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Abstract — This paper deals with the problem of resource 

management in Multi-Access Networks. A Reinforcement 

Learning based hierarchical control strategy is presented. The 

main contribution of the proposed approach is its capability of 

simultaneously tacking the load balancing and QoS management 

problems in a scalable, dynamic and closed-loop way. The 

effectiveness of the proposed solution has been proved in a specific 

case study in the context of which the performances of the 

proposed algorithm have been compared with a standard load 

balancing controller. 

Keywords — Load balancing; Reinforcement Learning; Multi-

Access Networks. 

I. INTRODUCTION 

This paper deals with load balancing algorithms aiming at 
maximizing the exploitation of the air interface of a 5G multi-
access network. The air interface band, used to link Mobile 
Terminals (MTs) and Access Points (APs), is a valuable and 
limited resource. Multi-access networks empower the always 
best-connected concept [1] consisting in the capability of 
providing users with the best available connection in 
heterogenous scenarios involving several Radio Access 
Networks (RANs) and Technologies (RATs). In this context, 
load balancing algorithms are aimed at optimizing network 
resources’ usage by taking in consideration users’ requirements, 
in terms of Quality of Service (QoS) parameters, and network 
conditions, in terms of, e.g., APs’ congestion levels and power 
consumption. 

In 5G networks, the flow of packets relevant to a given 
connection can be dynamically split into several sub-flows that 
follow different paths (i.e., network accesses) and are 
recombined at the destination [2], [3]. As an example, consider 
the uplink flow of a connection originated by a given MT which, 
at a given time 𝑘, can transmit to three different APs possibly 
belonging to different RATs (e.g., 4G, 5G, satellite, Wi-Fi). Said 
flow can be split into three sub-flows each directed to one of the 
available APs. This feature allows to match the challenging 5G 
requirements in terms of QoS parameters by exploiting all the 
available RATs and APs. However, to fully exploit this 
heterogeneous set of resources, it is necessary to develop 
intelligent, dynamic and scalable resource allocation strategies. 

Motivated by these considerations, the present work is aimed 
at developing an efficient and scalable load balancing strategy 
aimed at maximizing the exploitation of the Air Interface (AI) 
of a 5G multi-access network. In particular, the proposed 
solution adopts a reinforcement learning based hierarchical 
control architecture allowing to dynamically select the most 
appropriate routing over the air interface of the packets relevant 
to connections in progress while respecting QoS requirements of 
said connections. 

The reminder of the paper is organized as follows: Section II 
presents a review of the literature with respect to multi-access 
networks and reinforcement learning techniques in the context 
of load balancing; Section III describes the proposed control 
architecture and introduces the mathematical formalization of 
the considered problem; Section IV describes the adopted 
control strategy; Section V presents the considered case study 
and is devoted to validate the proposed approach; in Section VI 
the presented results are wrapped up and future developments 
discussed. 

II. STATE OF THE ART 

Multi-access networks allow reliable communications, and 
increased coverage and hand-hover management capabilities in 
line with the challenging requirements of the fifth-generation 
mobile network [4]–[7]. Many approaches have been proposed 
to efficiently implement these features and, more specifically, to 
tackle the RAN selection problem. Instances of said approaches 
belongs to utility theory, multi attributes decision making, fuzzy 
logic, game theory, combinatorial optimization, Markov chains 
or a mix of these [8]–[11]. In [7], the authors provide a 
comprehensive analysis of the mentioned approaches and 
classify them into two groups namely i) fast and easy to 
implement but typically static, open-loop, centralized and with 
lower precision methods and ii) slower and complex to 
implement, but dynamic, closed-loop, distributed and high 
precision methods. To the first group belong approaches based 
on utility theory, multi attributes decision making, and fuzzy 
logic while to the second group belong approaches based on 
game theory, combinatorial optimization and Markov chains.  

The approach proposed in this paper has the ambition to 
exploit the advantages of the second group of methods (i.e., the 
dynamic, closed-loop and distributed nature) while guaranteeing 
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high scalability. To achieve this, a hierarchical control 
architecture has been developed where part of the control (and, 
thus, of the computational cost) is demanded to local distributed 
controllers each independently solving a Reinforcement 
Learning (RL) problem. In a RL problem, an agent (i.e., the 
entity taking decisions) interacts with the environment and 
receives a reward based on the action performed and 
environment’s state. Based on said reward, the agent is able to 
learn the actions maximizing the expected reward given the 
environment states [12]–[16].  The main difference between RL 
and other machine learning methods is that the learner is not told 
which actions to take but instead must discover which actions 
yield the most reward by trying them out directly in the target 
environment. 

RL problems are typically formulated as Markov Decision 

Processes (MDPs) which can be modelled as a tuple (𝑆, 𝐴, δ, 𝑟) 
where 

• 𝑆 is a finite set of states, 

• 𝐴 is a finite set of actions, 

• δ = 𝑃(𝑆 × 𝐴 × 𝑆) is a probability distribution over 

state transitions and 

• 𝑅(𝑠, 𝑎): 𝑆 × 𝐴 → ℝ is the reward function associating 

a scalar value to state-action pairs. 

From the interaction with the environment, the agent has to 
learn the optimal policy 𝜋 i.e., the mapping between states 𝑠 ∈
𝑆 and actions 𝑎 ∈ 𝐴 which when implemented guarantees the 
maximum expected value of the cumulative reward. In other 
words, a RL agent is able to decide the actions to be taken 
maximizing the long-term effect of actions. The optimality of a 
given policy 𝜋 can be evaluated considering the state value 
function 𝑉𝜋(𝑠) which, at a given time 𝑡, provides a measure of 
the cumulative reward that can be obtained following the policy 
𝜋 starting from state 𝑠; the state value function is thus defined as 

𝑉𝜋(𝑠) = 𝔼 [∑𝛾𝑘𝑅𝑡+𝑘+1|𝑠𝑡 = 𝑠

∞

𝑘=0

] (1)  

where 𝛾 and 𝑅 are the discount factor weighting future rewards 
and the rewards, respectively. Similarly, it is possible to define 
the policy Q-Function (or state-action value function) as 

𝑄𝜋(𝑠, 𝑎) = 𝔼 [∑𝛾𝑘𝑅𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 0

∞

𝑘=0

] (2)  

In other words, the Q-Function allows to quantify the cumulative 
reward that the agent receives given the current state 𝑠𝑡 and 
action 𝑎𝑡 following policy 𝜋. The optimal policy 𝜋∗ can be thus 
defined as 

𝜋∗ = argmax
𝜋

𝑉𝜋(𝑠) , ∀𝑠 ∈ 𝑆 (3)  

 Many methods have been developed to solve the above 
described RL problem. When the environment is perfectly 
known, dynamic programming methods proved to be very 
efficient. In the scenario considered in this paper, however, it is 
assumed that the agent does not have a complete and accurate 
model of the environment and thus must learn from the 
interactions with the environment itself. In this case, Temporal 
Difference (TD) methods such as Q-Learning and SARSA 
proved to be very effective. Indeed, such model-free methods, 

allow the agent to learn the optimal value functions and thus, in 
turn, the optimal policy 𝜋∗ [13], [17]. 

III. PROBLEM FORMALIZATION 

The load balancing problem considered in this paper 
concerns the dynamic allocation of connections to the available 
APs considering QoS constraints. With connection, it is meant a 
mono-directional flow of packets characterized by the same 
origin and the same destination. Each connection is assumed to 
have a specific QoS profile (inherited by the packets of said 
connection) consisting of a set of constraints regarding, for 
example, the throughput, latency, Bit Error Ratio (BER), jitter, 
mobility and so on. 

Variable Meaning 

𝒊 Index used to identify APs and, consequently, cells 

𝑰 
Number of Local Controllers and, consequently, 

APs coordinated by the Global Controller 

𝒑 Index used to identify QoS profiles 

𝑷 
Number of QoS profiles considered by the Global 

Controller 

𝒀𝒑 Minimum bit rate to be associated to QoS profile 𝒑 

𝒄 Index used to identify connections 

𝑪𝒑(𝒌) 
Total number of connections of profile 𝒑 active in 

the Global Controller Area 

𝑨𝒑,𝒄(𝒌) 
Set of APs whose cells cover the MT involved in 

connection 𝒄 belonging to profile 𝒑 

𝒙𝒊,𝒑(𝒌) 
Target bit rate assignment computed by the 𝑖-th local 
controller for connections belonging to profile 𝑝 

𝒚𝒊,𝒑,𝒄(𝒌) 
Actual bit rate assigned from the Global Controller 

to the 𝒊-th local controller for connection 𝒄 

belonging to profile 𝒑 

𝒛𝒊,𝒑(𝒌) 
Actual bit rate assigned from the Global Controller 

to the 𝒊-th local controller for all connections 

belonging to profile 𝒑 

𝑳 Discrete number of traffic levels 

𝜦 Discrete number of target bit rate assignments levels 

𝒋 Index used to identify MTs 

𝑱 Number of MTs in the Global Controller Area 
Table 1. Nomenclature 

To address this problem, a hierarchical control architecture 

has been envisaged (see Figure 1). The underlying idea is to 

associate a Local Controller to each AP and, consequently, to 

the cell covered by said AP. A set of local controllers willing to 

share their resources, referred to as Local Controller Sharing 

Set, are then coordinated by a single Global Controller located 

in the Cloud RAN. The cells covered by the APs associated to 

the local controllers in the Local Controller Sharing Set define 

the Global Controller Area. From now on, the symbol 𝑖 will be 

used to refer to a generic AP in a given Local Controller Sharing 

Set and 𝐼 will denote the number of Local Controllers 

coordinated by a given Global Controller. 

 Concerning QoS profiles, it is assumed that in a pre-

operational phase the most suitable number of profiles 𝑃 has 

been identified. Such operation can be performed, for instance, 

using k-means algorithms exploiting available historical data 

sets. The number of QoS profiles should be identified trading off 

QoS personalization (increasing the number of profiles) and 

complexity (reducing the number of profiles). Profiling is 

expected to provide a set of classification rules allowing, 



whenever a new connection 𝑐 is triggered, to classify this 

connection as belonging to a given profile 𝑝. A fundamental 

QoS constraint characterizing a given profile 𝑝 relates to the 

minimum bit rate 𝑌𝑝 which, in any traffic condition, must be 

assigned to any connection belonging to the profile 𝑝. 

 
Figure 1. Control Architecture 

At each discrete time 𝑘, the following variables are of 
interest for the considered problem: 

• 𝐴𝑝,𝑐(𝑘) denoting the set of APs whose cells cover a 

given MT involved in a connection 𝑐 belonging to 
profile 𝑝; note that it is assumed that the Global 
Controller is aware of (i) the profile of each in-progress 
connection in the Global Controller Area and (ii) the 
sets of APs covering each connection 𝑐 of any profile 
𝑝 (i.e., the Global Controller has a complete view of the 
sets 𝐴𝑝,𝑐(𝑘) for all 𝑐 and 𝑝); 

• 𝑥𝑖,𝑝(𝑘) representing the target bit rate assignment 

computed by the 𝑖-th local controller for connections 
belonging to profile 𝑝 (i.e., represents the sum of bit 
rates that should be assigned to connections of profile 
𝑝 served at time 𝑘 by the 𝑖-th AP); such target value, 
transmitted to the Global Controller, is computed 
independently by each local controller based on the 
performances experienced by all the in-progress 
connections served by the 𝑖-th AP; 

• 𝑦𝑖,𝑝,𝑐(𝑘) representing the actual bit rate assigned from 

the Global Controller to the 𝑖-th local controller for 
connections belonging to profile 𝑝; note that, at any 
time, the actual bit rate 𝑦𝑖,𝑝,𝑐(𝑘) assigned by the Global 

Controller to the 𝑖-th Local Controller for connection 𝑐 
of profile 𝑝 must be higher of 𝑌𝑝; 

• 𝑧𝑖,𝑝(𝑘) denoting the overall bit rate assigned from the 

Global Controller to the 𝑖-th local controller for all 
connections belonging to profile 𝑝. 

Note that the goal of the Global Controller is to compute the 
actual bit rates to be assigned to the local controllers in such a 
way that they approach, as far as possible, the target bit rates 
computed by the local controllers (i.e., ideally it should be 
𝑧𝑖,𝑝(𝑘) ≅ 𝑥𝑖,𝑝(𝑘) since the latter tries to optimize the 𝑖-th AP’s 

capacity utilization from a local perspective). 

IV. CONTROL STRATEGY 

A. Local Controllers 

The proposed control strategy demands part of the 
computation to the Local Controllers. As anticipated, each local 
controller solves, independently, a RL problem for addressing 
the load balancing problem and transmit to the Global Controller 
the target bit rate assignment  
𝑥𝑖,𝑝(𝑘). In the following, the RL problem that each local 

controller has to solve will be formalized. For sake of clarity, 
only the uplink (i.e., the flow of packets from the MT to the AP) 
will be considered; the extension to downlinks is 
straightforward. 

1) State space modelling 

The state of a generic AP is defined as the measured traffic 
level for each profile 𝑝. Said traffic level is assumed to be 
described by 𝐿 discrete levels. By doing so, the state of each 
local controller 𝑠𝑖(𝑘) ∈ ℝ

𝑃 can be described as a row vector 

𝑠𝑖(𝑘) = [𝑙𝑖,1 … 𝑙𝑖,𝑃] ∈ ℝ𝑃 (4)  

where the generic scalar entry 𝑙𝑖,𝑝 of the state represents the 

traffic level experienced by the generic AP for connections of 
profile 𝑝. 

Note that the state space, as it has been defined, guarantees 
high flexibility since it is possible to trade-off state’s description 
capabilities and computational costs by increasing or decreasing 
the number of discrete levels 𝐿, respectively. Indeed, with this 
modelling choices, the number of possible states is equal to 𝐿𝑃 
which is a relatively small number. 

As a final remark, note that it is possible to generalize the 
proposed formulation by considering different discrete traffic 
levels for each profile (in this case, of course, one should define 
the number of discrete levels 𝐿𝑝 for each profile 𝑝). 

2) Action space modelling 

From the problem formulation (see Section Errore. 
L'origine riferimento non è stata trovata.), it follows that the 
control variables are the target bit rate assignments 𝑥𝑖,𝑝(𝑘) 
computed by the local controllers. In order to 

• induce a smooth convergence between the target and 

actual bit rate assignments, i.e., 𝑥𝑖,𝑝(𝑘) and 𝑧𝑖,𝑝(𝑘), 

respectively, and 

• reduce the dimension of the local controllers’ action 

spaces, 

instead of directly considering the target bit rate assignments 

𝑥𝑖,𝑝(𝑘) it is possible to consider as control actions 𝑎𝑖(𝑘) ∈ ℝ
𝑃 

the following row vectors: 

𝑎𝑖(𝑘) = [𝜆𝑖,1 … 𝜆𝑖,𝑃] ∈ ℝ𝑃 (5)  

where the generic scalar entry 𝜆𝑖,𝑝 represents the target 

variation, with respect to the previous discrete time instant, of 
the bit rates assigned from the 𝑖-th local controller to connections 
of profile 𝑝; furthermore, such variations are limited to a small 
number of discrete levels Λ. With this modelling choices, the 
total number of possible states is Λ𝑃 which is a relatively small 
number. Note that it is possible to generalize the proposed 
formulation by considering different discrete traffic levels for 
each profile (in this case, of course, one should define the 
number of discrete levels Λ𝑝 for each profile 𝑝). 

Global Controller 

Local 
Controller #1 

Local 
Controller #2 

Local 

Controller #I 

AP #1 

Cell #1 Cell #2 

AP #2  AP #I 

Cell #I 

Local Controller Sharing Set 

Global Controller Area 

𝑦1,𝑐,𝑝(𝑘) 𝑦2,𝑐,𝑝(𝑘) 𝑦𝐼,𝑐,𝑝(𝑘) 

𝑥𝑖,𝑝(𝑘) 

𝑧1,𝑝(𝑘) 𝑧2,𝑝(𝑘) 

 

𝑧𝐼,𝑝(𝑘) 
(𝑘) 



3) Rewards shaping 

The objective of the control strategy proposed consists in (i) 
keeping each cell, as far as possible, far from congestion for any 
profile 𝑝 and (ii) assuring that the cell’s capacity is exploited. 
Following on these considerations, it is possible to consider 
rewards depending on the state and on the profile as follows: 

𝑟𝑖,𝑝(𝑘) = 𝑏𝑖,𝑝 (𝑠𝑝(𝑖)) (6)  

where 𝑠𝑝(𝑖) is the generic entry of the 𝑖-th local controller state 

(see equation (5)) and 𝑏𝑖,𝑝(∙) are functions of the state shaped in 

such a way to provide hard penalizations to congested states and 
mild penalization to idle states. 

B. Global Controller 

The control problem, from the Global Controller point of 
view, consists in providing to the local controllers the actual bit 
rate assignments 𝑦𝑖,𝑝,𝑐(𝑘) (i.e., for each local controller 𝑖 and 

each (𝑐, 𝑝) couple connection-profile) based on the received 
target variations of bit rate assignments 𝜆𝑖,𝑝 (see equation (5)). 

Hence, the Global Controller must minimize the following 
performance index 𝐽(𝑘) 

𝐽(𝑘) = ∑∑ ∑ (𝑦𝑖,𝑝,𝑐(𝑘) − 𝑥𝑖,𝑝(𝑘))
2

𝐶𝑝(𝑘)

𝑐=1

𝑃

𝑝=1

𝐼

𝑖=1

=∑∑(𝑧𝑖,𝑝(𝑘) − 𝑥𝑖,𝑝(𝑘))
2

𝑃

𝑝=1

𝐼

𝑖=1

 

(7.1)  

while guaranteeing, for each local controller 𝑖 and each 
connection-profile couple, that 

∑ 𝑦𝑖,𝑝,𝑐(𝑘)

𝑖∈𝐴𝑝,𝑐(𝑘)

≥ 𝑌𝑝 (7.2)  

𝑦𝑖,𝑝,𝑐(𝑘) = 0 if 𝑖 ∉ 𝐴𝑝,𝑐(𝑘) (7.3)  

𝑦𝑖,𝑝,𝑐(𝑘) ≥ 0 (7.4)  

where 

(7.1) is the performance index to be minimized; note that 
said index is lower when the target and actual bit rate 
assignments are closer; 

(7.2) allows to satisfy QoS constraints in terms of the 
minimum bit rate required by each profile 𝑝 (the 
structure of equation (7.2) can be replicated to take into 
account additional QoS constraints); 

(7.3) specifies that, if the 𝑖-th AP does not cover the 
connection 𝑐 of profile 𝑝 at time 𝑘, the Global 
Controller cannot assign a bit rate to said connection-
profile couple;  

(7.4) specifies that the actual bit rate assignments cannot be 
negative. 

 The actual bit rate assignments 𝑦𝑖,𝑝,𝑐(𝑘) computed by the 

Global Controller as output of the optimization problem (7.1) – 
(7.4), are transmitted at each discrete time 𝑘 to the MTs through 
the serving APs. Said MTs can transmit toward the APs at a bit 
rate 𝑇𝑖,𝑝,𝑐(𝑘) which is not higher than 𝑦𝑖,𝑝,𝑐(𝑘). 

V. SIMULATION RESULTS 

A. Case study 

The considered case study concerns load balancing and 
mobility management. More in detail, the problem consists in 
associating APs and moving MTs taking into account spatial 
considerations. Hence, the goal is to allocate enough bandwidth 
to the MTs and to exploit as much as possible APs capacities 
(avoiding congestions) while considering the distance between 
given APs and MTs. In other words, a given AP should assign 
less bandwidth to MTs whose distance is higher than a fixed 
threshold. This condition allows to reduce the power 
consumption required for transmission and, at the same time, to 
minimize the probability that an AP assigns bandwidth to a MT 
which is likely to exit from its coverage area.  

To simultaneously tackle the load balancing and mobility 
management problems, the local controllers’ state defined in 
Section III is augmented and has two components: 

• the first component, 𝑠𝑖,1, represents the distance 

between the 𝑖-th AP and the MTs 

• the second component, 𝑠𝑖,2, represent the traffic level 

as defined in equation (4) 

B. Scenario description 

The considered scenario envisages the presence of two MTs  

exploiting the resources provided by four cells (i.e., four APs 

and, consequently, four local controllers). The two moving MTs 

are assumed to belong to two different QoS profiles (hence, the 

number of QoS profiles considered by the Global Controller is 

𝑃 = 2). In other words, it is assumed that the two moving MTs 

have different QoS requirements due to their different motion 

characteristics. In this case, said requirements can be referred to 

as QoS mobility profiles since the MTs’ motion degrades several 

QoS indicators such as error rate, energy consumption and 

service continuity. Note that this scenario can be generalized by 

considering, instead of single MTs, clusters of moving MTs 

involving several connections. Indeed, nowadays, vehicles are 

equipped with a wide set of sensors for guidance support, 

multimedia systems and, also, passengers’ terminals. The local 

controllers can consider all the connections in the same vehicle 

(cluster) as belonging to the same QoS mobility profile 𝑝. 

 As depicted in Figure 2, it is assumed that the two moving 

MTs (represented as a white and a black car) change their 

coverage area during the simulations. More in detailed, for 𝑘 =
1,… ,200 the black car is covered by the cells associated to APs 

#1 and #3 while the white car is covered by the cells associated 

to APs #2 and #3 and, for 𝑘 > 200, vice versa. 

 
Figure 2. APs’ coverage and MTs’ position (left: 𝑘 ≤ 200; right: 𝑘 > 200) 

𝐴𝑃 #1 

𝐴𝑃 #2 

𝐴𝑃 #3 

𝐴𝑃 #4 
𝐴𝑃 #1 

𝐴𝑃 #2 

𝐴𝑃 #3 

𝐴𝑃 #4 

𝑘 = 1,… ,200 𝑘 = 201,… 



Concerning the local controllers’ state definition, let 

• 𝜌high
distance

𝑖,𝑝
 and 𝜌low

distance
𝑖,𝑝

 be two fixed thresholds 

specifying the maximum distance, between the 𝑖-th AP 
and given MT;  

• 𝜌high
traffic

𝑖,𝑝
 and 𝜌low

traffic
𝑖,𝑝

 be two fixed thresholds 

specifying the traffic level above which the 𝑖-th local 
controller is considered overloaded with respect to 
connections of profile 𝑝 and vice versa, respectively. 

Said thresholds allow to define a limited set of discrete levels for 
characterizing the local controllers’ congestion level (i.e., used 
to solve the load balancing problem) and the convenience for a 
given local controller to serve a generic connection-profile 
couple (i.e., used to perform mobility management). 

 On the ground of these considerations, it is possible to define 
the generic entries of the two components of the augmented local 

controllers state (𝑑𝑖,𝑝
(𝑗)(𝑘) and 𝑙𝑖,𝑝(𝑘) respectively) as 

𝑑𝑖,𝑝
(𝑗)(𝑘)

=

{
 
 

 
 0 if 𝛿𝑖,𝑝

(𝑗)(𝑘) < 𝜌low
distance

𝑖,𝑝

1 if 𝜌low
distance

𝑖,𝑝
≤ 𝛿𝑖,𝑝

(𝑗)(𝑘) ≤ 𝜌high
distance

𝑖,𝑝

2 if 𝛿𝑖,𝑝
(𝑗)
> 𝜌high

distance

𝑖,𝑝

 
(8)  

𝑙𝑖,𝑝(𝑘) =

{
 
 

 
 0 if 𝑡𝑖,𝑝(𝑘) < 𝜌low

traffic
𝑖,𝑝

1 if 𝜌low
traffic

𝑖,𝑝
≤ 𝑡𝑖,𝑝(𝑘) ≤ 𝜌high

traffic

𝑖,𝑝

2 if 𝑡𝑖,𝑝 > 𝜌high
traffic

𝑖,𝑝

 (9)  

where 𝑑𝑖,𝑝
(𝑗)(𝑘) and 𝑙𝑖,𝑝(𝑘) represent the 𝑖-th local controller state 

with respect to the mobility management and load balancing 

problems, respectively, and 𝛿𝑖,𝑝
(𝑗)(𝑘) and 𝑡𝑖,𝑝(𝑘) are the relative 

distance between the 𝑖-th local controller’s AP and the 𝑗-th MT 
and the traffic level experienced by the 𝑖-th local controller with 
respect to connections of profile 𝑝, respectively. 

The rewards defined in equation (6) can be particularized for 

the considered scenario for taking into account the augmented 

state defined in equations (8)-(9) as follows: 

𝑟𝑖,𝑝(𝑘) =∑
𝐾1

1 + 𝑒
𝛼𝑗∗𝑑𝑖,𝑝

(𝑗)
(𝑘)
  ∗  𝑡𝑖,𝑝

𝐽

𝑗=1

+
𝐾2

1 + 𝑒−𝛽∗𝑙𝑖,𝑝(𝑘)
 

(10)  

where 𝐾1 and 𝐾2 are two constants used to weight the two state’s 

components and 𝛼𝑗 and 𝛽 are positive constants. Rewards have 

been shaped using sigmoid functions since this function, by 

properly setting 𝛼 and 𝛽, is able to represent the effect of the 

distance and traffic level on the system performances. This is 

possible thanks to the sigmoid structure which allows the 

definition of three input variable intervals (characterized by 𝛼 

and 𝛽) returning low, medium, or high values of the output (i.e., 

the reward value).    

 Concerning the action space, it is assumed that the 𝑖-th local 

controller can either (i) increment the bandwidth allocated to 

connections of profile 𝜋 of a positive constant Δ, (ii) do not vary 

the allocated bandwidth or (iii) decrement the allocated 

bandwidth of −Δ. It follows that the dimension of the action 

space is Λ𝑃 = 9 since there are 𝑃 = 2 QoS (mobility) profiles 

and Λ = 3 discrete levels of allocated bandwidth variations (i.e., 

+Δ, 0, −Δ). 

C.  Simulations and results 

 Simulations were performed on a laptop equipped with an 
Intel i5 processor and 12GB RAM. 

 In the simulations, the proposed RL-based hierarchical 
control strategy is compared with a Nearest Not-Full (N-NF) 
controller allocating bandwidth to the MTs through the nearest, 
not congested, AP. 

 Simulations show that the proposed hierarchical control 
strategy is able to effectively tackle both the load balancing and 
mobility management problems. More in detail, concerning load 
balancing, from Figure 3 it is clear that the proposed RL-based 
approach guarantees a fair load distribution between APs while 
the N-NF approach under/overloads them. Furthermore, the 
proposed RL approach is able to keep APs’ loads in the optimal 

range defined by the upper and lower thresholds (i.e., 𝜌low
traffic

𝑖,𝑝
 

and 𝜌high
traffic) which in the figure are represented by the green and 

red lines, respectively. 

 Concerning mobility management, when the two MTs 
change their coverage area (i.e., at 𝑘 = 200), the N-NF 
approach experiences drastic changes in the allocated bandwidth 
(which translates in performing heavy handover procedures that 
degrades the system performances) while the proposed RL 
approach guarantees a smoother transition (see Figure 3). Said 
transition stops when the loads reach a new equilibrium in terms 
of loads and of the mutual distances between APs and MTs. 
Figure 4 shows the bandwidth allocation for the two MTs 
computed by the proposed RL and N-NF approaches. As it can 
be seen, both approaches vary the bandwidth allocation 
considering the relative position between the APs and MTs. 
However, the proposed RL approach is able to exploit all the 
available resources and to avoid congestions while respecting 
the QoS (mobility) constraints. 

 

Figure 3. APs allocated bandwidth 



 
 

Figure 4: MTs allocated bandwidth 

VI. CONCLUSIONS 

In this paper, a RL-based hierarchical control strategy to 

simultaneously tackle the load balancing and QoS management 

problems in multi-access networks has been presented. The 

adoption of distributed RL agents (i.e., the local controllers), 

together with the proposed hierarchical control architecture, 

empowers the scalability of the proposed approach. Scalability 

is further guaranteed by means of the adoption of discrete levels 

used to reduce the state and action spaces.  

The scalable, dynamic and closed-loop nature of the 

proposed control strategy has been validated in a specific use-

case concerning moving (clusters of) MTs. 
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