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From a study of the line shape of the Xð3872Þ, the LHCb collaboration measures a sizeable negative
effective range. This cannot be reconciled with a shallow DD̄� bound state hypothesis. Based on
Weinberg’s compositeness criterion, together with a theorem by Smorodinsky, it follows that the X has to
have a compact hidden charm structure interacting with unboundDD̄� pairs via short-distance color forces.
This conclusion is strengthened by the general pattern recently emerging from exotic mesons.
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I. INTRODUCTION

The Xð3872Þ is the most studied among the many exotic
hadrons which have been discovered since 2003 [1–7]. It is
very often advocated that its mass being so close to the
D0D̄�0 threshold1 is the proof of it being a loosely bound
molecule, the meson counterpart of the deuteron (“deuson”),
with an order of a few keVs’ binding energy. This criterion is
being largely used for other exotic states too, although none
of them has been found as close to threshold as the X [4].
Nonetheless, thevicinity to threshold alone cannot be used as
a criterion to tell a composite state of hadrons from a compact
quark state. In the constituent diquark model [8], for
example, the vicinity to threshold is a purely accidental
phenomenon. Indeed, recently, a good number of evidences
seem topoint towards a compact structure of the exotic states.
These include high-multiplicity collisions [9], and the recent
discovery of four-quark stateswith hidden charm and strange
valence quarks [10,11] and of four-charm resonances [12].
More refined analyses rely on the so-called Weinberg

compositeness criterion [13], originally employed to inves-
tigate the possibility for the deuteron to be an elementary
particle, rather than a composite bound state of proton and
neutron. In a nonrelativistic theory, let H0 be the free
Hamiltonian describing states with the same quantum

numbers as the deuteron. These are free S-wave proton
and neutron pairs jnpðkÞi, which form a continuum as a
function of their relative momentum k, and possibly an
elementary deuteron, jdi, of size comparable to the nucleons.
On the one hand, if such an elementary deuteron is absent

from the theory, strong interactions may nevertheless gen-
erate a molecular deuteron, jdi, with some binding energy
−B, as a result of the interaction between n and p due to a
potentialV. On the other hand, if the eigenstates ofH0 feature
the elementary jdi, the interaction potential V will now also
contain pointlike interactions between d and the np pairs.
The physical state jdiwill be an eigenstate ofH0 þ V arising
from all these interactions. The overlap of the interacting
deuteron jdi with the elementary one is measured by
Z≡ jhdjdij2. The deuteron state (normalized to unity) can
then be expressed in terms of the eigenstates of H0 as
jdi ¼ ffiffiffiffi

Z
p jdi þ R

d3k
ð2πÞ3 CðkÞjnpðkÞi, with

R
d3k
ð2πÞ3 jCðkÞj2 ¼

1 − Z. When Z ¼ 0 no elementary deuteron is present in
the theory, while when Z ¼ 1 the theory is free and no jnpi
component is present in jdi. Z > 0 implies that an elemen-
tary jdi does exist, and that the so-called effective range, r0, is
negative, a condition that, as we explain in detail below, is
incompatible with a molecular shallow bound state. The
physical deuteron results from the interaction of the elemen-
tary one with the jnpi pairs. In this case, the existence of a
bound state generated solely by np interactions is not
necessary to explain the dynamics of the system.
The same argument can be cast in a nonrelativistic field

theory (see, e.g., [4,14]). Consider a canonical field, ΦðxÞ,
creating the elementary deuteron, Φð0Þj0i ¼ jdi, and such
that hdjΦð0Þj0i ¼ ffiffiffiffi

Z
p

. When Z is different from zero, the
propagator for Φ features a pole in correspondence of the
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mass of the deuteron, with residue Z. From the Källén-
Lehmann representation one can indeed show that
0 ≤ Z ≤ 1.2 As said, the case Z ¼ 1 corresponds to a free
elementary particle, for which Φð0Þj0i does not couple to
multiparticle states. The case Z ¼ 0 can be interpreted as
the condition for the particle to be composite, since its field
does not appear in the Lagrangian: the state is generated
dynamically, and the propagator is saturated by multi-
particle contributions. This reasoning is compatible with
the statements written in the original Weinberg’s paper
[13], where it is observed that “an elementary deuteron
would have 0 < Z < 1.”3

A key quantity in the study of composite states is the
effective range, defined through the low energy expansion
of the scattering phase. For a shallow molecule in a purely
attractive potential, r0 is positive, of the order of the range
of the potential [15,16]. Indeed, for the deuteron one has
r0 ≃þ1.7 fm, in nice agreement with 1=mπ ≃ 1.4 fm. A
value of the effective range that is negative and well beyond
the range of the potential is a sign that the dynamics of the
system cannot be explained without the presence of a
compact, elementary state. Indeed, Weinberg notes that
“the true token that the deuteron is composite is an
effective range r0 small and positive rather than large
and negative” [13].
Aswe saw, the deuteron nicely checks all the requirements

to be a loosely boundmolecule. Butwhat about theXð3872Þ?
The LHCb collaboration recently published a high-statistics
analysis of its line shape [17]. Since the fit parameters were
highly correlated, the error analysis is particularly delicate,
and we focus first on best fit values neglecting error
correlations. The result is a value of Z ≃ 0.14 and in a
sizeable negative effective range r0 ≃ −5.34 fm.
After this work appeared in preprint form, the error

correlations of LHCb data have been analyzed in [18]. As a
consequence, we obtain r0 in the range

−2.0 fm > r0 > −5.3 fm: ð1Þ

If this is confirmed, then it entails a clear conclusion: the
X is generated by an elementary core with a sizeable
dressing of DD̄� states in the continuum, due to their short-
distance QCD coupling. This is qualitatively different from
a bona fide loosely bound molecule, for which Z ¼ 0
and r0 > 0.
This same conclusion was suggested from studies on the

production of the Xð3872Þ [19,20] although different
conclusions are reached in [21]. The comparison to
deuteron has been further studied in [22]: it is observed
that the production of a molecule in high-multiplicity final
states appears to be qualitatively different from that
observed for the Xð3872Þ in the same conditions.
In this work we first review the compositeness criteria,

unifying different treatments. In light of this, we then
reexamine the recent LHCb data, to extract the values of Z
and r0.

II. SCATTERING AMPLITUDE
AND COMPOSITENESS

Analogously to [13], call H0 the Hamiltonian represent-
ing the QCD quark interaction generating compact color
singlets. In the open charm sector, the spectrum of H0

contains free D, D� mesons and their antiparticles. In the
hidden charm JPC ¼ 1þþ sector, it contains free charmo-
nia, and possibly hidden charm tetraquarks. The potential V
is, instead, responsible for the S-waveDD� interactions, for
example mediated by pion exchange. In presence of a
compact tetraquark, V is also responsible for its trilinear
interaction to the DD̄� continuum (as well as to other pairs
of mesons).
Consider the low-energy DD̄� scattering in their center-

of-mass system. At low relative momenta, the general
expression for the S-wave scattering amplitude is

f ¼ 1

k cot δðkÞ − ik
¼ 1

−κ0 þ 1
2
r0k2 þ � � � − ik

; ð2Þ

where δðkÞ is the scattering phase and κ0 ¼ a−10 is the
inverse of the scattering length. Dots represent higher order
terms in the expansion of the scattering phase.
In the presence of a state X below threshold by an energy

B, the amplitude will have a pole for −ik ¼ ffiffiffiffiffiffiffiffiffi
2μB

p ≡ κ,
with μ the reduced DD̄� mass. This implies the relation

κ ¼ κ0 þ
1

2
r0κ2; ð3Þ

which must be satisfied regardless of the nature of the X. A
discrimination between different structures of the X comes
from the effective range.
In Weinberg’s treatment one defines a coupling

constant, g¼hDD̄�jVjXi, which, through the completeness

2The Lehmann normalization condition is Z þ R
∞
0 dμσðμÞ ¼ 1,

where σðμÞ ≥ 0 is the contribution of multiparticle states in the
spectral representation of the complete propagator and Z is the
residue at the one-particle pole.

3Although present in the literature, we think that the inter-
pretation of Z as the mixing probabilty between a molecule and a
compact state is a too naïve interpretation of Weinberg’s
formalism. Z measures the projection of the X state on the
discrete part of the eigenstates of H0, which is different from the
basis of the physical states. This is indicated by the fact that
Z ¼ 1 represents a free state decoupled from D�D̄, certainly not
the case of any physical state with the same quantum numbers as
D�D̄. Rather, 0 < Z < 1 indicates that D�D̄ states are an
incomplete set, in the space of the eigenstates of H0, and they
have to be supplemented by states belonging to the discrete
spectrum of H0: bare compact states do exist. Also, 0 < Z < 1
does not say anything about the existence of bound states in the
interhadron D�D̄ potential, i.e., molecules: the interaction could
be driven by the compact state only, which would be consistent
with no bound molecule at all.
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relation for the eigenstates of H0 can be related to
B and Z as4

g2 ¼ 2πκ

μ2
ð1 − ZÞ: ð4Þ

Iterating the pole amplitude, one obtains a geometrical
series which sums up to the scattering amplitude to order k2

[6]. Comparing with the formula for the scattering ampli-
tude to this order, Weinberg [13] obtains

κ−10 ¼ 2
1 − Z
2 − Z

κ−1 þOð1=mπÞ; ð5aÞ

r0 ¼ −
Z

1 − Z
κ−1 þOð1=mπÞ; ð5bÞ

where 1=mπ represents the typical range of the interaction
between D and D̄�, encoding the nonuniversal corrections
to the shallow bound state limit. We note that the expres-
sions above indeed satisfy the relation (3) for any value
of Z.
From Eq. (5b) it is clear that for an elementary X with

Z > 0, the effective range must be negative, r0 < 0.
For a genuine loosely bound state (Z ¼ 0), instead,
r0 ¼ Oð1=mπÞ. As we show in the next section, this is
not the end of the story. In this case, for purely attractive
binding force, the sign of the nonuniversal part of the
effective range is fixed to be positive.
Landau [23] makes a similar analysis for the scattering in

presence of a state below threshold, starting from the
interaction Lagrangian LI ¼ gLXDD̄�.5 The scattering
amplitude can be written as [24]

f ¼ −
1

8πmX
g2L

1

ðpD þ pD�Þ2 −m2
X
;

≃ −
1

16πm2
X
g2L

1

Bþ E
; ð6Þ

where mX ¼ mD0 þmD̄�0 − B is the mass of the X and
E ¼ k2=2μ is the center-of-mass energy of the DD̄� pair.
On the other hand, from Eq. (2), near the pole we may write

f ≃ −
1

κ2 þ k2
2κ

1 − r0κ
¼ −

κ

μð1 − r0κÞ
1

Eþ B
: ð7Þ

Comparing with (6), one finds

g2L ¼ 16πm2
X

κ

μð1 − r0κÞ
; ð8Þ

This is consistent with Weinberg’s result (4) with the
identification

Z ¼ −r0κ
1 − r0κ

: ð9Þ

The result (8) for the coupling can be used to compute
the X → DD̄π branching ratio as done in [24]. Since r0 is
multiplied by κ, gL is not sensitive to the value of the
effective range, for very small binding energies.

III. THE EFFECTIVE RANGE OF A MOLECULE

As anticipated, Landau and Smorodinsky add a specific
consideration regarding the value of r0 for a molecule,
constraining the terms of order 1=mπ, left unspecified in
Eq. (5b) [16,25], when Z ¼ 0. Their conclusion extends
what happens for the deuteron to a general theorem:
shallow bound states with purely attractive binding force
always give r0 > 0. For the convenience of the reader,
we report a proof of the theorem, following Bethe’s
derivation [26].
Consider the Schrödinger’s equation for the radial wave

function of the molecular constituents,

u00kðrÞ þ ½k2 −UðrÞ�ukðrÞ ¼ 0; ð10Þ

with UðrÞ≡ 2μVðrÞ, VðrÞ < 0 being the potential, which
is assumed to be attractive everywhere. We consider the
wave function for two values of the momentum:
uk1;2 ≡ u1;2. A simple manipulation leads to the identity

u2u01 − u02u1jR0 ¼ ðk22 − k21Þ
Z

R

0

dru2u1; ð11Þ

with R fixed and much larger than the range of the
potential, R ≫ 1=mπ .
Consider now the free equation, ψ 00

kðrÞ þ k2ψkðrÞ ¼ 0,
from which we also obtain

ψ2ψ
0
1 − ψ 0

2ψ1jR0 ¼ ðk22 − k21Þ
Z

R

0

drψ2ψ1: ð12Þ

Normalizing to unity at r ¼ 0, the general expression for
ψk is

ψkðrÞ ¼
sinðkrþ δðkÞÞ

sin δðkÞ ; ð13Þ

so that ψ 0
kð0Þ ¼ k cot δðkÞ. The radial wave function uk

vanishes at r ¼ 0, and we normalize it so that it tends
exactly to the corresponding ψk for large enough radii.

4The expression (4) assumes the more common convention for
which the volume element in momentum space is d3k=ð2πÞ3,
rather than just d3k, as done in [13].

5Landau’s and Weinberg’s couplings have different normal-
izations, and are related by g2L ¼ 8μm2

Xg
2.
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With this proviso, we subtract (11) from (12) to obtain

k2 cot δðk2Þ − k1 cot δðk1Þ

¼ ðk22 − k21Þ
Z

∞

0

drðψ2ψ1 − u2u1Þ: ð14Þ

Here we used the fact that, for R large enough uk → ψk, as
well as the fact that ukð0Þ ¼ 0. Moreover, we have
extended the integral to infinity, given that it is now
convergent due to the same asymptotic behavior of ψk
and uk.
We are now ready to compare the resultwith theparameters

of the scattering amplitude (2). First we set k1 ¼ 0 which,
recalling that limk1→0 k1 cot δðk1Þ ¼ −κ0, gives

k2 cot δðk2Þ ¼ −κ0 þ k22

Z
∞

0

drðψ2ψ0 − u2u0Þ: ð15Þ

Finally, for a shallow bound state, one can further expand for
small momenta, k2 cot δðk2Þ ¼ −κ0 þ 1

2
r0k22 þ � � �, thus

finding

r0 ¼ 2

Z
∞

0

drðψ2
0 − u20Þ: ð16Þ

Sinceu0ð0Þ ¼ 0 andψ0ð0Þ ¼ 1 and both go to the same limit
at infinity, callingΔðrÞ¼ψ0ðrÞ−u0ðrÞ, we haveΔð0Þ¼þ1
and Δð∞Þ ¼ 0. Moreover, the equations of motion imply
Δ00ðrÞ ¼ −UðrÞu0ðrÞ > 0 for an attractive potential. In
presence of a single bound state, where u0ðrÞ does not have
nodes, we get Δ00ðrÞ > 0 everywhere, hence proving that
ψ0ðrÞ > u0ðrÞ. Given that u0 < ψ0 everywhere, this proves
that r0 > 0 for a shallow bound state.
This is the result quoted in [16] where the further

approximation ψ0 ¼ 1 is made, which is consistent with
the fact that ψ0 ≃ 1 − r=a0 ≃ 1 for a shallow bound state
and that r is within the range of the potential.

IV. A NEW LOOK AT THE LHCB DATA

The discussion so far refers to the elastic scattering of
two (stable) particles that resonate on a shallow level. This

is not the case for the Xð3872Þ, that couples also to other
channels (most notably J=ψππ, where it is most easily
detected). These arguments can still approximately hold,
provided that a single channel dominates the Xð3872Þ, as
might be suggested by the seemingly large branching ratio
for the X → DD̄π decay [27]. Moreover, the finite width of
the D� must be taken into account. Possible extensions
have been proposed in [28–32]. Anyway, the formulas
require some modifications to be suitable for data analysis.
As an introduction, we first make explicit the connection
between the formula for the scattering amplitude,
Eq. (2), and the usual nonrelativistic Breit-Wigner formula,
writing

f ¼ −
1
2
g2BW

E −mBW þ i
2
g2BWk

; ð17Þ

with g2BW ¼ −2=μr0 and mBW ¼ κ0=μr0. For r0 < 0 and
mBW ≫ μg4BW, this expression describes an ordinary res-
onance above threshold, having width Γ ≃ g2BW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μmBW

p
.

Recall, however, that we are interested in a shallow state
below threshold.
Recently, LHCb studied the line shape of the Xð3872Þ

with a high statistics sample [17]. Two main models were
considered. The first one is a standard S-wave relativistic
Breit-Wigner model, which yields a width ΓX ≃ 1.2 MeV.
However, this model is realistic only if the coupling of
X → D0D̄�0 is not very large—which does not seem to be
the case. The second model is based on the Flatté amplitude
[33,34], as extended in [35]. Since we are interested in the
sign of the effective range, fitting a larger number of
parametrizations would be ideal to reduce model bias [36].
For the time being, we focus on the published Flatté one.
Indicating with N an unknown normalization constant, m0

X
a bare parameter that controls the mass of the X, δ ¼
mD�− þmDþ −mD̄�0 −mD0 ¼ 8.2 MeV the isospin split-
ting, and μ and μþ the reduced masses of the neutral and
charged DD̄� pairs, we write

fðX → J=ψπþπ−Þ ¼ −
N

E −m0
X þ i

2
gLHCbð

ffiffiffiffiffiffiffiffiffi
2μE

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μþðE − δÞp Þ þ i

2
ðΓ0

ρðEÞ þ Γ0
ωðEÞ þ Γ0

0Þ
; ð18Þ

The information about other decay channels is encoded
in Γ0

VðEÞ—the running bare widths of X → J=ψV—and
Γ0
0—a constant that takes into account further possible

channels. We use “bare” to stress that these numbers are
not the mass and partial widths of the X yet, but are
connected to them. We remind the reader that E is the

kinetic energy, related to the J=ψπþπ− invariant mass
by mJ=ψπþπ− ¼ EþmD0 þmD̄�0.
In order to match with the single channel analysis of the

previous section, we can set Γ0
ρ¼Γ0

ω¼Γ0
0¼0. The ampli-

tude now describes a stable Xð3872Þ that couples to D0D̄�0
and DþD�− only. Since the charged threshold is further
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away, we can expand the amplitude for small kinetic
energies, and get

fðX→J=ψπþπ−Þ¼−
N 2

gLHCb

2
gLHCb

ðE−m0
XÞ−

ffiffiffiffiffiffiffiffiffiffi
2μþδ

p þE
ffiffiffiffi
μþ
2δ

q
þik

:

ð19Þ

In their analysis, the LHCb collaboration fixes m0
X ¼

−7.18 MeV (with respect to the D0D̄�0 threshold) and fits
gLHCb ¼ 0.108� 0.003. From this, we obtain the inverse
scattering length and the effective range:

κ0 ¼ −
2m0

X

gLHCb
−

ffiffiffiffiffiffiffiffiffiffi
2μþδ

p
≃ 6.92 MeV; ð20aÞ

r0 ¼ −
2

μgLHCb
−

ffiffiffiffiffiffiffiffiffiffi
μþ
2μ2δ

r
≃ −5.34 fm: ð20bÞ

To derive κ, we use the consistency condition Eq. (3). The
physical root reduces to κ0 for r0 → 0, thus

κ−1 ≃ 33 fm; and B ¼ κ2

2μ
≃ 18 keV: ð21Þ

According to Ref. [18], LHCb data give a relatively good
determination of the ratio m0

X=gLHCb, while gLHCb is poorly
determined: it has a very shallow χ2 distribution that allows
values of gLHCb even ten times larger than the best fit value
used in Eq. (20b). Neglecting the first term in (20b), one
obtains the upper bound to r0 anticipated in Eq. (1).
The range of r0 in Eq. (1) is definitely negative.

Incidentally, qualitatively similar results were already found
in [37,38] based on older datasets. This is an unequivocal
evidence that the dynamics of the system is driven by the hard
compact structure of the X. No other conclusion about the
nature of the Xð3872Þ can be drawn. The situation is similar
to the large pT production of the X in hadronic collisions
[37,39], where a hard structure is definitely required, without
necessarily implying the presence of a molecular one. From
Eqs. (4), (5b), and (20b), one also gets

g2 ¼ 2πκ

μ2
gLHCb

gLHCbð1þ κ
μ

ffiffiffiffi
μþ
2δ

q
Þ þ 2κ

μ

; ð22Þ

which explicates the relation between the Weinberg and
LHCb couplings.
Using (9) with (1) and the value of κ in (21), one finds

0.052 < Z < 0.14 ð23Þ

V. CONCLUSIONS

Since the first observation of the Xð3872Þ, the debate
regarding its nature (and consequently that of other exotic
states too) has been intense. To discriminate between a
compact tetraquark nature and a loosely bound molecular
one, it is crucial to find quantities that are qualitatively
different in the two instances.
In this work we show that, combining the arguments

by Weinberg [13] and by Landau and Smorodinsky
[15,16,25,26], one can identify one such quantity in the
effective range. If the dynamics of the X is that of a purely
shallow molecule, the effective range must be strictly
positive and of the order of the inverse pion mass, as it
happens for the deuteron. If, instead, the dynamics is that of
an elementary object, the effective range is negative and in
magnitude much larger that the inverse pion mass.
The most recent LHCb analysis shows that the latter

condition is met by experimental data, at least for the
central values. If confirmed beyond experimental errors, the
effective range value could represent the smoking gun
demonstrating that the Xð3872Þ has an elementary core
which interacts with the unbound DD̄� pair through short-
distance QCD. This does not specify a priori whether it is a
charmonium or a hidden-charm tetraquark, although the
latter seems more natural, looking at the other exotic
candidates in the same mass region.
This conclusion is strengthened by the general pattern

emerging with the straightforward interpretation [40] of
the di-J=ψXð6900Þ resonance [12], and the discovery of
Zcsð3985Þ and Zcsð4003Þ [10,11], reproducing in the
strange quark sector the situation observed with the
Xð3872Þ and the Zcð3900Þ [41].
The recent observation of a doubly charm state [42]

(predicted, among others, in [43–47]) will make possible an
independent study of its line shape along the lines shown
here [48].
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