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Connectivity significance for disease gene 
prioritization in an expanding universe 

Manuela Petti, Daniele Bizzarri, Antonella Verrienti, Rosa Falcone and Lorenzo Farina 

Abstract— A fundamental topic in network medicine is disease genes prioritization. The underlying hypothesis is that disease 

genes are organized as modules confined within the interactome. Here, we propose a novel algorithm called DiaBLE (DIAMOnD’s 

Background Local Expansion) which is a modified version of DIAMOnD, a successful algorithm based on the concept of 

connectivity significance. Instead of taking the whole interactome as the background model, DiaBLE considers as gene universe 

the smallest local expansion of the current seeds set at each iteration step. We show that DiaBLE significantly increases the 

overall DIAMOnD ranking quality of genes prioritization both in terms of cross-validation and biological consistency. Here, we 

focus on the two algorithms only since a comparative analysis among gene prioritization methods is beyond the scope of this 

study. Finally, we briefly discuss the improvement of biological insight provided by DiaBLE for two cancers (head and neck 

squamous cell carcinoma and kidney renal clear cell carcinoma). 

Index Terms—Network problems, distribution functions, Biology and Genetics, Molecular biology, Life and medical sciences 

——————————   ◆   —————————— 

1 INTRODUCTION

ODAY, big data, genomics, and quantitative in silico in-
tegration methodologies, have the potential to push 

forward the frontiers of medicine in an unprecedented way 
[1], [2]. A large body of evidence that is now emerging from 
new genomic technologies, points out directly to the cause 
of disease as perturbations within the interactome, i.e. mu-
tations potentially impacting the comprehensive network 
map of molecular components and their interactions [1]. 
As a matter of fact, a fast growing experimental evidence 
reveals the association between groups of interacting pro-
teins and disease within the human interactome, repre-
senting the cellular network of all physical molecular inter-
actions [3]. Precisely, the human interactome is composed 
of direct physical, regulatory (transcription factors bind-
ing), binary, metabolic enzyme-coupled, protein com-
plexes and kinase/substrate interactions. Such network is 
largely incomplete as well as the connections between 
genes and disease.  
Disease proteins are the product of genes whose mutations 
have a causal effect of the respective phenotype. A key 
property of the underlying molecular network of interac-
tions is that disease proteins are not found to be uniformly 
scattered across the interactome, but they tend to interact 
with one another confined in one or several subgraphs 

called “disease modules” [4]. In fact, disease proteins are 
prone to participate in common biological activities such 
as, for example, genome maintenance, cell differentiation 
or growth signaling, which are the most relevant in carcin-
ogenesis [5]. Consequently, the module property also re-
flects the biological feature that disease proteins are often 
localized on specific biological compartments (pathway, 
cellular space, or tissue). These considerations directly 
point towards the possibility that, whenever a disease 
module sub-network is found, other disease-related parts 
are likely to be identified in their topological neighborhood 
[3]. However, notwithstanding a strong community com-
mitment to find new protein interactions and relevant mu-
tations for disease characterization, the list is still largely 
incomplete. Moreover, identification of specific disease 
genes is often impaired by gene pleiotropy, by the multi-
genic feature of many diseases, by the influence of a pleth-
ora of environmental agents, and by genome variability [6]. 
The problem that we tried to address in this paper is the 
prioritization of candidate disease genes, i.e. a computa-
tional approach to ranking for their potential as genes har-
boring disease-driving mutations. The knowledge gained 
through these types of analysis could help the understand-
ing of the pathogenesis processes and the identification of 
cellular molecular profiles providing a useful tool in im-
proving diagnosis, prognosis and therapy. Indeed, this 
problem has motivated the development of a number of al-
gorithms [7]. The key question is to find a way to fully char-
acterize such genes (with respect to non-disease genes) and 
find an algorithm able to capture such characteristics. 
From a network perspective, one hypothesizes that disease 
genes are embedded within modules in ways that are ame-
nable to some topological feature description. The recent 
[4] evidence-based biological observation that disease 
genes are not randomly positioned in the interactome has 
opened new possibilities for developing algorithms for 
disease gene predictions.  
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Two groups of methodologies have emerged in the last 
decade as the most promising ones: network propagation 
[8] and modules-based [3], [7] algorithms. Network prop-
agation (or diffusion-based) algorithms rely on the as-
sumption that the information contained in the initial 
(known) set of disease genes, flows through the network 
through nearby proteins: among all, one of the most used 
diffusion-based algorithms is the “random-walk with re-
start” originally proposed by Köhler et al. in [9]. By con-
trast, the so-called “module-based algorithms” rely on the 
hypothesis that all cellular components that belong to the 
same topological, functional or disease module have a high 
likelihood of being involved in the same disease. In [10] the 
authors compare different approaches based on different 
strategies (e.g. network neighbors [11], clustering [12], ran-
dom walk [9], propagation [13]) for linking genes with dis-
eases and conclude that, although random-walk based al-
gorithms individually outperform clustering and neigh-
borhood approaches, all the methods provide relevant bi-
ological insight by exploiting different network properties. 
A review of methods has been presented by Moreau and 
Tranchevent [14].  
From the above introductory discussion, prioritizing can-
didate disease genes using the interactome, i.e. the network 
of physical protein interactions, and mutational data 
(known disease gene or seeds), is still an open problem. In 
fact, diseases are highly heterogeneous and the topological 
patterns of its mutated genes on the relevant interactome 
(the disease module) is also highly heterogeneous. There-
fore, it is unreasonable to believe that a single algorithm 
could be able to “catch” all the biological information con-
tained in the data and be the “best one” or “state of art” for 
any possible disease. 
A reliable prioritization (or ranking) of new predicted dis-
ease genes is very important from a biological viewpoint, 
since it provides valuable information of a putative specific 
activity of a gene in the development of a disease. In fact, 
the smaller its rank position, the more likely it is a ''true'' 
disease gene, thus providing an ordered list to the experi-
menter/clinician who can decide which are the most prom-
ising candidates for experimental testing.  
Here, we deal with the problem of prioritizing disease 
genes using the concept of connectivity significance re-
cently introduced by Ghiassan et al. [7] in their successful 
module-based algorithm called DIAMOnD [7]. The algo-
rithm assumes the availability of interactome data (net-
work of protein-protein physical interaction) and seed 
genes (known disease-associated genes). The methodology 
is based on the key observation that putative disease genes 
exhibit distinct and predictive connectivity patterns on the 
interactome. Such network-based signatures can be cap-
tured and exploited if one evaluates the significance of 
their connections instead of their density, i.e. by using the 
concept of connectivity significance [7] as defined in the next 
section. Another important feature of the DIAMOnD algo-
rithm is that it reduces the spurious detection of high de-
gree genes [7].   
Here, we fully support the underlying rationale of Ghias-
san et al. methodology [7]. This approach - in our opinion - 
has been the key to success for effective disease genes 

detection. For this reason, we will further pursue this piv-
otal idea and suggest a modified version of the DIAMOnD 
algorithm called DiaBLE (Diamond Background Local Ex-
pansion) that introduces a new connectivity significance 
score by considering an adaptive gene universe in the as-
sociated hypergeometric test. A comparative analysis 
among gene prioritization algorithms based on different 
strategies is beyond the scope of this study. As a final note, 
we recall that the interactome is made of proteins, but we 
often talk about disease genes. To avoid terminological 
confusion, in the following, we will refer only to disease 
genes, unless the intended meaning is not clear from the 
context.  

2 METHOD 

We begin this section by first illustrating the DIAMOnD al-
gorithm procedure [7] so to clarify the reasoning underly-
ing the modification introduced by the DiaBLE algorithm, 
as fully described in the subsequent paragraph. 
 
2.1 The DIAMOnD algorithm: a stationary universe  

An important observation leading to the development of 
the DIAMOnD algorithm by Ghiassan et al. [7] is that top-
ological communities are not able to capture disease mod-
ules, which are not always organized as dense clusters. 
However, disease genes of a specific module exhibit a pe-
culiar topological pattern characterized in terms of connec-
tivity significance rather than density. Based on this key 
idea, the DIAMOnD algorithm defines a connectivity P-
value of a gene as follows:                           

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = ∑ 𝑝(𝑘, 𝑘𝑖)
𝑘
𝑘𝑖=𝑘𝑠

  (1) 

with 

𝑝(𝑘, 𝑘𝑠) =
(
𝑠0
𝑘𝑠
)(
𝑁−𝑠0
𝑘−𝑘𝑠

)

(
𝑁
𝑘
)

  (2) 

which is the probability that a gene with a total of k links 
has 𝑘𝑠 connections to seeds (set composed of 𝑠0 elements) 
given a network of N genes. The underlying null hypothe-
sis (background model) is that seed genes are randomly 
scattered throughout the whole interactome. Conse-
quently, the gene universe is stationary (fixed) and com-
posed of N nodes. 
Having in mind definition (1), we can state the DIAMOnD 
algorithm [7]. The steps required to infer new putative dis-
ease genes are the following: 

i) Determine the connectivity significance (1) for all M 

genes linked to any of the 𝑠𝑖  (starting from 𝑠0)  seed 

genes. 

ii) The genes are ranked according to their respective P-

values (ascending order). 

iii) The gene with the highest rank (lowest P-value) is 

added to the set of seed nodes, increasing their num-

ber from 𝑠𝑖 → 𝑠𝑖+1 = 𝑠𝑖 + 1. 

iv) Steps (i)-(iii) are repeated with the expanded set of 

seed genes, pulling in one gene at a time into the grow-

ing disease module (seeds set). 

The genes defined at step i) (i.e. seed neighbors) are called 

https://www.sciencedirect.com/topics/computer-science/random-walk
https://www.sciencedirect.com/topics/computer-science/random-walk
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“candidate genes”. The procedure can be continued until 
the DIAMOnD module spans across the entire network. 
However, the expected dimension of the disease module is 
usually 200-400 proteins [7]. Candidate genes included in 
the growing disease module identified by the algorithm 
starting from the initial seed set, will be called “DIAMOnD 
genes”. Analogously, we will define “DiaBLE genes”. 
Finally, we note that at each iteration step defined by i), a 
P-value must be computed for each of the M candidates, 
i.e. genes of the interactome having at least a link to genes 
of the current seed set 𝑠𝑖 , at iteration i. Each single P-value 
computation requires the selection of a candidate gene 
having 𝑘𝑠 ≥ 1 links to the current seed set of size si, k first 
neighbors and a gene universe composed of N elements. 
The one having minimal P-value is considered the “best” 
candidate, added to the seed set, and the procedure con 
move forward to the subsequent iteration step. It is worth 
noting that DIAMOnD assumes a fixed gene universe 
which coincides with the whole interactome. 

2.2 The DiaBLE algorithm: an expanding universe 

Generally speaking, to perform a hypergeometric test [15], 
[16], one needs to define a gene universe (for example, all 
the genes of the interactome, as in [7]) and a selection from 
that universe (seed genes). The subsequent step is the iden-
tification of the subset of the universe that is considered 
“interesting” (new putative disease genes, identified by 
having at least one link to the seed set). As discussed in full 
detail by Falcon and Gentleman [15], [16], the selection of 
the universe is very important, since it has a large impact 
on the observed P-values. The recommendation of the au-
thors is “to include in the universe only those genes that could 
have been selected as interesting” [16]. It is clear that the 
choice of the set of potentially interesting genes is highly 
subjective (an a priori) and it makes no sense to consider 
one as better than another. The DIAMOnD algorithm con-
siders all the genes in the interactome as potentially inter-
esting, which a reasonable choice, but not necessarily the 
only one. 
The basic idea underlying the DiaBLE algorithm is to ex-
plore the impact of a different gene universe selection, at 
each iteration step i. Here, we propose to choose, starting 
from the current seed set si, its smaller expansion, i.e. a sort 
of local universe, as opposed to the global universe of all 
the genes in the interactome.  To obtain such local universe 
set we considered as “genes that could have been selected as 
interesting” [16] only the M candidate genes and their first 
neighbors. In other words, the gene universe considered by 
DiaBLE, is the union of: 

i) the current seed set 

ii) the M candidate genes (i.e. those having at least a 

link to the current seed set)  

iii) the first neighbors of the candidate genes 

In this way, all the values in formula (1) can be computed 
and are actually the same as DIAMOnD, except for the uni-
verse size N which is now an increasing number depend-
ing on the iteration step of the algorithm. The DiaBLE uni-
verse is the “smallest” universe expansion of the seeds set 
at iteration i from which it is possible to obtain the values 
(k, ks, si, N) needed to compute P-values defining the 

connectivity significance. 
The effect of this local universe on the choice of the “best” 
candidate gene can be critical, since not only the P-values 
but also the ranking of the M candidates can be deeply 
modified, as illustrated by a toy example in Figure 1. 

 

Fig. 1. A toy example of a generic i-th step of the algorithm, illustrating 
the differences between DIAMOnD and DiaBLE. As shown by the ta-
ble in the figure, the size of the universe considerably impacts the P-
values and, most importantly, their ranking. In fact, according to DIA-
MOnD, the best candidate is node 8, whereas DiaBLE would choose 
node 7. Note that node 8 has a much higher degree than node 7 and 
that 90% of the links from node 7 point to seed nodes, whereas only 
50% of the links from node 8 do the same. This toy example also 
shows the ability of DiaBLE to reject spurious high degree nodes. 

Now, we can describe the DiaBLE algorithm to infer new 
disease genes. The required steps are the following: 

i) Determine the universe size 𝑁𝑖  by considering the set 

composed of: seed genes, genes that have at least one 

link to the seed set (candidate genes) and their first 

neighbors. 

ii) Determine the connectivity significance (1) for all M 

genes linked to any of the 𝑠𝑖  (starting from 𝑠0) seed 

genes (called “candidate genes”) using 𝑁𝑖  in formula 

(2) instead of N. 

iii) The genes are ranked according to their respective P-

values (ascending order). 

iv) The gene with the highest rank (lowest P-value) is 

added to the set of seed nodes, increasing their num-

ber from 𝑠𝑖 → 𝑠𝑖+1 = 𝑠𝑖 + 1. 

v) Steps (i)-(iv) are repeated with the expanded set of 

seed genes, pulling in one protein at a time into the 

growing seeds set (or module).  

 
It is plain that the only difference between DIAMOnD and 
DiaBLE is the size of the universe set used to compute con-
nectivity significance at each step i. Nevertheless, in what 
follows we show that this simple modification of the uni-
verse has, surprisingly, a significant impact on the disease 
module composition. Most importantly, its impact on per-
formances using computational and biological validation 
sets is the presence of a significant increase. 

3 RESULTS AND DISCUSSION 

Here we show – with no additional computational efforts 
– that DiaBLE improves the overall DIAMOnD perfor-
mances in a statistically significant way. We used the same 
computational and biological benchmarks as in [7], to 
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make the comparison fair. Moreover, we will show that Di-
aBLE is also effective – just like DIAMOnD – in reducing 
the impact of spurious detection of high degree genes. To 
evaluate and compare performances of DiaBLE and DIA-
MOnD algorithms, we used the same seed genes associ-
ated to 70 diseases and the same human interactome used 
by Ghiassan et al. in reference [7]. The resulting network is 
composed of 13,460 proteins interconnected by 141,296 
physical interactions: this set of physical interactions is the 
result of the integration of several databases as explained 
in detail in reference [7]. To compare performances of Dia-
BLE and DIAMOnD, we also defined validation criteria. 
Following Ghiassan et al. [7], we firstly considered a cross-
validation approach and, secondly, a biological criterion 
based on gene annotations (obtained from GO and KEGG 
databases), as defined in [7]. The underlying rationale of 
this criterion is that a “true” new disease gene should share 
at least one biological annotation with the original seed set. 
Quality of ranking is therefore evaluated according to the 
presence of common annotations along subsequent itera-
tions. Clearly, at each iteration, a potentially new disease 
gene is predicted by an algorithm and the higher the posi-
tion in the rank, the better it performs.  
 
3.1 Resilience to spurious detection of high degree 

nodes 

It is worth showing an interesting preliminary difference 
between the two methodologies. We selected top 50 Dia-
BLE genes and top 50 DIAMOnD genes lists for all the 70 
diseases and compared them in terms of the degree (𝑘) and 
the ratio 𝑘𝑠 𝑘⁄  (a measure of the communication level from 
a gene/node towards the seeds). For each disease and algo-
rithm, we computed the average value of 𝑘 and 𝑘𝑠 𝑘⁄  across 
the selected genes.  Figure 2 shows the results: DiaBLE 
genes tend to have, on the one hand, higher values of the 
ratio 𝑘𝑠 𝑘⁄  (Wilcoxon signed rank test P-value 𝑝 = 1.52 ·
10−4), i.e. a higher fraction of links connected to the seed 
set, and, on the other hand, less nodes with a large number 
𝑘 of links (Wilcoxon signed rank test P-value 𝑝 = 5.47 ·
10−7). Moreover, if we consider the first 500 genes gener-
ated by both algorithms, the statistically significant differ-
ences related to the ratio 𝑘𝑠 𝑘⁄  does not hold anymore, 
whereas the global higher degree k of DIAMOnD genes 
still holds (Wilcoxon signed rank test P-value 𝑝 = 2.47 ·
10−10). Taken together, these results, show that DiaBLE, on 
average, privileges higher values of the ratio 𝑘𝑠 𝑘⁄  with 
smaller values of 𝑘, thus showing to be more resilient to 
spurious detection of high degree nodes. To evaluate 
whether DiaBLE privileges also the selection of seed neigh-
bors, we calculated for each disease the number of DIA-
MOnD and DiaBLE genes directly connected to the seed 
set. We did not observed a significant difference between 
the two algorithms in terms of the amount of selected 
seeds’ neighbors (figure S1); however, the higher ∆𝑁𝑁 value 
is related to the 70th disease (vasculitis), case in which 141 
DIAMOnD genes are directly connected to the seed set, 
while DiaBLE selects only 57 seed neighbors out of 500 pre-
dicted genes. 
 

3.2 Cross validation (out-of-sample test) 

As stated in the previous paragraph, following [7], the first 
validation criterion we considered was the cross-validation 
approach, or out-of-sample testing. The goal is to test the 
ability of the algorithms to recover the original seed set, 
starting from a given percentage (usually, 90%, 80% and 
70%) obtained by random seed gene selection. The proce-
dure must be repeated a certain number of times so that a 
statistical evaluation of performances can be reliably com-
puted. Accordingly, we randomly selected (removed) 
genes at various percentages (10%, 20% and 30%) and, for 
each disease, we computed the average recall (or true pos-
itive rate) obtained from 50 replicates. Then, we averaged 
(median) the results across diseases and plotted the result-
ing recall curve for both methods. To compute statistical 
differences between DiaBLE and DIAMOnD curves, we ac-
cumulated recall vectors of all diseases in two separate vec-
tors (one for each algorithm) and performed a two-tailed 
Wilcoxon signed rank test on the difference vector. The re-
sults are presented in Figures 3A and 3B, where it is clearly 
shown that DiaBLE performs better than DIAMOnD for all 
percentage removals (Wilcoxon signed rank test P-value < 
10-40) over all the 70 diseases. It is very worth noting that, 
as shown by Figure 3B, the increase in performance begin 
to be visible starting from about iteration 20/30, thus con-
firming the more efficient prioritization generated by Dia-
BLE in presenting “true” seed genes at the very top of the 
ranked list. 

 

Fig. 2. A) Histogram of the differences ∆𝐾𝑖
= 𝑘𝐷𝑖𝑎𝐵𝐿𝐸𝑖 − 𝑘𝐷𝐼𝐴𝑀𝑂𝑛𝐷𝑖

 

with 𝑖 = 1,…70 and B) histogram of the differences ∆(𝐾𝑠 𝐾⁄ )𝑖
=

(𝑘𝑠 𝑘⁄ )𝐷𝑖𝑎𝐵𝐿𝐸𝑖 − (𝑘𝑠 𝑘⁄ )𝐷𝐼𝐴𝑀𝑂𝑛𝐷𝑖
 with 𝑖 = 1,…70 with the associated 

P-value returned from the Wilcoxon sign rank test. The diagrams 

make clear that the distribution of the rations 𝑘𝑠 𝑘⁄  for DiaBLE 

genes show more diseases with higher fraction of links to the 

seeds set and a reduction of spurious nodes, i.e. those having a 

high degree 𝑘 
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Fig. 3. (A) Median of the cumulative recall distribution across the 70 

diseases, for DiaBLE and DIAMOnD genes, in the cases of 10% (left 

panel), 20% (central panel) and 30% (right panel) nodes removal. Wil-

coxon signed rank test reveals in all cases a highly significant differ-

ence of the median values (P-value <10-40) in favor of DiaBLE. (B) P-

values corresponding to the initial 50 iterations (Wilcoxon signed rank 

test). It is worth noting that increased overall performances are visible 

starting from iteration 20/30, thus confirming the positive impact of the 

choice of an expanding gene universe in the top “new disease” genes. 

To further study the improvement of DiaBLE in prioritiz-
ing disease genes, we performed a statistical comparison 
(Wilcoxon signed rank test, P-value < 10-3) between the two 
algorithms by considering recall vectors of each disease. In 

particular, we performed the comparison by taking into ac-
count different iteration values: for each disease, the first 
test was performed by considering the first 25 iterations 
with the aim to reveal differences related to the top candi-
dates, then we considered different iteration values by in-
creasing their number with a step of 25. Figure 4 shows the 
results obtained. For each of iteration value (𝑁𝑖𝑡 ∈
[25; 300]), the bar diagrams (panels a, b and c for the cases 
of 10%, 20% and 30% nodes removal, respectively) show 
the number of diseases for which the performance are bet-
ter using DIAMOnD (black bars) and DiaBLE (grey bars). 
It is worth noting that, since the initial iteration values (i.e. 
considering the first 20/30 iterations), DiaBLE outperforms 
DIAMOnD in a larger number of cases. A detailed repre-
sentation of the case of 30% node removal is shown in fig-
ure 4.d, where each row represents one of the 70 diseases 
(see Supplementary Tables S1 for matching numbers to 
diseases). The figure shows the performance obtained con-
sidering each specific disease and informs that in very few 
cases, there is a reversal of performance in favor of one al-
gorithm with respect to the other.  
 
3.3 Biological validation results (GO terms and 

pathway enrichment) 

Disease gene prediction is obtained by an iterative proce-
dure, as described in the Methods section, so that at each 
iteration a different “new” gene is added to the seed set 
depending on the algorithm (a DIAMOnD gene or a Dia-
BLE gene). Following Ghiassan et al. [7], a “new” disease  
gene (DiaBLE or DIAMOnD) has been considered a true  

 

Fig. 4. Bar diagrams (panels A, B and C for the cases of 10%, 20% and 30% nodes removal, respectively) showing the number of diseases 

for which the performances are statistically better (Wilcoxon signed rank test, P-value < 0.001) using DIAMOnD (black bars) and DiaBLE 

(grey bars). Panel D shows a detailed representation of the case of 30% node removal with the recall values at 300 iterations (reported only 

when one of the two algorithms outperforms the other. 
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hit (TH) if it is characterized by sharing at least, in the cor-
responding database (GO or KEGG), one of the most sig-
nificant annotations of the seeds set. The rationale behind 
this validation procedure is that it is assumed that the orig-
inal seeds set is an un-biased sample of the complete seeds 
set. Hence, a new disease gene is more likely to be “true” 
if it has a physical interaction with the seeds (i.e. a link on 
the interactome) and, if it participates in the same biologi-
cal process of – at least – a gene belonging to the current 
seeds set. Hence, the first step is to find significant enrich-
ments of a given seeds set using biological annotations. We 
therefore considered the annotations provided by GO 
terms (Gene Ontology database, biological process, down-
loaded April 2018) and pathways (KEGG gene set from the 
Molecular Signatures Database, downloaded April 2018). 
The available GO terms (biological process), were prefil-
tered as follows [7]: 

i) annotations labeled with evidence code “IPI” (In-

ferred from Physical Interaction) were excluded to 

avoid circularity; 

ii) annotations not associated with the gene products 

(evidence code “NOT”) were excluded. 

Moreover, to obtain smaller gene lists, annotations were 
not propagated upwards on the GO tree. 
In both cases (GO and pathways terms), for each disease 
we identified the annotations significantly enriched within 

the corresponding seeds set (hypergeometric test, 

significance level 10-3, with FDR Benjamini-Hochberg cor-
rection and annotation size greater than 10 and less than 
300, to avoid bias [17]). The results are presented in Figures 
5A and 5B where the median of the THs distributions for 
all 70 diseases at each iteration step, for both database and 
algorithm, are depicted. The better overall performances of 
DiaBLE versus DIAMOnD are clearly visible and their high 
significance is also reported (Wilcoxon rank sign test P-
value less than 10-70). In both cases (GO and pathways 
terms), for each disease we identified the annotations sig-
nificantly enriched within the corresponding seeds set (hy-
pergeometric test, significance level 10-3, with FDR Benja-
mini-Hochberg correction and annotation size greater than 
10 and less than 300, to avoid bias [17]). The results are pre-
sented in Figure 5A where the median of the THs distribu-
tions for all 70 diseases at each iteration step, for both da-
tabase and algorithm, are depicted. The better overall per-
formances of DiaBLE versus DIAMOnD are clearly visible 
and their high significance is also reported (Wilcoxon rank 
sign test P-value less than 10-70). Figure 5B, computed as for 
the cross-validation case, shows that DiaBLE outperforms 
DIAMOnD starting from the initial 20 iterations. 
As described for the cross-validation case, we studied dif-
ferences in algorithms performances using a statistical 
comparison (Wilcoxon signed rank test, P-value < 10-3) be-
tween DIAMOnD and DiaBLE by considering cumulative 
THs vectors for each disease. Again, for this analysis, we 
performed the comparison by taking into account different 
iteration values 𝑁𝑖𝑡 ∈ [25; 500]: starting from the first 25 it-
erations until the final value, increasing their number with 
a step of 25 iterations. Figure 6 shows the obtained results 
for GO terms (panel a) and KEGG pathways (panel b): 
from the initial iterations (i.e. considering 25 iterations), Di-
aBLE outperforms DIAMOnD in a larger number of cases.  

 
Fig. 6. Bar diagrams (panels A, B respectively for the cases of GO 
terms and KEGG pathways) showing the amount of diseases for 
which the performances are statistically better (Wilcoxon signed 
rank test, P-value < 10-3) using DIAMOnD (black bars) and DiaBLE 
(grey bars).  

 

Fig.5. (A) Median of the cumulative True Hits (THs) distribution 
across the 70 diseases, for DiaBLE and DIAMOnD genes, for the 
cases of GO terms (left panel) and KEGG pathways (right panel). 
Wilcoxon signed rank test reveals in both cases a highly significant 
difference of the median values (P-value <10-70) in favor of DiaBLE. 
(B) P-values corresponding to the initial 50 iterations. It is worth 
noting that increased overall performances are visible from the ini-
tial 20 iterations, thus confirming again the positive impact of the 
choice of an expanding gene universe in the top new disease 
genes. 
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3.4 Enrichment analysis of top DIAMOnD and 
DiaBLE genes in two cancers 

To provide also a biological analysis using DiaBLE genes, 
we considered two tumors which are not present in the 
original disease list [8]: the head and neck squamous cell 
carcinoma (HNSC) and the kidney renal clear cell carci-
noma (KIRC).  
Therefore, to obtain the associated seed sets (i.e. “known” 
disease genes), we used the database of disease-gene asso-
ciations DisGeNET ([18], [19], www.disgenet.org/ ) with 
the following selection criteria: i) curated data, ii) 𝑠 > 0.2 
(where 𝑠 is the DisGeNET score of disease-gene association 
level of evidence). We then performed an enrichment anal-
ysis in KEGG pathways for seed genes and for the top 50 
genes identified by DIAMOnD and DiaBLE in order to rec-
ognize specific pathways in which the differences between 
DIAMOnD and DiaBLE are more evident (Supplementary 
Tables S2 and S3). We selected two tumors, HNSC and 
KIRC, because they produced somewhat “divergent re-
sults”: in the first case, DIAMOnD and DiaBLE identified 
completely different lists of genes (3 out of 50 genes were 
equal); in the latter, the two lists were very similar (4 out of 
50 were different) but with a very different ordering. 
In HNSC, DiaBLE has been able to identify more statisti-
cally significant enriched pathways than DIAMOnD, just 
like those identified by seed genes. Some of these path-
ways, such as p53 and apoptosis, are characteristics of Di-
aBLE and the list of seed genes but they are not present in 
the DIAMOnD genes list. Moreover, according to the 
“Cancer Genome Atlas” data (TGCA, https://cancerge-
nome.nih.gov/) for head and neck cancer, p53 is the most 
common genetic mutation with a population frequency of 
72%. As opposed to the HNSC, in KIRC, we found almost 
the same genes in both DIAMOnD and DiaBLE lists and 
this explains the same enriched pathways obtained from 
KEGG analysis. Nevertheless, we found an intriguing dif-
ference in terms of statistically significance of enriched 
pathways exclusively in favor of DiaBLE, and it concerns 

several pathways involved in cancer (estrogen, PI3K-AKT, 
cGMP-PKG, TNF and AMPK signaling). Then, we looked 
at the position of genes in the two list (DiaBLE and DIA-
MOnD). We considered pathways in which the genes that 
“move-up” or “move-down” positions in the DiaBLE list, 
compared to DIAMOnD, are more frequently included. To 
this purpose, we looked at all pathway databases present 
in the GeneCard database (https://www.genecards.org/) 
(Figure 7). As shown in Figure 7, the large-scale differences 
in pathways enriched of prioritized genes concern Insulin, 
PI3K-AKT, AMPK, Notch and PKA in favor of DiaBLE al-
gorithm (“move-up” genes) and NFkB, TGFb, HIF and Jak-
Stat in favour of DIAMOnD algorithm (“move-down” 
genes). Most of the prioritized pathways from both algo-
rithms are included among those enriched for seed genes, 
suggesting they could play a key role in the carcinogenesis 
of KIRC. Although it is difficult to speculate about the dif-
ferent biological relevance of all the identified pathways in 
KIRC pathogenesis, some of the pathways prioritized by 
DiaBLE, such as insulin, PDGF, PI3K-AKT and AMPK 
pathways can regulate mTOR signaling, whereas the re-
maining ones are involved in apoptosis and cell cycle. In-
terestingly, mTOR pathway is a primary target in the treat-
ment of advanced KIRC, indicating its important role in 
this cancer [20]–[22]. Moreover, DiaBLE algorithm pre-
dicts, strongly than DIAMOnD, a role for Notch, Sonic-
Hedgehog and PKA pathways in the pathogenesis of KIRC 
which cannot be evidenced using known disease genes. 
Notably, their potential role in this cancer is consistent 
with recent literature [23]–[25]. 

4 CONCLUSION 

Inspired by the key insight about the importance of the 
connectivity significance for disease gene prediction pro-
vided by Ghiassan et al. [7], in this work we proposed a 
new version of the iterative process underlying the DIA-
MOnD algorithm. Since, at each algorithm iteration, nodes 

 
Fig. 7. Pathways including genes that “move-up” and “move-down” positions in DiaBLE compared to DIAMOnD. 
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that have no connection with the seed genes are not “com-
peting” to become such, the DiaBLE algorithm considers 
as background model for the hypergeometric test the 
smallest local expansion of the current disease module: the 
resulting gene universe is thus composed of: i) seeds set ii) 
candidate genes (nodes having at least a link to the seeds 
set) and iii) first neighbors of the candidate genes. We 
showed the impact of such gene universe selection and 
how DiaBLE genes are related to a significant increase of 
general performances with respect to the DIAMOnD algo-
rithm both for computational and biological validation. 
Moreover, on two specific cancers, we proved that both in 
the case of different predicted genes and in the case of very 
similar predicted genes but with different ordering – the 
DiaBLE algorithm provides more biological meaningful 
results compared to DIAMOnD. Finally, we note that com-
parative analysis among gene prioritization algorithms 
based on different strategies is beyond the scope of this 
study. 

Acknowledgement 

This work has been partially supported by a Sapienza Uni-

versity of Rome grant entitled “Network medicine-based 

machine learning and graph theory algorithms for preci-

sion oncology” - n. RM1181642AFA34C2.  

REFERENCES 

[1] S. Y. Chan and J. Loscalzo, “The emerging paradigm of net-

work medicine in the study of human disease,” Circ. Res., vol. 

111, no. 3, pp. 359–374, Jul. 2012. 

[2] M. Gustafsson et al., “Modules, networks and systems medi-

cine for understanding disease and aiding diagnosis,” Genome 

Med., vol. 6, no. 10, p. 82, 2014. 

[3] A.-L. Barabási, N. Gulbahce, and J. Loscalzo, “Network Medi-

cine: A Network-based Approach to Human Disease,” Nat. 

Rev. Genet., vol. 12, no. 1, pp. 56–68, Jan. 2011. 

[4] J. Menche et al., “Disease networks. Uncovering disease-dis-

ease relationships through the incomplete interactome,” Sci-

ence, vol. 347, no. 6224, p. 1257601, Feb. 2015. 

[5] K. Ozturk, M. Dow, D. E. Carlin, R. Bejar, and H. Carter, “The 

Emerging Potential for Network Analysis to Inform Precision 

Cancer Medicine,” J. Mol. Biol., vol. 430, no. 18 Pt A, pp. 2875–

2899, Sep. 2018. 

[6] Y. Bromberg, “Chapter 15: disease gene prioritization,” PLoS 

Comput. Biol., vol. 9, no. 4, p. e1002902, Apr. 2013. 

[7] S. D. Ghiassian, J. Menche, and A.-L. Barabási, “A DIseAse 

MOdule Detection (DIAMOnD) Algorithm Derived from a 

Systematic Analysis of Connectivity Patterns of Disease Pro-

teins in the Human Interactome,” PLOS Comput. Biol., vol. 11, 

no. 4, p. e1004120, Apr. 2015. 

[8] L. Cowen, T. Ideker, B. J. Raphael, and R. Sharan, “Network 

propagation: a universal amplifier of genetic associations,” 

Nat. Rev. Genet., vol. 18, no. 9, pp. 551–562, 2017. 

[9] S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, “Walking the 

interactome for prioritization of candidate disease genes,” Am. 

J. Hum. Genet., vol. 82, no. 4, pp. 949–958, Apr. 2008. 

[10] S. Navlakha and C. Kingsford, “The power of protein 

interaction networks for associating genes with diseases,” Bio-

informa. Oxf. Engl., vol. 26, no. 8, pp. 1057–1063, Apr. 2010. 

[11] M. Oti, B. Snel, M. A. Huynen, and H. G. Brunner, “Predicting 

disease genes using protein–protein interactions,” J. Med. 

Genet., vol. 43, no. 8, pp. 691–698, Aug. 2006. 

[12] S. Navlakha, M. C. Schatz, and C. Kingsford, “Revealing bio-

logical modules via graph summarization,” J. Comput. Biol. J. 

Comput. Mol. Cell Biol., vol. 16, no. 2, pp. 253–264, Feb. 2009. 

[13] O. Vanunu, O. Magger, E. Ruppin, T. Shlomi, and R. Sharan, 

“Associating Genes and Protein Complexes with Disease via 

Network Propagation,” PLOS Comput. Biol., vol. 6, no. 1, p. 

e1000641, gen 2010. 

[14] Y. Moreau and L.-C. Tranchevent, “Computational tools for 

prioritizing candidate genes: boosting disease gene discovery,” 

Nat. Rev. Genet., vol. 13, no. 8, pp. 523–536, Jul. 2012. 

[15] S. Falcon and R. Gentleman, “Using GOstats to test gene lists 

for GO term association,” Bioinforma. Oxf. Engl., vol. 23, no. 2, 

pp. 257–258, Jan. 2007. 

[16] S. Falcon and R. Gentleman, “Hypergeometric Testing Used 

for Gene Set Enrichment Analysis,” in Bioconductor Case Stud-

ies, F. Hahne, W. Huber, R. Gentleman, and S. Falcon, Eds. New 

York, NY: Springer New York, 2008, pp. 207–220. 

[17] D. Guala and E. L. L. Sonnhammer, “A large-scale benchmark 

of gene prioritization methods,” Sci. Rep., vol. 7, p. 46598, Apr. 

2017. 

[18] J. Piñero et al., “DisGeNET: a comprehensive platform integrat-

ing information on human disease-associated genes and vari-

ants,” Nucleic Acids Res., vol. 45, no. D1, pp. D833–D839, Jan. 

2017. 

[19] J. Piñero et al., “DisGeNET: a discovery platform for the dy-

namical exploration of human diseases and their genes,” Data-

base J. Biol. Databases Curation, vol. 2015, p. bav028, 2015. 

[20] D. Fantus, N. M. Rogers, F. Grahammer, T. B. Huber, and A. W. 

Thomson, “Roles of mTOR complexes in the kidney: implica-

tions for renal disease and transplantation,” Nat. Rev. Nephrol., 

vol. 12, no. 10, pp. 587–609, 2016. 

[21] D. Su, E. A. Singer, and R. Srinivasan, “Molecular pathways in 

renal cell carcinoma: recent advances in genetics and molecu-

lar biology,” Curr. Opin. Oncol., vol. 27, no. 3, pp. 217–223, May 

2015. 

[22] M. Ghidini et al., “Clinical development of mTor inhibitors for 

renal cancer,” Expert Opin. Investig. Drugs, vol. 26, no. 11, pp. 

1229–1237, Nov. 2017. 

[23] D. Jędroszka, M. Orzechowska, and A. K. Bednarek, “Predic-

tive values of Notch signalling in renal carcinoma,” Arch. Med. 

Sci. AMS, vol. 13, no. 6, pp. 1249–1254, Oct. 2017. 

[24] V. Dormoy et al., “The sonic hedgehog signaling pathway is re-

activated in human renal cell carcinoma and plays orchestral 

role in tumor growth,” Mol. Cancer, vol. 8, p. 123, Dec. 2009. 

[25] B. Zhang et al., “G Protein Alpha S Subunit Promotes Cell Pro-

liferation of Renal Cell Carcinoma with Involvement of Protein 

Kinase A Signaling,” DNA Cell Biol., vol. 36, no. 3, pp. 237–242, 

Mar. 2017. 

 


