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Abstract: Since its first demonstration in graded-index multimode fibers, spatial beam self-
cleaning has attracted a growing research interest. It allows for the propagation of beams with a
bell-shaped spatial profile, thus enabling the use of multimode fibers for several applications,
from biomedical imaging to high-power beam delivery. So far, beam self-cleaning has been
experimentally studied under several different experimental conditions. Whereas it has been
theoretically described as the irreversible energy transfer from high-order modes towards the
fundamental mode, in analogy with a beam condensation mechanism. Here, we provide a
comprehensive theoretical description of beam self-cleaning, by means of a semi-classical
statistical mechanics model of wave thermalization. This approach is confirmed by an extensive
experimental characterization, based on a holographic mode decomposition technique, employing
laser pulses with temporal durations ranging from femtoseconds up to nanoseconds. An excellent
agreement between theory and experiments is found, which demonstrates that beam self-cleaning
can be fully described in terms of the basic conservation laws of statistical mechanics.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Interest in optical multimode fibers (MMFs) has experienced different periods of rise and fall,
mostly driven by their pros and cons in several applications, particularly in optical communication
systems [1]. On the one side, MMFs are capable of propagating multiple transverse modes,
which enables a substantial increase of the information capacity of fiber-optic links, based on the
mode-division-multiplexing technique [2]. Furthermore, thanks to their large core area, MMFs
deliver higher energies with respect to singlemode fibers, which is advantageous for developing
novel high-power fiber laser architectures [3]. On the other hand, large modal temporal dispersion
has prevented the use of MMFs in long-distance high-bit-rate transmissions. Moreover, since the
multitude of initially excited modes spatially overlaps, the beam quality at the output of MMFs is
severely degraded by multimode interference (or modal noise), when compared to singlemode
fibers. As a result, nowadays singlemode fibers are almost exclusively employed.

In recent years, interest in the use of MMFs has returned within coherent optical communication
systems, thanks to their capability for pre- or post-compensation of linear modal dispersion effects
[2,4,5]. Moreover, several novel nonlinear optical effects have been explored [6–9]. Remarkably,
it has been shown that the Kerr effect can be usefully exploited, in order to provide a bell-shape to
the beam profile at the output of MMFs, which permits a significant beam quality and brightness
improvement [10]. This effect has been dubbed as spatial beam self-cleaning (BSC) [11]. BSC
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has been demonstrated in several configurations, either in the normal [10–21] or in the anomalous
dispersion regime [22–24], in graded-index (GRIN) as well as in step-index fibers [25], and with
input pulse durations ranging from nanoseconds to femtoseconds.

Many of these studies have investigated the physical mechanism behind BSC. It is generally
accepted that BSC relies on nonlinear coupling among the multiple modes of GRIN MMFs,
which leads to a modal redistribution of the input beam energy [26]. Moreover, the robustness of
the BSC effect indicates that a sort of equilibrium distribution is established as a result of beam
propagation in the MMF. This has led to a description of BSC in a thermodynamics framework.
The bell-shaped beam that is spontaneously generated suggests that a prevailing population of
the fundamental mode is reached. However, the size of self-cleaned beams was measured to
be generally wider than that of the fundamental mode of the MMF [8]. In addition, the output
bell-shaped beam is typically sitting on a wide low-power background. This indicates that
higher-order modes (HOMs) also contribute to determining the observed output beam shapes. In
this context, it was pointed out that BSC can be seen as a thermalization phenomenon, where the
pair (T , µ), i.e., temperature and chemical potential, is fixed by the pair (N, H), i.e., number of
particles and internal energy [27–29].

Given that BSC manifests itself when the power of the laser beam that is injected into the fiber
overcomes a certain threshold value, one might think of BSC as a sort of (quantum) Bose-Einstein
condensation of classical waves [30]. This is only partially true: as a matter of fact, BSC can
be associated to a wave condensation phenomenon, as Baudin and coworkers have recently
demonstrated in [31]. However, in that work, it has been shown that at a given input laser power,
BSC can be achieved when the temperature T drops below a certain critical value, i.e., only when
the input coupling condition (CC), which determines the ratio h = H/N, is favorable enough (cfr,
the horizontal arrow in Fig. 1). Such a phase transition arises when h decreases below a critical
value, say, hc [30].

On the other hand, in the thermodynamic description the input laser power plays the role of
the number of particles (N). Therefore, increasing the input laser power does not necessarily
trigger wave condensation. As a matter of fact, a thermodynamic system can reach thermal
equilibrium even at temperatures which are higher than the condensation temperature, i.e., with
CC corresponding to h>hc. Of course, the input power must be sufficiently high for allowing
the occurrence of significant degenerate four-wave-mixing (FWM) among the modes. In other
words, N must be large enough (N>Nc, solid black line in Fig. 1) to reach thermal equilibrium
over a finite propagation distance (ergodicity condition [27]).

Whenever BSC is observed by increasing the input power (or N) for a given input CC
(independently on whether h is greater or smaller than hc), the effect can be described as an
example of wave thermalization (cfr, the vertical arrow in Fig. 1): here we follow this approach.
At thermodynamic equilibrium, the fiber mode distribution obeys the Rayleigh-Jeans (RJ) law, in
agreement with the thermodynamic analysis of classical systems comprising a finite number of
modes [27]. In a nutshell, thermalization of the mode distribution is a necessary condition for
condensation, but not viceversa. As sketched in Fig. 1, the mode distributions corresponding
to wave condensation or thermalization are generally different. Because the former involves a
dominant (or macroscopic) population of the fundamental mode only, accompanied by energy
equipartition among all HOMs. Whereas the latter is characterized by a RJ mode distribution that,
although the fundamental mode is always the most populated, may also contain a macroscopic
contribution from the adjacent low-order modes.

Note that, by properly adjusting the input beam CC or by means of wavefront shaping, BSC into
the LP11 [32] or even several HOMs [33] could be observed. However, experiments and numerical
simulations reported in the supplementary of [21] indicate that such HOMs are transient states,
which ultimately decay into a mode distribution dominated by the fundamental mode. In these
cases, the input beam power that is required for thermalization can be higher than the threshold of
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Fig. 1. Optical phase diagram illustrating orthogonal paths to describe BSC as a thermaliza-
tion or a condensation process, respectively. The diagram is split into two zones. Below the
solid black line (which indicates the condition for observing BSC), optical beams are in a
disordered phase (speckled beams). Whereas self-cleaned beams only exist in the upper-right
region of energy per particle h (or coupling conditions, CC) and number of particles (or
input power P). When passing from one zone to the other by a vertical path (red arrow),
i.e., by varying N while keeping constant h, BSC can be described as a thermalization
of fiber modes. The latter follows the RJ distribution, and HOMs have a non-negligible
population (white bars indicate the equilibrium modal occupancy). On the other hand, when
keeping fixed N = N0 and decreasing h below its critical value (horizontal phase transition
or grey arrow), BSC can be described as a wave condensation phenomenon, i.e., only the
fundamental mode has a macroscopic population.

competing nonlinear effects, such as intermodal FWM and stimulated Raman scattering, which
deplete the input beam.

From an experimental point of view, a thermodynamic analysis of BSC requires the use of
mode decomposition (MD) techniques for a proper analysis of the output beam mode populations.
Several MD methods have been proposed in the literature. Conceptually, they can be divided
into different groups, depending on the foundation lying beneath them: genetic algorithms
[34], adaptive optics [35], digital holography with spatial light modulators (SLM) [36], mode-
cross correlation analysis [37], and beam characterization in terms of spatiotemporal [38] or
spatial-spectral [39] distributions.

In this work, we present a comprehensive and yet simple description of the phenomenon of
BSC within the thermodynamic framework. We derive a mathematical model starting from
statistical mechanics, pointing out the dependence of the equilibrium RJ distribution on the
radial and azimuthal properties of GRIN fiber modes. In particular, we point out that, if the
modes are properly sorted, the RJ distribution can be described as a sequence of sub-equilibrium
distributions. It turns out that the modes which have radial symmetry are the most populated in
the occurrence of BSC. Whereas, the mode occupancy vanishes when the spatial (azimuthal)
complexity grows. Theoretical predictions are compared to an extensive MD experimental study,
based on the holographic method [40]. We investigate BSC when operating with pulses ranging
from the femto- to the pico- and nanosecond regime. Our results show that BSC can be reached
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independently of the input pulse duration, and that the parameters of the output RJ distribution
can be tuned by acting on the laser-fiber injection condition, or CC. The obtained reconstructions
of the spatial profile of the beam at the fiber output turn out to be remarkably similar to the
measured patterns, which proves the power and the accuracy of our MD method. Finally, we
experimentally verify the statistical mechanics conservation laws, which are at the basis of our
theoretical model.

2. Theory

Here, we propose a semi-classical approach to determine the mode equilibrium distribution at
the occurrence of BSC. In GRIN fibers, modes are conventionally defined in terms of a pair of
integer numbers (ℓ, m), which indicate their radial and azimuthal properties, respectively. As
a remarkable example, we may consider Laguerre-Gauss functions as the modal basis, which
will be the case for our MD experiments (see Appendix Section). In our derivation, we also
refer to the quantum number q = 2ℓ + |m|, so that m = −q,−q + 2, . . . , q − 2, q. An illustration
of GRIN fiber modes and their relative sorting is provided in Fig. 2(a). In Fig. 2(b), we report
the couple (ℓ,m) which is associated to each mode in Fig. 2(a). The upper limit of q, which we
dub Q, is defined by the fiber cut-off, i.e. by the MMF geometrical parameters and the laser
wavelength [41]. The presence of a frequency cut-off is a fundamental condition for avoiding the
divergence of the entropy at low temperatures, which is referred to as ultraviolet catastrophe in
gas thermodynamics [30]. For the sake of simplicity, in Fig. 2(a) we show modes up to q = 5.
The dynamics of the system of modes can be described by means of a Hamiltonian operator,
which only takes into account the linear kinetic term:

H = c
∑︂
ℓ,m

pℓ,mnℓ,m, (1)

where pℓ,m and nℓ,m are the momentum and the occupancy of mode (ℓ, m), and c is the speed of
light in vacuum. Since it has been shown that BSC mainly involves a purely spatial dynamics
[11,19], we neglect all temporal effects, and consider monochromatic waves only.

In the framework of statistical mechanics, we impose that the total energy of the system and
the number of particles are conserved upon propagation, i.e., the Hamiltonian (1) is constant and∑︂

ℓ,m
nℓ,m = N. (2)

The condition (2) holds as long as any dissipative effects can be neglected, which is always
the case in practical demonstrations of BSC in passive MMFs. We underline that the nonlinear
dynamics of mode coupling in MMFs should lead to a proper description in the framework of the
micro-canonical ensemble, i.e., the statistical ensemble in which both N and T are conserved.
However, the derivation of the equilibrium distribution in this ensemble may be rather challenging.
For this reason, here we rely on the Gibbs theorem on the equivalence of ensembles, which
states that, in the thermodynamic limit, the equilibrium distribution must the same in all of the
statistical ensembles [42]. Therefore, for the sake of simplicity, we develop our theory in the
frame of the grand canonical ensemble, where the temperature and the chemical potential are
fixed, at variance with the energy and the number of particles. Specifically, dubbing β and µ the
Lagrange’s multipliers corresponding to each conservation law, the partition function reads [43]:

Z =
1

(2πℏ)3N · 1
N!

∫
e−β(H−µN) ∏︂

ℓ′,m′
dnℓ′,m′ , (3)



Research Article Vol. 30, No. 7 / 28 Mar 2022 / Optics Express 10854

Fig. 2. a) Illustration of the GRIN MMF modes displayed in the (q, m) plane. b) Relative
mapping of the indexes (ℓ, m). c) GRIN fiber modes momentum vs. modes index sorted
by quantum number q = 2ℓ + |m|. d) RJ distribution at the equilibrium in the (q, m) plane,
when setting N = 1, µ = −60 mm−1, and T = 0.3 mm−1. The values of k0,0 and kSSI are
calculated starting from the nominal values of numerical aperture and relative core-cladding
index difference provided by the fiber manufacturer.

where ℏ is the reduced Planck constant, and the average occupation of mode (ℓ,m) can be written
as:

⟨nℓ,m⟩ = 1
Z
· 1
(2πℏ)3N · 1

N!

∫
nℓ,me−β(H−µN) ∏︂

ℓ′,m′
dnℓ′,m′ =

1
β(pℓ,m − µN) . (4)

Equation (4) is the RJ distribution, which is reached at thermal equilibrium under the hypothesis
of the ergodic theorem. The latter holds whenever N is sufficiently large for ensuring a complete
exchange of energy among the modes via FWM processes, so that the multimode system explores
its whole phase space. Experimentally, this condition reflects the presence of a threshold of the
input laser power for achieving BSC. It is important to underline that the ergodicity condition can
also be matched, at least in principle, by extending the evolution ”time” of the system, i.e., by
increasing the fiber length. It is well-known, in fact, that the power threshold for BSC decreases
as the fiber length increases [11]. Very often, in fact, people tune the input power as an equivalent
cut-back experiment when dealing with nonlinear mode coupling, e.g., when studying soliton
self-mode conversion in MMFs [44]. Nonlinear mode coupling is particularly effective in GRIN
fibers, which, thanks to their parabolic profile of the core refractive index, force the beam to
periodically shrink after a propagation distance zSSI, where SSI stands for spatial-self imaging
[45]. This peculiarity originates from the fact that the modes of GRIN fibers have equispaced
momenta, i.e.,

pℓ,m = ℏkℓ,m = ℏk0,0 − (2ℓ + |m|)ℏkSSI, (5)

where k0,0 is the propagation constant of the fundamental mode, which can be calculated by
starting from the numerical aperture and the core size (usually provided by the fiber manufacturer),
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and
kSSI =

2π
zSSI

. (6)

In Fig. 2(c), we display the modes’ momenta, where the modes are sorted by the quantum
number q by following the lexicographical order with respect to Fig. 2(b). Finally, one can
calculate the average number of particles in mode (ℓ, m) as

⟨nℓ,m⟩ = KBT
ℏkℓ,m − µN

, (7)

where we defined β = 1/KBT , as it is conventionally done in thermodynamic systems, where KB
is the Boltzmann’s constant. Moreover, ℏ is the Planck’s constant, while T and µ are parameters
which only depend on the input CC, and need to be determined by MD experiments. As T and µ
are only statistical quantities, in the following we will set KB = ℏ = c = 1. In this way, T , µ and H
have the dimension of the inverse of a length. In Fig. 2(d), we plot the thermal distribution (7) in
the (q, m) space. Note that a correspondence between the thermodynamical variables of classical
gases and multimode gases has been recently reported in Ref. [46].

3. Experimental setup

The MD experimental setup that we used to study BSC in GRIN MMFs is shown in Fig. 3.
It consists of an ultra-short pulse laser system pumped by a femtosecond Yb-based laser
(Light Conversion PHAROS-SP-HP), generating pulses with adjustable duration (by means of a
dispersive pulse stretcher), at 100 kHz repetition rate and λ = 1030 nm, and with Gaussian beam
shape (M2=1.3). The pulse shape was measured by using an autocorrelator (APE PulseCheck
type 2), resulting in a sech temporal shape with pulse widths ranging from 174 fs up to 10
ps. As shown in Fig. 3, the laser beam was injected by a convergent lens (L0) into the core of
the GRIN fiber. The input diameter at 1/e2 of peak intensity was measured to be 30 µm. We
employed 3 m long standard 50/125 GRIN fibers (GIF50E from Thorlabs), whose core radius,
core refractive index along the axis, relative core-cladding index difference, numerical aperture
and fundamental mode radius at λ = 1030 nm are rc = 25 µm, n0 = 1.472, ∆ = 0.0103, NA = 0.2
and r0,0 = 6.33 µm, respectively. The near-field profile at the fiber output is imaged onto an
SLM (Hamamatsu LCOS- X15213) by means of two confocal lenses (L1, with f1 = 2.75 mm
and L2, with f2 = 400 mm). Between those, we placed a bandpass filter (BPF, 1030 ± 5 nm), a
half-wave plate (λ/2), and a polarizer (PBS). Our measurement system allows us to avoid the
parasitic influence of nonlinear frequency conversions, e.g., provided by Raman scattering or
geometric parametric instability [10], which is detrimental for our MD reconstruction algorithm.
As a matter of fact, the phase pattern on the SLM for the profile reconstruction algorithm must be
chosen at a given wavelength. We could also tune the intensity of the beam reaching the SLM by
means of the λ/2 wave plate. It is worth to underline that selecting an output polarization does
not invalidate our theoretical description of BSC. According to Ref. [47], if enough input power
is provided, BSC occurs independently of the output polarization state. A flip mirror (FM) is
used for imaging the near-field profile at the fiber output facet onto an IR camera (NF, Gentec
Beamage-4M-IR). Images acquired in this way were used as a reference, in order to check the
quality of the reconstruction made by the MD algorithm. At last, a convex lens (L3 = 400 mm)
projects the field reflected by the SLM onto a second camera (FF camera). The lens is placed
in the middle between the SLM and the camera, so that both of these objects are at its focal
distance. Finally, the beam average power at the input and the output of the fiber was measured
by a photodiode power meter (Thorlabs). In order to explore the nanosecond pulse regime, we
carried out analogous MD experiments by using a Nd:YAG laser emitting pulses of 0.435 ns
duration and 1064 nm of wavelength, at 1 kHz of repetition rate.
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Fig. 3. Sketch of the experimental setup. The lenses focal distances are f1 = 2.75 mm, and
f2 = f3 = 400 mm. The arrows indicate the beam polarization direction (horizontal).

4. Results

Since the values of the intensity profiles which are detected by the cameras are given in arbitrary
units, our setup only allows for evaluating the relative values of mode occupancy, i.e., the power
fraction values, normalized by the total beam power. Therefore, in the following of our analysis
we set N = 1, so that nℓ,m represents the occupancy fraction of mode (ℓ, m). Moreover, we limited
our experimental analysis to the first 78 modes with the highest values of momentum, i.e., we
only considered modes with q ≤ 11 (see Fig. 2(c)). We found out that such a number was a good
compromise between the time convergence of the MD algorithm, and the quality of the near-field
reconstructions. Further details about the MD method are presented in the Appendix section.

In Fig. 4, we report results obtained when employing 7.6 ps input laser pulses. Specifically,
what we show in Fig. 4(a) is a 3D histogram of the experimental mode power fractions, for
different values of the input beam peak power (Pp). Whereas, in Fig. 4(b), we illustrate the
experimental evolution, as a function of Pp, of the sum of the power fraction of all modes with
the same quantum number. This figure shows that the occupancy of the fundamental mode
(which is the only mode with q = 0) grows larger when Pp is increased, indicating the progressive
occurrence of BSC, accompanied by thermalization of the mode distribution. In particular, it
can be seen that at the lowest input peak power value of 110 W, the CC is such that the sum of
the occupancy of modes with q = 1 is higher than that of the fundamental mode. The latter
progressively becomes dominant, when increasing the input power, up to the occurrence of
BSC. In Fig. 4(c), we compare the experimental power fraction values (blue bars) with the
theoretical RJ distributions (red dashed lines). As it can be seen, as Pp increases, the experimental
distribution progressively approaches the theoretical RJ distribution. This can be quantitatively
appreciated in Fig. 4(d), where we plot the root-mean-square error (RMSE) of the observed
mode distributions with respect to the RJ distribution, as a function of Pp. Finally, insets of
Fig. 4(c) demonstrate the excellent quality of our MD method. Here, we show that the measured
output near-field intensities (images in the left column) are impressively similar to their MD
reconstructions (images in the right column), for all input power values.

4.1. BSC stability vs input pulse duration

We carried out MD experiments with pulses whose durations range from hundreds of femtoseconds
up to 0.5 nanoseconds. In all cases, we kept the same fiber length, whereas we used the Nd:Yag
laser that emits pulses of 0.5 ns of duration. In Fig. 5, we present the MD analysis based on 174
fs input pulses. This figure allows for further appreciating the thermalization nature of BSC. We
could observe, in fact, that the fundamental mode power fraction has a non-monotonic behavior
when increasing Pp, although the RMSE with respect to the RJ distribution keeps decreasing. At
Pp ≃ 26 kW, the power fraction ⟨n⟩ of the fundamental mode (with q = 0) has a local minimum
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Fig. 4. MD analysis for 7.6 ps of input pulse duration. a) Mode distribution (with the same
sorting as in Fig. 2(c)) for different values of the input peak power. b) Experimental value of
the power fraction of the fiber modes grouped by q, vs. input power Pp. c) Details of the
reconstruction in 2D plots. The images in the inset of each graph represent the measured
(left) and reconstructed (right) output beam profile. The solid line is the RJ distribution
that fits the experimental values at the highest value of input power (8.11 kW). The fitting
parameters are µ = −63.97 mm−1 and T = 0.92 mm−1. d) Root-mean-square error (RMSE)
of the fitting curve in b), when varying Pp.

(see Fig. 5(a) and b). It is important to underline that MD experiments of Fig. 4 and Fig. 5 with
different pulse duration were carried out with the same laser-fiber CC. Our laser allows, in fact,
to vary the pulse duration, while the pulse energy is kept constant. Therefore, we could maintain
the experimental setup untouched, thus avoiding any modification of the injection conditions.

We found almost identical values of the parameters µ ≃ 64 mm−1 and T ≃ 1 mm−1 in these
two cases. In agreement with theoretical predictions, in fact, T and µ do not depend on the pulse
duration, and they can be varied only by changing the CC [31]. This is the case of the MD analysis
which is reported in Fig. 6 and 7, where we found different values of T and µ with respect to those
in Fig. 4 and 5. Besides their different laser-fiber CC, the results reported in Fig. 6 and 7 have
been obtained with a different pulse duration of 1 picosecond, thus experimentally confirming
that BSC can be achieved with pulses ranging from the femtosecond up to the sub-nanosecond
regime.

4.2. Radial modes distribution

So far, when showing modal distributions, we sorted the modes by their quantum number. This
is the most convenient choice when one limits the analysis to beams which do not carry angular
momentum, i.e., when injecting a radially symmetric laser beam at the center of the fiber core, as
it occurs in our case. However, our theoretical derivation aims to be more general, since it has
been developed on the basis of Laguerre-Gauss modes, which depend on two indexes (radial and
azimuthal). Then one may naturally wonder how the equilibrium distribution looks like when
sorting the modes by ℓ and m. This is shown in Fig. 8, for all considered values of the input pulse
duration.
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Fig. 5. Same as Fig. 4 for pulses of 174 fs of duration. The CC is the same as in Fig. 4. The
fitting parameters are µ = −63.96 mm−1 and T = 1.01 mm−1.

Fig. 6. Same as Fig. 4 for pulses of 1 ps of duration, and a different CC from Figs. 4 and 5.
The fit parameters are µ = −64.26 mm−1 and T = 1.08 mm−1.

Figure 8 permits to clearly appreciate that the RJ distribution is indeed a sequence of sub-
distributions. As a matter of fact, for each value of the radial index ℓ, the mode having m = 0 is
the most populated at the equilibrium. Whereas the occupancy ⟨nℓ,m≠0⟩ rapidly vanishes as m
grows. We underline that the steps of the red solid curve (the theoretical RJ distribution) when
passing from ℓ to ℓ + 1 are due to the finite number of modes of the system, which in our case is
due to the mode truncation that we made when running our MD algorithm. However, similar
curves, albeit much longer, would have been obtained, had we considered the presence of all
modes below cut-off.
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Fig. 7. Same as Fig. 4 for pulses of 435 ps of duration and different injection conditions.
The fit parameters are µ = −51.86 mm−1 and T = 0.72 mm−1.

𝓁 0                     1      2      3  

m      0,-1,1,…, -9, 9;     0,-1,1,…,-8,8 ,    …,        …  m           0,-1,1,…, -9, 9;  0,-1,1,…,-8,8;    …,         …  

a)

b)

c)

d)
𝓁 0                     1      2      3  

Fig. 8. Illustration of the mode decomposition results when sorting the modes by their
radial index ℓ for input pulse duration of 174 fs (a), 1 ps (b), 7.6 ps (c), and 435 ps (d).
Black bars represent the experimental values of the power fraction of each mode, while
the red dashed line is the theoretical RJ distribution.

angle with respect to the fiber axis and an off-set with respect the fiber core), a generalized
equilibrium distribution can be derived. This has been recently shown in Refs. [48–50], where
the conservation of the angular momentum is considered as a further constraint to be respected
in the thermalization process.

In Fig.9, we show that both the Hamiltonian and the parity remain nearly constant when varying
the input peak power, for all input pulse durations. Specifically, we found that �4G? ' 55.3
<<−1 and "4G? ' 0.04, �4G? ' 55.4 <<−1 and "4G? ' −0.02, and �4G? ' 54.1 <<−1 and
"4G? ' 0.01 <<−1, at 174 fs, 1 ps, and 7.6 ps of pulse duration, respectively. These results can
be compared to the values of � and " that are calculated by substituting the RJ distribution which
fits the experimental data in Eq.(1) and Eq.(8). We found that �'� = 56.7 <<−1, �'� ' 57.6
<<−1, �'� ' 56.1 <<−1 at 174 fs, 1 ps, and 7.6 ps of pulse duration, respectively. Whereas
"'� = 0, owing to the above-mentioned symmetry of the RJ distribution.
Finally, the number of particle is well-known to be conserved, since linear absorption is less

than 1 dB/km at the wavelength of operation [51]. The number of particles conservation law
would be broken if we were working in different regimes, e.g., when dealing with non-negligible
linear or nonlinear absorption. Nevertheless, this would require to reach, on one side, ultraviolet
or mid-infrared wavelengths (i.e. for reaching the silica bandgap or triggering phonon resonances)
or, on the other, pulse peak powers that are well above the BSC threshold [52].

5. Conclusions

In this work, we provided a comprehensive description, based on statistical mechanics, of the
physical mechanisms behind BSC. Our approach permits a simple derivation, from fundamental
principles, of the mode distribution at the thermodynamic equilibrium. We have compared the
theoretical predictions of the BSC mode distributions in GRIN MMFs, with a full experimental
characterization, based on a MD holographic technique. Theory and experiments were found to

Fig. 8. Illustration of the mode decomposition results when sorting the modes by their
radial index ℓ for input pulse duration of 174 fs (a), 1 ps (b), 7.6 ps (c), and 435 ps (d),
respectively. Black bars represent the experimental values of the power fraction of each
mode, while the red dashed line is the theoretical RJ distribution.

When modes are sorted by the radial index, their distribution emphasizes the symmetry with
respect to the azimuthal index m of the equilibrium distribution. From a mathematical point of
view, this is provided by the presence of the absolute value in the definition of the momentum of
the GRIN fiber modes, see Eq. (5). Thus, according to Eq. (7), ⟨nℓ,m⟩ = ⟨nℓ,−m⟩. Experimentally,
this is demonstrated by Fig. 8. As it can be seen, each couple of bars corresponding to modes
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with the same value of ℓ, and opposite signs of m have the same height, again independently of
the pulse duration.

4.3. Conservation laws verification

Further investigating the symmetry of mode occupancies with respect to m highlights an important
feature of BSC: the conservation of the mode parity (M), which is defined as:

M = ℏ
∑︂
ℓ,m

m · nℓ,m. (8)

The conservation of M is related to the conservation of the total angular momentum, which is
intrinsically provided by the formulation of the Hamiltonian (1). In our derivation, in fact, we did
not consider any contribution to the energy that may arise from the angular momentum carried
by each mode, i.e., analogously to rotational kinetic energy of classical mechanics. Besides,
we studied the input power dependence of the Hamiltonian and the total number of particles,
whose conservation laws are at the basis of our theoretical model. Since we are injecting the
laser beam onto the fiber axis, the conserved angular momentum of the beam remains equal to
zero. Hence, it does not play a role in our study. On the other hand, whenever beams carrying
orbital angular momentum are coupled to the fiber (e.g., when Gaussian beams are injected with
a tilt angle with respect to the fiber axis and an off-set with respect the fiber core), a generalized
equilibrium distribution can be derived. This has been recently shown in Refs. [48–50], where
the conservation of the angular momentum is considered as a further constraint to be respected
in the thermalization process.

In Fig. 9, we show that both the Hamiltonian and the parity remain nearly constant when varying
the input peak power, for all input pulse durations. Specifically, we found that Hexp ≃ 55.3 mm−1

and Mexp ≃ 0.04, Hexp ≃ 55.4 mm−1 and Mexp ≃ −0.02, Hexp ≃ 54.1 mm−1 and Mexp ≃ 0.01,
at 174 fs, 1 ps, and 7.6 ps of pulse duration, respectively. These results can be compared to
the values of H and M that are calculated by substituting the RJ distribution which fits the
experimental data in Eq. (1) and Eq. (8). We found that HRJ = 56.7 mm−1, HRJ ≃ 57.6 mm−1,
HRJ ≃ 56.1 mm−1 at 174 fs, 1 ps, and 7.6 ps of pulse duration, respectively. Whereas MRJ = 0,
owing to the above-mentioned symmetry of the RJ distribution.

Fig. 9. Conservation of the Hamiltonian H and of parity M, for an input pulse duration of
174 fs (a), 1 ps (b) and 7.6 ps (c), respectively. The error bars are estimated by considering
all of the reconstructions of the output beam near-field at each input power (see the MD
method in the Appendix Section). The horizontal dashed lines are obtained from the RJ
distribution that fits the experimental data in the BSC regime.

Finally, the number of particles is well-known to be conserved, since linear absorption is less
than 1 dB/km at the wavelength of operation [51]. The number of particles conservation law
would be broken if we were working in different regimes, e.g., when dealing with non-negligible
linear or nonlinear absorption. Nevertheless, this would require to reach, on one side, ultraviolet
or mid-infrared wavelengths (i.e. for reaching the silica bandgap or triggering phonon resonances)
or, on the other, pulse peak powers that are well above the BSC threshold [52].
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5. Conclusions

In this work we provided a comprehensive description, based on statistical mechanics, of the
physical mechanisms behind BSC. Our approach permits a simple derivation, from fundamental
principles, of the mode distribution at the thermodynamic equilibrium. We have compared the
theoretical predictions of the BSC mode distributions in GRIN MMFs, with a full experimental
characterization, based on an MD holographic technique. Theory and experiments were found
to be in a very good quantitative agreement. Specifically, the mode distribution associated
with BSC, that is experimentally observed at the output of a GRIN fiber when increasing the
input power, can be well described by a RJ distribution, indicating that optical thermalization is
reached. The parameters that define the RJ distribution, i.e., the temperature and the chemical
potential, only depend on the spatial coupling conditions of the input beam. Whereas the
equilibrium distribution parameters turn out to be independent of the input pulse duration. In
the thermodynamic analogy, larger input powers mean greater numbers of particles, and a faster
approach to an ergodic mixing of all states, or thermalization. The thermodynamic equilibrium
is reached by ensuring the conservation of the total energy and the number of particles of the
multimode system. Furthermore, we experimentally show that the symmetry with respect to the
index m, which is related to the total angular momentum, is also a conserved quantity. Finally,
our observations reveal that, as a result of thermalization, modes with radial symmetry exhibit a
macroscopic occupation, at the expense of modes with more complex azimuthal characteristics.
The results of our studies provide a significant contribution to the fundamental understanding of an
intriguing physical process, and will be of general interest for applications of multimode nonlinear
fibers in different emerging technologies, ranging from nonlinear imaging to beam delivery and
high-power lasers. In conclusion, we underline that the dynamics of Hamiltonian multimode
optical systems also admit a general statistical mechanics description in terms of photonic spin
variables [53]. This has been experimentally demonstrated in a disordered photorefractive
waveguide [54], and it can be analogously demonstrated in MMFs.

Appendix A: Mode-decomposition method

Here, we summarize the main steps of the MD method, based on digital computer holography
[36]. The transverse (x, y) beam profile at the output of a GRIN MMF may be represented as the
superposition of Laguerre-Gauss (LG) modes

U(x, y) =
∞∑︂

ℓ,m=0
ξℓ,m · ψℓ,m(x, y), (9)

where ξℓ,m are the normalized complex amplitudes of each mode and ψℓ,m are LG functions. The
main objective of the MD is that of searching for the values of ξℓ,m, which are complex numbers
that are defined as the scalar product between U and ψℓ,m, i.e.,

ξℓ,m = ⟨ψℓ,m |U⟩ =
∬ +∞

−∞
ψ∗
ℓ,m(x, y)U(x, y)dxdy. (10)

Actually, as we target the mode occupancy nℓ,m, we do not need to know both amplitude and
phase of ξℓ,m, but only its square modulus, as |ξℓ,m |2 = nℓ,m.

In our experiments, we measure the far-field (FF) intensity I of the superposition of the phase
mask provided by the SLM and U(x, y), appropriately magnified by the lenses L1 and L2 (see
Fig. 3). We dub T the transmission function which transforms U as a consequence of L1 − L2
magnification and the SLM phase encoding. Then the field profile on the FF camera is obtained
by calculating the Fourier transform (given by the lens L3) of the product of T and U, so that I
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reads as

I(kx, ky) =
|︁|︁|︁|︁∬ ∞

−∞
T(x, y)U(x, y)ei(kxx+kyy)dxdy

|︁|︁|︁|︁2 , (11)

where the square modulus comes from the FF camera measurement. In order to distinguish the
contribution to I coming from each mode (ℓ, m), we properly choose several phase patterns to be
encoded on the laser beam. For the sake of simplicity, here, we label each phase pattern with the
same indexes (ℓ, m) of the modes. Therefore, we substitute T −→ Tℓ,m and I −→ Iℓ,m, so that

Iℓ,m(kx, ky) =
|︁|︁|︁|︁∬ ∞

−∞
Tℓ,m(x, y)U(x, y)ei(kxx+kyy)dxdy

|︁|︁|︁|︁2 . (12)

With this substitution, it is clear that if the transmission function is chosen such that Tℓ,m(x, y) =
ψ∗
ℓ,m(x, y), Eq. (12) boils down to the square modulus of Eq. (10) calculated in kx = ky = 0.

Therefore, by properly choosing a set of phase patterns on the SLM, a corresponding set of images
captured by the FF camera can be used for calculating all of the nℓ,m. For a full explanation of
the method, and details about the phase patterns, one can refer to [40].

A.1 Estimation of the decomposition error

In Fig. 9, we show that, when varying the input power, the total angular momentum and the
Hamiltonian are a constant, within the limits of the experimental error. In our report, we fully
address the latter to the numerical reconstruction of the mode composition. As a matter of fact,
the experimental MD analysis consists of two parts. In the first part, an algorithm simultaneously
controls the SLM and the FF camera, storing then a set of images, each of which corresponds to a
given phase pattern of the SLM. The second part starts from these images for reconstructing the
near-field (NF) of the beam at the output facet of the fiber, by determining the parameters nℓ,m, as
discussed above. In this second part, the choice of the center (kx = 0, ky = 0) is both pivotal and
non-trivial. The images, in fact, are the superposition of the output beam with a series of phase
patterns. The identification of a center is not necessarily straightforward, as the I(kx, ky) does not
exhibit particular symmetries (even at the occurrence of BSC).

We verified that even a single pixel offset in the choice of the center point may lead to the loss
of faithful reconstructions. Therefore, we estimate the error bars in Fig. 9 by running several times
the reconstruction algorithm for a given set of acquired images. We first choose the most faithful
reconstruction among the several we made, thus defining the mean value of the experimental
Hamiltonian and total angular momentum. Then, we define their error as the difference from the
reconstructions that we obtained by choosing a center point that has a single pixel offset with
respect to the chosen one.

Appendix B: Temporal and spectral broadening effects

In the main text, we only report spatial properties of the beam at the output of GRIN MMFs. This
is because BSC is a spatial phenomenon, which mainly involves spatial dynamics. As we pointed
out in the main text, the BSC theoretical description can be derived for CWs. Nevertheless, when
dealing with pulsed laser sources, one naturally wonders what are the temporal and spectral
effects during the propagation inside a nonlinear medium. Here, we consider the case of the
shortest pulses used in our experiments, i.e., that having 174 fs of duration, since temporal and
spectral effects are the most pronounced in this case.

As the power values involved are high-enough for triggering self-phase modulation, a spectral
broadening of the initial pulse is produced. In Fig. 10.a, we report the output spectrum for several
values of Pp. Specifically, the latter ranges from 12 kW up to 30 kW, which is the threshold value
for achieving BSC. For a clearer comparison, the Pp values reported here are the same as in
Fig. 5. Spectra are shown in a log scale in order to emphasize their broadening. In Fig. 10(b),
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we show the dependence on the input peak power of the output pulse full-wave-half-maximum
bandwidth (∆λ), calculated from Fig. 10(a). As it can be seen, ∆λ reaches the value of 85 nm at
the occurrence of BSC. This explains the need of the band-pass filter in the experimental setup in
Fig. 3 when working with short pulses. Indeed, if the filter was missing, the near-field camera
would detect an incoherent superposition of waves with different wavelengths, whose average
would be seen as a Gaussian "cleaned" beam. That camera, in fact, detects light with frequencies
ranging from the visible to the near-infrared. Furthermore, the SLM can encode a proper phase
mask only to a monochromatic source. Thus, in the absence of the band-pass filter, MD cannot
be properly carried out.

Fig. 10. a) Output spectrum at input peak powers up to 30 kW (BSC power threshold). The
input pulse duration is 174 fs. b) Output bandwidth vs. input peak power.

As far as temporal aspects are concerned, group velocity dispersion, in combination with
self-phase-modulation has the beneficial effect of causing about tenfold broadening of the pulse
temporal duration after 3 m of fiber length. As a result, modal dispersion is not able to temporally
separate the input excited modes. This is shown in Fig. 10(c), where we present numerical
simulations of the temporal profile of the modes at the fiber output. In the simulation, we consider
the propagation over 3 m of GRIN fiber of the first 15 modes (sorted by q). We use the same CC
as in the experiments, with input laser pulses of 174 fs, as in Fig. 5. Only three radial modes have
a non-negligible power fraction at both the fiber input and output (inset of Fig. 10(c)). These
modes turn out to be temporally overlapped, which justifies the fitting of our experimental results
by a CW-based theoretical model.

As a final note, it is worth to underline that the conservation of the number of particles must be
verified by measuring the total output power, before the output band-pass filter. For this purpose,
we used a large-band thermal power meter.
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