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Antibodies have the remarkable ability to recognise their cognate antigens with
extraordinary affinity and specificity. Discerning the rules that define antibody-antigen
recognition is a fundamental step in the rational design and engineering of functional
antibodies with desired properties. In this study we apply the 3D Zernike formalism to the
analysis of the surface properties of the antibody complementary determining regions
(CDRs). Our results show that shape and electrostatic 3DZD descriptors of the surface of
the CDRs are predictive of antigen specificity, with classification accuracy of 81% and area
under the receiver operating characteristic curve (AUC) of 0.85. Additionally, while in terms
of surface size, solvent accessibility and amino acid composition, antibody epitopes are
typically not distinguishable from non-epitope, solvent-exposed regions of the antigen, the
3DZD descriptors detect significantly higher surface complementarity to the paratope, and
are able to predict correct paratope-epitope interaction with an AUC � 0.75.

Keywords: surface complementarity, antibody complementarity determining regions, antibody—antigen complex,
antigen recognition, zernike polynomials

1 INTRODUCTION

Antibodies, also known as immunoglobulins, are multimeric Y-shaped proteins that the immune
system uses to recognize and neutralize foreign targets, named antigens. The antigen binding site is
located on the upper tip of the molecule, and is formed by the pairing of two variable domains, the
VH and the VL, each contributing three hypervariable loops or complementary determining regions
(CDR). The remarkable ability of the antibodies to recognize virtually any foreign antigen stems from
the sequence and length variability of the CDR, while the framework of the molecule is largely
conserved (Chothia and Lesk, 1987; Chothia et al., 1989; Tramontano et al., 1990).

Early studies, based on a handful of crystallographic structures, revealed that despite the large
sequence variability of CDRs, five out of the six hypervariable loops only exhibit a limited number of
main-chain conformations called “canonical structures” (Chothia and Lesk, 1987; Chothia et al.,
1989), where most sequence variations only modify the surface generated by the side chains on a
canonical main-chain structure. Over the years, with more experimentally determined structures of
antibodies becoming available, an exhaustive repertoire of canonical structures has been compiled
and their relationship with the chain isotypes (Tramontano et al., 1990; Chothia et al., 1992; Foote
and Winter, 1992; Tomlinson et al., 1995; Martin and Thornton, 1996; Chothia et al., 1998;
Decanniere et al., 2000; Vargas-Madrazo and Paz-García, 2002; Chailyan et al., 2011; North et al.,
2011; Kuroda and Gray, 2016) and packing mode of the antibody was extensively analysed (Chothia
et al., 1985; De Wildt et al., 1999; Abhinandan and Martin, 2010; Jayaram et al., 2012; Dunbar et al.,
2013a). This led to the development of fully automated pipelines for the prediction of
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immunoglobulin structures given their amino acid sequences,
with predictions reaching near-native accuracy both at the global
and local CDR level (Whitelegg and Rees, 2000; Marcatili et al.,
2014; Messih et al., 2014; Dunbar et al., 2016; Lepore et al., 2017;
Weitzner et al., 2017). In parallel, a major focus has been in
understanding the structural and molecular basis of antibody
function and, in particular, of antigen recognition. The
identification of the portion of the antigen that is recognized
by an antibody, i.e. the epitope, is indeed of central relevance for
the development of vaccines and immunodiagnostics, as well as
for our understanding of protective immunity (Pollard and
Bijker, 2020). As a consequence, in the past years, there have
been several attempts in the direction of relating the sequence and
structural properties of antibody binding sites to their function,
and more specifically, to the type of recognised antigen. Early
work by Webster et al. in 1994 first discovered a strong
correlation between the topography of the CDRs and the
broad nature of the antigen, proposing that antibodies binding
protein antigens are characterised by flat combining sites, while
those recognising smaller antigens, like haptens and peptides,
show the most concave interfaces (Webster et al., 1994).
Subsequent work confirmed and extended these findings to
the length and sequence composition of the CDRs based on
increased availability of sequence and structural data of antibody-
antigen complexes (MacCallum et al., 1996; Collis et al., 2003; Lee
et al., 2006; Raghunathan et al., 2012).

The study of molecular interactions in proteins, and antibodies in
particular, poses well known challenges. Existing experimental
methods, such as Xray crystallography, mass spectrometry, phage
display and mutagenesis analysis are intrinsically expensive,
laborious, and time consuming (Sela-Culang et al., 2013). Hence,
computational methods have established themselves as a valuable
complement to experimental biology efforts for the analysis and
characterization of the vast repertoire ofmolecular interactions at the
atomic level. Early studies by Lee and Richards (1971) proposed the
first description of protein solvent-accessible surface, which was later
refined by Connolly (1983), allowing to distinguish surface atoms
from buried atoms and opening the way to efficient graphical
representation and comparison of molecular surface properties.
Subsequent methods relied on the application of spherical
harmonics descriptors (Leicester et al., 1988; Max and Getzoff,
1988) and Fourier correlation theory to shape complementarity
and electrostatic interaction analysis (Gabb et al., 1997).
Additionally, approaches based on tessellation (Walls and
Sternberg, 1992; Li et al., 2007), void volume (Jones and
Thornton, 1996) and surface density (Norel et al., 1995) provided
an efficient way for representation and matching of protein surfaces,
including protein-protein interaction sites, ligand binding sites and
functional sites (Via et al., 2000; Mitra and Pal, 2010).

In this study we rely on a surface representation of antibodies
and their cognate antigens based on the 3D Zernike Descriptors
(3DZD). The Zernike polynomials were first described by Fritz
Zernike in 1934 (Zernike and Stratton, 1934) as a framework for
the analysis of aberrations in optical systems and subsequently
generalized to three-dimensions (Ming-Kuei Hu, 1962;
Canterakis, 1999; Novotni and Klein, 2004). One of the
convenient features of Zernike polynomials is that their

rotational symmetry allows the polynomials to be expressed as
products of radial terms and functions of angle, where the
coordinate system can be rotated without changing the form
of the polynomial. Hence, they allow a concise, roto-
translationally invariant characterization of 3D objects,
comparing favourably to other moment-based descriptors in
terms of shape retrieval and robustness to topological and
geometrical artifacts (Novotni and Klein, 2004). When applied
tomolecular surfaces, the 3DZD have been shown to capture both
global and local protein surface properties and to adequately
represent their physico-chemical properties (Venkatraman et al.,
2009a; Venkatraman et al., 2009b; Kihara et al., 2011; Di Rienzo
et al., 2017; Daberdaku and Ferrari, 2018; Daberdaku and Ferrari,
2019; Alba et al., 2020; Di Rienzo et al., 2020). Here we apply the
3DZD to provide a quantitative description of the shape and
electrostatic properties of Ab–Ag interfaces, leading to an
accurate classification of the antibodies according to the type
of their cognate antigens solely based on the information of the
CDR surface, with overall AUC � 0.85 and accuracy of 81%.

Additionally, we show that while in terms of surface size,
solvent accessibility and amino acid composition, antibody
epitopes are not distinguishable from non-epitope, solvent-
exposed regions of the antigen, they display significantly
higher surface complementarity to the antibody paratope, both
in terms of shape and electrostatic 3DZD, leading to a prediction
performance in terms of ROC AUC of 0.75 and 0.61 respectively.

2 MATERIALS AND METHODS

2.1 Dataset
We selected 326 antibodies with redundancy lower than 90% and
resolution <3.0 Å using the SabDab database (Dunbar et al.,
2013b). 229 antibodies were solved in complex with protein
antigens, 71 with haptens, 19 with carbohydrates and 7 with
nucleic acids. The sequence of each antibody was renumbered
according to the Chothia numbering scheme (Chothia and Lesk,
1987; Chothia et al., 1989) using an in-house python script.

2.2 Solvent Accessible Surface and
Electrostatics Surface
For each antibody and protein antigen 3D structure, atomic
partial charges and radii were assigned using PDB2PQR with
default parameters (Dolinsky et al., 2004). Solvent Accessible
Surface (SAS) was computed using GROMACS (Abraham et al.,
2015). Electrostatic surface (ES) potential was computed using
the Bluues software (options -srf and -srfpot) (Fogolari et al.,
2012). Each molecular surface point was assigned to the
electrostatic potential of the corresponding residue. The
“geometry” (Habel et al., 2019) and “Bio3D” (Grant et al.,
2006) packages available in R were used for PDB structure
processing and analysis.

2.3 Voxelization Procedure
The set of selected molecular surface points was scaled to the unit
sphere and placed into a 3D grid of dimension 1283. To avoid
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boundary effects, the size of the bounding box of the point cloud
was set so as to be contained within 80% of the unit sphere
(Grandison et al., 2009). Voxelization was performed separately
for SAS and ES. In SAS voxelization, each voxel was assigned a
value of 1 if the center of the voxel was closer than 1.7 to any SAS
point, 0 otherwise. In ES voxelization, each voxel was assigned the
mean ES value of the enclosed points, 0 otherwise.

Since the Zernike formalism does not differentiate positive and
negative values (Chikhi et al., 2010; Daberdaku and Ferrari,
2018), but only patterns of non-zero values in the 3D space,
voxels were initialized for positive and negative patterns
separately using a similar approach as done in (Chikhi et al.,
2010), as follows:

f+
elec � 0 if felec < 0 f+

elec � felec if felec > 0 (1)

f−
elec � felec if felec < 0 f−

elec � 0 if felec > 0 (2)

In summary, voxels with positive electrostatics values were
initialized to 1 and all other voxels with negative electrostatics
values were set to zero, and vice versa. The resulting voxels, one
for SAS values, and two for positive and negative ES values,
respectively, were considered as three different 3D functions, f(x),
each expanded into the 3DZD as described in the next section.

2.4 3D Zernike Descriptors
For the quantitative description of the binding sites, we rely on a
representation based on the Zernike polynomials and their
corresponding moments. Moment-based representations are a
class of mathematical descriptors of shape, originally developed for
pattern recognition and subsequently generalized to three-dimensions
(Ming-Kuei Hu, 1962; Canterakis, 1999; Novotni and Klein, 2004).

A surface described by a function f (r, θ, ϕ) in polar coordinates
can be represented by a series expansion in an orthonormal
sequence of polynomials (Canterakis, 1999):

f(r, θ, ϕ) � ∑∞
n�0

∑n
l�0

∑l
m�−l

CnlmZ
m
nl(r, θ, ϕ) (3)

where the indices n, m and l are the order, degree and repetition,
respectively.

The Zernike polynomials can be written as:

Zm
nl(r, θ, ϕ) � Rnl(r)Ym

l (θ, ϕ) (4)

where the Y functions are complex spherical harmonics
depending on both θ and ϕ while R only depends on the
radius r, which is given by

Rnl(r) � ∑(n−l)2

k�0
Nnlkr

n−2k (5)

where N is a normalization factor.
The 3D Zernike moments of a surface described by a function

f (r, θ, ϕ) are defined as the coefficients of the expansion of f(r) in
the Zernike polynomial basis, i.e.:

Cnlm � ∫
|r|≤1

f(r)Zm
nl(r, θ, ϕ)dr (6)

where �Z is the polynomial complex conjugate.
Their rotation invariant norms, i.e. the 3DZD, are defined as:

Dnl � ‖Cnlm‖ �

����������∑l
m�−l

(Cnlm)2
√√

. (7)

The Zernike formalism can be as detailed as desired by
modulating the order of the expansion n. In our
implementation, the function f represents the geometric or the
(positive or negative) electrostatic potential of the molecular
surface, and the maximum order of expansion was set to 20,
giving a total of 121 invariants.

2.5 Generation of Native Epitopes and
Surface Decoys
Given the dataset of Antibody-Antigen complexes containing
protein antigens, the native geometric epitope was defined as the
set of residues of the antigen having a distance lower than 6 Å to
any residue of the antibody. The pivot residue was defined as the
residue with the lowest mean distance to any residue of the native
geometric epitope. The native electrostatic epitope was defined as
the set of residues of the antigen having a distance shorter than
15 Å to any residue of the antibody. For the set of native
geometric epitope residues, the Solvent Accessible Surface
Area (SASA) was computed using GROMACS. The mean and
standard deviation values of the computed global and residue-
based SASA were used to generate an alternative set of surface
patches, i.e. decoy epitopes. The algorithm first selects a decoy
pivot residue, i.e. by randomly selecting any solvent exposed
residue having a value of SASA within half standard deviation of
the mean SASA value measured over all pivot residues of the
native epitopes, i.e. SASA � 0.48 ± 0.33 nm2 (Supplementary
Figure S1). The algorithm proceeds by adding neighboring
solvent accessible residues, i.e. having relative SASA >0.2 (Tien
et al., 2013), until the decoy geometric epitope reaches a similar
global SASA to that of the native epitope. To ensures continuous
coverage of the antigen protein surface (Supplementary Figure
S2) and diversity of the generated patches, a maximum 50%
surface patch overlap was allowed between native and decoy
epitopes. Electrostatic decoy epitopes were defined by calculating
the electrostatic potential over the region defined by a geometric
decoy epitope considering all the charged residues within 15�A to
the pivot residue.

2.6 Comparison of the 3DZD Descriptors
Given a pair of ordered set of 3DZD, x and y, their cosine distance
is measured as:

D(x, y) � 1 − Sc(x, y) � 1 − xy

‖x‖ ‖y‖ (8)

where Sc (x, y) is the cosine similarity as measured by the “proxy”
R package (Meyer and Buchta, 2019).

Given two patches A and B, the similarity between their 3DZD
is computed as:
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[A − B]shape � D(XA
shape, X

B
shape) (9)

[A − B]elec � (D(X+,A
elec, X

+,B
elec) +D(X−,A

elec, X
−,B
elec))

2
(10)

where Xshape, X+
elec and X−

elec are, respectively, the shape, the
electrostatic positive potential, and the electrostatic negative
potential 3DZD.

The surface complementarity between A and B is defined as
follows:

[A − B]shape � D(XA
shape, X

B
shape) (11)

[A − B]elec � (D(X+,A
elec, X

−,B
elec) +D(X−,A

elec, X
+,B
elec))

2
(12)

3 RESULTS

In this work we aim at providing a quantitative description of the
geometric and electrostatic properties of antibody-antigen
interaction through a mathematical representation of the
interacting surfaces. To this aim, we rely on a dataset of
experimentally determined 3D structures of antibody-antigen
complexes and a moment-based representation of the
interacting surface using the 3D Zernike descriptors (3DZD)
(Novotni and Klein, 2004; Venkatraman et al., 2009b; Daberdaku
and Ferrari, 2018).

The 3DZD descriptors provide a compact, roto-translationally
invariant representation of 3D objects, thus enabling effective
comparison of both global and local properties of molecular
surfaces by standard pairwise similarity metrics. The order n

of the series expansion determines the resolution of the
descriptor. In this study, 3DZD were computed at different
levels of truncation of the expansion, with n ranging from 10
to 20, which correspond to vectors of 36 and 121 invariants,
respectively. The overall scheme of the procedure used in this
work is shown in Figure 1.

3.1 Antibody Classification Based on
Surface Shape and Electrostatic 3DZD
Descriptors of CDRs
We have previously shown that a 3DZD-based description of the
surface of the antibody CDRs provides an effective metric for
antibody classification according to their specificity towards
protein and non-protein antigens (Di Rienzo et al., 2017).
Here we extend this approach to the analysis of both the
shape and electrostatic properties of the CDRs and analyze the
classification performance of both descriptors at different orders
of the Zernike expansion. For each CDR we generated two sets of
121-dimensional vectors, representing the 3DZD of the shape and
the electrostatic surface, similar to what done in (Chikhi et al.,
2010; Di Rienzo et al., 2020). The similarity between each set of
descriptors is then computed to perform an all-against-all
comparison of CDRs, according to Eq. 9, 10 in Methods
section. For each CDR, we then selected the nearest neighbors
set as the 5% most similar CDRs in terms of shape and
electrostatic surface and analyse the number of protein
binding antibodies (Npb) in the neighbours set. As it is shown
in Figures 2A,B, protein-binding antibodies (green curve) are
typically characterized by an higher number of Npb

(mean(Nshape
pb ) � 13.37 ± 2.61, mean(Nelec

pb ) � 13.54 ± 3.24) in

FIGURE 1 | Schematic workflow for the comparison of Ab-Ag interfaces based on 3DZD. (A) Molecular representation of a given Ab-Ag complex. Antibody and
antigen are shown in gold and blue, respectively. (B) The interacting surfaces are selected according to inter-molecular atomic distance threshold. (C) Solvent accessible
and electrostatic surfaces are computed on the selected regions (D) 3DZD Zernike descriptors are computed for each molecular surface. (E) Distribution of 3DZD
surface complementary complementarity between paratope and non-epitope surface decoys. The red line denotes 3DZD surface complementarity between the
antibody paratope and their cognate epitope.
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the neighbors set as compared to non protein-binding antibodies
(orange curve) (mean(Nshape

pb ) � 10.31 ± 2.99,
mean(Nelec

pb ) � 9.93 ± 3.13) and to random expectation (i.e., Ex
[Npb] � NProt/Ntot, where Ex [Npb] is the expected number of
protein-binding antibodies if they were distributed uniformly,
Nprot represents the number of protein-binding in the dataset and
Ntot is the total number of antibodies in the dataset.).

We next analyzed the performance of each descriptor in
classifying the CDRs as a function of the antigen type, using a
leave-one-out approach. In summary, for each CDR, if the Npb

was greater than Ex (Npb) the CDR was labeled as protein-
binding, non protein-binding otherwise. The obtained
classification accuracy for the shape and electrostatic
descriptors at order n � 20 is 75 and 73%, respectively. Using
a Receiver Operating Curve (ROC) analysis, both descriptors
achieved an Area Under the Curve (AUC) of 0.78. We next
analyzed the classification performance when assigning the class
label based on the weighted contribution of shape and
electrostatics, as follows:

Npb � ANelec
pb + (1 − A)Nshape

pb A ∈ [0, 1] (13)

whereNshape
pb andNelec

pb correspond to theNpb computed based on
shape and electrostatic descriptors, respectively, and A is the
weight ranging from 0 to 1. The results are shown in Figure 2C,
where the ROCAUC is reported as a function of the weight A and
the order n of the Zernike expansion. As it can be noticed, overall
performance increases with increasing values of n. Higher AUC
values are achieved when both descriptors contribute with similar
weight in the classification. Top classification performance indeed
is obtained with A � 0.4 and n � 17, leading to an AUC � 0.85 and
accuracy of 81%. A very similar performance is obtained with n �
20 and A � 0.4 (AUC � 0.83).

3.2 CDRs vs. Antibody Paratope
The sequence and structure analysis of antibodies, as well as antibody
engineering experiments, crucially rely on the precise identification
of the CDRs from the antibody sequence (Chothia and Lesk, 1987;
Chothia et al., 1989; Kabat et al., 1992; MacCallum et al., 1996;
Lefranc, 2011). On the other hand, it is well known that the CDRs
only provide a proxy of the actual antigen-binding site, i.e. the
antibody paratope (Kunik et al., 2012; Olimpieri et al., 2013). Indeed,
early studies showed that only 20–30% of residues within the CDRs

FIGURE 2 | (A) Density distribution of protein binding antibodies (Npb) in the neighbours set of protein binding (green curve) and non-protein binding antibodies
(orange curve) based on surface shape similarity. (B) Density distribution of protein binding antibodies (Npb) in the neighbours set of protein binding (green curve) and
non-protein binding antibodies (orange curve) based on electrostatic surface similarity. (C)Classification performance (ROC AUC) is reported as a function of the order n
of the Zernike expansion and weight of the average. (D) ROC curve of the best classifier based on shape 3DZD (blue curve), electrostatic 3DZD (red curve) and
weighted average Npb (green curve).
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are directly involved in the interaction with the antigen (Padlan,
1994; Sela-Culang et al., 2013). To quantify to what extent this
approximation affects our predictions, we analyzed the classification
performance as a function of distance from the center of the
antibody-antigen interface. For each Antibody-Antigen complex,
we defined a centerpoint, b, as the centroid of the 10 interface atoms
of the antibody closer to the antigen and computed the 3DZD for
increasing concentric shells around b.

We then applied the same classification procedure as described
previously, by fixing the order n � 20 for both shape and
electrostatic 3DZD. The results are shown in Figure 3 where the
ROC AUC of the individual classifiers are reported as a function of
the percentage of the CDR surface included in the analysis.

As it can be noticed in Figure 3B, the performance of the shape-
based classifier shows a maximumwhen the selected surface region
around b extends up to including 20% of the CDRs (ROC AUC �
0.88) followed by a linear decrease when larger surfaces are
considered. These results are consistent with the previous
notion that shape recognition of the antigen is largely mediated
by smaller interacting surfaces contained within the CDR, i.e. the
antibody paratope. In summary, while the overall CDR surface can
inform about the function of the antibody, this analysis highlights
that the information of the paratope can significantly increase our

ability to predict antibody specificity. On the other hand, in
Figure 3C, the classification performance based on the
electrostatic descriptor shows a different trend. Indeed, while
the classifier shows an overall lower performance compared to
the shape-based classifier, performance increases when larger CDR
surfaces are considered, reaching a maximum when almost the
entire CDR surface is included in the analysis.

3.3 Geometric and Electrostatic
Complementarity of Antibody-Antigen
Interfaces
A key feature of the 3DZD description is that it is invariant under
rotation and translation of the represented surface. This implies
that two interacting protein regions with perfect surface
complementarity yield identical sets of 3DZD descriptors
(Venkatraman et al., 2009a). In line with this principle, here
we focus on the application of 3DZD to the analysis of surface
complementarity between antibody CDRs and their cognate
protein antigens (Details in Methods). The results are shown
in Figure 4, where the average surface shape and electrostatic
complementarity computed on 229 antibody-antigen complexes
are reported as a function of the interaction cutoff distance

FIGURE 3 | (A) Portion of the CDR surface used for classification. (B,C) Area Under the ROC Curve achieved considering different portions of the CDR, based on
shape (B) and electrostatics (C) 3DZD descriptors. Dashed lines indicate the performances obtained considering the entire CDR surface (AUC � 0.78 for both
descriptors).
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between the antibody and the antigen, and the order n of the
series expansion. As expected, shape complementarity decreases
at higher values of the cutoff distance, i.e. as regions of the
antibody/antigen that are distant from the interaction interface
are progressively included in the analysis. On the other hand,
electrostatic complementarity increases at higher distances,
reaching a maximum when the distance cutoff is 15�A.
Notably, in both cases, results are consistent at different
orders n of the series expansion. These results indicate that
the two descriptors are competent in capturing both short- and
long-range effects occurring during antibody-antigen
recognition. As further validation of our approach, we
measured the surface complementarity at the paratope-
epitope interface and compared it with that measured
between the paratope and a set of non-epitope, solvent-
exposed regions of the antigen, i.e. surface decoys. The
results are reported in Figure 5, where both shape and
electrostatic complementarity are reported for each paratope
as normalized Z-score distances to native epitopes and surface
decoys, respectively. Notably, while in terms of amino acid
composition, surface size, and solvent accessibility the antibody
epitopes are essentially not distinguishable from the decoys
(Supplementary Figure S3), they display significantly higher
surface shape and electrostatics complementarity to the
paratope. In summary, the metric is able to distinguish the
correct paratope-epitope pair among the set of decoys with a
classification performance of AUC � 0.75 based on the shape
descriptor, and AUC � 0.61 based on the electrostatic 3DZD.
Additionally, we compared the 3DZD complementarity
observed between specific paratope-epitope pairs and that
between the antibody paratopes and non-native epitopes. The
results (Supplementary Figure S4) show that only a relatively
low number, i.e. 68% (72%) of the antibodies in our dataset
show a higher shape (electrostatic) complementarity to their
cognate epitope compared to non-native epitopes, highlighting
the limitation of this metric in the very elusive task of predicting
which antibody recognises specifically a given antigen.

4 DISCUSSIONS

In this work we describe a computational protocol based on
the 3D Zernike descriptors formalism, which allows a fast,
superposition-free comparison of molecular surfaces, and has
been applied here to the study of the interacting regions of the
antibodies and their cognate antigens. The method represents
a significant upgrade compared to our previous
implementation (Di Rienzo et al., 2017) as it includes two
relevant modifications found to improve its performance,
namely, the selection of the molecular patch of interest
and the description of its electrostatic properties. Using
this new version of the method we are able to classify the
antibodies according to the nature of their recognized
antigens with a classification performance of 81%. Notably,
the method only takes as input the information of the
antibody CDR surface. However, when the analysis is
restricted to the CDR surface that is in direct contact with
the antigen, i.e. the antibody paratope, the classifier based on
the shape 3DZD descriptor alone reaches a maximum
performance of AUC � 0.88.

As 3DZD descriptors are roto-translation invariant, they
are also adept at capturing and quantifying surface
complementarity at protein-protein interfaces
(Venkatraman et al., 2009a). Here we exploit this property
to study the surface shape and electrostatic complementarity
between antibody CDRs and their bound protein antigens. Our
results indicate that maximum surface shape complementarity
is achieved at the docking interface, i.e. at 4 to 8 Angstrom
distance cutoff between antibody and antigen residues, and
decreases when larger distance cutoffs are considered. In
contrast, electrostatic complementarity increases at larger
distance cutoffs, reaching a maximum between 14 and 17 Å.
For both descriptors, results are consistent at different orders n
of the series expansion. Hence, we tested the ability of the
surface complementarity metric in recognising antigenic
surface epitopes among a set of non-epitope, solvent

FIGURE 4 | Surface complementarity of antibody-antigen interacting surfaces based on shape (A) and electrostatic (B) 3DZD descriptors as a function of the
interaction cutoff distance (y-axis) and order n of the series expansion (x-axis).
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exposed regions of the antigen, i.e. surface decoys. Notably,
while in terms of surface size, solvent accessibility and amino
acid composition the selected surface decoys are not
distinguishable from true epitopes, they display significantly
lower surface complementarity to the paratope. Indeed, when
the 3DZD-based complementarity metric is used to select the
correct paratope-epitope pair among a set of surface decoys,

we show that shape complementarity alone can lead to a
prediction performance of ROC AUC � 0.75. These results
show that 3DZD provide a valid quantitative metric for the
analysis of surface complementarity at the antibody-antigen
interface, which is expected to find applications in many areas,
including the identification and design of optimal antibody-
antigen interfaces.

FIGURE 5 | (A)Molecular representation of experimental paratope (blue), experimental epitope (red) and decoys (green). Z-score distribution of (B) shape and (C)
electrostatic surface complementarity based on the 3DZD descriptors between paratope-epitope (red) and paratope-decoy surfaces (green).
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