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Abstract  

In the domain of the logic of certainty we examine the objective notions of the subjective probability with the clear aim 

of identifying their fundamental characteristics before the assignment, by the individual, of the probabilistic evaluation. 

Probability is an additional and subjective notion that one applies within the range of possibility, thus giving rise to 

those gradations, more or less probable, that are meaningless in the logic of certainty. Each criterion for evaluations 

under conditions of uncertainty is a device or instrument for obtaining a measurement; it furnishes an operational 

definition of probability or prevision P and together with the corresponding conditions of coherence can be taken as a 

foundation for the entire theory of probability. When we examine these criteria and their corresponding conditions of 

coherence we show the inevitable dichotomy between the subjective or psychological or empirical aspect of probability 

and the objective or logical or geometrical one.  

Keywords: random entity, coherence, convex hull, barycenter, vector space, metric. 

1. Introduction  

According to the subjectivistic conception of probability, the concept of probability and the foundations of probability 

theory have a psychological value: such a theory is rigidly deduced and reconstructed on the sole basis of a 

psychological interpretation and formulation because the mathematical principles are always the same from whatever 

point of view one starts (de Finetti, 1931b). In analyzing the objective meaning of the notion of coherence, it is 

necessary to point out in which way some probability evaluations may be incoherent or intrinsically contradictory and 

the rules of probabilistic logic, as those of formal logic in the field of propositions, are essential in order to teach us how 

to reason in the field of probability evaluations. Since all probability evaluations have and can have only an essentially 

and exclusively psychological value, it is necessary to separate what in a problem is logical from what is essentially of a 

merely empirical value and nature. So, one will be able to say whether every other problem is logically determined or 

undetermined (de Finetti, 1930a, 1930b). Evidently, this separation is fundamental in order to be able to deepen the 

criticism of principles of any mathematical theory and, in particular, of probability theory (de Finetti, 1931a). 

Probability, as an individual’s psychological perception, is subject to certain laws. If an event has an objective 

probability, all the individuals who will conform their psychological position to it, can be said to be judging correctly, 

while the others to be wrong. Apart from this, the laws are the same for everybody and, in particular, hold for objective 

probabilities, so it is not true that if everything is subjective, everything must be arbitrary and no law can be valid. 

Essentially, it needs to characterize the whole of the formally admissible opinions, without bothering if reasons exist of 

any other type which might cause someone to consider any one of them more or less right. In fact, such reasons are 

beyond the merely logical or objective aspect of the problem which only mathematics can and must deal with: thus a 

clear separation of the two phases, the formal phase and the practical or empirical phase, appears appropriate and 

inevitable. The formal phase, that is to say, the characterization of the not incoherent opinions, is to be dealt with 

mathematically; the practical or empirical phase, that is to say, the choice of one among such possible opinions, has to 

be left to good sense and judgement of every single individual. The only difference between those who follow the 

subjectivistic conception and those who follow the objectivistic one is that while such a choice is free and arbitrary for 

the former, it can be right in only one way for the latter. Therefore, the subjectivistic approach takes into consideration, 

along with the objectively right evaluation of probability, all those evaluations which are not contradictory by 

themselves, although wrong according to the objectivistic viewpoint. A person who does not share the subjectivistic 
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viewpoint believes in the existence of an objective value of probability which cannot be maintained except for a certain 

more or less limited field; it would only be to events of a certain type, more or less schematic and artificial, that he will 

assign an objective probability, while in practical life he would be incessantly guided to think or say that a certain event 

appears more or less easily, is more or less probable or verisimilar and on such judgements he will found his decisions, 

also in areas which, according to his way of thinking, would be precluded from probability theory. Clearly, in order to 

justify conceptually such judgements, it needs to conform to the subjectivistic viewpoint whose validity field is not 

subject to any restriction (de Finetti & Minisola, 1961; de Finetti & Emanuelli, 1967a; de Finetti, 1955, 1963, 1969, 

1970).  

2. Logic of Certainty  

When a given individual, according to his state of information, defines a set more or less large of possible alternatives, 

of which one and only one is necessarily true, he finds himself into the domain of the logic of certainty. We denote by 𝒮 

the abstract space of alternatives and by 𝒬, subset of 𝒮, the space of the only alternatives possible for a certain 

individual; in fact, it may be convenient to think of 𝒬 as embedded in a larger and more manageable space 𝒮. However, 

his information as well as his knowledge could also allow him to eliminate a part of the alternatives that can be 

imagined because he believes that they are impossible; vice versa, all the others will be possible. After all, a rather crude 

analysis can be made if all the possible alternatives are collected in order to obtain an unique and certain alternative. 

The possibility, unlike probability, has no gradations, thus the domain of the logic of certainty is objective; it is equally 

possible, for a given individual at a certain time, that the next FIFA world cup is won by a very weak national football 

team, that the next President of the Italian Republic is a woman, that the unemployment rate falls by three percentage 

points at the end of next year in Italy. Into the domain of the logic of certainty, only true and false exist as final and 

certain answers and certain and impossible and possible as options with regard to the temporary knowledge of any 

individual; into this domain we study the objective notions of subjective probability with the clear aim of identifying 

their fundamental characteristics before the assignment, by the individual, of the probabilistic evaluation. Probability is 

an additional and subjective notion that one applies within the range of possibility, thus giving rise to those gradations, 

more or less probable, that are meaningless in the logic of certainty. The field of the logic of certainty is objective 

because the elements of 𝒬 do not depend on the individual’s opinions but only on his degree of ignorance (de Finetti, 

1967b, 1970).  

3. Events and Random Numbers 

An event E is a statement which we do not know yet to be true or false; the event which is certain and the one which is 

impossible can be taken as a limit case. The statements of which we can say if they are true or false on the basis of an 

ascertainment well determined and always possible, at least conceptually, have objective meaning. Such objective 

statements are said propositions if one is thinking more in terms of the expressions in which they are formulated or, 

equally, events if one is thinking more in terms of the situations and circumstances to which their being true or false 

corresponds (de Finetti 1954). For any individual who does not know with certainty the value of a number X, which is 

random in a non-redundant usage for him, there are two or more than two, a finite or infinite number, possible values for 

X, where the set of these values is I(X): in any case, only one is the true value of each random number (de Finetti, 1970).  

Remark 1 Events are also questions whose wordings, unambiguous and exhaustive, have the aim of removing any 

opportunity to complaining in case that a bet is based upon them: they admit two answers, yes = 1 or no = 0, true = 1 or 

false = 0, where such answers are always alternative. Also the random numbers can be identified by questions whose 

wordings are indisputably clear and complete; unlike events, they contain two or more than two answers which consist 

only of numbers, only one of which is the one that actually occurs.  

Remark 2 For the representation of random numbers it is useful to think of a set 𝒮, whose subset 𝒬 is constituted by the 

only possible alternatives for a certain individual at a given time. Sometimes, 𝒮 can coincide with a manifold less 

extensive of the linear ambit or linear space 𝒜 in which 𝒮 is contained: in the case of two random numbers, 𝒮 can coincide 

with a curve of the Cartesian plane 𝒜, otherwise, if the numbers are three, 𝒮 can coincide with a surface of the 

three-dimensional space 𝒜. Then, the possible points of 𝒬 would be positioned on the curve of the Cartesian plane or on 

the surface of the three-dimensional space and such points may be all the points or a part or a few points of 𝒮 according to 

the individual’s knowledge at a given time and the existence of other restrictions and conditions. We could have 𝒜 = ℝ2 

or 𝒜 = ℝ3 under one-to-one correspondence between the points of the two-dimensional or three-dimensional space and 

the ordered lists of two or three real numbers. If ℝ2 and ℝ3 are equipped with a scalar product positive-definite, they 

would be Euclidean spaces or metric spaces. However, since every vector space may be considered as an affine space 

over itself, 𝒜 could also be an affine space and this, theoretically, would be the best thing by virtue of the fact that the 

affine properties are more general than the metric ones. The affine properties are the basis of essential concepts of 

probability theory and only they make sense, being independent of the choice of a coordinate system; however, the 
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importance of the metric properties appears in order to represent analytical conditions of coherence (de Finetti, 1931b, 

1954, 1970).  

Remark 3 The space of alternatives 𝒮 of a random number X coincides with the real line x on which it is possible to 

consider 𝒬, subset of 𝒮, which consists of the only possible values or points for a certain individual. Every point of the 

real line is assumed to correspond to a real number and every real number to a point of it, so the real line is a vector 

space of dimension 1 over the field ℝ of real numbers, that is to say, over itself: there is an one-to-one correspondence 

between points on the real line and real numbers. The set ℝ of real numbers is a Euclidean space because it has a 

standard scalar product which is simply ordinary multiplication of real numbers and the standard norm on it is simply 

the absolute value function. Every real number of the x-axis is a point of 𝒮. Since every possible value of X is a random 

event, all the possible values of X are events, all together and implicitly considered into 𝒬. In conformity with the 

possible values of X which constitute the set 𝒬, X can belong to a half-line, X ≥ x, or to an interval, x1 ≤ X ≤ x2, or to 

an arbitrary set, X ∈ ℐ.  

Remark 4 If we consider two random numbers, X and Y, 𝒮 coincides with the Cartesian plane whose element, in 

general, is (x, y). For (X, Y), 𝒬 consists of pairs of possible values for X and Y. If we consider three random numbers, X, 

Y and Z, 𝒮 coincides with the ordinary space whose element, in general, is (x, y, z) and if we consider more than three 

random numbers, the only restriction for 𝒮 is that it is not visually intuitive to go beyond the third dimension.  

4. Random Entities  

Random points, random vectors, random matrices, random sets and random functions are random entities. An objective 

scheme of representation for random entities is given by the set 𝒮 of “points” whose elements can be a finite or infinite 

number. Such points are not geometric points, but they are simply elements of 𝒮, that is to say, they may be points in 

two-dimensional Euclidean space or in three-dimensional Euclidean space, vectors, matrices, sets of points and functions 

if 𝒮 is, respectively, a set of points or vectors or matrices or sets of points or functions. Clearly, we need to consider each 

“point” of 𝒬 or 𝒮 like a random event which is, a posteriori, true or false: among such “points”, there is a very important 

“point” representing the alternative which, a posteriori, will really occur. It is, a priori, uncertain and for this reason it 

constitutes the essence of every problem concerning the alternatives 𝒬 which are contained in 𝒮 in which 𝒬 is embedded.  

Remark 5 On a plane the point which would be hit in firing at a target is a random point, with the geometric 

representation of this problem which is independent of any coordinate system. Similarly, in ordinary space the point 

where, at a precise moment, a stolen car is, such a car being equipped with a satellite alarm, is random. When the theft 

occurs, this alarm sends to a control center a radio signal through which it is possible to determine the exact position of the 

vehicle. The space of alternatives 𝒮, corresponding to the usual physical space extended in length, width and height and in 

which bodies move or place themselves, provides an immediate geometric image which does not depend on coordinates.  

Remark 6 A vector is an ordered list of n real numbers, (x1, …, xn) ∈ ℝn, where n is a non-negative integer: real 

numbers x1, …, xn are called scalar components in the n-dimensional Euclidean space, with the number xi which is 

the i-th scalar component of (x1, …, xn). Thus, the list of known unit prices of ten articles which are for sale in a given 

department store is the decuple (p1, …, p10). Given n, for a certain individual, a vector is random when he does not 

know all scalar components of the finite ordered list of n real numbers, such a list being the true vector. For the same 

individual, different n-tuples of ℝn, which constitute 𝒬, are possible. The space of alternatives 𝒮 is a vector space over 

the field ℝ of real numbers because it coincides with all the n-tuples of ℝn. Evidently, each n-tuple of ℝn, belonging to 

𝒮, is a point of 𝒮.  

Remark 7 A matrix (aij) m × n, with m, n ≥ 1, is a rectangular array of mn numbers, (aij)  = (

a11 ⋯ a1n

⋮ ⋱ ⋮
am1 ⋯ amn

), whose 

elements are arranged in m rows and n columns. The numbers of every row could represent known unit prices of n 

given articles which are for sale in m different department stores. The whole of all rectangular arrays of mn real 

numbers is a vector space over the field ℝ and an isomorphism exists between it and ℝmn because every array of mn 

numbers can be arranged into a row vector or column vector of ℝmn. For a certain individual, a matrix which has 

predetermined rows and columns is random when he does not know the real numbers of every row or column of the true 

matrix. For the same individual, possible matrices which constitute 𝒬 and all those of the vector space 𝒮 over ℝ have 

the same predetermined number of rows and columns. Clearly, each matrix of 𝒮 is a “point” of 𝒮.  

Remark 8 Random curves and random sets on surfaces are random sets which give a non-linear structure to 𝒮. The 

unknown path of an airplane, from takeoff to landing, is a random curve: every trajectory can be thought of as a set 
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which consists of infinite points and it is a “point” of 𝒮. On the other hand, if a given individual does not know the part 

of the Italian territory, viewable via satellite map, on which rain fell in the last twelve hours starting from a certain 

instant, we have a random set on surface: each part of the Italian territory is a set of infinite points and it is a “point” of 

𝒮. Moreover, among the different parts of the Italian territory which constitute the abstract space of alternatives 𝒮, there 

are both the empty part, that corresponds to the alternative according to which rain did not fall on the Italian territory in 

the last twelve hours, and the total part, that corresponds to the alternative according to which rain fell on the whole 

Italian territory in the last twelve hours.  

Remark 9 For a certain individual, a function Y(t), with the variable t which is time, is random when its behavior is 

unknown to him, for which it can be said that chance exists instant by instant. If one knows the values of Y(t) because they 

have been calculated at any number of instants t = t1, …, tn, however large the finite n, the value of Y(t) at a different 

instant t will still be uncertain. Every measurable function, where its values are Y(t1), …, Y(tn), is a “point” of 𝒮. When we 

ask whether or not the numerical values of a function Y(t) of the set 𝒮 at given instants fall inside fixed sets ah ≤ Y(th) ≤ 

bh (h = 1, …, n) defined by two freely determined coordinates, random events given by a1 ≤ Y(t1) ≤ b1, …, an ≤ Y(tn) ≤ 

bn can be true or false according to whether they occur or not inside intervals [a1, b1], …, [an, bn]. 

Evidently, each problem concerning the possible alternatives of 𝒬 is usefully visualized by means of 𝒮 whose nature is 

always and unequivocally objective (de Finetti, 1970).  

5. Arithmetic and Boolean Operations  

Putting the logical values true and false equal to the idempotent numbers 1 and 0 for which we have 1n = 1, 0n = 0, 

an event E is always a random number which can admit these two numbers, called indicators of E. Arithmetic and 

Boolean operations must be unified by applying arithmetic operations even to events and Boolean operations even to 

random numbers. For events, the arithmetic product is the same as the logical product ∧, the arithmetic sum is the 

number of successes Y = E1 + … + En and complementation is negation, that is to say, E̅ = 1 − E. Obviously, Y can 

yield a result outside the {0, 1} set. The logical sum ∨ can be expressed by A ∨ B = 1 − (1 − A)(1 − B), where we must 

consider A ∨ B = (A̅  ∧  B̅̅̅ ̅̅ ̅̅ ̅̅ ), with A and B which are random events. In ℝ we can make the following definitions: a ∨ b = 

max (a, b), a ∧ b = min (a, b) and a̅ = 1 − a, where a and b are real numbers; then, in case a and b have as values 1 or 0, 

the logical product, the logical sum and the negation are recovered. Moreover, it needs to unify the notation for the 

probability of an event E and for the mathematical expectation or prevision of a random number X; in fact, it is adopted 

P(E) for probability of E and P(X) for prevision of X, where P is linear, that is, additive and homogeneous.  

6. Logic of Uncertainty  

The subjectivistic conception of probability, through psychological analysis, vivifies notions that are mathematically 

correct but that is not sufficient to consider from the formal point of view. In fact, the instrument really propulsive of 

scientific thinking is not classical logic or, in the specific instance, logic of certainty that, as such, involves no affective 

demonstration, no judgement by anyone, but is probability and probability calculus. Therefore, when we consider any 

problem concerning the assignment of probability among possible cases and how to define it and to express it 

quantitatively, we find ourselves into the field, personal and subjective, of logic of uncertainty, clearly distinct and 

separate from that one of logic of certainty (de Finetti, 1931a). Indeed, when we say that we are not satisfied of logic of 

certainty, we mean that we are not satisfied of agnostic and undifferentiated attitude towards uncertainty. For all those 

things which, not being known to us with certainty, are uncertain or possible, any individual feels a more or less strong 

propensity to expect that some cases possible are true rather than others, to believe that the answer to a given question is 

no rather than yes, to estimate that the unknown value of a certain quantity is small rather than large. Evidently, these 

attitudes express, in the domain of uncertainty, different degrees of subjective probability, each of which is assigned to one 

of the possible alternatives identified by a given individual on the basis of his knowledge. So, to find oneself into the field 

of logic of prevision means to examine carefully desires or hopes that certain alternatives occur, anxieties and fears 

regarding the occurrence of unfavourable alternatives and to weigh up the pros and cons of each choice trying to reason 

about it in order to distribute, among all the possible alternatives and in the way which will appear most appropriate, one’s 

own sensations of probability (de Finetti & Minisola 1961; de Finetti, 1955, 1963, 1969).  

Remark 10 When a particular individual chooses to be guided only by the logic of certainty, after having distinguished 

a set more or less large of possible alternatives in the way which seems to him most effective, he has to stop because the 

question is closed. Remaining within the logic of certainty, the only thing that he could make is a prophecy, that is to 

say, among the cases that he believes possible, he might venture to guess the alternative that, according to him, will 

occur, transforming in this way, but unreasonably, the uncertainty in illusory certainty (de Finetti, 1967b, 1970).  

Remark 11 The space of n random numbers coincides with the n-dimensional vector space 𝒜 after the introduction of a 

coordinate system x1, …, xn in 𝒜; by virtue of the fact that each event is a random number, a set of n possible events 

E1, …, En is embedded in 𝒜. From such a set other events, called constituents, are originated: they are identified 
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by particular ordered lists of n numbers (x1, …, xn), with xi = 0 or xi = 1, i = 1, …, n, each of which is a possible point 

of  𝒬 contained in the vector space 𝒜. Such considerations make clear, from the point of view of the logic of certainty, 

why the probability of an event is automatically incorporated in the prevision of a random number. In fact, going beyond 

the domain of the logic of certainty, we enter into the field of the logic of uncertainty and in the event that X is a random 

number, P(X) is the prevision of X: if I(X) = {x1, …, xn}, when we assign to each value xi of X the probability pi (i 

= 1, …, n), with 0 ≤ pi ≤ 1 and ∑ pi = 1, it turns out to be P(X) = x1p1 + … + xnpn. The prevision of X coincides 

with the probability of an event E when and only when X, admitting only two possible values, 1 and 0, is an event, thus 

prevision and probability are two different words that express the same concept extra-logical, subjective and personal 

(de Finetti & Emanuelli, 1967a).  

Remark 12 The die symmetry and the knowledge of an observed frequency are elements which any individual carefully 

examines to express his opinion from which the subjective probability is originated. According to the subjectivistic 

conception, the only probability that exists in any case is the subjective probability. It must be understood as the degree of 

belief of a certain individual in the occurrence of a specific event; anyway, probability of an event E is not an intrinsic 

characteristic of E because it depends on the information that the individual making the probabilistic evaluation has, so it 

is always subordinate to his present state of knowledge which can change for the possible attainment of new essential 

information and for the passage of time (de Finetti, 1963).  

Remark 13 A probabilistic evaluation, known over a set of whatever events, always expresses the opinion of a given 

individual, real or hypothetical; the only admissible restriction is that this opinion is coherent, consequently, if it is not 

coherent it should be corrected by the individual in order to make it coherent (de Finetti, 1930a, 1930b). 

7. Objective Statements and Subjective Evaluations  

We reason in accordance with probability theory, although without awareness and in a rather approximate way, when 

we incessantly make our forecasts and assumptions which constitute the usual object of our thinking in all the practical 

circumstances of life, more than the much rarer judgements which are logically certain. In fact, we reason in all the 

circumstances of life, where we base ourselves on probabilities, by applying without awareness the two fundamental 

theorems of probability calculus, the theorem of total probability and the theorem of composite probability: our way of 

thinking is not forced by logical requirements but is only suggested by psychological motives when we judge on the 

probability that it will rain or not in order to decide to take or not the umbrella, on the probability for an individual to 

arrive in time at the postal office on foot in order to decide to go by bus or taxi or not, on the probability that different 

performances which have been announced for tonight are more or less interesting to decide whether to go and where 

and so on. Regarding these examples, nobody can certainly think that they are cases of objective probability because it 

is not be able to solve such problems. Instead, according to the subjectivistic viewpoint, every question has an exact and 

satisfactory answer, because it is always based on the psychological degree of confidence of a certain individual in 

relation to a certain assumption. In all cases, including the gambling games or statistics or molecular physics cases or 

any other case whose objective probability coincides with the subjective one, it is evidently only a matter of a pure 

psychological feeling. Anyway, the theorems of probability theory are always valid, thus justifying one of our most 

important empirical ways of reasoning. 

Hence, any statement of probability calculus has an objective or logical meaning unlike probability evaluations whose 

meaning can only be empirical. For example, we consider a deck of Italian playing cards which consists of 40 cards 

divided into 4 suits; in particular, Neapolitan playing cards are divided into swords, cups, coins and clubs, whose 3 face 

cards per suit are knave or fante in Italian, knight or cavallo in Italian, king or re in Italian. Thus, if we suppose that the 

probability of drawing a fante or cavallo or re is P(Ef) = P(Ec) = P(Er) = 1 10⁄ , then we conclude that the probability of 

E, where E consists in drawing a face card, is given by P(E) = P(Ef) + P(Ec) + P(Er) = 3 10⁄ : we make a purely logical 

reasoning because it is logically true that the three considered events are mutually exclusive and under such a condition 

it is logically certain that the theorem of total probability is valid. However, probability evaluations have an empirical or 

subjective meaning: if the probability of drawing a fante is 1 10⁄  for us, we always express a subjective opinion. In 

accordance with the subjectivistic viewpoint, we do not believe that the probability of any event E, P(E), with 0 ≤ P(E) 

≤ 1, is objectively determined because we consider, on the contrary, all the functions P as formally admissible laws 

when they are not in conflict with theorems of probability calculus. Evidently, the choice of one of these functions is 

left to each individual who chooses according to his subjective opinion. Regarding the previous example, we consider 

admissible all the ∞3 functions P for which it turns out to be P(Ef) = x, P(Ec) = y, P(Er) = z, P(E) = x + y + z, with x, 

y, z ≥ 0 and x + y + z ≤ 1. The choice of functions for which we have P(Ef) = P(Ec) = P(Er) = 1 10⁄ , although 

suggested by spontaneous and universally approved remarks, is a very particular case and it is not forced by logical 

requirements of which mathematics can or must be interested. Obviously, recognizing if certain premises are sufficient 

or not in order to involve a certain conclusion becomes very difficult when the problem under consideration is not as 
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simple as in the previous example. However, such a problem is never solved when there is not a clear separation 

between all that is logical or objective and all that is empirical or subjective (de Finetti, 1930a, 1930b).  

8. Criteria for the Probabilistic Evaluations  

It is representative of one of the primary necessities of science the fact that it must not run the risk of taking as notions 

illusory combinations of terms of a metaphysical nature, but it must work with concepts of verified validity in a 

practical meaning. Therefore, its definitions must be operational, that is to say, must reduce a scientific concept not 

simply to sentences having only an apparent meaning, but to real experiences which are at least theoretically possible. 

Thus, the criteria which may be used to reveal concretely P(X) or, in particular, P(E) according to the opinion of a 

certain individual are two and entirely equivalent: they are based upon the identification of the practical consequences 

that a given individual knows to accept and accepts when he expresses his evaluation of P(X) or P(E) and, if coherently 

applied, lead to the same P(X) = x̅ in the event that X is estimated or to the same P(E) = p in the case that E is 

evaluated. If X is evaluated, both criteria contain the random magnitude X − x̅, expressed by the difference between the 

real value X and the one chosen by a certain individual at his own will, P(X) = x̅. The first criterion provides that, after 

the subjective choice of x̅, the individual is obliged to accept any bet unilaterally determined by an opponent, whose 

gain is c(X − x̅), with c any betting amount, positive or negative, equally determined by the opponent; in particular, if c 

= 1, the gain of the bet is (X − x̅), while if c = − 1, it is (x̅ − X). On the contrary, the second criterion provides that, 

after choosing x̅, the individual must suffer the penalty (X − x̅)2, positively proportional to the square of the difference 

between X and x̅ (de Finetti, 1970). In particular, if an event E is evaluated, both criteria contain the magnitude E − p 

given by the difference between the real value E, 1 or 0 according to whether E occurs or does not occur, and the one 

chosen by a certain individual according to his subjective opinion, P(E) = p. The first criterion provides that, after the 

choice of p by a determined individual, he is obliged to accept any bet unilaterally determined by an opponent, whose 

gain is c(E − p), where c is any betting amount, positive or negative, established by the opponent; in particular, if c = 1 , 

the gain is (E − p), while if c = − 1, it is given by (p − E). On the contrary, the second criterion provides that, after the 

subjective choice of p, the individual must suffer the penalty (E − p)2. Evidently, in order to measure subjective 

probabilities, that is to say, to translate our degree of uncertainty, regarding judgements, into numerical determinations, 

the degree of confidence that we have in the occurrence of events is expressed by the conditions at which one would bet. 

There is a difference between judging if a bet is fair and judging how convenient it is for a certain individual, at a 

certain time, under certain circumstances, to accept it; moreover, the convenience will be judged differently, depending 

on the character of the individual and his love of risk. In other words, there is an essential difference between the case of 

one occasional and well defined betting and the abnormal case of an individual who would consistently and 

interminably be driven to betting.  

9. Necessary and Sufficient Conditions of Coherence  

The choice of P(X) or P(E), even if it is subjective, should not be contradictory and takes place within the set of 

coherent previsions of X or in that one of coherent probabilities of E; both the sets contain values objectively admissible 

which are independent of the personal views of any individual and also of the judgements about others’ opinions. The 

necessary and sufficient conditions for coherence are two and completely equivalent, one for each evaluation criterion 

(de Finetti, 1970).  

Regarding the first definition of coherence, it is assumed that the individual who subjectively evaluates P(Xi) or P(Ei), 

with i = 1, …, n, does not want to make bets on Xi or Ei that give him an inevitable loss, therefore a set of his 

previsions or probabilities is not intrinsically contradictory when and only when, among the linear combinations of bets 

that he is obliged to accept, there are not combinations with gains all uniformly negative. Analytically, this means that 

for the numerical values of the random magnitude Y = c1(X1 − x̅1) + … + cn(Xn − x̅n) or the random magnitude Y = 

c1(E1 − p
1
) + … + cn(En − p

n
) must not be, objectively, that sup I(Y) is negative; conversely, we have that inf I(Y) 

cannot be positive. Even if the bets are an infinite number, Y is always linear combination of a finite number of them. 

Regarding the second definition of coherence, it is assumed that the individual who subjectively evaluates P(Xi) or 

P(Ei), with i = 1, …, n, does not prefer a given penalty if he can choose another penalty certainly smaller, therefore a set 

of his previsions or probabilities is coherent when and only when he could not choose them in order to make his penalty 

certainly and uniformly smaller. Analytically, this means that there are not any evaluations P*(Xi) or P*(Ei) that 

replaced with the evaluations P(Xi) or P(Ei) are such that for all the possible points, (X1, …, Xn) or (E1, …, En), the 

penalty L* = ∑ (Xii  − P*(Xi))
2 ⋅ (1/ki)

2 is uniformly smaller than the penalty L = ∑ (Xii  − P(Xi))
2 ⋅ (1/ki)

2 or the 

penalty L* = ∑ (Eii  − P*(Ei))
2 ⋅ (1/ki)

2 is uniformly smaller than L = ∑ (Eii  − P(Ei))
2 ⋅ (1/ki)

2, with k1, …, kn which 

are arbitrarily predetermined and homogeneous towards Xi or Ei.  

A prevision P is coherent if its use cannot lead to an inadmissible decision such that a different possible decision would 

have certainly led to better results, whatever happened. If the sets of possible values for X and Y are, respectively, I(X) 
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= {x1, …, xn} and I(Y) = {y1, …, yn}, when we assign the same weights pi (i = 1, …, n), where we have 0 ≤ pi ≤ 1 

and ∑ pi = 1, to each xi and yi we will have P(X + Y) = P(X) + P(Y), that is to say, P is additive; a prevision P of 

the random number X must satisfy the inequality inf I(X) ≤ P(X) ≤ sup I(X), that is, P(X) must not be less than the 

lower bound of the set of possible values for X, which is inf I(X), nor greater than the upper bound, which is sup I(X). A 

prevision P of X must also be linear, that is, we have P(aX) = aP(X), for every real number a. In general, we have P(aX 

+ bY + cZ + …) = aP(X) + bP(Y) + cP(Z) + …, with a, b, c, … whatever real numbers, for any finite number of 

summands. So, coherence reduces to linearity, which contains additivity property, and convexity. Similarly, if E is an 

event, when we have 0 ≤ P(E) ≤ 1, its evaluation is coherent; if E1, …, En are mutually exclusive events, their 

evaluations are coherent when we have P(E1 + … + En) = P(E1) + … + P(En) (de Finetti, 1970).  

10. Geometric Interpretation of Conditions of Coherence  

Given in 𝒜 n random numbers X1, …, Xn, with 𝒜 n-dimensional vector space having coordinate system x1, …, xn, 

every prevision, coherent or not, of each random number Xi is always a point (P(X1), …, P(Xn)) of 𝒜. In this space, 

moreover, the coordinates of the points Q of the set 𝒬 of possible points are identified by ordered lists (x1, …, xn) of n 

real numbers, with x1 that is a possible value of X1, …, xn that is a possible value of Xn. Thus, on the basis of the 

geometric interpretation of the necessary and sufficient conditions for coherence, the set 𝒫 of coherent previsions P is 

the closed convex hull of the set 𝒬 of the possible points Q of 𝒜 (de Finetti, 1970).  

Remark 14 The first condition of coherence involves that a point P of 𝒜, with coordinates (P(X1), …, P(Xn)), is an 

admissible prevision if and only if no hyperplane separates it from the set 𝒬 of the possible points Q of 𝒜: this 

characterizes the points of the convex hull, for which it is said that every linear equation between the numbers Xi, c1X1 

+ … + cnXn = c, must also apply to the previsions P(Xi), c1P(X1) + … + cnP(Xn) = c, as well as any inequation 

between them, c1X1 + … + cnXn ≥ c, must also be satisfied by the previsions, c1P(X1) + … + cnP(Xn) ≥ c.  

Remark 15 The vector space 𝒜 is Euclidean when it is provided with a scalar product positive-definite: by virtue of the 

metric ρ2 = ∑ (xi ki⁄ )i
2, it results L = (P − Q)2, that is to say, the penalty L coincides with the square of the distance 

between the prevision-point P and the outcome-point Q. Thus, regarding the second condition of coherence, the points 

of the convex hull also enjoy the property according to which P cannot be moved in such a way as to reduce its distance 

from all points Q. 

The points which are admissible in terms of coherence can be obtained as barycentres of, at most, n + 1 points Qi of 𝒬 

in the n-dimensional space or they are adherent points of 𝒬, but not belonging to 𝒬. More explicitly, every 

prevision-point P of 𝒫 is admissible in terms of coherence when it is a barycentre of possible points Qi of 𝒬, with 

non-negative weights, summing to 1: however, if all the weights are concentrated at a unique point Qi, also the possible 

points turn out to be coherent previsions (de Finetti, 1970).   

11. Conclusions  

Probability exists only in our own judgement because it is always the degree of belief of a given individual for the 

occurrence of a given event. Nevertheless, when it needs, any individual can assess the probability of an event on the 

basis of an observed frequency or dividing the number of favourable outcomes to it by the total number of possible 

outcomes which are equally possible. In fact, the subjectivistic theory is not in contrast with any other provided that 

such different interpretations accept the role of particular criteria for the evaluation of the probability and give up the 

pretence of leading to a definition of probability. Each criterion for subjective evaluations furnishes an operational 

definition of probability or prevision P and together with the corresponding conditions of coherence can be taken as a 

foundation for the entire theory of probability. When we study this we show the dichotomy between the subjective or 

psychological aspect of probability and the objective or logical or geometrical one. Analytically and objectively, the 

first definition of coherence is similar to the property of stable equilibrium of the barycentre, while the second definition 

is similar to the property of minimum of the moment of inertia which characterizes the barycentre once again. When the 

properties of the barycentre are not satisfied, the set of previsions of a given individual cannot be coherent. Given the 

probabilities of the possible values, finite in number, of X, its barycentre, which is P(X), can be expressed as a function 

of them; the prevision of X does not presuppose the introduction of the concept of continuous probability distribution 

that, extending to the general case the concept of mathematical expectation or mean value of X, requires the use of 

mathematical tools more advanced than necessary.  
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