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Abstract: The exploration of planetary surfaces with unmanned wheeled vehicles will require
sophisticated software for guidance, navigation and control. Future missions will be designed to
study harsh environments that are characterized by rough terrains and extreme conditions. An
accurate knowledge of the trajectory of planetary rovers is fundamental to accomplish the scientific
goals of these missions. This paper presents a method to improve rover localization through the
processing of wheel odometry (WO) and inertial measurement unit (IMU) data only. By accurately
defining the dynamic model of both a rover’s wheels and the terrain, we provide a model-based
estimate of the wheel slippage to correct the WO measurements. Numerical simulations are carried
out to better understand the evolution of the rover’s trajectory across different terrain types and to
determine the benefits of the proposed WO correction method.

Keywords: planetary rover localization; wheel slippage; wheel odometry correction

1. Introduction

Robotic exploration of the surface of celestial bodies in the Solar System is a key phase
of planetary science investigations. In situ measurements are fundamental to significantly
expand our knowledge of surface formation and evolution, habitability, geology and
geophysics. Rovers on the Martian surface have led to unprecedented measurements
(e.g., [1]), studying the planet’s habitability and seeking signs of past microbial life [2,3].

To conduct science investigations across a wide region of the body’s surface, the
navigation of a rover must fulfil tight engineering constraints. Safe mobility is one of the
main requirements, and is directly related to the morphology of the explored area and
the properties of the terrain [4]. Serious risks are caused by high-slippage terrains, slopes
and hazards, which strongly affect locomotion. The NASA rover Spirit, for example, got
stuck in soft soil leading to the descoping of the mission as a stationary science platform [5].
An accurate characterization of the soil properties is then fundamental to prevent these
undesired motion failures. Onboard systems can then be designed to identify a terrain type
by using images of the environment [6]. The predicted terrain class can then be used to
predict the slippage conditions and correct nonsystematic errors of wheel odometry [7].

The reconstruction of the rover’s pose through the processing of encoder measure-
ments is also limited by systematic errors [8,9]. WO and inertial measurement unit (IMU)
data are directly used to compute a vehicle’s motion from wheel displacements. This
approach is generally based on a simplified modeling of the kinematic equations, leading
to a significant error propagation [10]. To enhance the determination of the rover’s pose
additional measurements are collected by onboard instrumentation, as, for example, navi-
gation cameras for visual odometry [11–13] and light detection and ranging (LiDAR) [14].
Images can also be used to estimate the rover’s slip by jointly measuring the pose of the
wheels’ traces and the rate of turn [15].

A correction of WO and IMU measurements is fundamental to absorb mismodeling
errors when imaging and ranging data are not available. A novel method was introduced
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by Ojeda et al. [16] to detect the wheel-slippage for WO corrections by measuring motor cur-
rent. Terramechanics and regression functions were adopted by Yamauchi et al. [17] to im-
prove the localization accuracy that is obtained using IMU-based systems. Censi et al. [18]
developed a technique based on WO and an exteroceptive sensor to simultaneously cali-
brate odometry and sensor parameters. Here, we present a method to compute the velocity
slippage correction, which is the difference between the linear speed of the vehicle and
the relative speed of the wheel measured by WO [16], with an accurate modeling of a
rover’s dynamics. To accurately determine the rover’s motion on different terrain types, we
implemented a detailed wheel–soil interaction that accounts for rover’s wheel and terrain
deformability [19–21]. Previous works were in general based on the assumption of a rigid
wheel on different terrain types [10,22,23]. This hypothesis, however, is not well-suited for
rovers equipped with flexible wheels, i.e., ESA ExoMars rover [24].

In this work, the rover was modeled by using size and mass of ESA ExoMars rover [25].
Different terrain types were included in our software, including cloddy, mixed drift-cloddy
and drift soils. Their physical properties rely on Martian soil simulants retrieved from semi-
empirical Earth-based observations [26,27]. Numerical simulations of different scenarios
are reported to test the advantages of the proposed method for WO correction.

This paper is organized as follows: Section 2 provides an insight into the modeling
of the rover navigation and defines the full set of equations of motion used to describe
its dynamics; Section 3 presents the outcomes of the numerical simulations for rover
navigation across different terrain conditions; Section 4 provides the description of the
path planning strategy adopted to simulate navigation and assesses the accuracy of the
WO correction method. Finally, Section 5 outlines the conclusions of the paper.

2. Methods
2.1. Dynamical Model and Slippage Estimation

The motion of a wheeled vehicle on unprepared ground, such as planetary surfaces,
requires an accurate modeling of the compliant wheel on compliant ground. The resistance
to motion encountered by the wheels is due to the energy dissipation in the wheels and
the ground. Figure 1a shows a scheme of a compliant wheel that moves on a compliant
ground. According to the model introduced in [19,20,28], we assumed that the deformation
in the tire, f , occurs only if the maximum pressure exerted on the ground, σz, exceeds the
pressure, pgr, needed to deform the tire. As represented in Figure 1a, this value is exceeded
at point A of the contact zone.

We assumed that, in the first part of the contact, i.e., in the interval (θ1, θ0] reported in
Figure 1a, the wheel behaves as a rigid body and the pressure is linked to the sinkage. For
θ ∈ [−θ1, θ1], we assumed a constant pressure equal to pgr, which stands for an equivalent
stiffness of flexible wheels. The normal stress, σz, is defined as follows:

σz =

{ (
kc
b + kφ

)
h(θ)n f or θ ∈ (θ1, θ0]

pgr f or θ ∈ [−θ1, θ1]
(1)

where kc and kφ are the cohesive and the frictional moduli that define the stiffness of
the soil, h(θ) is the sinkage, b is the width of the wheel and n is the exponent of terrain
deformation that is ≤ 1

2 and ≈1 for cohesive and frictional soils, respectively.
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The wheel–soil interaction results in a vertical force, Fz, a longitudinal force, Fx, a
lateral force, Fy, and an aligning moment, Mz, acting on each vehicle’s wheel (Figure 1b).
The vertical force Fz is:

Fz = Rwb
∫ θ0

θ1

[σz(θ) cos(θ) + τx(θ) sin(θ)] dθ + 2bxA pgr =
mg
nw

cos(i) (2)

where Rw is the radius of the wheel; τx is the longitudinal shear stress and xA is the x-
coordinate of point A; m is the mass of the vehicle, nw is the number of the wheels, g is the
gravitational acceleration and i is the inclination of the plane. The first contribution to Fz
in Equation (2) represents the vertical force due to the normal load, σz, directed radially
along arc AB, which depends on the sinkage, h(θ), and to the vertical projection of the
longitudinal shear stress τx, acting in the contact area delimited by (θ1, θ0]. The second
contribution to Fz is due to the constant pressure, pgr, which acts in the z direction of the
wheel reference frame {W} along line A’A. Solving the nonlinear Equation (2), one obtains
the values of θ0 and θ1.

The longitudinal force (Fx) is:

Fx = Rwb
∫ θ0

θ1

[−σz(θ) sin(θ) + τx(θ) cos(θ)]dθ + Rwb
∫ θ1

−θ1

τx(θ)dθ (3)

where the first integral term of Equation (3) is the contribution of the radial pressure σz and
the longitudinal shear stress τx acting along arc AB and projected along the x direction of
the wheel’s reference frame {W}; the second integral term is due to the action of τx along
line A’A. The expression of τx at a generic point of the contact zone is assumed to be:

τx(θ) = sgn(σ)[c + σz tan(φ)]
[

1− e−
Rw |σ|

Kx (θ0−θ)
]

(4)

and c, Kx, φ are the cohesion, the modulus of the shear deformation in the x direction
and the internal friction angle, respectively. The longitudinal slip, σ, is a measure of the
difference between the commanded speed of the vehicle, ΩRw, controlled through the
wheels’ angular speed, and its actual speed, V:

σ =

{
ΩRw−V

ΩRw
in driving

ΩRw−V
V in braking

(5)
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Lateral force is due to lateral slip, which is caused by a non-zero sideslip angle, α,
between the xz plane and the direction of the velocity of the center of the wheel. The lateral
force (Fy) is expressed as:

Fy = −Rwb
∫ θ0

−θ1

τy(θ)dθ − Rwb
∫ θ0

−θ1

Fyb[Rw − h(θ) cos(θ)]dθ (6)

the first integral term of (6) represents the effect of the lateral shear stress, τy, that acts along
the contact area delimited by [−θ1, θ0], and the second integral term yields the contribution
of the bulldozing force per unit width Fyb:

Fyb = D1

[
c h(θ) + D2

ρgh2(θ)

2

]
(7)

where ρ is the density of the soil and D1 and D2 are coefficients that depend on the friction
angle φ. The lateral shear stress is given by:

τy(θ) = sgn(α)[c + σz tan(φ)]
[

1− e
− Rw

Ky (1−|σ|)(θ0−θ)|tan (α)|
]

(8)

where Ky is the modulus of the shear deformation in the y direction.
The aligning moment, which tends to align the midplane of the wheel with the

direction of the velocity, is modeled as:

Mz = −R2
wb
∫ θ0

−θ1

τy(θ) sin(θ)dθ (9)

Equations (4), (6), (8) and (9) are retrieved, accounting for a certain symmetry with
respect to both slip and sideslip angles.

We implemented the so-called model for high-speed cornering [28,29] to a 3-axle
car-like vehicle, whose properties are reported in Table 1.

Table 1. Properties of the 3-axle simulated rover based on the ESA ExoMars mission [25]. Jz is the
rover’s moment of inertia, xij is the distance between the centre of mass of the rover and the i-th axle,
yij is the distance from the longitudinal axis to the ij-th wheel, t is the distance between the kingpin
axes of the wheels and vmax and vc are the vehicle’s maximum and nominal speed.

Parameter [Unit] Value

m [kg] 310
Jz [kg m2] 93.0

x1 [m] 0.76
x2 [m] 0.14
x3 [m] −0.59
yi1 [m] 0.6
yi2 [m] −0.6
L [m] 1.35

Rw [cm] 14.25
b [cm] 12.0
t [m] 1.2

pgr [kPa] 14.6
vmax [km/h] 0.1

vc [km/h] 0.04
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The full set of equations of motion is:

.
u = vr− g sin(i) sin(ψ) + 1

m

n
∑

i=1

2
∑

j=1

[
Fxij cos

(
δij
)
− Fyij sin

(
δij
)]

.
v = −ur− g sin(i) cos(ψ) + 1

m

n
∑

i=1

2
∑

j=1

[
Fxij sin

(
δij
)
+ Fyij cos

(
δij
)]

.
r = 1

Jz

n
∑

i=1

2
∑

j=1

{
Fxij

[
−yij cos

(
δij
)
+ xi sin

(
δij
)]

+ Fyij

[
yij sin

(
δij
)
+ xi cos

(
δij
)]

+ Mzij

}
.
ψ = r

(10)

where δij is the steering angle of the ij-th wheel; u and v are the components of the rover’s

velocity in the body reference frame, and
.
ψ is the yaw rate that is angular velocity about

the z axis. The first two equations in Equation (10) provide the vehicle accelerations,
.
u

and
.
v, in the direction of x and y body axes, respectively; the contribution of the yaw rate,

of the gravitational acceleration and the action of the longitudinal and lateral forces are
also included. The third equation of Equation (10) yields the rover’s angular acceleration

.
r

produced by the action of the interaction forces and the aligning moments. To compute the
rover’s trajectory two more equations must be introduced:[ .

X
.

Y

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

][
u
v

]
(11)

The slippage correction to correct the WO measurements is based on the combination
of the motion Equations (10) and (11) and the interaction forces Equations (2), (3), (6) and
(9). Our method consists in an iterative process that starts from the acquisition of the
wheel’s angular rate and the vehicle yaw rate from WO and IMU, respectively. By initially
assuming a zero slippage and a first guess on the rover’s state (X, Y, ψ), the rover’s state
is propagated through iterative calculations of the slippage, the interaction forces and all
the derivatives values shown in Equations (10) and (11). At each step, the effect of the soil
properties, and, thus, of the interaction forces, impacts on the components of the rover’s
linear and angular accelerations. This allows the estimation of the actual slippage with
Equation (5) and improves the estimates of the rover’s speed and yaw rate.

2.2. Soil and Rover Properties

Each terrain type is associated with a specific set of parameters that characterize the
wheel–ground interaction (i.e., c, φ, n, kc, kφ, Kx, Ky, and ρ, mentioned in Section 2.1). The
numerical simulations presented in this work are carried out through a modeling of the
Martian surface to mimic several operative conditions. Our mission scenarios account for
cloddy, mixed drift-cloddy and drift soils, which are common terrain types on Mars. The
physical properties of these soil are reported in Table 2 [26,27].

Table 2. Soil properties.

Parameter [Unit] c [Pa] φ [deg] n [-] kc [N/mn+1] kφ [N/mn+2] Kx = Ky [M] ρ [kg/m3]

Cloddy soil 170 37◦ 1 1400 820,000 0.016 1550
Mixed drift-cloddy soil 220 33.1◦ 1 1400 820,000 0.016 1350

Drift soil 530 26.4◦ 1 1400 820,000 0.016 1150

An accurate definition of the dynamical equations requires a 3D modeling of the rover.
We implemented rover’s main body (Figure 2), wheels and joints by using geometrical
properties of ESA ExoMars rover [25], as shown in Table 1. The rover has six wheels, each
with its own steering mechanism. The control system of the actuators is supposed to realize
the Ackermann condition [28,30].
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3. Traversability Analyses

Numerical simulations of different mission scenarios are presented in this section to
show the effects of the soil properties on the traversability. The motion path is reported
in a local reference frame (X,Y) centered at the rover’s initial position. The X axis points
eastwards, and the Y axis northwards. First, we compute the trajectory discrepancies that
are retrieved by integrating the kinematic and dynamical equations. Mission scenarios are
then simulated to better understand the impact of steep terrains on the rover’s traversability.

3.1. Trajectory Integration with the Dynamical Model

A first step in our analysis is a strict comparison between the rover’s trajectories
obtained through the integration of the kinematic [31] and dynamical equations. The
kinematic approach does not depend on the properties of the soil, which strongly impact
on the rover’s dynamical forces. In this set of numerical simulations, we assumed a smooth
flat cloddy soil. The rover is moving with a steering angle δ = 2

◦
for the two front wheels.

The commanded speed V is imposed to match the ExoMars nominal speed vc = 40 m/h [25].
The rover’s initial heading angle is ψ0 = π/2. By applying the dynamical model, an initial
speed u0 = vc is adopted, whereas the rover’s speed is equal to vc for the kinematic model.
The rover’s equations of motion were integrated for ~5.5 h to complete a loop with a radius
R ≈ 38.66 m.

Figure 3 shows the differences ∆x, ∆y and ∆ψ between the trajectory integrated with
the kinematic and dynamical equations. The trajectory resulting from the kinematic model
is along a precise circular path, since the interaction between the wheeled vehicle and
terrain is neglected. Those differences are then interpretated as an error in the rover’s
position. The kinematic and dynamical integrated trajectories differ by ∆x = 7.89 m,
∆y = 10.20 m and ∆ψ = 17.80

◦
at the end of the simulation. These significant errors in

both position and orientation indicate the crucial role of an accurate dynamical modeling
for rover’s navigation.
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3.2. Traversability over Steep Terrains

The contribution of the terrain properties on the dynamical forces depends on the
average slope of the surface. Steeper is the terrain larger are the path discrepancies for
different soil types. By assuming constant terrain slopes and vehicle’s steering angles, we
investigate the evolution of both uphill and downhill paths with different terrains.

A proportional derivative (PD) control scheme was implemented to control the wheels’
angular and linear velocity preventing from locking condition (V ≈ vmin) and exceeding
the maximum speed (V ≈ vmax). If we assumed a constant commanded speed along the
entire trajectory, the constraint on the maximum speed in the descending path would be
violated, and the rover’s motion would result in a slow uphill traverse. Therefore, at each
integration step the angular acceleration of the wheels,

.
Ω, and the value of the commanded

velocity, V, are given by:

.
Ω = −Kp(V −Vd)− Kd1

.
u− Kd2

.
v (12)

V = ΩRw (13)

which enable the fulfilment of the previous motion constraints by assuming
.

Ω = 0 if
V ≥ vmax and

.
Ω ≥ 0 or V ≤ vmin and

.
Ω ≤ 0. In our numerical simulations, the PD control

gains Kp, Kd1 and Kd2 are 200, 50 and 50, respectively.
A first test case is based on a 10◦-slope and a constant steering angle δ = 4

◦
for the

front and rear wheels. A stable rover speed Vd = 40 m/h is obtained through extra drive
torque when driving uphill. This improves the action of the tractive forces and increases the
actual speed of the rover, almost maintaining the desired value. On the contrary, braking
is applied during rover’s downhill path. In this case the commanded speed is reduced to
obtain a negative value of the slip that induces a negative traction coefficient and a stronger
braking action of the longitudinal forces.

Figures 4–6 show the results of the trajectory integrated for 3 h by using an initial
heading angle ψ0 = π/2 and speed u0 = vc. At t = 0 the commanded speed is set equal to
the desired speed (V = Vd = 40 m/h). The rover’s speed is controlled within the boundary
constraints for the three terrain types. The commanded speed approaches the value vmax in
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the uphill phase, and tends to lower values when the rover goes downhill. The actual speed
of the rover follows the desired value Vd. As expected, in the uphill the longitudinal slip is
positive, while it tends to negative values in the downhill phases. The longitudinal slip
reaches the maximum value for drift soil, σ = 0.153, indicating high-slippage conditions.
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A second case is based on the trajectory integration with the same vehicle’s steering
angle and initial state conditions on a steeper surface with a 20◦ slope. This terrain inclina-
tion is an upper limit constraint on ExoMars traverse. Its onboard path planning standard
will avoid slopes ≥ 20

◦
[25]. The rover’s paths with a steeper terrain are dramatically

different compared to the previous scenario (Figure 7). The rover completes one and a half
loop on cloddy soil but its trajectory is along a straight line for mixed drift cloddy and drift
soils. A steering angle of 4◦, therefore, is not sufficient to follow a circular path because
of different terrain parameters that affect the wheel–soil interaction. Figure 8 shows that
the actual speed of the rover does not violate neither the maximum velocity nor locking
constraints for the three terrain types. The longitudinal slip is not larger than 0.56, even in
the case of drift soil (Figure 9). Uphill and downhill paths are then feasible for the rover
over the simulated terrain models with a slope angle lower than 20◦.
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By simulating further terrain slopes, we identified the trafficability limit for each
terrain type described in Table 2. This parameter is defined as the maximum slope angle
that leads to a slip ratio close to unity [32]. Our results suggest that the trafficability limits
are: (1) ∼30

◦
for cloddy soil; (2) slope ∼ 26

◦
for mixed drift-cloddy soil; and ∼21

◦
for drift

soil. These estimates are fully consistent with ExoMars expected performances [25].
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4. Wheel Odometry Correction for Rover’s Localization
4.1. Simulated Trajectory

The dynamical model was used to define the trajectory of the rover in a Martian-like
environment characterized by drift soil and hazards randomly distributed on the ground.
The rover task is to reach the target point

(
X∗f , Y∗f

)
= (100.0, 350.0) m in the local reference

frame avoiding obstacles along the path. We assumed to perfectly know the location of
each object on the ground. To generate the rover’s reference trajectory for the numerical
simulations on the localization method with WO correction, we implemented a simplified
PD control that is a simplified approach compared to other strategies (e.g., [33–35]).

The initial condition of the rover’s trajectory consists of heading angle ψ0 = 0
◦
,

commanded speed V = 40 m/h and actual speed V = V. To reach the goal, we used the
PD control on the commanded speed presented in Section 3.2, and a control with variable
steering strategies [30]. The integration of the dynamical equations allows us to determine
the longitudinal slip and the value of the angle θ0. The values of the interaction forces are
evaluated at each step accordingly to Equations (3), (6) and (9).

The first trajectory leg (t ≤ 4.2 h) is a straight line that is followed by tuning the
steering angle as follows:

δ = −Kdd + Kh(ψ
∗ − ψ) (14)

where d is the distance between the rover position and the desired path, ψ∗ is the desired
heading angle and Kd and Kh are the control gains equal to 0.08 and 0.02, respectively. The
desired speed is Vd = 0.4 vmax. Then, this speed is kept constant with a steering angle
δ = 1

◦
for ~3.3 h. The last segment of the trajectory only changed the steering angle to

0
◦
. Once the distance between the rover’s position and the target is less than 20 m, a

proportional control on the steering angle and on the desired speed is adopted to reduce
Vd in approaching the target, which is reached after 13.2 h.

Figure 10 shows the path followed by the rover to enable hazard avoidance. The
resulting trajectory is significantly longer than the straight line connecting the starting and
target positions (shortest path). The rover’s speed is shown in Figure 11, together with the
commanded and maximum speed. The evolution of the steering angle δ1R of wheel 1R is
reported in Figure 12.
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Figure 10. Simulated rover’s trajectory vs. shortest path. The initial coordinates of the rover and the
final target are marked in red and green, respectively. The obstacles are marked in black.
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Figure 11. Rover’s speed vs. time.
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Figure 12. Steering angle of wheel 1R. Its time evolution points out the adopted steering strategies.

4.2. Rover’s Localization

The reference trajectory was then used to run numerical simulations for the localization
system presented in this study. The sensors that are modeled in our software provide
WO encoder’s measurements of the wheels’ angular rate and IMU measurements of the
heading direction and the yaw rate [36,37]. This dead-reckoning system is affected by
non-systematic effects on demanding terrains since WO yields the travelled distance
without considering the slippage between the wheels and the ground. Systematic errors
due to the integration of these data in a simplified kinematic model accumulate in time
leading to poor reconstructed trajectories. By applying our dynamical model presented
in Section 2, we compute a slippage correction for WO to enhance the rover’s localization
with dead-reckoning measurements only.
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To determine the errors induced by WO and IMU data, we implemented a dead-
reckoning estimator based on a kinematic model. The noise models for WO and IMU
measurements are zero mean Gaussian. WO data are perturbed with a variable stan-
dard deviation σω that increases with the wheel’s angular rate. A maximum standard
deviation value of 0.25 cm/s was adopted for a wheel’s angular rate of 0.0779 rad/s (i.e.,
V = ωRw = 1.11 cm/s). The IMU yaw rate measurements are affected by σ .

ψ
= 0.013 deg/s.

Both instruments are assumed to collect data with a 60-s sampling rate. Errors associated
with the terrain properties and the simplified motion equations lead to significant discrep-
ancies between the simulated and reconstructed trajectory with uncorrected WO+IMU
observations. The final estimated position of the rover is ~60 m away from the target
location, confirming the poor performance of this dead-reckoning system.

Our localization system is based on the modeling of the dynamical equations to signifi-
cantly reduce systematic effects. The wheels angular rate ω̃ from WO and the vehicle’s yaw

rate
.̃
ψ from IMU enable an update of the rover’s state q̃ =

[
X̃, Ỹ, ψ̃,

.̃
ψ, ũ, ṽ

]T
through

Equations (10) and (11). The initial rover’s coordinates and heading angle are assumed to
be perfectly known as in the previous case for uncorrected WO+IMU. The initial compo-
nents of the rover’s speed are assumed to be ũ0 = ω̃0Rw and ṽ0 = 0. At each time step,

∆t = 60 s, the measured value ω̃ and
.̃
ψ are integrated in the dynamical equations to enable

a slippage correction. The estimated X̃, Ỹ, ψ̃, ũ and ṽ are then propagated for 60 s until new
measurements of WO and IMU are available.

To account for mismodeling in the terrain properties that significantly affect the wheel–
soil interaction, we introduced a 10% error in the soil parameters. We assumed to detect
drift soil with cohesion, c = 583 Pa, friction angle, φ = 23.76

◦
, and density, ρ = 1035 kg/m3.

A major error contribution is related to our knowledge of the slope angle over the site.
We then perturbed the slope in our dynamical model by including a variable slope angle
between 0.1◦ and −0.1◦ and a white Gaussian noise with a standard deviation of σi = 0.1

◦
.

The slippage correction method provides an accurate estimation of the rover’s trajec-
tory (Figure 13). This method allows us to compensate WO and IMU errors. Furthermore,
the use of the dynamical equations reduces systematic errors leading to better estimates of
the vehicle speed and yaw rate. The error in the final rover’s position is three times lower
than uncorrected WO measurements (Figure 14), although we introduced errors in the
terrain parameters and slope (Figure 15). Figure 16 shows the simulated vehicle’s speed
and yaw rate in comparison with the estimates produced by WO correction method.
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Figure 16. Reconstructed speed and yaw rate through the calibration vs simulated vehicle’s speed and yaw rate.

5. Summary

In this paper, we presented a method to determine the wheels’ slippage through an
accurate modeling of the rover’s dynamical equations. This technique enables a model-
based correction of WO measurements that are significantly affected by non-systematic
effect associated with the terrain properties. An accurate model of the soil is fundamental
to enhance the navigation of rovers across off-road terrains. The interaction forces between
the rover’s wheels and the soil are used to predict the slippage condition that affect
the accuracies of WO data. We modeled these forces by assuming compliant wheel on
compliant ground.
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Numerical simulations of different mission scenarios were carried out by considering
a 3D model of the rover that operates on a Martian-like surface. We analyzed the rover’s
trajectory evolution by accounting for different terrain types and conditions. Homogeneous
and constant soil characteristics are assumed across the rover’s path. Our results are
consistent with ExoMars expectations in terms of traversability of steep terrains, showing
21◦ and 26◦ slope limits for very fine sand terrain and coarse sand, respectively.

The dynamical equations are integrated in a localization system based on the process-
ing of WO and IMU data only. We presented a method to correct the WO measurements
by predicting the wheels’ slippage. This technique enables significant improvements in
the estimates of the WO-based localization system. By perturbing the terrain properties
in the dynamical model, we demonstrated that our method is robust to a partial lack
of knowledge regarding soil physical parameters and slope angle. This method only re-
quires a rough a priori characterization of the environment that could also be based on
measurements collected by orbiters.
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