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Two groups of methodologies have emerged in the last 
decade as the most promising ones: network propagation 
[8] and modules-based [3], [7] algorithms. Network prop-
agation (or diffusion-based) algorithms rely on the as-
sumption that the information contained in the initial 
(known) set of disease genes, flows through the network 
through nearby proteins: among all, one of the most used 
diffusion-based algorithms is the “random-walk with re-
start” originally proposed by Köhler et al. in [9]. By con-
trast, the so-called “module-based algorithms” rely on the 
hypothesis that all cellular components that belong to the 
same topological, functional or disease module have a high 
likelihood of being involved in the same disease. In [10] the 
authors compare different approaches based on different 
strategies (e.g. network neighbors [11], clustering [12], ran-
dom walk [9], propagation [13]) for linking genes with dis-
eases and conclude that, although random-walk based al-
gorithms individually outperform clustering and neigh-
borhood approaches, all the methods provide relevant bi-
ological insight by exploiting different network properties. 
A review of methods has been presented by Moreau and 
Tranchevent [14].  
From the above introductory discussion, prioritizing can-
didate disease genes using the interactome, i.e. the network 
of physical protein interactions, and mutational data 
(known disease gene or seeds), is still an open problem. In 
fact, diseases are highly heterogeneous and the topological 
patterns of its mutated genes on the relevant interactome 
(the disease module) is also highly heterogeneous. There-
fore, it is unreasonable to believe that a single algorithm 
could be able to “catch” all the biological information con-
tained in the data and be the “best one” or “state of art” for 
any possible disease. 
A reliable prioritization (or ranking) of new predicted dis-
ease genes is very important from a biological viewpoint, 
since it provides valuable information of a putative specific 
activity of a gene in the development of a disease. In fact, 
the smaller its rank position, the more likely it is a ''true'' 
disease gene, thus providing an ordered list to the experi-
menter/clinician who can decide which are the most prom-
ising candidates for experimental testing.  
Here, we deal with the problem of prioritizing disease 
genes using the concept of connectivity significance re-
cently introduced by Ghiassan et al. [7] in their successful 
module-based algorithm called DIAMOnD [7]. The algo-
rithm assumes the availability of interactome data (net-
work of protein-protein physical interaction) and seed 
genes (known disease-associated genes). The methodology 
is based on the key observation that putative disease genes 
exhibit distinct and predictive connectivity patterns on the 
interactome. Such network-based signatures can be cap-
tured and exploited if one evaluates the significance of 
their connections instead of their density, i.e. by using the 
concept of connectivity significance [7] as defined in the next 
section. Another important feature of the DIAMOnD algo-
rithm is that it reduces the spurious detection of high de-
gree genes [7].   
Here, we fully support the underlying rationale of Ghias-
san et al. methodology [7]. This approach - in our opinion - 
has been the key to success for effective disease genes 

detection. For this reason, we will further pursue this piv-
otal idea and suggest a modified version of the DIAMOnD 
algorithm called DiaBLE (Diamond Background Local Ex-
pansion) that introduces a new connectivity significance 
score by considering an adaptive gene universe in the as-
sociated hypergeometric test. A comparative analysis 
among gene prioritization algorithms based on different 
strategies is beyond the scope of this study. As a final note, 
we recall that the interactome is made of proteins, but we 
often talk about disease genes. To avoid terminological 
confusion, in the following, we will refer only to disease 
genes, unless the intended meaning is not clear from the 
context.  

2 METHOD 

We begin this section by first illustrating the DIAMOnD al-
gorithm procedure [7] so to clarify the reasoning underly-
ing the modification introduced by the DiaBLE algorithm, 
as fully described in the subsequent paragraph. 
 
2.1 The DIAMOnD algorithm: a stationary universe  

An important observation leading to the development of 
the DIAMOnD algorithm by Ghiassan et al. [7] is that top-
ological communities are not able to capture disease mod-
ules, which are not always organized as dense clusters. 
However, disease genes of a specific module exhibit a pe-
culiar topological pattern characterized in terms of connec-
tivity significance rather than density. Based on this key 
idea, the DIAMOnD algorithm defines a connectivity P-
value of a gene as follows:                           

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = ∑ 𝑝(𝑘, 𝑘𝑖)
𝑘
𝑘𝑖=𝑘𝑠

  (1) 

with 

𝑝(𝑘, 𝑘𝑠) =
(
𝑠0
𝑘𝑠

)(
𝑁−𝑠0
𝑘−𝑘𝑠

)

(
𝑁
𝑘

)
  (2) 

which is the probability that a gene with a total of k links 
has 𝑘𝑠 connections to seeds (set composed of 𝑠0 elements) 
given a network of N genes. The underlying null hypothe-
sis (background model) is that seed genes are randomly 
scattered throughout the whole interactome. Conse-
quently, the gene universe is stationary (fixed) and com-
posed of N nodes. 
Having in mind definition (1), we can state the DIAMOnD 
algorithm [7]. The steps required to infer new putative dis-
ease genes are the following: 

i) Determine the connectivity significance (1) for all M 

genes linked to any of the 𝑠𝑖  (starting from 𝑠0)  seed 

genes. 

ii) The genes are ranked according to their respective P-

values (ascending order). 

iii) The gene with the highest rank (lowest P-value) is 

added to the set of seed nodes, increasing their num-

ber from 𝑠𝑖 → 𝑠𝑖+1 = 𝑠𝑖 + 1. 

iv) Steps (i)-(iii) are repeated with the expanded set of 

seed genes, pulling in one gene at a time into the grow-

ing disease module (seeds set). 

The genes defined at step i) (i.e. seed neighbors) are called 

https://www.sciencedirect.com/topics/computer-science/random-walk
https://www.sciencedirect.com/topics/computer-science/random-walk
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hit (TH) if it is characterized by sharing at least, in the cor-
responding database (GO or KEGG), one of the most sig-
nificant annotations of the seeds set. The rationale behind 
this validation procedure is that it is assumed that the orig-
inal seeds set is an un-biased sample of the complete seeds 
set. Hence, a new disease gene is more likely to be “true” 
if it has a physical interaction with the seeds (i.e. a link on 
the interactome) and, if it participates in the same biologi-
cal process of – at least – a gene belonging to the current 
seeds set. Hence, the first step is to find significant enrich-
ments of a given seeds set using biological annotations. We 
therefore considered the annotations provided by GO 
terms (Gene Ontology database, biological process, down-
loaded April 2018) and pathways (KEGG gene set from the 
Molecular Signatures Database, downloaded April 2018). 
The available GO terms (biological process), were prefil-
tered as follows [7]: 

i) annotations labeled with evidence code “IPI” (In-

ferred from Physical Interaction) were excluded to 

avoid circularity; 

ii) annotations not associated with the gene products 

(evidence code “NOT”) were excluded. 

Moreover, to obtain smaller gene lists, annotations were 
not propagated upwards on the GO tree. 
In both cases (GO and pathways terms), for each disease 
we identified the annotations significantly enriched within 

the corresponding seeds set (hypergeometric test, 

significance level 10-3, with FDR Benjamini-Hochberg cor-
rection and annotation size greater than 10 and less than 
300, to avoid bias [17]). The results are presented in Figures 
5A and 5B where the median of the THs distributions for 
all 70 diseases at each iteration step, for both database and 
algorithm, are depicted. The better overall performances of 
DiaBLE versus DIAMOnD are clearly visible and their high 
significance is also reported (Wilcoxon rank sign test P-
value less than 10-70). In both cases (GO and pathways 
terms), for each disease we identified the annotations sig-
nificantly enriched within the corresponding seeds set (hy-
pergeometric test, significance level 10-3, with FDR Benja-
mini-Hochberg correction and annotation size greater than 
10 and less than 300, to avoid bias [17]). The results are pre-
sented in Figure 5A where the median of the THs distribu-
tions for all 70 diseases at each iteration step, for both da-
tabase and algorithm, are depicted. The better overall per-
formances of DiaBLE versus DIAMOnD are clearly visible 
and their high significance is also reported (Wilcoxon rank 
sign test P-value less than 10-70). Figure 5B, computed as for 
the cross-validation case, shows that DiaBLE outperforms 
DIAMOnD starting from the initial 20 iterations. 
As described for the cross-validation case, we studied dif-
ferences in algorithms performances using a statistical 
comparison (Wilcoxon signed rank test, P-value < 10-3) be-
tween DIAMOnD and DiaBLE by considering cumulative 
THs vectors for each disease. Again, for this analysis, we 
performed the comparison by taking into account different 
iteration values 𝑁𝑖𝑡 ∈ [25; 500]: starting from the first 25 it-
erations until the final value, increasing their number with 
a step of 25 iterations. Figure 6 shows the obtained results 
for GO terms (panel a) and KEGG pathways (panel b): 
from the initial iterations (i.e. considering 25 iterations), Di-
aBLE outperforms DIAMOnD in a larger number of cases.  

 
Fig. 6. Bar diagrams (panels A, B respectively for the cases of GO 
terms and KEGG pathways) showing the amount of diseases for 
which the performances are statistically better (Wilcoxon signed 
rank test, P-value < 10-3) using DIAMOnD (black bars) and DiaBLE 
(grey bars).  

 

Fig.5. (A) Median of the cumulative True Hits (THs) distribution 
across the 70 diseases, for DiaBLE and DIAMOnD genes, for the 
cases of GO terms (left panel) and KEGG pathways (right panel). 
Wilcoxon signed rank test reveals in both cases a highly significant 
difference of the median values (P-value <10-70) in favor of DiaBLE. 
(B) P-values corresponding to the initial 50 iterations. It is worth 
noting that increased overall performances are visible from the ini-
tial 20 iterations, thus confirming again the positive impact of the 
choice of an expanding gene universe in the top new disease 
genes. 
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that have no connection with the seed genes are not “com-
peting” to become such, the DiaBLE algorithm considers 
as background model for the hypergeometric test the 
smallest local expansion of the current disease module: the 
resulting gene universe is thus composed of: i) seeds set ii) 
candidate genes (nodes having at least a link to the seeds 
set) and iii) first neighbors of the candidate genes. We 
showed the impact of such gene universe selection and 
how DiaBLE genes are related to a significant increase of 
general performances with respect to the DIAMOnD algo-
rithm both for computational and biological validation. 
Moreover, on two specific cancers, we proved that both in 
the case of different predicted genes and in the case of very 
similar predicted genes but with different ordering – the 
DiaBLE algorithm provides more biological meaningful 
results compared to DIAMOnD. Finally, we note that com-
parative analysis among gene prioritization algorithms 
based on different strategies is beyond the scope of this 
study. 
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