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ABSTRACT: This paper describes a new Passive Microwave Empirical Cold Surface Classification Algorithm (PESCA)

developed for snow-cover detection and characterization by using passivemicrowave satellitemeasurements. Themain goal

of PESCA is to support the retrieval of falling snow, since several studies have highlighted the influence of snow-cover

radiative properties on the falling-snow passive microwave signature. The developedmethod is based on the exploitation of

the lower-frequency channels (,90GHz), common to most microwave radiometers. The method applied to the conically

scanning Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the cross-track-scanning Advanced

Technology Microwave Sounder (ATMS) is described in this paper. PESCA is based on a decision tree developed using an

empirical method and verified using the AutoSnow product built from satellite measurements. The algorithm performance

appears to be robust both for sensors in dry conditions (total precipitable water, 10mm) and for mean surface elevation,
2500m, independent of the cloud cover. The algorithm shows very good performance for cold temperatures (2-m tem-

perature below 270K) with a rapid decrease of the detection capabilities between 270 and 280K, where 280K is assumed as

the maximum temperature limit for PESCA (overall detection statistics: probability of detection is 0.98 for ATMS and 0.92

for GMI, false alarm ratio is 0.01 for ATMS and 0.08 for GMI, and Heidke skill score is 0.72 for ATMS and 0.69 for GMI).

Some inconsistencies found between the snow categories identified with the two radiometers are related to their different

viewing geometries, spatial resolution, and temporal sampling. The spectral signatures of the different snow classes also

appear to be different at high frequency (.90GHz), indicating potential impact for snowfall retrieval. This method can be

applied to other conically scanning and cross-track-scanning radiometers, including the future operational EUMETSAT

Polar System Second Generation (EPS-SG) mission microwave radiometers.
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1. Introduction

Snow plays an important role in the Earth energy exchange

processes and is a fundamental element of the water cycle.

Higher-latitude regions are experiencing significant modifica-

tions related to climate change. While the effect on tempera-

tures is relatively well known, the impacts on precipitation,

snow/ice extent, and snow/ice properties are less documented

and less understood. The use of satellites for snowfall moni-

toring and quantification and for retrieving snow-cover prop-

erties and variability is necessary to globally quantify water

resources (Levizzani et al. 2011; Skofronick-Jackson and

Johnson 2011; Romanov et al. 2003).

Spacebornemultichannel microwave (MW) radiometers are

the only sensors able to provide consistent measurements of

falling snow and snow-cover properties at the same time, and

therefore to contribute to the understanding of their feedback

mechanisms and interconnections in hydrology and climate.

On one side, the high-frequency channels (90–190GHz) are

sensitive to falling snow due to the scattering by snowflakes of

upwelling radiation (e.g., Bennartz and Bauer 2003; Liu and

Seo 2013; Skofronick-Jackson and Johnson 2011). On the other

side, the lower-frequency channels (,90GHz) allow to char-

acterize and quantify snow-cover properties (e.g., Grody 1991;

Ferraro et al. 2005). Moreover, their large swath and avail-

ability on many platforms ensures a good global coverage and

lengthy data records.

The snowpack microwave signal has been studied since the

late 1970s (e.g., Stiles and Ulaby 1980; Hallikainen et al. 1986).

The snow-covered surfaces show MW emissivity spectra that

are extremely variable, due to the nature of snowpack as an

inhomogeneous layered medium. A snowpack is an inhomoge-

neous mixture of air, ice, and water (Colbeck 1976). Deposition

and metamorphic processes are responsible for the creation of

layers (Pielmeier and Schneebeli 2003) that are subject to

modifications due to metamorphic processes over time (Colbeck

1991), caused by mechanical compression, thermal gradients in

the snowpack and melting (Arons and Colbeck 1995). In the

MW spectrum dry snow acts as a volume scatterer, because of

the discontinuities between air and ice (Amlien 2008). The dry
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snow grain size and shape influence its scattering properties

(Foster et al. 1999; Clifford 2010). While the depth of the dry

snowpack strongly influences the total amount of radiation

that is scattered (Che et al. 2008), the liquid water within the

snowpack strongly enhances the absorption at the expense of

the volume scattering (Rott and Nagler 1995; Amlien 2008).

Hewison and English (1999) developed a model representing

the microwave emissivity spectra of sea ice and snow cover

obtained by airborne measurements. Different behaviors have

been observed for different types of snowpacks, with an evident

decrease of the emissivity with increasing frequency (withinMW)

for dry snow, and a high and stable emissivity for fresh wet snow.

Many products and algorithms already exist for the detec-

tion of snow cover from satellite. Most of themmake use either

of infrared and visible (VIS/IR) channels [e.g., MODIS (Hall

and Riggs 2007; Hall et al. 1995, 2002; Riggs et al. 2006),

GlobSnow (Metsämäki et al. 2015)] or a combination of MW

and VIS/IR measurements [e.g., Prigent et al. (2003) or the

Global Multisensor Automated Snow and Ice Maps (GMASI)

AutoSnow product (Romanov 2017)]. Some snow-cover de-

tection algorithms based only onMWradiometers already exist

(e.g., Chang et al. 1987; Grody 1991; Walker and Goodison 1993;

Grody and Basist 1996; Kelly et al. 2003; Ferraro et al. 2005).

However, in recent years there has been a lack of newMW-based

studies despite the need for snow-cover detection and character-

ization for passive MW precipitation estimates. Some wide and

active areas of research are related toMW-based retrieval of snow

properties, in particular the characterization of snow emissivity

(e.g., Cordisco et al. 2006; Prigent et al. 2008; Munchak et al.

2020, hereinafter M20), and the estimate of snow depth (SD)

and snow water equivalent (SWE) (e.g., Chang et al. 1987; Foster

et al. 1997; Markus et al. 2006; Tedesco et al. 2010).

The snow-cover extent, especially in the ablation and accu-

mulation season, shows a high variability often within the same

day. A striking example of such variability is provided in Fig. 1.

It shows a 5-yr analysis of the AutoSnow daily snow-cover

product (Romanov 2017) in the Northern Hemisphere. The

top panel shows the variability of the snow-cover area (or snow

extent) percentage (with respect to the total land area), for five

108-latitude bins, while the lower panel shows the snow extent

daily change, i.e., the area of snow cover that experiences a

variation from one day with respect to the previous day (in

percentage with respect to the total land area), for the same

latitude bins. It is clear from Fig. 1 that the snow extent daily

variability is a relatively large fraction (up to 10%) of the total

land area. This is particularly true for the ablation and depo-

sition seasons (spring and autumn), with different durations

depending on the latitude.

The extremely variable snow-cover extent and snow radia-

tive properties in the MW are one of the main issues in the

detection and quantification of snowfall by passive microwave

observations, which remain among the most challenging tasks

in global precipitation retrieval (Bennartz and Bauer 2003;

Skofronick-Jackson et al. 2004, 2019; Noh et al. 2009; Levizzani

et al. 2011; Kongoli and Helfrich 2015; Chen et al. 2016; You

et al. 2017; Kulie et al. 2016; and many others). On one side,

relative to rainfall, the snowfall scattering signal is much

weaker (Grody 1991; Kim et al. 2008; Kulie et al. 2010), is

highly dependent on the complex microphysical characteristics

of snowfall (Bennartz and Petty 2001; Liu 2008; Kulie et al.

2010; Petty and Huang 2010; Skofronick-Jackson and Johnson

2011; Kuo et al. 2016; Olson et al. 2016; Eriksson et al. 2018;

Kneifel et al. 2020), and tends to bemasked by the atmospheric

and liquid water emissivity (Kneifel et al. 2010; Johnson et al.

2016; Liu and Seo 2013; Wang et al. 2013; Panegrossi et al.

2017). On the other side, the snow-covered surface emissivity is

extremely variable due to rapid changes of snow-cover extent,

snow accumulation on the ground, and snowpack radiative

properties, with significant effects on the snowfall microwave

signal (e.g., Laviola et al. 2015; Prigent et al. 2003; Noh et al. 2009;

Takbiri et al. 2019; M20). The falling-snow weak signal has

to be distinguished from the highly variable surface signal,

FIG. 1. Analysis of 5 years of AutoSnow snow-cover product over the Northern Hemisphere.

(top) Snow extent percentage w.r.t. total land extent. (bottom) Snow extent daily change

(in percentage w.r.t. total land extent) for the same latitude bins. The different curves refer to

the five different 108 latitude bins indicated in the legend.
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therefore a characterization of the surface is vital to a suc-

cessful snowfall detection.Moreover, it has been demonstrated

that a nonunique and nonmonotonic response exists between

the TBs and snowfall rate over different snow-covered surfaces

(Takbiri et al. 2019), with a variable contrast between the

surface and the clouds, and a transition from a scattering to an

emission regime, that is strongly dependent on the snow-cover

dynamics. Passive microwave (PMW) snowfall retrieval algo-

rithms often rely on the use of climatological microwave

emissivity datasets (e.g., Prigent et al. 2008), often used in

conjunction with daily products for snow-cover extent (and sea

ice concentration). Several recent studies show how critical the

correct characterization of the surface conditions at the time of

the satellite overpass is for precipitation estimation from PMW

radiometer observations (e.g., Milani et al. 2020; Ringerud

et al. 2021). For snowfall detection and retrieval this is even

more critical, because the highly variable snow surface condi-

tions have a time-varying effect on the snowfall upwelling signal

(Ebtehaj and Kummerow 2017; Takbiri et al. 2019), and this

should be considered in the snowfall retrieval process. A first at-

tempt to account for such variability has been made in a recently

developed snowfall retrieval algorithm for theGlobal Precipitation

Measurement (GPM) Microwave Imager (GMI) [Snow Retrieval

Algorithm for GMI (SLALOM); Rysman et al. 2018, 2019] where

no assumptions on the background surface are made, and

where the GMI low-frequency channels are used to optimally

exploit the snowfall-related signal at high frequency.

The main goal of this work is to describe a new snow-cover

detection and classification algorithm, the Passive Microwave

Empirical Cold Surface Classification Algorithm (PESCA),

based on a decision tree built on a series of tests on low-frequency

MW channels and their combinations, selected on the basis

of previous studies on the MW spectrum dependencies on

snowpack physical conditions. The most useful aspect of the

algorithm is that it exploits channel frequencies common to

most current and future microwave radiometers in space (from

23 to 90GHz), and that it can be applied to both conically

scanning and cross-track-scanning radiometers. In this study

a comparison between the results obtained for the conically

scanning GMI and those obtained for the cross-track-scanning

Advanced Technology Microwave Sounder (ATMS) radiom-

eters is analyzed. The study aims at highlighting the potential

application of the method in snowfall retrieval algorithms in

dry conditions, where the characterization of the snow cover at

the time of the overpass is a prerequisite for the full exploita-

tion of the high-frequency channels used for the retrieval.

2. Data and methods

The work is based on the use of three different datasets (for

development, validation, and analysis) obtained by combining

the observations from the PMW sensors (GMI and ATMS)

with model-derived environmental variables and snow-cover

products used as reference.

a. Instruments and reference products

The two most advanced microwave radiometers currently

in space, which are part of the GPM constellation, have been

considered in this study: theGMI (Draper et al. 2015) on board

the NASA/JAXA GPM Core Observatory and the ATMS

(Weng et al. 2012) on board the operational Suomi National

Polar Orbit Partnership (SNPP) and NOAA-20U.S. satellites.

Themain characteristics ofGMI andATMS are summarized in

Tables 1 and 2. Note that the two MW radiometers have very

different characteristics: GMI is a non-sun-synchronous conically

scanning radiometer with a constant viewing angle covering a

904-km-wide swath, and ATMS is a cross-track-scanning ra-

diometer, on board sun synchronous polar satellites, with viewing

angles ranging between 08 and 52.778, covering a 2600-km-wide

swath. The NASA Precipitation Processing System (PPS) inter-

calibrated brightness temperatures (TBs), Level 1C-R and 1C for

GMI and ATMS, respectively (Berg et al. 2016), are used in the

study. In particular, the TBs measured at 23.8, 36.5, and 89GHz

(V polarization channels) (hereinafter TB23V, TB37V, and TB89v)

for GMI, and at 23.8, 31.4, and 88.2GHz (quasi-V polarization

channels) (TB23QV, TB31QV, and TB88QV) for ATMS are used.

The ‘‘quasi’’ prefix is used to indicate theATMS (and other cross-

track scanners) channels because it measures vertical polarization

when looking at nadir and a mixture of V and H polarization for

off-nadir scan angles, according to the following equation:

TB
QV

5TB
V
cos2(u)1TB

H
sin2(u),

where u is the scan angle.

Table 1 also reports some characteristics of the W-band

(94GHz) CloudSat Cloud Profiling Radar (CPR) relevant for

this study [see section 2b(1)]. The CPR has been used to infer

the status of the cloud cover at the time and location of the

PMW observation. As demonstrated in several studies, CPR

high sensitivity allows one to observe light precipitation and

snowfall at high latitudes (e.g., Kulie and Bennartz 2009;

Casella et al. 2017; Skofronick-Jackson et al. 2019; Liu 2020),

although shallow snowfall events could be partly missed be-

cause of ground clutter contamination (Milani et al. 2018;

Bennartz et al. 2019).

Two different reference snow-cover products have been

used in the study, one global and one over the contiguous

United States (CONUS) region. The global AutoSnow prod-

uct is provided by the Global Multisensor Automated Snow

and Ice maps (GMASI; Romanov 2017) algorithm, for ice and

snow-cover detection, developed by the NOAA/NWS and

National Ice Center (NIC) to support the hydrological com-

munity. It consists of global and daily snow-cover and sea ice

maps with a spatial resolution of 0.048. It is based on the

combination of four different GEO and LEO sensors, VIS/IR

AVHRR,GOES-E, GOES-W, SEVIRI in the VIS/IR, and the

SSMIS MW radiometer. A specific algorithm processes data

from each instrument and the results are combined. In par-

ticular, the microwave estimates are used only to fill the gaps

due to the lack of VIS/IR-based estimates (at night time or due

to the presence of clouds). AutoSnow daily maps are conven-

tionally referred to 0000 UTC. The maps present four surface-

type flags, snow cover, snow-free land, clear water, ice cover,

and one flag for invalid data. The agreement between AutoSnow

yearly mean and surface observations over CONUS has been

estimated in 91.4% (Nagler et al. 2014).

JULY 2021 CAMPLAN I ET AL . 1729

Brought to you by UNIV. STUDI ROMA LA SAPIENZA | Unauthenticated | Downloaded 03/16/22 01:21 PM UTC



The regional Snow Data Assimilation System (SNODAS;

Carroll et al. 2006) is a modeling and data assimilation system

developed by the National Operational Hydrologic Remote

Sensing Center (NOHRSC) to support hydrologic modeling

and analysis over Contiguous United States (CONUS) (from

248 to 548N, and from 1318 to 628W). SNODAS provides a

physically consistent framework to integrate snow data from

satellites, airborne platforms, and ground stations with model

estimates of snow-cover state variables at a daily temporal

resolution, and 1 km spatial resolution: three state variables

(describing the surface status at 0600 UTC), SWE, SD, and

snowpack average temperature; two driving variables (re-

porting the total value for the previous 24 h), solid and liquid

precipitation; and three diagnostic variables (model outputs

cumulated in 24 h), snowmelt runoff at the base of the

snowpack, sublimation from the snowpack and sublimation

of blowing snow. Results from snow surveys in the Colorado

RockyMountains (Clow et al. 2012) indicated that SNODAS

performed well in forested nonmountainous areas, explain-

ing 72% of the variance in snow depth and 77% of the vari-

ance in SWE.

The development of PESCA has been based on the use of

AutoSnow as reference for snow-cover detection. The valida-

tion of the algorithm is based on the use of an independent and

larger AutoSnow dataset. SNODAS has been used for a re-

gional analysis of some physical properties of PESCA snow

classes, that is, SD, snow precipitation and melted snow mass

in the last 24 h. It is worth noting that both reference products

are available at daily time scale, therefore in case of subdaily

variations (e.g., due to snow accumulation or snow melting)

PESCA could actually be correct while disagreeing with the

reference data.

b. Dataset description

The main characteristics of the three datasets used in this

study are summarized in Table 3.

1) DEVELOPMENT DATASET (AUTOSNOW, CPR, PMW)

The development dataset has been used first for the develop-

ment and tuning of the snow detection algorithm and secondarily

to analyze the influence of the cloud cover on the algorithm

snow detection capabilities. The development dataset has been

TABLE 1. Main characteristics of GMI and ATMS MW radiometers and CloudSat CPR.

GMI ATMS CPR

Name GPM Microwave Imager Advanced Technology Microwave

Sounder

Cloud Profiling Radar

Satellite Global Precipitation Measurement

(GPM) Core Observatory

Suomi National Polar Orbit Partnership

(SNPP)–NOAA-20

CloudSat

Scanning technique Conically scanning microwave

radiometer

Cross-track-scanning microwave

radiometer

Nadir-looking cloud radar

Channels and

frequencies

13 channels (from 10 to 190GHz)

(with 5 window channels in V and

H polarization)

22 channels (from 23 to 190GHz)

(13 channels in the 50–60-GHz

band for temperature sounding)

94GHz

Spatial resolution (3-db

footprint IFOV size)

19 3 32 km2–4 3 7 km2 increasing

with frequency

75 3 75 km2–16 3 16 km2 at nadir

increasing with frequency, degrading

from nadir to the edges

1.4-km horizontal;

240-m vertical

Viewing angle 48.58 (45.38 channels from 166 to

183GHz)

from 08 to 52.778

Swath 904 km 2600 km

Orbit inclination Drifting orbit 658 inclination
(polar areas not covered)

Sun synchronous Sun synchronous (from

838S to 838N)

Revisiting Time 2 days 12 h 16 days

Launch Date 28 Feb 2014 6 Mar 2012 28 Apr 2006

TABLE 2. GMI and ATMS channel characteristics (pol indicates polarization).

GMI ATMS

Frequency (GHz) Footprint (km) Pol Frequency (GHz) Footprint (km) Pol

10.65 19 3 32 V; H 23.8 75 3 75 QV

18.7 11 3 18 V; H 31.4 75 3 75 QV

23.8 9.2 3 15 V 88.2 32 3 32 QV

36.5 8.6 3 14 V; H 165.5 16 3 16 QH

89.0 4.4 3 7.2 V; H 183.31 6 1 16 3 16 QH

166.5 4.4 3 7.2 V 183.31 6 1.8 16 3 16 QH

183.31 6 7 4.4 3 7.2 V 183.31 6 3 16 3 16 QH

183.31 6 3 4.4 3 7.2 V 183.31 6 4.5 16 3 16 QH

183.31 6 7 16 3 16 QH
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obtained from the coincidences between CloudSat CPR and

SNPP ATMS or GMI (Turk 2016) for the period January

2015–August 2016. The dataset includes several CPR products

(e.g., snow water path, snowfall rate at the surface from the

2C-SNOW-PROFILE product; Wood and L’Ecuyer 2018);

however, in this study only the CPR cloud mask from the 2B-

GEOPROF product is used. TheAutoSnowmaps are included

in the development dataset as reference for snow cover. Both

AutoSnow andCPRobservations have been spatially averaged

using a Gaussian antenna pattern to match the ATMS/GMI

instantaneous field of view (IFOV). For each ATMS/GMI

observation five occurrence indices, given by the fraction of

each AutoSnow class (snow cover, snow-free land, clear water,

ice cover, and invalid data) in the PMW IFOV, are provided.

Some environmental variables from ERA5 (interpolated in

time and space to the radiometer IFOV position) have been

added to the dataset: temperature at the 2-m level (T2m), skin

temperature (Tskin) and total precipitable water (TPW). The

dataset also includes surface elevation (height MSL) from a

digital elevation model (DEM) (GTOPO30; https://doi.org/

10.5066/F7DF6PQS). The surface elevation has been also

averaged with a Gaussian antenna pattern to match the

ATMS/GMI IFOV.

2) VALIDATION DATASET (AUTOSNOW, PMW)

The validation dataset has been built by combiningGMI/ATMS

observations with AutoSnow surface maps, GTOPO30 DEM,

and ERA5 environmental variables (T2m,Tskin, and TPW) using

the same procedure described for the development dataset. This

dataset has been used for the assessment of PESCA snow-cover

detection capabilities after removing all observations already

included in the development dataset.

3) ANALYSIS DATASET (SNODAS, PMW)

The analysis dataset has been used to identify and interpret

the physical characteristics of the different classes of snow

cover identified by the algorithm. It has been developed by

combining ATMS or GMI observations with SNODAS output

variables, GTOPO30 DEM, and ERA5. Since SNODAS

is available only over CONUS, all the results based on this

dataset are valid at a regional scale. While all sun synchronous

GMI orbits over CONUS have been considered, only ATMS

ascending orbits (between 0600 and 1300 UTC), closest in time

to the SNODAS reference time (0600 UTC), have been

selected. The dataset has been built following the same

procedures used for the development and validation data-

sets, obtaining a snow-cover occurrence index, a land frac-

tion index (since SNODAS provides information only over

land) and a mean value (over the PMW IFOV) of SNODAS

snow-related variables.

3. Algorithm description

The PESCAmethod developed for snow-cover classification

is based on a decision tree built from five different tests. It

makes use of a limited number of inputs that have been rec-

ognized as very important for the detection of snow cover and

for the characterization of its physical properties. The first in-

put is the low-frequency ratio (RLF), which is the ratio between

TB23V/TB37V for GMI and the ratio TB23QV/TB31QV for

ATMS. As previously described, many authors have noticed

that a steep decrease in the low-frequency channel emissivity

with increasing frequency (,37GHz) is a clear indication of

the presence of Deep Dry Snow (e.g., Markus et al. 2006). The

RLF has the same physical meaning asDTB, considering the use
of vertical instead of horizontal polarization channels, and

negative DTB corresponds to RLF , 1.01. The second input is

the scattering index (SI). Grody and Basist (1996) used SI from

SSM/I defined as TB22v 2 TB85v to identify the snow-covered

surfaces. The SI, however, fails in detecting polar ice sheets

(over Greenland and Antarctica) and a different test is per-

formed on the low-frequency channel brightness temperature

(TBLF: TB23V and TB23QV for GMI and ATMS, respectively)

to identify snow in these regions. Starting from these guidelines

we have analyzed the development dataset and identified dif-

ferent data clusters in the space of these variables corre-

sponding to different snow classes. Then, for each cluster, we

have developed a series of discriminant tests to distinguish

between the various snow classes and snow-free land. This

method is somewhat similar to what has been done by other

authors (e.g., Cordisco et al. 2006; Wang et al. 2017) using

unsupervised clustering methods; however, our algorithm has

not been developed using fully automated clustering tools, but

manually optimizing each test (see Fig. 3 for two examples)

depending on the partitioning of snow and no-snow pixels ac-

cording to the reference product (AutoSnow).

Four snow classes have been named by analyzing their sea-

sonal and geographical distribution and their characteristics in

terms of snow depth [verified also using the analysis dataset

over CONUS; see section 4b(1)]:

TABLE 3. Characteristics of the development, validation, and analysis datasets used for ATMS and GMI. In parentheses is the per-

centage of observations with snow cover according to the AutoSnow reference dataset. The spatial resolution indicates the assumed

ATMS and GMI IFOV size used to spatially average reference-truth products and CPR products and match the radiometer measure-

ments. Note that 1808–1808 indicates that the longitudinal coverage spans the globe.

Dataset PMW sensor No. of obs (% snow cover) Spatial coverage (lat/lon) Spatial resolution Temporal coverage

Development ATMS 4.67 3 106 (10.4%) 838S–838N 1808–1808 75 3 75 km2 1 Jan 2015–31 Aug 2016

GMI 1.57 3 105 (11.5%) 678S–678N 1808–1808 10 3 15 km2 1 Jan 2015–31 Aug 2016

Validation ATMS 1.37 3 108 (16.2%) 908S–908N 1808–1808 75 3 75 km2 1 Jan 2015–31 Dec 2015

GMI 1.02 3 109 (26.7%) 678S–678N 1808–1808 10 3 15 km2 1 Jan 2015–31 Dec 2015

Analysis ATMS 4,69 3 106 (7.73%) 248–548N 1318–628W 75 3 75 km2 1 Jan 2015–31 Dec 2015

GMI 2.25 3 107 (8.25%) 248–548N 1318–628W 10 3 15 km2 1 Jan 2015–04 Dec 2016
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1) DeepDry Snow—Seasonal snowwithmoderate to deep dry

snow depth, radiometrically characterized by RLF .1.01

and by strong scattering at;90GHz (high SI) (C in the left

panel of Fig. 3).

2) Polar Winter Snow—This class of snow has been found

only in the inner Antarctica and Greenland Plateaus in the

winter season and falls outside the GMI coverage area. It is

characterized by RLF .1.01 and by low SI (B in the left

panel of Fig. 3).

3) Perennial Snow—Present mostly at higher latitudes and at

low temperatures, characterized by RLF ,1.01 and by

significant scattering at low frequency (19–23GHz). It is

probably related to old snow with deep hoar, recognized by

Grody and Basist (1996) as ‘‘glacial arctic ice’’ (D in the

right panel of Fig. 3).

4) Thin Snow—It is a seasonal snow associated with the

smallest retrievable thickness and it is only visible from

scattering at relatively high frequency (A in the right

panel of Fig. 3).

Figure 2 shows the algorithm flowchart. The decision tree

scheme is the same for GMI andATMS, while the definition of

the input variables and thresholds tailored for the specific ra-

diometer are listed in Table 4. The first test (Test 1) is on the

T2m and considers all pixels with temperatures higher than

280K as snow free, as a small fraction (0.6% for ATMS, 1.6%

for GMI) of the datasets include snow cover with T2m. 280K.

The second test (Test 2) is on the RLF, where RLF . th2

(th2 5 1.01 for both GMI and ATMS) identifies snow pixels

with stronger volume scattering at 31–37GHz than at 23GHz.

For these pixels, a test on the SI (Test 3) is carried out and two

clusters of snow cover are identified (Deep Dry Snow and

Polar Winter Snow). If the RLF # 1.01, the algorithm proceeds

in testing the TBLF (Test 4) and identifies the Perennial Snow

Class. If both the RLF . 1.01 and the TBLF tests fail, the SI is

used in order to identify Thin Snow (Test 5). The last test is the

most problematic: first because the MW signal associated with

the presence of Thin Snow is weaker than for other classes,

and secondarily due to the extremely variable conditions of

Thin Snow coverage in time and space that causes larger

uncertainties in the reference dataset and inhomogeneity within

the satellite IFOV. This issue is particularly problematic for

ATMS because of its low spatial resolution.

Figure 3 shows an example of the method followed for the

definition of the test in the ATMS algorithm. In both panels

the letter A indicates the assumed snow-free land pixels

(T2m . 280 K). The left panel illustrates the density scatter-

plots of the snow-cover clusters identified when RLF . 1.01 in

the T2m versus SI space. In this panel two main snow clusters

are clearly visible (labeled with letters B and C), discriminated

by a line (shown in dark green) corresponding toTest 3 (SI. th3),

and associated to Deep Dry Snow and Polar Winter Snow,

respectively. The left panel also shows the contours of the

number of snow-free observations (very few and mostly found

at T2m. 270K). The right panel shows the density scatterplots

in the T2m versus TBLF/T2m (23-GHz pseudoemissivity) space,

for the observations that verify the condition: RLF # 1.01. The

two identified snow-cover clusters are labeled with the letter D

(corresponding to Perennial Snow) and letter E (including

Thin Snow and snow-free land) that are discriminated by Test 4

(TBLF/T2m, th4). Also in this case the contours correspond to

the number of snow-free observations, showing a high overlap

with the snow-cover region of cluster E. Test 5 (SI. th5) (not

shown) is conducted on observations in cluster E as a further

step to discriminate between Thin Snow and snow-free land. It

is worth noting that some snow-covered areas are present for

T2m . 280K and are missed by PESCA.

Table 4 shows the thresholds that have been empirically

determined for ATMS and GMI. The only threshold that

shows a dependence on theATMS incidence angle is th5, while

some substantial differences are notable between GMI and

ATMS. In particular, Test 4 is applied to a single channel

(23.8 GHzV for GMI and QV for ATMS) with a different

threshold depending on the near surface temperature. The

values of the threshold have been set up empirically for both

GMI and ATMS and have been tested for ATMS considering

different scan angles separately. It is well known that the V-pol

emissivity at 53.18 is always higher than the QV-pol emissivity

at the same viewing angle (see Hewison and English 1999).

Therefore, Test 4 is substantially different forGMI andATMS.

Moreover, QV emissivity shows a decrease with the incidence

FIG. 2. Decision tree of the PESCA snow-cover detection and

classification scheme.

TABLE 4. PESCA parameters and thresholds used in the five

snow-cover detection tests for GMI and ATMS.

Variable GMI ATMS

RLF TB23V/TB37V TB23QV/TB31QV

SI TB23V 2 TB89V TB23QV 2 TB88QV

TBLF TB23V TB23QV

th 1 280K 280K

th 2 1.01 1.01

th 3 — 257 2 T2m(K)

th 4 (495K 2 T2m)/(250K) (465K 2 T2m)/(225K)

th 5 5K 3K/cos(u)
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angle that is stronger for snow-covered than for snow-free land.

Therefore, the ATMS Test 4, optimized for nadir-looking an-

gles, works well also at off-nadir angles. The viewing angle is

critical in Test 5. In this case, Thin Snow is discriminated from

snow-free land by testing the SI. The rationale here is that a

thin layer of snow will produce a sensible volume scattering at

89GHz but not at 23GHz, which will ‘‘sense’’ the soil below

the thin snow layer. One result from the analysis of the viewing

geometry dependence of ATMS in detecting snow cover is that

the thickness of a snow layer producing enough volume scat-

tering to be sensed depends on the zenith angle. In particular, a

dependence from the optical pathlength has been found, which

introduces a 1/[cos(u)] factor for ATMS. Therefore, th5 has been

set to 3K/[cos(u)], which corresponds to 5K for the 53.18GMI

zenith angle. This value corresponds to the threshold that has

been independently determined for Test 5 for GMI.

4. Results

The validation dataset, considering AutoSnow as reference,

has been used to assess the snow-cover detection capabilities of

the algorithm both for GMI and for ATMS. Each radiometer

pixel where AutoSnow snow-cover occurrence index is larger

than 0.5 is considered as ‘‘snow pixel.’’ The probability of de-

tection (POD), false alarm ratio (FAR), andHeidke skill score

(HSS) indices have been calculated. The validation dataset

has been used to analyze the dependence of the snow-cover

detection statistical scores on the environmental conditions,

specifically, TPW,T2m, and surface elevation. The sensitivity of

the algorithm detection skills to the presence of clouds has

been analyzed using the CPR 2B-GEOPROF product cloud

mask associated with each observation in the development

dataset. The analysis dataset, based on SNODAS, has been

used to study the specific characteristics of the two snow-cover

classes identified in the CONUS domain and to verify the al-

gorithm ability to distinguish between the two classes.

From a preliminary analysis, it has been observed that the

GMI algorithm shows rare occurrences of false alarms over

Sahara and part of the Arabian Peninsula. As a matter of fact,

several studies have shown that sand deserts have an emissivity

spectrum very similar to snow cover (or light precipitation; e.g.,

Grody andWeng 2008). To exclude this false detection of snow

over desert, the sand desert areas have been identified using

the same method described by Casella et al. (2015) and have

been excluded from the analysis shown in the following

sections.

a. Snow-cover detection

1) DEPENDENCE ON CLOUD COVER AND

ATMOSPHERIC HUMIDITY

In this analysis two extreme cases of cloud cover have been

considered: 0% and 100% over the ATMS/GMI pixel in the

region observed by CPR. Since CPR observes just a very small

fraction of theATMS andGMI elliptical IFOV (i.e., a 1.4-km-wide

swath across the IFOV), both cases will include some occur-

rences of partial cloud cover in the IFOV area not covered by

the CPR track. However, the cloud cover statistics of the two

cases will be very different: all the clear sky IFOV will be

accounted in the 0% case and all the fully cloud covered IFOV

will fall in the 100% case. To separate the effect of water vapor

[analyzed in Fig. 4, and showing a strong impact on PESCA

snow detection capabilities especially for TPW higher than

10 mm] from the effect of clouds, the results are shown for dry

conditions (TPW , 5mm). Both GMI and ATMS detection

skills reported in Table 5 show that the presence of clouds

does not affect the POD for ATMS (0.95). GMI shows a very

small variation in the POD with and without clouds (0.91 and

0.95, respectively). The false alarms are very low (,0.03) and

FIG. 3. Density scatterplot for ATMS snow-cover occurrences (upper-right color scale) for (left) RLF . th2 and (right) RLF # th2. In

each panel, two snow-cover clusters are identified: clusters B and C (corresponding to Polar Winter Snow and Deep Dry Snow, re-

spectively), with the discriminant function of SI vs T2m implemented for Test 3 (dark-green dashed line) are shown in the left panel.

Clusters D and E (corresponding to Perennial Snow and ‘‘Thin Snow/snow-free land,’’ respectively), with the discriminant function of

23-GHz pseudoemissivity (TBLF/T2m) vs T2m implemented for Test 4 (pink dashed line) are shown in the right panel. The contours of the

snow-free land occurrences are also shown, with the 1, 10, 100, and 500 isolines following the lower-right color scale. The letter A in both

panels indicates the cluster of assumed snow-free pixels based on the T2m . 280K criterion.
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show a very small variation with and without clouds. Overall,

the detection capabilities of PESCA in the presence of clouds

are still very robust. This is a fundamental result for the ap-

plication of the algorithm independently of the cloud cover

conditions at the time of the sensor overpass, also for snowfall

retrieval.

Figure 4 shows the analysis of the influence of the atmo-

spheric water vapor content (TPW) on the algorithm snow-

cover detection capabilities, tested on the validation dataset

(AutoSnow, PMW). The figure shows the results in terms of

POD and FAR for GMI and ATMS. For ATMS, the depen-

dence of POD and FAR on the viewing angle is analyzed by

grouping the results in three scan-angle categories. It is clear

from Fig. 4 that the atmospheric water vapor strongly influ-

ences PESCA detection capabilities both for ATMS and GMI.

POD decreases from almost 1 for very small values of TPW

(,3mm) to 0.9 for TPW around 5mm, and then it decreases

almost linearly to 0.55 (0.45) for GMI (ATMS) for TPW

around 10mm (and to lower values as TPW increases). The

FAR, on the other hand, increases with TPW, but it is always

below 0.2 for both GMI and ATMS for TPW around 10mm.

The influence of the scan angle on the ATMS results is also

evident in Fig. 4. In particular, near-nadir angles show lower

POD and FAR than off-nadir angles. Some differences be-

tween the ATMS andGMI detection capabilities can be noted.

In particular, for TPW , 10mm the GMI algorithm tends to

show higher values of FAR than ATMS, while for TPW .
10mm the GMI results are very consistent with the ones from

ATMS at higher view angles. Some differences can be noted

also for the AutoSnow snow-cover occurrences for each TPW

bin in the two datasets (green lines in Fig. 4). This is due to

the differences in the regions observed by GMI and ATMS

(ATMS covers the polar regions while GMI orbits are limited

to 678N/S) and to the different number of snow-cover obser-

vations in the two datasets (see Table 3). The strong influence

of TPWon the algorithm performance is due to the radiometric

emission by the atmospheric water vapor that tends to mask

the background surface signal, enhancing the TBs at all fre-

quencies (in particular, at 23, 31–37, and 89GHz) and masking

the snow surface volume scattering features associated with

cold TBs. The TPW adversely affects the snow detection even

in relatively dry conditions (5–10mm) and compromises the

snow detection when TPW is higher than 10mm. From these

results, it is possible to define the upper working limit of both

GMI and ATMS algorithms in terms of TPW, which is set to

10mm. Observations associated with TPW values higher than

10mm have been removed from the datasets and from the

analysis shown in the following sections. This selection excludes

a relatively small fraction of the observations from the validation

datasets: only 3.7% snow-cover observations for the GMI

dataset, and only 2.6% for ATMS.

The impact of water vapor emission and clouds have been

addressed and considered with different approaches in previ-

ous studies on snow emissivity retrieval (e.g., Prigent et al.

2003; Cordisco et al. 2006; M20). It is worth noticing, however,

that all approaches are applied only to conically scanning ra-

diometers. M20 retrieve the full GMI 10–166-GHz emissivity

vector using optimal estimation. The retrievals of the water

vapor and surface states are performed simultaneously, while

cloud- and precipitation-affected emissivities are screened.

Our results show that the input variables and the thresholds

used in PESCA for the detection and characterization of snow

cover are not significantly influenced by the presence of clouds.

The SI (i.e., TB23V2TB89V forGMI) in particular, widely used

in the literature for snow detection (Grody and Basist 1996), is

one of the input parameters used for the detection of Thin

Snow, which is themost critical (more subject tomissed or false

detection). The SI could be affected by the presence of clouds

in different ways. Several authors have demonstrated the

sensitivity of the 90GHz channels to the emission by super-

cooled cloud water (e.g., Kneifel et al. 2010; Panegrossi et al.

2017), which tends to increase the TBs. This effect compen-

sates the cooling of the TBs due to the scattering by the falling

snow. At 90GHz the cooling effect is mostly visible in presence

TABLE 5. POD and FAR for GMI and ATMS snow-cover

detection with and without cloud cover.

ATMS GMI

Cloud cover fraction 0 1 0 1

POD 0.95 0.95 0.91 0.95

FAR 0.01 0.02 0.02 0.01

FIG. 4. POD (blue curve) and FAR (red curve) as a function of

TPW for (top) GMI and (bottom) ATMS. The values of the mean

POD and FAR for each 1-mmTPW bin are represented on the left

axis. The right axis of each panel shows the number of AutoSnow

snow-cover occurrences for each 1-mmTPWbin (green curve). For

ATMS, there are three curves depending on the viewing angle.
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of heavily rimed crystals (e.g., in convective mixed-phase

clouds). Therefore, on one side the presence of liquid water

over a snow background should decrease the SI, negatively

impacting the algorithm snow detection capabilities. On the

other side, convective mixed-phased clouds would increase the

SI, similarly to snow cover, producing false alarms. The results

shown in Table 5 can be attributed to two main reasons: first, in

this test the algorithm is applied only over land in relatively

cold (T2m , 280K) and dry conditions (TPW , 5mm, lower

than the PESCA TPW working limit) where mixed-phase con-

vective clouds are apparently not so frequent (see also Milani

et al. 2020); second the algorithm makes use of minimum

thresholds for the SI (th3 in Test 3, and th5 in Test 5), which

evidently are low enough not to be significantly affected by

the TB warming effect due to (supercooled) cloud liquid water

emission.

2) DEPENDENCE ON SURFACE ELEVATION

The presence of complex orography can influence the snow-

cover detection capabilities of microwave sensors. Grody and

Basist (1996) mentioned that rocky cold background can

easily be confused with snow cover. Moreover, the low spatial

resolution, especially for ATMS, does not allow depicting the

small-scale snow-cover variability that characterizes the oro-

graphic regions. In Fig. 5 the detection capabilities of the two

algorithms are analyzed as a function of the IFOV mean sur-

face elevation associated to each GMI and ATMS pixel in the

validation dataset. In this analysis, the observations above

678N/S in the ATMS dataset have been excluded (for coher-

ence with GMI, and to exclude the Antarctic and Greenland

Plateaus), and only observations with TPW , 10 mm are

considered [see section 4a(1)]. The behavior of the three curves

for ATMS and GMI shown in the two panels is quite similar,

except for the lower population of the ATMS dataset, and for

the slightly higher POD and FAR for GMI with respect to

ATMS for surface elevation . 2500m. While the POD does

not show a clear dependence on the pixel mean elevation, a

significant increase of the FAR is found around 2500m MSL,

both for ATMS and GMI. This value is used as the upper

working limit of the algorithm. This limit excludes from the

validation dataset [already selected for TPW , 10mm, see

section 4a(1)] 3.2% and 4% of snow-cover observations for

GMI and ATMS, respectively. Despite this limit, a geograph-

ical analysis of the results shows that the main regions associ-

ated with false alarms are mountainous areas (with a mean

elevation , 2500m), such as the Rocky Mountains in North

America and the Mongolia region. In this region the false

detections seem to be particularly problematic probably also

because of the presence of the cold Gobi Desert.

3) DEPENDENCE ON NEAR-SURFACE TEMPERATURE

The influence of near-surface temperature (T2m) on PESCA

snow-cover detection capabilities is analyzed in Fig. 6. In this

analysis, all observations with TPW . 10mm or elevation .
2500m MSL (omitting the polar areas over 678N/S) have been

excluded. A strong dependence of POD and FAR on the

temperature for T2m . 260K is visible. For both radiometers,

POD and FAR are respectively close to 1 and 0 for T2m , 265K.

Above this value the detection capabilities start to get worse,

with POD (FAR) equal to 0.82 (0.18) and 0.87 (0.08) at

T around 270K, for GMI and ATMS respectively, and with a

clear fall between 270 and 280K. The detection worsening at

warm temperature is due to the impact of water vapor, to the

occurrence of Thin (and/or wet) Snow in these conditions, and

to the likelihood of missing scattered snow cover within the

satellite IFOV (see section 4b). It is worth noticing in Fig. 6 the

different distribution of the snow-cover observations (green

curves) that is a consequence of the different areas covered by

the two instruments. Figure 6 shows the results for three scan-

angle categories of ATMS; however, no significant influence of

the scan angle can be appreciated.

4) GENERAL DETECTION STATISTICS AND COMPARISON

WITH A MACHINE-LEARNING MODEL

Table 6 shows the general statistics for PESCA snow-cover

detection for GMI and ATMS. ATMS results are presented

as a function of the scan angle and separating the statistics over

the whole globe from the one over the GPM coverage domain

(i.e., within 678S/N). It is clear from Table 6 that the scan angle

has a small impact on the results, while the domain of appli-

cation has a stronger impact. In comparing the results for GMI

with the outer portion of ATMS swath (scan angles between

338 and 52.88) and for the same domain (first and last row of

FIG. 5. POD (blue curve) and FAR (red curve) as a function of

the mean surface elevation (derived from a DEM) associated with

each observation (pixel) for (top) GMI and (bottom) ATMS. The

values of the mean POD and FAR for each elevation bin are

represented on the left axis. The right axis of each panel shows

the number of AutoSnow snow-cover occurrences for each 100-m

elevation bin (green curve). Only latitudes 678S and 678N are

considered.
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Table 6), it is seen that the results are very similar, with a POD

of 0.92 (for both GMI and ATMS) and a FAR of 0.08 for GMI

and 0.07 for ATMS. Since the algorithms are very efficient

in the low temperature range, the application of PESCA to

ATMS over the global area (including polar regions) results in

significantly improved statistics.

To compare PESCA with a supervised classification

method, Table 6 reports also the results obtained from an

automated machine-learning algorithm, using the validation

dataset for GMI (labeled as GMI RB). Table 6 reports also

the Heidke skill score (HSS) and the accuracy (ACC). Both

indices measure the skill in detecting snow cover; while ACC

measure the fraction of correct prediction, HSS is relative to

the skill of a random prediction. In comparing PESCA GMI

and ATMS for the higher view angles and over the same re-

gion, it is seen that ACC is consistent (0.88) while the PESCA-

GMI HSS is higher than ATMS (0.69 and 0.65, respectively).

In this experiment the development dataset has been used to

train a RobustBoost algorithm using the same GMI input used

in PESCAGMI. RobustBoost (Freund 2009) is a version of the

gradient boosting approach that assumes a ‘‘label noise,’’ that

in our case is the uncertainty of the reference snow-cover

dataset. The assumed label noise has been tuned varying it

from 1% to 70%. The final algorithm that gave the best results

(in terms of accuracy during the test phase) was the one asso-

ciated with a 10% uncertainty. This result indicates that the

reference snow cover in the training and validation datasets is

affected by an uncertainty of about 10%. This uncertainty is

due to errors of AutoSnow product and to the discrepancies

between the instantaneousMWTBs and the daily product. The

RobustBoost algorithm is associated with an accuracy of 89%,

very close to the ideal limit of 90% due to the assumed label

noise (10%). Notice that the PESCA algorithm accuracy is

very close to the RobustBoost accuracy (88% for GMI and

88%–89% for ATMS applied to the GPM area), confirming

the effectiveness of the procedure followed in PESCA de-

sign phase and in the evaluation of the thresholds for the

different tests.

b. Snow-cover categories

The near surface temperature (T2m) has been used to ana-

lyze if the different snow-cover classes identified by the algo-

rithm effectively correspond to different temperature regimes.

Figure 7 shows the probability density functions (PDFs) of

the T2m associated to the four ATMS snow classes. The Polar

Winter Snow is typically found at very low temperatures

(mostly below 240 K), while Deep Dry Snow is found at

moderately cold temperatures (240–275K). Thin Snow class is

predominantly found at T2m near and above 270K. It is worth

noting that snow pixels (according to AutoSnow) classified by

PESCA as snow-free land (misses) are always associated to

T2m above 270K. Moreover, Table 7 reports the different

percentage of hits and FAR values for each class, showing that

the majority of false alarms are classified as Thin Snow. Notice,

however, that the warm conditions, more frequent for Thin

Snow, are also the ones where the reference daily dataset could

TABLE 6. Summary of PESCA snow-cover detection statistics.

Domain Zenith angle POD FAR HSS ACC

GMI PESCA GPM 538 0.92 0.08 0.69 0.88

GMI RB GPM 538 0.94 0.08 0.71 0.89

ATMS PESCA Global 08–16.58 0.98 0.01 0.72 0.97

ATMS PESCA Global 16.58–338 0.98 0.01 0.71 0.96

ATMS PESCA Global 338–52.88 0.97 0.02 0.70 0.96

ATMS PESCA GPM 08–16.58 0.91 0.05 0.67 0.89

ATMS PESCA GPM 16.58–338 0.91 0.06 0.66 0.88

ATMS PESCA GPM 338–52.88 0.92 0.07 0.65 0.88

FIG. 6. POD (blue curve) and FAR (red curve) as a function of

T2m associated with each observation (pixel) for (top) GMI and

(bottom) ATMS. The values of the mean POD and FAR for each

1-K T2m bin are represented on the left axis. The right axis of each

panel shows the number of AutoSnow snow-cover occurrences for

each T2m bin (green curve). For ATMS, there are three curves

depending on the viewing angle.
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be subject to rapid changes of the snow-cover status due to

snow melting.

1) ANALYSIS OF SNOW CATEGORIZATION OVER CONUS

The physical characteristics of the ATMS and GMI snow-

cover classes have been analyzed using the SNODAS snow-

cover properties over the CONUS region stored in the analysis

dataset. In particular, the SD, as well as the snow precipitation

and melted snow mass in the last 24 h have been considered.

The Perennial Snow and Polar Winter Snow classes are un-

derrepresented in the CONUS domain (0.6% of occurrences

for ATMS, 2% for GMI), therefore only Deep Dry Snow and

Thin Snow are analyzed, as well as the characteristics of the

missed snow (misses).

The PDFs of the SNODAS SD for Deep Dry Snow, Thin

Snow, and misses are shown in Fig. 8 for GMI and ATMS. The

three PDFs show distinct features. The misses are character-

ized by very low values of SD, the Thin Snow class is mostly

associated with SD less than 0.2m, while the DeepDry Snow is

characterized by a large range of SD, up to more than 1m,

including also moderate snow depth (less than 0.1m). When

comparing the PDFs of the three classes obtained for GMI and

ATMS, it is worth noting important differences: both for the

Deep Dry Snow and Thin Snow classes the occurrences for

very low snow depth values (below 0.1 and 0.01m for the two

classes) are higher for GMI than for ATMS. The differences in

the distribution can be partially attributed to the different

characteristics of the two radiometers, mainly the different

viewing geometry and spatial resolution. It is evident, however,

that some inconsistencies between the GMI and the ATMS

algorithms remain even for similar viewing angles.

A clear dependence of the classification on SNODAS fresh

snow (due to snow precipitation or snowmelt mass in the

previous 24 h) has not been observed. This is an indication that

the algorithm is not able to distinguish snow-cover radiative

properties related to the presence of wet snow, while fresh

snow is likely included in the other classes (either Deep Dry

Snow or Thin Snow).

2) TEMPORAL AND GEOGRAPHICAL GLOBAL

SNOW-COVER DISTRIBUTION

In this section the monthly and geographical variability of

the different snow categories identified for ATMS and GMI,

as well as their relative contribution to the total snow-cover

occurrences identified with each sensor, are analyzed.

Figure 9 reports the monthly snow-cover frequency for the

different snow classes forGMI andATMS in the year 2015. For

each class, themonthly snow frequency is obtained dividing the

number of monthly occurrences for a given class by the total

number of occurrences of the same snow class in the whole

year. Therefore, in Fig. 9 it is possible to analyze the seasonal

variability of each class. There is a substantial coherence be-

tween the snow classes’ seasonality for the two radiometers

for Deep Dry Snow and Thin Snow. In particular, it is evident

FIG. 7. PDFs of T2m for the different ATMS snow-cover categories: Polar Winter Snow,

Perennial Snow, Deep Dry Snow, and Thin Snow. The PDF of missed cases (AutoSnow snow

pixels classified as snow-free land by the ATMS algorithm) is also shown.

TABLE 7. HITS percentage and FAR values for each snow-cover class identified.

ATMS ATMS (GMI belt) GMI

% hits FAR for class % hits FAR for class % hits FAR for class

Perennial Snow 63 0.0006 2 0.9 10 0.01

Polar Winter Snow 9 0.0008 — 0 — —

Deep Dry Snow 21 0.004 69 0.2 83 0.04

Thin Snow 7 0.2 29 0.3 7 0.27
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that theDeepDry Snow class is mostly found during the winter

period, with largest occurrence in January and February than

in December. A linear decrease during spring until the mini-

mum is reached in the summer months, and a linear increase

during the fall until early winter are visible. The Thin Snow

class has highest frequency in autumn and early winter and

lower frequency in late winter and spring. GMI shows a peak

during the spring that can be attributed to the fact that its

higher spatial resolution allows one to identify small regions of

shallow snow that are not detected with ATMS. It is worth

noting that for ATMS the high latitudes contribute to the

nonzero frequency values found for both Thin and Deep Dry

Snow during most of the summer, with a minimum in June for

Deep Dry Snow and in August for Thin Snow. For ATMS, the

Perennial Snow class does not show large variability during the

year because it is dominated by the occurrence at high latitudes

(mostly over the Greenland Plateau as shown in Fig. 10). It

shows larger occurrence between January and June than be-

tween July and December. On the other hand, GMI, which

covers only partially the high latitudes (.678N) and only the

southern part of Greenland, shows a partially seasonal be-

havior of Perennial Snow due to the larger relative contribu-

tion of lower latitudes (‘‘no-Greenland’’ curve in the top

panel), and to the larger variability of snow conditions in the

southern coast of Greenland relative to the inner plateau. The

Polar Winter Snow class, detected only by ATMS, presents a

strong seasonal behavior with largest frequency in late fall

and early winter. Note, however, that the total number of

occurrences for PolarWinter Snow in the NorthernHemisphere

is very low (1.3% of total occurrences).

Figure 10 reports the global maps at 18 3 18 resolution of

snow-cover occurrence (in percentage) for ATMS and GMI

for the year 2015. For each radiometer the occurrence per-

centage is computed as the number of snow occurrences in

each 18 3 18 grid box for the snow category shown in each

panel, divided by the total number of snow occurrences in

the same grid box. In all GMI and ATMS panels the coast

boundaries (larger for ATMS than for GMI) are not shown.

The map of the total number of snow occurrences for AutoSnow

(in the ATMS validation dataset) is also shown as reference (in

the bottom-left panel). The Perennial Snow class is predomi-

nant in the polar regions (mainly in the Greenland and

Antarctic Plateaus as shown in the ATMSmaps) andmuch less

frequent in the other parts of Earth, while Deep Dry Snow and

Thin Snow classes are the most frequent categories, especially

at the mid-to-high latitudes. These are the categories more

subject to seasonal and diurnal variability at midlatitudes,

therefore at high latitudes (and in the winter season, not

shown) there is more consistency between the two radiome-

ters. TheWinter Polar Snow class is found only by ATMS over

the inner Antarctic and Greenland Plateaus and in the northern

coastal areas of Greenland.

From the comparison of the left and right panels, it is pos-

sible to observe a substantial coherence at the high latitudes,

FIG. 8. PDFs of the SNODAS snow depth for the (top) GMI and

(bottom) ATMS main snow-cover categories over CONUS (Deep

Dry Snow and Thin Snow). The PDF of the misses is also shown.

FIG. 9. Monthly snow frequency for the (top) three GMI and

(bottom) four ATMS snow categories in the Northern Hemisphere.

The snow frequency is obtained by dividing the number of monthly

occurrences for a given class by the total number of occurrences of

the same snow class in the whole year.

1738 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by UNIV. STUDI ROMA LA SAPIENZA | Unauthenticated | Downloaded 03/16/22 01:21 PM UTC



especially for Perennial Snow, between the two radiometers

(although more scattered occurrences are visible at lower lat-

itudes for GMI). However, important differences both in the

occurrence and in the geographical distribution of Deep Dry

Snow and Thin Snow are evident between the two radiometers.

For both radiometers the Thin Snow and Deep Dry Snow are

complementary to each other. There is larger occurrence of

Deep Dry Snow at the expenses of Thin Snow for GMI at

FIG. 10. Global maps at 18 3 18 resolution of snow-cover occurrences (in percentage) for each snow category for

(left) GMI and (right) ATMS classifier for 2015. In each panel, the percentage is computed by dividing the number

of snow occurrences for the shown snow category by the total number of snow occurrences (either for GMI or

ATMS) in each 18 3 18 grid box. For ATMS, the Polar Winter Snow is also shown. The map on the bottom left

shows the total number of snow occurrences for AutoSnow in the latitude region covered by ATMS.
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midlatitudes, while the opposite occurs for ATMS. This can be

partially explained by the different spatial resolution of the two

radiometers. A uniform snow-cover area may appear as Thin

Snow (RLF , 1.01) for ATMS (because of the larger IFOV),

while GMI may be able to better capture the Deep Dry Snow

signal (withRLF. 1.01). On the other hand, GMI shows larger

snow occurrence of Deep Dry and Thin Snow than ATMS in

areas with complex orography (e.g., Southern America, New

Zealand), or in general where the snowmay be subject to more

diurnal variability and spatial inhomogeneity and where the

occurrence of scattered shallow snow is more likely. In these

areas, GMI, which is less affected by a nonuniform beam filling

effect (NUBF) than ATMS, shows a better agreement with

the AutoSnow occurrence map. Moreover, the GMI, which is

not sun synchronous, is able to better capture the diurnal

variability of snow cover.

5. Analysis of snow-cover spectral signatures

The goal of this section is to analyze the emissivity spectra

for all GMI channels for the different snow-cover classes

identified by the algorithm, including the higher frequencies

(.90GHz), which are more sensitive to the scattering by cloud

ice in snowfall conditions. The GMI emissivities retrieved as

described in M20 (and available from meso.gsfc.nasa.gov), for

the dry snow categories (i.e., Deep Dry Snow, Perennial Snow,

and Polar Winter Snow) have been analyzed in specific envi-

ronmental conditions: 1) cloud-free conditions (based on CPR

cloud mask, considering only observations (IFOV) with cloud

fraction, 0.2); 2) extremely low TPW (between 0.1 and 1mm)

to minimize any eventual residual effect of water vapor on the

retrieved emissivities; and 3) relatively cold T2m (250–260K) to

get a sufficiently large population of each considered class.

Figure 11 shows the emissivity spectra for the V-pol and H-pol

channels for GMI, and the polarization signal, i.e., the emis-

sivity difference between GMI V and H polarization channels.

The panels show for each snow category the median emissivity

(50th percentile) and the 25th and 75th percentiles for the

different channels (x axis). It is clear from Fig. 11 that the three

dry snow classes show very distinct spectral signatures and

polarization properties. Characteristic features for the dif-

ferent classes at lower frequencies (#90GHz) are clearly

identified: 1) increase (decrease) of emissivity with in-

creasing frequencies for Perennial Snow (Deep Dry Snow);

2) larger polarization signal for Perennial Snow than for

Deep Dry Snow. The spectral signature above 90 GHz also

shows distinctive features: the emissivity at 89 and 166GHz

is significantly different between the Deep Dry Snow and

Perennial Snow classes, particularly for GMI V-pol. The

emissivities at 183GHz are not shown, because these channels

are affected by large uncertainties, due to the use of model-

based water vapor profiles (from MERRA) for the emissivity

retrieval (M20).

Figure 12 shows a similar analysis, for the same environ-

mental conditions of Fig. 11, on ATMS pseudoemissivity

spectra, calculated as the TBs divided by the skin temperature.

It is worth noticing that even with a rough approximation the

emissivity spectra show distinct behaviors for each snow class.

A similar analysis has been carried out for the Thin Snow

found in warmer conditions, to compare it with the snow-

free land class, and with misses (GMI observations where

AutoSnow reports snow that is not detected by PESCA)

(Fig. 13). Also in this case, the analysis is restricted to the

observations without cloud cover (from CPR cloud mask),

and to environmental conditions compatible with these

snow classes (T2m between 270 and 280 K and TPW between

1 and 8mm). Figure 13 shows the emissivity spectra for GMI

(from M20). It is worth noting that misses and snow-free

land classes show a very similar spectra and polarization

signal at all frequencies. At low frequency the Thin Snow

class is very similar to the other two, while a marked difference

is evident at 88–166GHz.

The snow-cover categories identified in PESCA can be

related to the snow classes found in M20 based on their

GMI monthly surface emissivity maps: Perennial snow corre-

sponds to snow cluster 1–2, while Deep Dry Snow to cluster

9–10 [observed also by Hewison and English (1999) and

called Deep Dry Snow], while there is no correspondence

in M20 for Polar Winter Snow, since GMI does not observe

the internal regions of Antarctica and Greenland. The

Thin Snow class may correspond to the ephemeral snow

class as defined by M20 (even if some differences can be

FIG. 11. Emissivity spectrum from M20 for GMI for Deep

Dry Snow and Perennial Snow for (a) H-pol channels, (b) V-pol

channels, and the (c) polarization difference. The median

pseudoemissivity value (50th percentile) is shown as a contin-

uous line, and the 25th and 75th percentiles are shown as

shaded areas.
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noticed as the relatively strong polarization of the emis-

sivity around 37 GHz).

6. Conclusions

Several recent studies evidence how it is fundamental to be

able to account for the dynamic background surface conditions

in the satellite precipitation retrieval process and to adopt a

method that takes into account the status of the surface at the

time of the overpass. This is even more critical for snowfall

detection and retrieval often occurring over a highly vari-

able snow-covered background surface. Snow mantle shows a

strongly variable spectrum of emissivity when observed in the

MW. This variability is tight to the physical characteristics of

the snow mantle layers.

This paper describes the new Passive Microwave Empirical

Frozen Surface Classification Algorithm developed for the

detection and characterization of the frozen background sur-

face using passive microwave satellite measurements, with

the aim of supporting snowfall detection and retrieval over

land. The developed method is based on the exploitation of

the lower-frequency channels (,90GHz) that are common to

most microwave radiometers. PESCA consists of a single de-

cision tree developed using an empirical method to define

criteria and thresholds to identify different snow categories.

The algorithm is simple and fast (to ease its implementation

in a snowfall retrieval algorithm) and exploits known input

parameters built upon the multichannel microwave brightness

temperature response to snow-cover physical conditions, with

very limited use of ancillary model inputs. PESCA is designed

to allow for a deep understanding of the processes involved in

the snow-cover detection and classification. Comparison with a

machine-learning model (RobustBoost), and the good quality

and robustness of the results obtained, confirm its good per-

formance for snow-cover identification. The results shown

demonstrate that the PESCA approach can be applied to both

conically scanning (GMI) and cross-track-scanning (ATMS)

radiometers equipped with frequency channels in the range of

23–90GHz. It is very efficient in the detection and character-

izing snow cover in dry conditions, and its working limits have

been defined as TPW, 10mm,T2m, 280K, andmean surface

elevation , 2500m. The presence of clouds does not seem to

significantly influence the algorithm performance. The differ-

ences in the global distribution of PESCA snow categories

(Thin Snow, Deep Dry Snow, Perennial Snow, and Polar

Winter Snow) between the GMI and ATMS can be related

for the most part to their different viewing geometry, spatial

resolution, and temporal sampling.

PESCA has been tuned to optimally categorize the emis-

sivity spectrum observed by a specific radiometer, with its own

sensing capabilities, and viewing geometry, in order to use

this information in the precipitation retrievals. Since GMI and

ATMS may have a different spectral signature for the same

area, the classification obtained with PESCA is not perfectly

coherent for the two instruments, especially in conditions

where NUBF effects are more significant or when the snow

layer is subject to more variability. The identified snow-cover

classes, however, tend to correspond to distinct physical (i.e.,

SD and T2m) and radiometric features.

The main purpose of PESCA is the identification and char-

acterization of the snow cover ancillary to snowfall detection

and retrieval. The spectral signatures of the different snow

FIG. 12. Pseudoemissivity spectrum for ATMS for Deep Dry

Snow and Perennial Snow. The median pseudoemissivity value

(50th percentile) is shown as a continuous line, and the 25th and

75th percentiles are shown as shaded areas.

FIG. 13. Emissivity spectrum from M20 for GMI for Thin Snow

and snow-free land, and misses (pixels where GMI fails in de-

tecting snow) for (a) H-pol channels, (b) V-pol channels, and the

(c) polarization difference. The median pseudoemissivity value

(50th percentile) is shown as a continuous line, and the 25th and

75th percentiles are shown as shaded areas.
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classes identified at the time of the overpass appear to be dif-

ferent also for the high-frequency channels, indicating great

potential for snowfall retrieval, especially in dry conditions.

The method can be easily implemented in operational and

research algorithm for snowfall retrieval. Other surface-focused

applications could benefit from the use of the PESCA approach,

including retrieval of SWE and snow depth and characteriza-

tion of freeze and thaw.

Possible future development of this algorithm will include

the extension of a similar approach for the classification of sea

ice (the algorithm is already developed and is being validated),

and the application of PESCA to other MW radiometers in the

GPM constellation. In particular, the ATMS algorithm can be

used as a prototype for the cross-track-scanning radiometers

[e.g., EUMETSAT Polar System Second Generation (EPS-SG)

Microwave Sounder (MWS)] and the GMI algorithm can be

used as a prototype for the conically scanning radiometers

[SSM/I, SSMIS, AMSR-E, AMSR-2, and EPS-SGMicrowave

Imager (MWI)].
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