the chosen dataset. In other words, the purpose of these two
classical neural layers is to ensure data embedding from the
image space to the quantum capacity and to make possible
the coexistence of classical and quantum layers in the hybrid
structure.

Regarding the quantum part, the quantum layer (blue box
labeled as Quantum Circuit in Fig. 9) aims to benefit of the prop-
erties of probabilistic QC. This quantum layer is implemented
with one of the circuits described in Section V. In the course of
this study, several quantum circuits were tested and analyzed to
investigate their potential.

For comparison purposes, two versions of the classical coun-
terpart of the proposed QCNN classifier have been implemented
and tested. For the classical CNN classifier 1, the quantum
circuit has been replaced with a fully connected layer of 16
nodes, based on the quantum circuit output size. For the classical
CNN classifier 2, the quantum circuit has been replaced with a
multilayer perceptron with fully connected layers of 10, 32, 64,
and 256 nodes.

The experimental dataset under consideration is the
“EuroSAT: Land Use and Land Cover Classification with
Sentinel-2,” a dataset of Sentinel-2 satellite images covering 13
spectral bands and consisting out of ten classes with in total
27000 labeled and georeferenced images [35]. The dataset has



SEBASTIANELLI et al.: CIRCUIT-BASED HYBRID QNNS FOR REMOTE SENSING IMAGERY CLASSIFICATION 573

Fig. 9. Proposed hybrid QNN classifier.1 The network is a modified version of LeNet-5, where the blue box indicates the quantum circuit layer.

been divided in training and validation sets with a 80-20 factor.
Sample images of the dataset are shown in Fig. 10.

In the following sections, several experiments have been
carried out, such as: 1) experiments on three different quantum
circuits; 2) experiments on two classical DL models for compar-
ison with the quantum counterpart; 3) experiments on a coarse
quantum classifier and three fine-grain quantum classifiers; and
4) an additional experiment, involving the fine-grain classifier,
to create a segmentation map.

As highlighted at the beginning of this section, it is fair to
remark that all the proposed models were implemented and
designed from scratch. This process also involved the adaptation
of the classical and quantum networks to fit the requirements
imposed by the dataset used for the experimental analysis. No
pretrained weights were used, and the selection of hyperparame-
ters and the loss settings were selected according to the problem
requirements.

D. Training and Testing

As stated before, both the training and testing procedures,
when possible, have been conducted under the same hypothesis
and by using the same settings. All the qubits in Figs. 6–8 are
set equal to the state |0〉.

The models were trained on the Google Colaboratory plat-
form, where each user can count on: 1) a GPU Tesla K80, having
2496 CUDA cores, compute 3.7, 12-G GDDR5 VRAM; 2) a
CPU single-core hyper threaded, i.e., (one core, two threads)
Xeon Processors @2.3 GHz (No Turbo Boost); 3) 45-MB Cache;
4) 12.6 GB of available RAM; and 5) 320 GB of available disk.

Each QCNN classifier, regardless of the circuit it used, has
been trained for 50 epochs, using the Adam optimizer, with a

learning rate of 0.0002, and the cross-entropy as loss function.
The two classical CNNs have been trained in the same way, but
they took ∼ 100 epochs to converge.

The training procedure is summarized in Algorithm 1, where
the fundamental steps of this process have been reported. The
training phase, as happens for any ML model whose training is
based on backpropagation algorithms, can be divided into two
streams: feedforward and backward. In the first stream, input
data pass through both the CNN and the Quantum Circuit, then
the overall output is compared with the ground truth, to calculate
the error, and through the backward stream, all the model’s
weights are updated according to the error and its gradient.
The testing of the models has been conducted on the validation
dataset, according to the procedure summarized in Algorithm 2
for the sake of reproducibility.

VI. RESULTS

A. EuroSAT Dataset Classification

In this section, the results of all the proposed models are
presented in the form of confusion matrices and tables with
classification reports, showing accuracy, precision, recall, and
F1 score, as defined by

Accuracy =
TP + TN

TP + FP + FN + TN
(16a)

Precision =
TP

TP + FP
(16b)

Recall =
TP

TP + FN
(16c)
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Fig. 10. Sample of the EuroSAT dataset, four images for each class.

F1 Score = 2
Recall · Precision
Recall + Precision

. (16d)

In (16), TP, TN, FP, and FN are the number of true positive
cases, true negative cases, false positive cases, and false negative
cases, respectively.

In Table I, the F1 scores are reported for each class, together
with the overall accuracy, computed on the three proposed
quantum classifier and on the two classical counterparts, while
in Tables II and III, the precision and recall are reported for each
class and for each model mentioned above.

The main evident difference among the quantum-based mod-
els is the higher performance when circuits with entanglement
are used, thanks to their increased computational capabilities.
Both entangled circuits also performed better than the two
classical counterparts. Among circuits with entanglement, the
Real Amplitudes Circuit reaches the best overall accuracy of
92%, a +10% gain over the second best approach. Delving
into details, it has to be underlined that the model using the
no entanglement circuit fails to recover the Highway class, one
of the classes on which all the classifiers analyzed have found
greater difficulties. This result highlights that the choice of the
quantum circuit is not only linked to the type of application, but
also to the complexity of the data being used. In fact, this circuit
has been successfully applied for digit image classification [70],
but its effectiveness is poor on more complex remote sensing
images.

In Fig. 11, the confusion matrices for each model are shown.
The Real-Amplitudes-Circuit-based QCNN shows the best con-
fusion matrix, with nearly perfect scores on the diagonal. It is
able to surpass the performances of all the other quantum-based
models and those of the classic models, which all come up
against difficulties for specific classes.

B. Coarse-to-Fine Structured Land-Cover Classification

Classification results shown in Section VI-A and especially
Table I demonstrate the ability of our hybrid classical–quantum
network to perform multiclass EO classification. Even if some-
state-of-the-art classical networks achieve better performance
(as in [35]), it is worth highlighting that the proposed quantum
models are extremely less complex and with very few parame-
ters, as shown in Table IX. Moreover, to further challenge the
capacities of our hybrid approach of learning with a limited num-
ber of parameters, we propose a structured prediction setting,
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Fig. 11. (a) Confusion matrix for no entanglement circuit. (b) Confusion matrix for Bellman circuit. (c) Confusion matrix for Real Amplitudes Circuit.
(d) Confusion matrix for Classical v1. (e) Confusion matrix for Classical v2.

TABLE VI
URBAN FINE-GRAIN CLASSIFICATION REPORT

TABLE VII
WATER BODIES FINE-GRAIN CLASSIFICATION REPORT

with coarse-to-fine classification, which shows on-par results
with the best standard approaches.

Three difficult subsets for images of visually similar classes
were created. Then, these clusters have been used to train three
hybrid QCNNs with the Real Amplitudes Circuit, namely, the
fine-grain classifiers. In this way, the four-qubit and the en-
tanglement have been applied within the selected macroclasses
and their inherent complexity used to encode details finer than
in the overall setup. The proposed clusters are: 1) Vegetation:

TABLE VIII
COARSE-TO-FINE LAND-COVER QUANTUM CLASSIFIER REPORT

Annual Crop, Permanent Crop, Pasture, Forest, and Herbaceous
Vegetation; 2) Urban: Highway, Industrial, and Residential; and
3) Water Bodies: River and Sea Lake.

The overall structure of the coarse-to-fine land-cover classifier
is shown in Fig. 12. A first coarse classifier, based also on the
Real Amplitudes Circuit, is trained and applied to divide the
data into three macroclasses. Then, based on the coarse classi-
fier output, the corresponding fine-grain classifier is applied to
obtain the final classification.

In Table IV, the performances of the coarse classifier only are
reported. The proposed model reached an overall accuracy of
98% and an overall F1 score of 98%.
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TABLE IX
COMPARISONS WITH STATE-OF-THE-ART AND CLASSICAL METHODS

The table shows the model used, the overall accuracy, and the number of layers to give
an estimate of the complexity. All approaches in the second part of the table are our
implementations, described in this article. Other comparisons with classical models can
be found in [78].

Fig. 12. Coarse-to-fine land-cover classification scheme.

In Table V (respectively, Tables VI and VII), the performances
of the fine-grain classifier for the vegetation (respectively, Urban
and Water) classes are reported. The proposed models reached
overall accuracies of 94–99% and overall F1 scores of 94–99%.
This is consistently better if compared with the results for
each individual class obtained with the standard classifier (see
Table I), meaning that with constant complexity on a slightly
reduced dataset, the hybrid QCNN can learn finer details to
distinguish similar images.

In Table VIII, the performances of the overall coarse-to-
fine-grain classifier are reported. The proposed model reached
an overall accuracy of 97% and an overall F1 score of 97%,
improving over the standard classifier by +3% and reaching
performances on par with Helber et al. [35], where the authors
reached a 98.57% of overall accuracy, by using a model based
on the ResNet-50. It is worth to highlight that the architecture
proposed in this article is extremely less complex than the one
proposed in [35], since the ResNet-50 is composed of 50 layers,
while the proposed one is composed of six layers only: five
classical and one quantum. This is an asset for computations in
environments with frugal resources. The comparisons are better
highlighted in Table IX, where the overall accuracy of classical
and quantum models, the size of each model in terms of layers,
and the complexity of each model in terms of the number of
parameters are reported. Table IX is organized in two branches:
the first one containing the results of the state-of-the-art models,
while the second one contains the results for both the classical
and quantum models proposed in this work.

Finally, graphical results for the Real Amplitudes Quantum
Classifier and for the coarse-to-fine land-cover classifier are
reported in Tables X and XI, respectively. These tables are
structured in order to show correctly and wrongly predicted
classes with the idea of underlying the increase of performances
introduce with the coarse-to-fine structured land-cover classifi-
cation.

C. Semantic Segmentation by Patchwise Classification

To further demonstrate the efficiency of the proposed ap-
proach, the trained fine-grain quantum classifier has eventually
been applied to unseen Sentinel 2 images from the Onera Satel-
lite Change Detection Dataset (OSCD) [79]. In order to run the
classifier on these large images, we used a sliding window of 64
× 64 pixels to match the size of the EuroSAT data, with a step of
32 pixels, leading to a patchwise classification map or semantic
map, reproducing the experiment of [80] for comparison to
state-of-the-art DL approaches.

Fig. 13 reports the results on one location from OSCD, the
city of Beirut. The maps produced by the quantum classifier
have been compared with the Wide-ResNet and JEM models
presented in [80]. Results are satisfying: the classifier is able to
accurately distinguish the urban, vegetation, and water bodies
zones along the input image. Moreover, maps are comparable
with other state-of-the-art solutions, with even a slight advan-
tage on retrieving residential areas in the very urban area of
Beirut.

VII. CONCLUSION

This article investigates the circuit-based hybrid QCNNs for
remote sensing image classification. Unlike traditional CNN
architectures, the chosen QCNN updates the standard neural
network with a quantum layer. The proposed method is applied
to the LULC classification tasks, and through a comparative
and critical analysis, the performance of different gate-based
circuits has been evaluated, and the hybrid QCNN has proven to
be effective in terms of multiclass identification and computing
efficiency.

Experiments, run on the reference benchmark EuroSAT
dataset, have shown that the proposed QCNN worked success-
fully for the multiclass classification of EO scenes. First, we
demonstrated that the architecture with entanglement led to
better results by a significant margin with respect to the others.
Second, the quantum layer has allowed to reach better results
than its classical counterpart. Moreover, all the code and exper-
iments presented in this article have been collected and made
available open access in the GitHub page [71]. This material,
along with the background on QC given in this article, will
hopefully be a useful tool to help the Geo-science and Remote
Sensing community tackling EO problems with this cutting-edge
technology.

Regarding the classical component, which is required for
data embedding given the current capacity of NISQ devices,
straightforward future work will consist in exploring more pow-
erful networks for data encoding (e.g., compressing the image
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TABLE X
EXAMPLE RESULTS OF THE REAL AMPLITUDES QUANTUM CLASSIFIER

TABLE XI
EXAMPLE RESULTS OF THE COARSE-TO-FINE QUANTUM CLASSIFIER

Fig. 13. LULC semantic maps on never-seen OSCD city Beirut compared with the Wide-ResNet and JEM models tested in [80]. (a) Input Image. (b) Coarse-to-fine
quantum classifier. (c) Wide-ResNet. (d) JEM.
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information in such a way that it may be encoded on the quantum
layer). Regarding the quantum component, future work will aim
at increasing the proportion of quantum processing in the hybrid
approach. Indeed, more complex quantum circuits are expected
to enhance the learning power of the model. In particular,
quantum convolutions could be examined to incorporate spatial
information and invariance in the processing.

More fundamentally, the understanding of the probabilistic
mechanisms at work in the quantum layers will represent the
key to design better models, develop deep quantum learning,
and eventually implement it to many real-life applications.
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