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Abstract. We consider an LQR optimal control problem with partially
unknown dynamics. We propose a new model-based online algorithm to
obtain an approximation of the dynamics and the control at the same
time during a single simulation. The iterative algorithm is based on a
mixture of Reinforcement Learning and optimal control techniques. In
particular, we use Gaussian distributions to represent model uncertainty
and the probabilistic model is updated at each iteration using Bayesian
regression formulas. On the other hand, the control is obtained in feed-
back form via a Riccati differential equation. We present some numerical
tests showing that the algorithm can efficiently bring the system towards
the origin.

Keywords: Reinforcement learning · LQR problem · Numerical
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1 Introduction

The Linear-Quadratic Regulator (LQR) optimal control problem [1,3] is a clas-
sical problem in control theory with a wide range of applications. When the
dynamics is known, the optimal control is obtained in feedback form solving a
backward Riccati differential equation.

Some Reinforcement Learning (RL) problems can be seen as LQR problems
where the dynamics is partially or completely unknown. Some RL algorithms try
to learn a model for the dynamics and use this model to find the optimal pol-
icy. These are called model-based algorithms. Others recover the optimal control
directly, without reconstructing the dynamics, and these are called model-free
algorithms. For a broad overview on RL, we recommend [14].

The connection between RL and optimal control theory was already iden-
tified in the past [15]. Recently, Palladino and co-authors tried to clarify this
relationship via some rigorous proofs, identifying some RL tasks as real optimal
control problems with unknown dynamics [8,10,11]. In this context, we propose
a new model-based algorithm for LQR problems where the dynamics is partially
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unknown, which takes contributions from both fields. In fact, our algorithm can
be considered as a case of Bayesian RL, a class of model-based algorithms where
the controller builds a stochastic model of the dynamics and updates it accord-
ing to Bayesian statistics [6]. On the other hand, we borrow the LQR solution
from optimal control theory, to get the synthesis of a suitable control [1].

In particular, our algorithm is similar to PILCO [2], from which it takes the
use of Gaussian distributions and the whole process of Bayesian update. How-
ever, we propose here some novelties. The first is that in PILCO the optimal
control is chosen through a gradient descent algorithm in a class of controls,
whereas we solve a Riccati differential equation to identify the minimizer. The
second is that PILCO needs several trials to reconstruct the dynamics and sta-
bilise the system. Our algorithm is designed to approximate the dynamics and to
find a suitable control in a single run but can be applied only to linear dynamical
systems. Finally, let us mention that other works have already dealt with LQR
problems with unknown dynamics (see i.e. [4,5,7,9] and references therein), but
they all need several trials to converge, whereas our method works with just one.

The paper is structured as follows. In Sect. 2 we recall the LQR problem.
In Sect. 3 we present our algorithm and discuss some implementation details.
Finally, in Sect. 4 we show and discuss some numerical tests.

2 The Classical LQR Problem

The Linear-Quadratic Regulator (LQR) problem [1,3] is an optimal control prob-
lem with linear dynamics and quadratic cost. In the finite horizon case, the state
of the system x(t) ∈ R

n evolves according to the following controlled dynamics
{

ẋ(t) = Âx(t) + Bu(t), t ∈ [0, T ]
x(0) = x0.

(1)

We will denote by R
m×n the space of matrices with m rows and n columns;

In and 0n will be respectively the identity and zero matrices in R
n×n. Here

Â ∈ R
n×n and B ∈ R

n×m. The control function u(t) ∈ R
m must be chosen

among the admissible controls U := {u : [0, T ] → R
m Lebesgue measurable} to

minimize the quadratic cost functional

Jx0 [u] :=
1
2

(∫ T

0

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt + x(T )T Qfx(T )

)
. (2)

The main assumptions on the cost matrices are the following:

– Q,Qf ∈ R
n×n are symmetric and positive semi-definite;

– R ∈ R
m×m is symmetric and positive definite.

For any x0 ∈ R
n, we will call ū an optimal control starting from x0 if and only if

Jx0 [ū] ≤ Jx0 [u] ∀u ∈ U . (3)
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When the dynamics is fully known, the optimal control can be obtained in
feedback form [1]. Indeed, if P (t) is the unique symmetric solution of the Riccati
differential equation

{
−Ṗ (t) = ÂT P (t) + P (t)Â − P (t)BR−1BT P (t) + Q, t ∈ [0, T ]
P (T ) = Qf ,

(4)

the optimal control is given by ū(t) = −R−1BT P (t)x(t).
We want to investigate: what happens if the dynamics is partially unknown?

How can one find a suitable control? We considered the following framework:

Setting. We assume that the matrices B ∈ R
n×m, Q,Qf ∈ R

n×n and R ∈
R

m×m are given, whereas the state matrix Â ∈ R
n×n is unknown.

3 An Online Algorithm for the LQR Problem

In this section, we describe our model-based algorithm able to solve the LQR
problem without knowing the matrix Â. The algorithm is online, meaning that
it doesn’t need any previous simulation or computation. Our goal is twofold:
first, we look for a good estimate for the unknown dynamics matrix Â; and
secondly, we want to choose a control that can steer the trajectory towards the
origin. Furthermore, we assume that we can run the experiment just once, so
the system must be controlled while the dynamics is still uncertain. To this end,
we use a technique to get an estimate of the matrix Â and to update the control
at the same time.

We divide the interval [0, T ] into equal time steps of length Δt, globally we
will have N time steps and we group them into rounds of S steps each. The i-th
round will be denoted by [ti−1, ti] and a superscript index will indicate a single
time step:

tji = ti−1 + jΔt, j = 0, . . . , S.

The current knowledge of the dynamics matrix is represented as a probability
distribution over matrices. For each round, two major operations are carried out:

1. At the beginning of each round, a probability πi−1 is given from the previous
round. We use the mean Āi−1 of this distribution and compute a feedback
control for the round solving a Riccati equation;

2. At the end of each round, the current probability distribution is updated
using Bayesian formulas, according to the trajectory observed during the
round. The output is a new probability distribution πi.

The whole algorithm is summarised below as Algorithm 1. In the following,
we will give more technical details.

Prior Distribution. The algorithm requires the choice of a prior distribution
π0. We fix some m0 ∈ R

n and Σ0 ∈ R
n×n and consider a random matrix A such
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Algorithm 1 An online algorithm for the LQR problem
Divide [0, T ] into M intervals of length Δt, with Δt = T

M
;

Group the intervals in rounds, each containing S intervals;
Choose a prior distribution π0 over matrices;
for i from 1 to the rounds number do

Find a feedback control u∗
i solving a Riccati eq. with the mean matrix Āi−1;

Use u∗
i as control for all the steps in the i-th round ;

Observe the actual trajectory;
Update πi according to the data from the observed trajectory

end for

that each of its rows rk is distributed as an independent Gaussian vector with
mean m0 and covariance matrix Σ0

A =

⎡
⎢⎣

rT
1
...

rT
n

⎤
⎥⎦ rk ∼ N (m0, Σ0) ∀ k = 1, . . . , n

A typical choice for the prior distribution, when no information about the true
matrix Â is available, is m0 = (0, . . . , 0)T and Σ0 = nm In.

Feedback Control. At the beginning of the round [ti−1, ti] our knowledge of
the matrix Â is described by the distribution πi−1. In order to find the control to
apply, we solve the evolutive Riccati equation associated with the matrix Āi−1,
where Āi−1 is the mean of the distribution πi−1. The Riccati equation reads

{
−Ṗ (t) = ĀT

i−1P (t) + P (t)Āi−1 − P (t)BR−1BT P (t) + Q t ∈ [ti−1, T ]
P (T ) = Qf .

(5)

If we denote by Pi(t) the solution of (5), our control will be the feedback control
given by

u∗
i (t

j
i ) = −R−1BT Pi(t

j
i )x

j
i j = 0, . . . S − 1, (6)

where xj
i = x(tji ) is the observed state of the system. Since the control must

be defined for all instants t ∈ [ti−1, ti], we choose a piecewise constant control:
u∗

i (t) = u∗
i (t

j
i ) for t ∈ [tji , t

j+1
i ]. Note that we need real-time observations of the

system state to compute u∗
i , since it depends on x.

Distribution Update. At the end of each round we can update the probability
distribution using Bayesian regression formulas. More precisely, we know that
during the time step [tji , t

j+1
i ] the system evolves according to (1) where we plug-

in the chosen piecewise constant control. We can easily get an approximation of
the state derivative with a finite difference scheme using the state observations
xj

i = x(tji ). By a first-order scheme, rearranging the terms, we get

Âxj
i � xj+1

i − xj
i

Δt
− Bu∗(tji ) j = 0, . . . , S − 1. (7)
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We interpret these data as observations of the dynamics with a Gaussian noise
due to the error in the derivative approximation and the measurements. We treat
each row r̂k of Â separately. Denoting by yj the right hand side in (7), we can
write its k-th component as

yj
(k) = r̂kxj

i + ε with ε ∼ N (0, σ2),

where σ is a parameter chosen according to the order of the derivative approxi-
mation.

For each row k we have a prior distribution rk ∼ N (m0, Σ0) given by
πi−1. We define X as the matrix whose columns are x0

i , . . . , x
S−1
i and y as

the column vector y0
(k), . . . , y

S−1
(k) . Therefore we obtain a posterior distribution

rk|y,X ∼ N (m,Σ) where Σ−1 = 1
σ2 XXT + Σ−1

0 and m = Σ(Xy/σ2 + Σ−1
0 m0).

For more details about Bayesian Linear Regression see for instance the extensive
monograph by Rasmussen and Williams [12].

Higher-Order Schemes. The derivative in (7) can be approximated with
higher order finite difference schemes [13]. Note that trajectory regularity is
required in the interval containing the nodes used in the approximation. While
first-order approximation uses only two nodes, higher-order approximations use
more nodes, thus the control cannot jump at each time step and we have to keep
it constant for more steps.

Remark 1 (Heuristic argument for convergence). The algorithm cannot find the
optimal control for the problem, since at the beginning the matrix Â is unknown
and it needs at least some steps to have a good estimate for Â. However, from
Bayesian Regression theory (see [12]) we know that the more data we observe,
the more precise our distribution πi becomes, eventually converging to the Dirac
delta δ

̂A.
Furthermore, let us note that since πi is converging to δ

̂A, then also the mean
matrix Āi of πi is converging to Â. Thus, after few rounds, the feedback control
computed by the algorithm (which is using Āi) in the interval [ti, T ] should be
close to the optimal control of a trajectory of the real dynamics which starts
from the same point xS

i−1.
Finally, when Δt → 0, the algorithm reaches earlier a good estimate of the

dynamics matrix. This means that also the computed control is closer to the
optimal one. All these heuristics are confirmed by the numerical simulations in
the next section.

4 Some Numerical Tests

The following numerical tests for the algorithm described above were performed
in Matlab and took few seconds to run.

Test 1. We first consider a dynamical system where the state lies in R
2 and the

control is 1-dimensional, i.e. n = 2 and m = 1. The LQR problem is defined by
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the following matrices:

Â =
(

0 1
−1 0

)
B =

(
0
1

)
Q =

(
1 0
0 1

)
R = 0.1 Qf =

(
0 0
0 0

)
.

The time horizon is set to T = 5 and the starting point is x0 = (0, 1)T . We
assume that the matrix Â is unknown to the algorithm, though we use it to
simulate the dynamics. We choose the prior distribution as recommended in
Sect. 3, using m0 = (0, 0)T and Σ0 = 2I2; for all the tests we set σ =

√
10Δtp and

S = 2p, where p is the order of the scheme used in the derivative approximation.
Figure 1 shows the piecewise constant controls chosen by the algorithm with
p = 1 for different values of Δt and the corresponding trajectories. Recall that
the matrix Â is completely unknown at the beginning, so the control we apply
in the first steps depends only on the prior distribution we have chosen and
clearly is not accurate. This causes the trajectory to deviate from the optimal
solution. However, after few steps the matrix Â is well approximated and the
algorithm manages to steer the state towards the origin anyway. In Table 1a
we have reported the cost of the solution found by the algorithm for different
choices of Δt. When Δt is smaller, the algorithm recovers the matrix Â quickly
and thus the deviation from the optimal solution is smaller. This confirms the
heuristics of Remark 1. We can also observe a numerical order of convergence
equal to 1.
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(b) control Δt = 0.05
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(d) trajectory Δt = 0.1
0 5 · 10−2 0.1 0.15 0.2

−0.2

0

0.2

0.4

0.6

0.8

1 • optimal trajectory
our trajectory

(e) trajectory Δt = 0.05
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(f) trajectory Δt = 0.025

Fig. 1. Simulations of Test 1 for different values of Δt. The first row shows the control
chosen by the algorithm as a function of time (in red) compared with the optimal control

(in blue), computed knowing the matrix ̂A; the second row shows the trajectories in
R

2. The red dot is the trajectory starting point. (Color figure online)



328 A. Pacifico et al.

Table 1. Numerical results for Test 1. (a): Cost of the trajectory for different values

of Δt. The cost is compared with the optimal cost computed knowing ̂A (C∗ last row).

(b): Error for ̂A after the simulation using different Δt and different finite difference
schemes for the derivatives approximation; p is the scheme order.

(a)

Δt Cost Error Order

0.1 0.3897 0.0063 -

0.05 0.3866 0.0032 0.98

0.025 0.3849 0.0015 1.09

C∗ 0.3834 - -

(b)

p = 1 p = 2 p = 4

Δt Error Order Error Order Error Order

0.1 0.167 - 9.74e-3 - 1.63e-4 -

0.05 0.087 0.94 1.91e-3 2.3 3.00e-6 5.8

0.025 0.045 0.95 4.14e-4 2.2 1.03e-7 4.8

0.01 0.018 1.00 6.30e-5 2.1 1.70e-9 4.5

We tried different finite difference schemes for the approximation of the state
derivatives (see “Higher-order schemes” in Sect. 3). Table 1b shows the error
in the approximation of Â at the end of the simulation, when using schemes of
order p = 1, 2, 4 and for different values of Δt. As expected, when we consider
more accurate approximations of the gradient, we get better estimations of the
matrix Â. Unfortunately, the same does not hold for the solution costs, which
are not significantly improved if compared with the ones found by the first-order
approximation.

Test 2. For the second test we choose n = 4, m = 3 and T = 10. Our matrices
are

̂A =

⎛

⎜

⎜

⎝

−0.0215 −0.7776 −0.1922 0.9123
−0.3246 0.5605 −0.8071 0.1504
0.8001 −0.2205 −0.7360 −0.8804

−0.2615 −0.5166 0.8841 −0.5304

⎞

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎝

−0.2937 −0.6620 −0.0982
0.6424 0.2982 0.0940

−0.9692 0.4634 −0.4074
−0.9140 0.2955 0.4894

⎞

⎟

⎟

⎠

,

Q = 1
4 I4, R = 1

3 I3 and Qf = I4, and the starting point is x0 = (1, 1, 1, 1)T . We
set Δt = 0.025, S = 4 and use a second order approximation for the derivatives.
Fig. 2 shows the control found by the algorithm and Fig. 3 the corresponding
trajectory. The behaviour observed in Test 1 is even more visible here: in the
first steps the control is not accurate since we do not know Â, but after few
steps the algorithm learns more on the matrix and manages to bring the state

0 2 4 6 8 10
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0.4

0.6

0.8
optimal control
our control
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Fig. 2. The three components of the control in Test 2
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Fig. 3. The trajectory of Test 2 in R
4, represented by projecting components in couples:

(x1, x2) on the left and (x3, x4) on the right. The red dots indicate the starting point
of the trajectory. (Color figure online)

to the origin. The cost of the control found by the algorithm is 1.111, whereas
the optimal cost computed using Â is 1.056.

5 Conclusions

We proposed a new algorithm designed to deal with LQR problems when the
dynamics is partially unknown. Numerical tests presented in Sect. 4 showed how
it manages to approximate the dynamics and to find a suitable control that
brings the system towards the origin in a single simulation. Future works include
the convergence analysis of the algorithm and possible extensions to the nonlin-
ear case.
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