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Abstract

We consider the one-sided matching problem, where n agents
have preferences over n items, and these preferences are in-
duced by underlying cardinal valuation functions. The goal
is to match every agent to a single item so as to maximize
the social welfare. Most of the related literature, however, as-
sumes that the values of the agents are not a priori known, and
only access to the ordinal preferences of the agents over the
items is provided. Consequently, this incomplete information
leads to loss of efficiency, which is measured by the notion
of distortion. In this paper, we further assume that the agents
can answer a small number of queries, allowing us partial ac-
cess to their values. We study the interplay between elicited
cardinal information (measured by the number of queries per
agent) and distortion for one-sided matching, as well as a
wide range of well-studied related problems. Qualitatively,
our results show that with a limited number of queries, it is
possible to obtain significant improvements over the classic
setting, where only access to ordinal information is given.

1 Introduction
In the one-sided matching problem (often referred to as the
house allocation problem), n agents have preferences over
a set of n items, and the goal is to find an allocation in
which every agent receives a single item, while maximizing
some objective. Typically, as well as in this paper, this ob-
jective is the (utilitarian) social welfare, i.e., the total utility
of the agents. Since its introduction by Hylland and Zeck-
hauser (1979), this has been one of the most fundamental
problems in the literature of economics (e.g., see (Bogomol-
naia and Moulin 2001; Svensson 1999)), and has also been
extensively studied in computational social choice (e.g., see
(Klaus, Manlove, and Rossi 2016)).

The classic work on the problem (including Hylland and
Zeckhauser’s seminal paper) assumes that the preferences of
the agents are captured by cardinal valuation functions, as-
signing numerical values to the different items; these can
be interpreted as their von Neuman-Morgenstern utilities
(Von Neumann and Morgenstern 1947). From a more algo-
rithmic viewpoint, one can envision a weighted complete bi-
partite graph (with agents and items forming the two sides
of the partition), where the weights of the edges are given
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by these values. Crucially, most of the related literature as-
sumes that the designer only has access to the preference
rankings of the agents over the items (i.e., the ordinal pref-
erences) induced by the underlying values, but not to the
values themselves.1 This is motivated by the fact that it is
fairly standard to ask the agents to simply order the items,
while it is arguably much more demanding to require them
to specify exact numerical values for all of them.

This begs the following natural question: What is the ef-
fect of this limited information on the goals of the algorithm
designer? In 2006, Procaccia and Rosenschein defined the
notion of distortion to measure precisely this effect, when
the goal is to maximize the social welfare. Their original re-
search agenda was put forward for settings in general social
choice (also referred to as voting), but has since then flour-
ished to capture several different scenarios, including the
one-sided matching problem. For the latter problem, Filos-
Ratsikas, Frederiksen, and Zhang (2014), showed that the
best possible distortion achieved by any ordinal algorithm is
Θ(
√
n), even if one allows randomization, and even if the

valuations are normalized. For deterministic algorithms, the
corresponding bound is Θ(n2) (Theorem 1).

While the aforementioned bounds establish a stark impos-
sibility when one has access only to ordinal information,
they do not rule out the prospect of good approximations
when it is possible to elicit some cardinal information. In-
deed, the cognitive burden of eliciting cardinal values in the
literature has mostly been considered in the two extremes;
either full cardinal information or not at all. Conceivably
though, if the agents needed to come up with only a few
cardinal values, the elicitation process would not be very
demanding, while it could potentially have wondrous ef-
fects on the social welfare. This approach was advocated re-
cently by Amanatidis et al. (2020b), who proposed to study
the tradeoffs between the number of cardinal value queries
per agent and distortion. For the general social choice set-
ting of Procaccia and Rosenschein (2006), Amanatidis et al.
(2020b) actually showed that with a limited number of such
queries, one can significantly improve upon the existing
strong impossibilities (Boutilier et al. 2015; Caragiannis
et al. 2017).

1 The pseudo-market mechanism of Hylland and Zeckhauser
(1979) is a notable exception to this.
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Motivated by the success of this approach for general so-
cial choice settings, we extend this research agenda and aim
to answer the following question for the one-sided matching
problem:

What are the best possible information-distortion tradeoffs
in one-sided matching? Can we achieve significant improve-
ments over the case of only ordinal preferences, by making
only a few cardinal value queries per agent?

1.1 Our Contribution
We consider the one-sided matching problem with the goal
of maximizing the social welfare under limited information.
We adopt the standard assumption in the related literature
that the agents provide as input their ordinal preferences over
the items, and that these are induced by their cardinal valu-
ation functions. Following the agenda put forward by Ama-
natidis et al. (2020b), we also assume implicit access to the
numerical values of the agents via value queries; we may
ask for an agent i and an item j, and obtain the agent’s value,
vi(j), for that item.

We measure the performance of an algorithm by the stan-
dard notion of distortion, and our goal is to explore the
tradeoffs between distortion and the number of queries we
need per agent. As the two extremes, we note that if we
use n queries per agent, we recover the complete cardinal
valuation profile and thus the distortion is 1, whereas if we
use 0 queries, i.e., we use only the ordinal information, the
best possible distortion is Θ(n2) (see Theorem 1). The lat-
ter bound holds even if we consider valuation functions that
satisfy the unit-sum normalization, i.e., the sum of the values
of each agent for all the items is 1. As we mentioned earlier,
even when allowing randomization, the best possible distor-
tion is still quite large (Θ(

√
n) (Filos-Ratsikas, Frederiksen,

and Zhang 2014)) without employing any value queries. In
this work, we only consider deterministic algorithms, and
leave the study of randomized algorithms for future work.

We provide the following results:

• In Section 3, we present an algorithm parametrized by
λ, which achieves distortion O(n1/(λ+1)) by making
O(λ log n) queries per agent. In particular, by setting
λ = O(1) and λ = O(log n) we achieve respectively
– distortion O(

√
n) using O(log n) queries per agent;

– constant distortion using O(log2 n) queries per agent.

The algorithm is inspired by a conceptually similar idea
presented by Amanatidis et al. (2020b) for the social
choice setting. In Section 6 we adapt our algorithm to
provide analogous information-distortion tradeoffs for a
wide range of well-studied optimization problems, in-
cluding two-sided matching, general graph matching
and the clearing problem for kidney exchange.

• In Section 4 we show a lower bound of Ω(n1/k/k) on
the distortion of any algorithm that makes k queries per
agent. An immediate consequence is that it is impossi-
ble to achieve constant distortion without asking almost
log n queries! When k is a constant, it is possible to
show that our construction is tight. Furthermore, using a

construction which exploits the same ordinal but differ-
ent cardinal information, we can show that even under
the stronger assumption of unit-sum normalization, the
distortion cannot be better than Ω

(
n1/(k+1)/k

)
with k

queries per agent.

• In Section 5 we present our main algorithmic re-
sult for unit-sum valuations, namely a novel algorithm
which achieves distortion O(n2/3

√
log n) using only

two queries per agent.

Our results are summarized in Figure 1. We note that our
upper bounds are robust to “errors” in the responses to the
queries. When the reported values are within a multiplica-
tive factor r from the true values, this error parameter r en-
ters multiplicatively into the bounds. In the reasonable case
where r is constant, our bounds (which are asymptotic) are
unaffected. For the sake of readability, we state our results
without assuming any such errors.

1.2 Related Work

One-sided matching in the context of agents with prefer-
ences over items was introduced by Hylland and Zeckhauser
(1979). The classic literature in economics (e.g., see (Bogo-
molnaia and Moulin 2001; Svensson 1999)) is mostly con-
cerned with axiomatic properties, and has proposed several
solutions and impossibilities; see the surveys of Sönmez and
Ünver (2011) and Abdulkadiroglu and Sönmez (2013) for
more information.

The effects of limited information on the social wel-
fare objective were studied most notably in the work of
Filos-Ratsikas, Frederiksen, and Zhang (2014) mentioned
earlier. Further, Anshelevich and Sekar (2016a), Anshele-
vich and Sekar (2016b), Anshelevich and Zhu (2017), and
Abramowitz and Anshelevich (2018) studied related settings
on graphs, and showed distortion bounds for matching prob-
lems and their generalizations. A crucial difference from
our work is that these papers consider edges with symmetric
weights. In contrast, in our case the weights that are induced
by the values of the agents are asymmetric, which makes the
results markedly different; see (Anshelevich, Das, and Naa-
mad 2013) for a more detailed discussion. For general social
choice settings (i.e., voting), the distortion of ordinal algo-
rithms has been studied in a long list of papers, e.g., see (An-
shelevich and Postl 2017; Anshelevich et al. 2018; Boutilier
et al. 2015) and references therein.

The approach of enhancing the input of algorithms by
equipping them with cardinal queries that we adopt in this
paper was first suggested by Amanatidis et al. (2020b).
Some other works (Abramowitz, Anshelevich, and Zhu
2019; Benade et al. 2017; Bhaskar, Dani, and Ghosh 2018)
have considered related but different models in which the de-
signer has access to some cardinal information on top of the
ordinal preferences. In a recent orthogonal approach, Man-
dal et al. (2019) and Mandal, Shah, and Woodruff (2020)
considered the communication complexity of voting algo-
rithms and studied the tradeoffs between the distortion and
the number of bits of information elicited from the agents.
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Figure 1: An overview of our results on the number of queries per agent. The upper bounds that hold for unrestricted valuations
also hold for unit-sum valuations. All of the lower bounds hold even when all agents have the same ordinal preferences.

2 Model Definition
We consider the one-sided matching problem, where there is
a set of agentsN and a set of itemsA, such that |N | = |A| =
n. Each agent i ∈ N has a valuation function vi : A→ R≥0
indicating the agent’s value for each item; that is vi(j) is
the value of agent i ∈ N for item j ∈ A. The valuation
functions we consider are either
• unrestricted, in which case the values for the items can be

any non-negative real numbers, or
• unit-sum, in which case the sum of values of each agent i

for all items is 1:
∑
j∈A vi(j) = 1.

We denote by v = (vi)i∈N the (cardinal) valuation profile
of the agents. Let Y = (yi)i∈N be a matching according
to which each agent i ∈ N is matched to exactly one item
yi ∈ A, such that yi 6= yi′ for every i 6= i′. Given a profile
v, the social welfare of Y , SW(Y |v), is the total value of
the agents for the items they are matched to according to Y :

SW(Y |v) =
∑
i∈N

vi(yi) .

ByM we denote the set of all perfect matchings on our in-
stance. Our goal is to compute a matching X(v) = (xi)i∈N
with maximum social welfare, i.e.,

X(v) ∈ arg max
Y ∈M

SW(Y |v) .

In case the valuation functions of the agents are known,
then computing X(v) can be done efficiently, e.g., via the
Hungarian method (Kuhn 1956). However, our setting is a
bit more restrictive. The exact valuation functions of the
agents are their private information, and they can instead re-
port orderings over the items, which are consistent with their
valuations. In particular, every agent i reports a ranking of
the items �i such that a �i b if and only if vi(a) ≥ vi(b)
for all a, b ∈ A. Given a valuation profile v, we denote
by �v= (�i)i∈N the ordinal profile induced by v; observe
that different valuation profiles may induce the same ordinal
profile. On top of the ordinal preferences of the agents, we
can obtain partial access to the valuation profile, by making
a number of value queries per agent. In particular, a value
query takes as input an agent i ∈ N and an item j ∈ A, and

returns the value vi(j) of agent i for item j. This leads us to
the following definition of a deterministic algorithm in our
setting.

Definition 1. A matching algorithm Ak takes as input an
ordinal profile (�)i∈N , makes k ≤ n value queries per agent
and, using (�)i∈N as well as the answers to the queries, it
computes a matchingAk(�) ∈M. If k = 0,A is an ordinal
algorithm, whereas if k = n, A is a cardinal algorithm.

As already mentioned, we can efficiently compute the op-
timal matching using a cardinal algorithm. However, if an
algorithm is allowed to make a limited number k < n of
queries per agent, the computed matching might not be op-
timal. The question then is how well does such an algorithm
approximate the optimal social welfare of any matching. Ap-
proximation here is captured by the notion of distortion.

Definition 2. The distortion dist(Ak) of an algorithm Ak
is the worst-case ratio (over all possible valuation profiles
v) between the social welfare of an optimal matching X(v)
and the social welfare of the matching computed by Ak:

dist(Ak) = sup
v

SW(X(v)|v)

SW(Ak(�v)|v)
.

Warm-up: Ordinal Algorithms. Before we proceed with
our more technical results on tradeoffs between information
and distortion, we consider the case of ordinal algorithms.
When the valuation functions of the agents are unrestricted,
the distortion of any ordinal algorithm is unbounded. To
see this, consider any instance that contains two agents who
agree on which the most valuable item is. Since only one of
them can be matched to this item, it might be the case that
the other agent has an arbitrarily large value for it, leading
to unbounded distortion. Even for the more restrictive case
of unit-sum valuations, however, the distortion of ordinal al-
gorithms can be quite large.

Theorem 1. For unit-sum valuation functions, the distortion
of the best ordinal matching algorithm is Θ(n2).

Due to space constraints, the proof of the theorem, as well
as several other proofs are deferred to the full version of this
work (Amanatidis et al. 2020a).
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3 Guarantees for Unconstrained Valuations
Here we present λ-THRESHOLDSTEPFUNCTION (λ-TSF),
an algorithm that works for any valuation functions. At a
high level, for each agent, we do the following. We first
query the agent’s value for her highest ranked item. Then,
we partition the items into λ + 1 sets, so that the agent’s
value for all the items in a set is lower-bounded by a care-
fully selected quantity related to the agent’s top value. Based
on this partition, we then define a new simulated valuation
function for the agent, where the value of an item is equal to
the lower bound that corresponds to the set the item belongs
to. Finally, we compute a maximum weight matching with
respect to the simulated valuation functions. Formally:

λ-THRESHOLDSTEPFUNCTION (λ-TSF)
Let α` = n−`/(λ+1) for ` ∈ {0, ..., λ}.
For every agent i ∈ N :

• Query i for her top-ranked item j∗i ; let v∗i be this value.

• Let Qi,0 = {j∗i } and ṽi(j∗i ) = α0 · v∗i = v∗i .

• For every ` ∈ {1, ..., λ}, using binary search, compute

Qi,` = {j ∈ A : vi(j) ∈ [α` · v∗i , α`−1 · v∗i )}

and let ṽi(j) = α` · v∗i for every j ∈ Qi,`.

• Let Qi =
⋃λ
`=0Qi,` and set ṽi(j) = 0 for j ∈ A \Qi.

Return a matching Y ∈ arg maxZ∈M SW(Z|ṽ).

For each i and `, in order to find i’s least preferred item
that she values at least α`v∗i , in the third bullet we run a stan-
dard binary search on �i. It is known that each such binary
search requires 1+log2 n queries. The next theorem follows
by the more general Theorem 7, which is stated in Section 6
and applies to a number of well-known graph problems.
Theorem 2. λ-TSF makes 1+λ+λ log n queries per agent
and achieves a distortion of 2n1/(λ+1).

By appropriately setting the value of λ, we obtain several
tradeoffs between the distortion and the number of queries
per agent. In particular, we have the following statement.
Corollary 1. We can achieve
• distortion O(n) by making one query per agent;
• distortion O(n1/k) for any constant integer k by making
O(log n) queries per agent;

• distortion O(1) by making O(log2 n) queries per agent.

4 Lower Bounds
In this section we show unconditional lower bounds for al-
gorithms for one-sided matching which are allowed to make
at most k ≥ 1 queries per agent. We present a generic match-
ing instance which can be fine-tuned to yield lower bounds
for both unrestricted and unit-sum valuation functions. Let
V denote any of these two classes of valuation functions.

Let δV(k) ≤ 1/k be a function of k, and ε ∈ (0, 1/2) be
some constant. We want to define an instance in which the
n items are partitioned into k + 2 sets A1, ..., Ak+1, B =
A \

(⋃
`∈[k+1]A`

)
such that

|A`| = ε · n(`−1)δV(k).

We assume that n is large enough so that n > 2
∑k+1
`=1 |A`|.

Using the notation 〈T 〉 for some arbitrary fixed ranking of
the elements of set T (which is common for all agents), we
define the ordinal preference of every agent i ∈ N to be

〈A1〉 �i 〈A2〉 �i ... �i 〈Ak〉 �i 〈Ak+1〉 �i 〈B〉.

We reveal the following information, depending on the
queries of the algorithm:

• For every ` ∈ {1, . . . , k + 1}, any query for some item in
A` reveals a value of |A`|−1 · n−δV(k);

• Every query for some item in B reveals a value of 0.

Next, we define two types of conditional valuation func-
tions that an agent i may have, depending on the behavior of
the algorithm. These functions have to be consistent to the
information that is revealed by the queries of the algorithm.
Let ξ ∈ (0, 1] be some constant.

(T1) If there exists r ∈ {1, . . . , k + 1}, such that i is not
queried for any item inAr and she does not get an item from
Ar either, then i’s values are

• at least ξ · |Ar−1|−1 ·n−δV(k) for each item inAr if r ≥ 2;

• at least ξ for the item in A1 if r = 1;

• |A`|−1 · n−δV(k) for every item in A`, ` ∈ {1, . . . , k +
1} \ {r};

• 0 for every item in B.

(T2) If i is queried for some item in k different sets out of
A1, . . . , Ak+1, then her values are

• |A`|−1 ·n−δV(k) for every item in A`, ` ∈ {1, . . . , k+1};

• at most |Ak+1|−1 · n−δV(k) for every item in B.

Observe that the conditions specified in (T1) and (T2) cap-
ture all possible cases about the queries of the algorithm and
the possible assignments of the items to the agents.

Theorem 3. Let V be the class of unrestricted or unit-sum
valuation functions. If there exists a function δV(k) ≤ 1/k
such that it is possible to define valuation functions in V of
types (T1) and (T2), the distortion of any matching algo-
rithm which makes k queries per agent is Ω

(
1
k · n

δV(k)
)
.

Theorem 3 is actually quite powerful and allows us to
prove lower bounds for both unrestricted and unit-sum valu-
ation functions. In particular, it reduces the problem to find-
ing the largest possible δV(k) ≤ 1/k, such that valuation
functions in V of types (T1) and (T2) can be defined.

Theorem 4. For unconstrained valuation functions, the dis-
tortion of any matching algorithm which makes k queries
per agent is Ω

(
1
k · n

1/k
)
.

Before we state the corresponding bound for unit-sum val-
uations, we remark that, for any constant k, the bound of
Theorem 4 is tight with respect to this particular construc-
tion. That is, we cannot hope to prove stronger lower bounds
using this class of instances. For unit-sum valuations, we
have the following bound.
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Theorem 5. For unit-sum valuation functions, the distortion
of any matching algorithm which makes k ≤ (1−ξ)n1/(k+1)

queries per agent is Ω
(
1
k · n

1/(k+1)
)
.

By appropriately setting the value of k in Theorems 4
and 5, we establish that it is impossible to achieve constant
distortion without an almost logarithmic number of queries.

Corollary 2. Any matching algorithm allowed to make
o
(

logn
log log n

)
queries per agent has distortion ω(log log n).

5 Two Queries for Unit-sum Valuations
In this section, we present the FIRSTPOSITIONADAPTIVE
algorithm (FPA), which makes at most two queries per agent
and achieves a distortion of O(n2/3

√
log n), when the val-

uation functions are unit-sum. First, we query each agent
for their most-preferred item. Then, depending on whether
the maximum revealed value by these queries is at least
n−1/3, we query the agents for items that are parts of “large
enough” partial matchings. Otherwise, we query everyone
at a specific position, and define simulated values based on
the answers to these queries, ensuring that these values are
lower bounds on the corresponding true values. Clearly, the
simulated valuation functions are not necessarily unit-sum.

For the sake of presentation, we assume that n is a perfect
cube, i.e., n = α3 for some α ∈ N. Formally:

FIRSTPOSITIONADAPTIVE (FPA)
All agents are initially active.
For every agent i, query i for her top item j∗i ; let v∗i be its value.

If maxi∈N v
∗
i ≥ n−1/3, then:

• For every ` ∈ [n], while there exists a partial matching Yp
of size |Yp| ≥ n1/3/

√
log n consisting of active agents i

matched to items yi such that agent i ranks item yi at some
position `′ ≤ `, query every i in Yp for item yi and make
these agents inactive. If necessary, break ties arbitrarily.

• Output a matching Y that maximizes the social welfare, ac-
cording to the revealed values due to the above queries.

Else (i.e., maxi∈N v
∗
i < n−1/3):

• For every agent i, query i for the item she ranks at position
n1/3 + 1; let ui be this value.

• For every agent i, define the simulated valuation function ṽi:

– ṽi(ji
∗) = v∗i ;

– ṽi(j) = ui for every item j that i ranks at position ` ∈
{2, . . . , n1/3 + 1};

– ṽi(j) = 0 for every item j that i ranks at position ` ∈
{n1/3 + 2, . . . , n}.

• For every agent i such that ui < 1
2
n−1, modify ṽi so that:

– ṽi(j) = 1
3
n−1/3 for every item j that i ranks at position

` ∈ {2, . . . , 1
4
n1/3}.

• Output a matching Y ∈ arg maxZ SW(Z|ṽ).

Theorem 6. For unit-sum valuation functions, the distortion
of FPA is O(n2/3

√
log n).

Proof. Let v be a valuation profile. Denote by Y the output
of the algorithm when given as input the ordinal profile �v,
and by X = (xi)i∈N an optimal matching for v. We con-
sider two main cases, depending on the value maxi∈N v

∗
i

that the algorithm learns with the first query.
Case 1: maxi∈N v

∗
i ≥ n−1/3

The algorithm makes a second query to an agent i for some
item j only if the pair (i, j) is part of a partial matching of
size at least n1/3, involving only active agents, i.e., agents
who have not been included in such a partial matching in
any previous step. Let Y1, . . . , Yλ be all the partial match-
ings considered throughout the execution of the algorithm.
By definition, each such partial matching contains at least
n1/3/

√
log n agents and an agent is contained in at most one

of these matchings. Thus, it holds that λ < n2/3
√

log n.
We partition the agents into two sets. The set H of agents

i that are queried only for items they rank at least as high as
the item xi they receive in the optimal matching X . Some
agents in H are possibly queried twice for their best item.
The set L of agents i that are queried for an item they rank
lower than xi or are queried only once. We can write the
social welfare of X as

SW(X|v) =
∑
i∈H

vi(xi) +
∑
i∈L

vi(xi) .

We will bound each term on the right-hand side separately.
For the first term, we have:∑
i∈H

vi(xi) ≤
∑
i∈H

vi(yi) ≤
λ∑
t=1

∑
i∈Yt

vi(yi)

≤ λmax
t

∑
i∈Yt

vi(yi) < n2/3
√

log n · SW(Y |v).

The first inequality holds because yi <i xi for every i ∈ H .
The second inequality holds because the agents in H are
queried only if they are included in one of the partial match-
ings Y1, . . . , Yλ. The last inequality follows from the bound
on λ established above, and the fact that maxt

∑
i∈Yt vi(yi)

is trivially upper bounded by the social welfare of Y .
To bound the second term, let Y (`) be the restriction of

Y containing only the agents i ∈ L for whom xi is at posi-
tion `. It holds that |Y (`)| < n1/3/

√
log n, or else the algo-

rithm would have queried the agents in Y (`) for their optimal
items, contradicting their membership in L. So, we get that∑

i∈L
vi(xi) =

n∑
`=1

∑
i∈Y (`)

vi(xi) <
n∑
`=1

n1/3
√

log n
1

`

<
n1/3√
log n

2 log n = 2n1/3
√

log n ,

where the first inequality follows from the unit-sum normal-
ization; in particular, any agent’s value for an item at posi-
tion ` is at most 1/`. The second inequality is a simple bound
on the harmonic numbers:

∑n
i=1 i

−1 < 2 log2 n, for n ≥ 2.
Further, since maxi∈N v

∗
i ≥ n−1/3, we have that

SW(Y |v) ≥ n−1/3. Thus,∑
i∈L

vi(xi) ≤ 2n2/3
√

log n · SW(Y |v) .
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Putting everything together, the distortion of the algorithm
in this case is at most 2n2/3

√
log n.

Case 2: maxi∈N v
∗
i < n−1/3

We partition the set of agents into two sets, depending on
whether their value for the item they rank at position n1/3+1
is at most 1

2n
−1. In particular, let R = {i ∈ N : ui <

1
2n
−1}. We can write the optimal social welfare of X as

SW(X|v) =
∑
i∈R

vi(xi) +
∑

i∈N\R

vi(xi) .

We will bound each term separately. For the first term, since
maxi∈N v

∗
i < n−1/3, we clearly have that∑
i∈R

vi(xi) ≤ max
i∈N

v∗i |R| ≤ n−1/3|R| .

Consider an arbitrary agent i ∈ R and denote by ji,` the item
she ranks at position `; hence, j∗i = ji,1. We will first show
that vi

(
ji, 14n1/3

)
≥ 1

3 · n
−1/3 = ṽi

(
ji, 14n1/3

)
. Since ui =

vi
(
ji,n1/3+1

)
< 1

2n
−1, we have that

∑n
`=n1/3+1 vi(ji,`) ≤

(n − n1/3 − 1)ui < 1
2 , and thus, by the unit-sum nor-

malization assumption, we also have that
∑n1/3

`=1 vi(ji,`) ≥
1
2 . Since vi(ji,`) ≤ vi(ji,1) < n−1/3 for every ` ∈{
1, . . . , 14n

1/3 − 1
}

and vi
(
ji, 14n1/3

)
≥ vi(ji,`) for every

` ∈
{

1
4n

1/3, . . . , n1/3
}

, we obtain

vi
(
ji, 14n1/3

)
≥

1
2 −

(
1
4n

1/3 − 1
)
n−1/3

3
4n

1/3

≥ 1

3
n−1/3 = ṽi

(
ji, 14n1/3

)
.

So, all the agents in R have value at least 1
3n
−1/3 for the

items they rank at positions up to 1
4n

1/3. This implies that
the simulated valuation functions, defined by the algorithm,
are lower bounds to the real valuation functions.

By Hall’s Theorem (Hall 1935), it is easy to see that
there exists a matching of size min

{
|R|, 14n

1/3
}

where each
agent in R is matched to an item she ranks at the first 1

4n
1/3

positions. Moreover, Y maximizes the social welfare ac-
cording to the simulated valuation functions. Hence,

SW(Y |v) ≥ SW(Y |ṽ) ≥ 1

3
n−1/3 min

{
|R|, 1

4
n1/3

}
.

If |R| < 1
4n

1/3, then SW(Y |v) ≥ 1
3 |R|n

−1/3, and thus∑
i∈R

vi(xi) ≤ 3 · SW(Y |v) .

Otherwise, SW(Y |v) ≥ 1/12, and since |R| ≤ n, we obtain∑
i∈R

vi(xi) ≤ 12n2/3 · SW(Y |v) .

For the second term, we further partition N \ R into two
sets depending on the position of the xis. In particular, H is
the set of agents i ∈ N \R who rank xi at some position ` ≤

n1/3, and L is the set of remaining agents i ∈ (N \ R) \H
(who rank xi at some position ` > n1/3). Hence,∑

i∈N\R

vi(xi) =
∑
i∈H

vi(xi) +
∑
i∈L

vi(xi) .

First consider the agents in H . Since maxi∈N v
∗
i < n−1/3,∑

i∈H
vi(xi) ≤ max

i∈N
v∗i |H| < n−1/3|H| .

Consider any agent i ∈ H and any item j that i ranks at
some position ` ≤ n1/3. Since ui is the value of i for the
item she ranks at position n1/3 + 1, we clearly have that
vi(j) ≥ ui = ṽi(j) ≥ 1

2n
−1. Note that there exists a partial

matching of size |H| according to which all agents of H are
matched to items they rank at the first n1/3 positions; e.g.,
the restriction of X on H . Since Y maximizes the social
welfare for the simulated valuation functions, we get

SW(Y |v) ≥ SW(Y |ṽ) ≥ 1

2
n−1|H| ,

which immediately implies that∑
i∈H

vi(xi) ≤ 2n2/3 · SW(Y |v) .

Finally, consider the agents in L, and distinguish the follow-
ing two cases depending on the size of L.

• |L| ≤ n1/3. Since there are at least n1/3 different items
within the first n1/3 positions of each agent inL, by Hall’s
Theorem, there exists a matching Y ′ according to which
all agents in L receive such an item, i.e., every i ∈ L has
(simulated) value at least ui for the item she gets in Y ′.
Combining this with the optimality of Y for the simulated
valuation functions and the fact that the latter lower bound
the real valuation functions, we have

SW(Y |v) ≥ SW(Y |ṽ) ≥ SW(Y ′|ṽ)

≥
∑
i∈L

ui ≥
∑
i∈L

vi(xi) ,

where the last inequality follows by the definition of L.
• |L| > n1/3. Denote by SL the |SL| = n1/3 agents with

the highest values ui among all the agents in L. We may
repeat the above argument for SL instead of L to get
SW(Y |v) ≥

∑
i∈SL ui. Then,

SW(Y |v) ≥ n1/3 min
i∈SL

ui ≥ n1/3 max
i∈L\SL

ui .

On the other hand, we have∑
i∈L

vi(xi) ≤
∑
i∈SL

ui + (|L| − |SL|) max
i∈L\SL

ui

≤
∑
i∈SL

ui + n max
i∈L\SL

ui

≤ (1 + n2/3) · SW(Y |v).

Therefore, the distortion of the algorithm is at most 16n2/3+
1 in case 2. Together with case 1, we obtain the desired
bound of O(n2/3

√
log n).
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6 A General Framework for λ-TSF
Here we generalize λ-TSF, from Section 3, to work for a
much broader class of problems, where we are given the or-
dinal preferences of the agents and access via queries to their
cardinal values. We begin with the following general full in-
formation problem of maximizing an additive objective over
a family of combinatorial structures defined on a graph.
Max-on-Graphs: Given a (directed or undirected) weighted
graph G = (U,E,w) and a concise description of the
set F ⊆ 2E of feasible solutions, find a solution S ∈
arg maxT∈F

∑
e∈T w(e).

Note that one-sided matching is a special case; G is the
complete bipartite graph on N and A, the weight of an edge
{i, j} is vi(j), and F contains the perfect matchings of G.

However, what we are really interested in is the social
choice analog of Max-on-Graphs where the weights (defined
in terms of the agents’ valuation functions) are not given! In-
stead, we know the ordinal preferences of each agent/node
for other nodes (corresponding to items or other agents).
Ordinal-Max-on-Graphs: Here U = N ∪ A, where N is
the set of agents and A is the (possibly empty) set of items;
when A 6= ∅, we assume that G is a bipartite graph with in-
dependent setsN,A. AlthoughG = (U,E) is given without
the weights, it is assumed that for every i ∈ N there exists a
(private) valuation function vi : U → R≥0, so that

w(e) =


vi(j), if i ∈ N, j ∈ A and e = {i, j}
vi(j) + vj(i), if i, j ∈ N and e = {i, j}
vi(j), if i, j ∈ N and e = (i, j) .

(1)

We are also given the ordinal profile �v= (�i)i∈N in-
duced by v = (vi)i∈N and a concise description of the
set F ⊆ 2E of feasible solutions. The goal is again to find
S ∈ arg maxT∈F

∑
e∈T w(e).

Notice that for Ordinal-Max-on-Graphs to make sense, F
should be independent of w. E.g., if only sets of weight ex-
actly B are feasible, then it is impossible to find even one
feasible set without the exact cardinal information in our dis-
posal. Still, it is clear that the above algorithmic problem is
very general and captures a huge number of maximization
problems on graphs. Of course, not all such problems have
a natural interpretation where the vertices are agents with
preferences. Before we state the main result of this section,
we give three examples that have been studied in the com-
putational social choice literature.
General Graph Matching: Given an undirected graphG =
(U,E,w), find a matching of maximum weight, i.e., F con-
tains the matchings ofG. In its social choice analog, U = N
and w(·) is defined according to the second branch of (1). A
special case of this problem, when G is a bipartite graph, is
the celebrated two-sided matching problem (Gale and Shap-
ley 1962; Roth and Sotomayor 1992).
General Resource Allocation: Given a bipartite graph G =
(U1∪U2, E, w), assign each node of U2 to (only) one neigh-
boring node inU1 so that the total value of the corresponding
edges is maximized. There may be additional combinatorial
constraints, e.g., no more than βi nodes of U2 may be as-
signed to node i ∈ U1. This problem generalizes one-sided

matching. In its social choice analog, U1 = N , U2 = A and
w(·) is defined according to the first branch of (1).
Clearing Kidney `-Exchanges: Given a directed graph
G = (U,E,w), find a collection of disjoint cycles of length
at most ` of maximum total weight; see (Abraham, Blum,
and Sandholm 2007). In its social choice analog, U = N
and w(·) is defined according to the third branch of (1).

We use a variant of λ-TSF, (λ,A)-TSF, that takes as an
additional input an approximation algorithmA for the prob-
lem at hand. There are two main differences from λ-TSF.
The simpler one is about the last step; instead of computing
a maximum matching, A is used to compute an (approxi-
mately) optimal solution with respect to the simulated val-
uation functions. The other difference is more subtle. Now
we do not want to ask each agent i for her top element of
U , but rather for her top element that induces an edge in-
cluded in some feasible solution. It is not always trivial to
find this element for each agent (e.g., think of the variant of
general graph matching where we only care about perfect
matchings), but often it can be done in polynomial time.

For the following theorem, we assume that the optimiza-
tion problem Π is a special case of Max-on-Graphs with
maxT∈F |T | = r. The parameter r allows for a more re-
fined statement. We further assume that we can efficiently
check whether an edge e belongs to a feasible solution; if
not, there is no guarantee about the running time.
Theorem 7. Suppose Π is as described above. If A is a
(polynomial-time) ρ-approximation algorithm for Π in the
full information setting, then (λ,A)-TSF asks 1+λ+λ log r

queries and achieves distortion at most 3ρ r
1

λ+1 for the so-
cial choice analog of Π (in polynomial time).

For the above problems, we can get the following.
Corollary 3. By choosingA appropriately, (λ,A)-TSF asks
1 + λ+ λ log |U | queries and achieves distortion at most

• 3
( |U |

2

) 1
λ+1 for general graph matching in polynomial

time.
• 3|U2|

1
λ+1 for general resource allocation.

• (4.5+ε)|U |
1

λ+1 for clearing kidney 3-exchanges in poly-
nomial time.

7 Conclusion and Open Problems
Our work is the first to study the interplay between elicited
information and distortion in one-sided matching, as well as
other graph problems. We showed several tradeoffs, both in
terms of possible distortion guarantees and of inapproxima-
bility bounds. Our results suggest that even a small number
of queries per agent leads to significant improvements.

A natural future direction would be to try to design algo-
rithms that match the lower bounds of Theorem 4. While we
managed to do this for k-well-structured instances, general
instances seem to require highly adaptive approaches. Per-
haps a first step would be to design an algorithm that out-
performs our two-queries algorithm from Section 5 in terms
of distortion. Finally, an interesting unexplored avenue is to
consider randomized algorithms, either in the selection of
the matching or the process of querying the agents.
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