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Observer Design for Systems of Conservation Laws with Lipschitz

Nonlinear Boundary Dynamics

Francesco Ferrante and Andrea Cristofaro

Abstract—The problem of state estimation for a system of
coupled hyperbolic PDEs and ODEs with Lipschitz nonlinearities
with boundary measurements is considered. An infinite dimen-
sional observer with a linear boundary injection term is used
to solve the state estimation problem. The interconnection of the
observer and the system is written in estimation error coordinates
and analyzed as an abstract dynamical system. The observer
is designed to achieve global exponential stability of estimation
error with respect to a suitable norm. Sufficient conditions in the
form of matrix inequalities are proposed to design the observer.
Numerical simulations support and corroborate the theoretical
results.

I. INTRODUCTION

Many distributed physical phenomena can be described

through mathematical models based on hyperbolic partial

differential equations and conservation laws. Examples of such

distributed systems can be found in hydraulic networks [15],

multiphase flow [13], transmission networks [17], road traffic

networks [18] or gas flow in pipelines [14]. The interest in

boundary controllers and boundary observers is motivated by

the fact that systems governed by partial differential equations

are typically equipped with sensors located at the boundary

of the spatial domain, while state variables are not directly

measured in the interior. In this regard, conditions for stabil-

ity, controllability and observability of first-order hyperbolic

systems have been largely explored; see for instance [9], [23],

[26], [30], [24] and the references therein. More specifically,

observer design for linearized first-order hyperbolic systems

based on Lyapunov methods has been addressed in [1],

where exponential convergence is guaranteed using boundary

injections. For quasilinear first-order hyperbolic systems, the

tasks of boundary stabilization and state estimation have been

considered in [10].

When dynamic boundary conditions are present, a coupled

system of PDEs and ODEs arises, this making the structure

of the problem particularly rich and interesting. Systems

modeled as the interconnection of PDEs and ODEs can be

found in numerous applications; see, e.g., [7, Chapter 1],

[12], [27]. An interesting approach for stability analysis of

the interconnection of a linear ODE and a wave equation is

presented in [6] where cross-terms defined through supple-

mentary integral states are introduced. Along the same lines,
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in [29] non-diagonal Lyapunov functionals are considered

for stability analysis of coupled systems of scalar PDEs

and ODEs. The design of boundary observer for linear and

quasilinear conservation laws with static and asymptotically

stable dynamic boundary control is proposed in [8], where the

authors state sufficient conditions based on matrix inequalities.

A design procedure for backstepping observers is proposed in

[19], where the solution of an auxiliary set of PDEs is use

to determine a suitable change of coordinates. The problem

of designing high-gain observers for hyperbolic systems of

balance laws, yet with distributed in-domain measurements,

has been addressed in [21], [22].

Recently, in [16], we proposed a design technique for

boundary observers for linear hyperbolic systems with lower-

order reaction terms and potentially unstable dynamic bound-

ary conditions based on matrix inequalities. In this paper we

extend the constructions in [16] to design an exponentially

convergent observer for a system of linear conservation laws

with Lipschitz nonlinear boundary dynamics; a similar setting

is considered in [2]. The class of Lipschitz functions is

recognized to include some of the most common nonlinear-

ities in control systems such as saturations or dead-zones,

this motivating the interest in such a generalized setup. The

design of asymptotic observers for finite-dimensional Lipschitz

nonlinear systems via the use of matrix inequalities is a well-

established research area; see [31], [3], [4] just to mention

a few. To address the state estimation problem considered

in this paper, we consider an infinite-dimensional observer

that is a copy of the system with a linear boundary injection

term that needs to be designed. Then, using an integral

Lyapunov functional and some upper growth bounds for the

nonlinearity, we provide sufficient conditions in the form of

matrix inequalities to enforce exponential decay of the state

estimation error.

The remainder of the paper is organized as follows. Sec-

tion II describes the considered setup and establishes some pre-

liminary results on the estimation error dynamics. Section III

pertains to stability analysis of the error dynamics and provides

sufficient conditions for observer design. Section IV illustrates

the application of the proposed observer in a numerical exam-

ple. Finally, some conclusions are reported in Section V.

Notation

The sets R≥0 and R>0 represent the set of nonnegative

and positive real scalars, respectively. The symbols Sn (Sn+)

and Dn
+ denote, respectively, the set of real n× n symmetric

(symmetric positive definite) matrices and the set of diagonal

positive definite matrices. For a matrix A ∈ R
n×m, AT

denotes the transpose of A, and He(A) = A + AT. For a
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symmetric matrix A, positive definiteness (negative definite-

ness) and positive semidefiniteness (negative semidefiniteness)

are denoted, respectively, by A ≻ 0 (A ≺ 0) and A � 0
(A � 0). In partitioned symmetric matrices, the symbol •
stands for symmetric blocks. The symbol I denotes the identity

matrix. Let X ⊂ R
n, Y ⊂ R, x ∈ X , and f : X → Y , the

symbol ∇f(x) denotes the gradient of f at x. For a vector

x ∈ R
n, |x| denotes its Euclidean norm. Given x, y ∈ R

n,

we denote by 〈x, y〉Rn the standard Euclidean inner product.

Let X and Y be linear normed spaces and f : X → Y ,

we denote by Df(x) the Fréchet derivative of f at x. Let

k = 0, 1, . . . , the symbol Ck(X,Y ) denotes the set of class

Ck functions f : X → Y . Let U ⊂ R and V ⊂ R
n, and

f, g : U → V . We denote by 〈f, g〉L2(U,V ) =
∫

U
f(x)g(x)dx,

and ‖f‖L2(U,V ) =
»

〈f, f〉L2(U,V ). Let U ⊂ R be open and

V be a linear normed space,

H1(U ;V ) :=
{

f ∈L2(U ;V ) :f is absolutely continuous on U,

d

dz
f ∈ L2(U ;V )

™

where d
dz

stands for the weak derivative of f . Let X be a

normed space, A ⊂ X be closed, and x ∈ X , the distance of

x to A is defined as |x|A := infy∈A ‖x− y‖X .

II. PROBLEM FORMULATION AND OUTLINE OF THE

SOLUTION

Let Ω := (0, 1), we consider a system of nx linear 1-D

hyperbolic PDEs with dynamic boundary conditions formally

written as:

∂tx(t, z) + Λ∂zx(t, z) = 0 (t, z) ∈ R>0× Ω

x(t, 0) = Cχ(t) ∀t ∈ R>0

χ̇(t) = Aχ(t) +BΨ(Zχ(t)) ∀t ∈ R>0

y(t) = Mx(t, 1) ∀t ∈ R>0

(1)

where ∂tx and ∂zx denote, respectively, the derivative of x

with respect to “time” and the “spatial” variable z, (z 7→
x(·, z), χ) ∈ L2(0, 1;Rnx)×R

nχ is the system state, y ∈ R
ny

is a measured output, and Ψ: Rnz → R
nl is globally

Lipschitz continuous with Lipschitz constant ℓ > 0. Namely,

for all z1, z2 ∈ R
nz one has

|Ψ(z1)−Ψ(z2)| ≤ ℓ|z1 − z2| (2)

Matrices Λ ∈ D
nx

+ , B ∈ R
nχ×nl , C ∈ R

nx×nχ , A ∈ R
nχ×nχ ,

Z ∈ R
nz×nχ , and M ∈ R

ny×nx are known. Our goal is

to design an observer providing an exponentially converging

estimate (x̂(·, z), χ̂) of the system state (x(·, z), χ) from

any initial condition. Inspired by [8], [16], we consider the

following observer with state (x̂, χ̂) ∈ L2(0, 1;Rnx)×R
nχ :

∂tx̂(t, z) + Λ∂zx̂(t, z) = 0

x̂(t, 0) = Cχ̂(t)
˙̂χ(t) = Aχ̂(t) +BΨ(Zχ̂(t)) + L(y(t)−Mx̂(t, 1))

(t, z)∈R>0×Ω
(3)

where L ∈ R
nχ×ny is the observer gain to be designed. At

this stage, define the following invertible change of variables

ε := x− x̂

η := χ− χ̂

which defines the two estimation errors. Then, the intercon-

nection of observer (3) and plant (1) reads as follows

∂tx(t, z) + Λ∂zx(t, z) = 0

x(t, 0) = Cχ(t)

χ̇(t) = Aχ(t) +BΨ(Zχ(t))

∂tε(t, z) + Λ∂zε(t, z) = 0

ε(t, 0) = Cη(t)

η̇(t) = Aη − LMε(t, 1) +Bρ(χ(t), η(t))

(t, z)∈R>0×Ω

(4)

where for all (χ, η) ∈ R
2nχ :

ρ(χ, η) := Ψ(Zχ)−Ψ(Z(χ− η)) (5)

In view of the global Lipschitzness assumption on Ψ, it easily

follows that for all (χ, η) ∈ R
2nχ

ρ(χ, η)Tρ(χ, η)− ℓ2ηTZTZη ≤ 0 (6)

A. Abstract Formulation

Similarly as in [7], in this paper, we focus on mild solutions

to (4). To this end, as in [11], [5], [20], we reformulate (4)

as an abstract differential equation on the Hilbert space Z :=
(L2(0, 1;Rnx)×R

nχ)2 endowed with the following standard

inner product:

〈(a1, a2), (b1, b2)〉Z := 〈a1, a2〉√Z + 〈a2, b2〉√Z

where for all a1 = (ax1 , a
χ
1 ), a2 = (ax2 , a

χ
2 ) ∈ L2(0, 1;Rnx)×

R
nχ we define:

〈a1, a2〉√Z := 〈ax1 , a
x
2〉L2(0,1;Rnx ) + 〈aχ1 , a

χ
2 〉Rnχ

In particular, let S := H1(0, 1;Rnx)×R
nχ and X := S2 ⊂ Z .

Define
D1 := {(x, χ) ∈ S : x(0) = Cχ}

D2 := {(ε, η) ∈ S : ε(0) = Cη}

and consider the following operator

F : domF → Z

(x, χ, ε, η) 7→

Å

AP 0
0 AO

ã

Ü

x

χ

ε

η

ê

(7)

for which domF = D1×D2, domAP = D1, domAO = D2,

and

AP

Å

x

χ

ã

:=

Å

−Λ d
dz

0
0 A

ãÅ

x

χ

ã

AO

Å

ε

η

ã

:=

Å

−Λ d
dz

0
0 A

ãÅ

ε

η

ã

+

Å

0
−LMε(1)

ã
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Let f : R2nχ → domF be defined for all π = (χ, η) ∈ R
2nχ

as:

f(π) :=

Ü

0
BΨ(χ)

0
Bρ(χ, η)

ê

Then, the error dynamics can be formally written as the

following abstract differential equation on the Hilbert space

Z:
Ü

ẋ

χ̇

ε̇

η̇

ê

= F

Ü

x

χ

ε

η

ê

+ f(χ, η) (8)

In particular, following the lines of [5], [25], we consider the

following notion of (mild) solution for (8):

Definition 1. Let I ⊂ R≥0 be an interval containing zero. A

function ϕ = (ϕx, ϕχ, ϕε, ϕη) ∈ C0(I,Z) is a solution to (8)

if for all t ∈ I
∫ t

0

ϕ(s)ds ∈ domF

ϕ(t) = ϕ(0) + F

∫ t

0

ϕ(s) +

∫ t

0

f(ϕχ(s), ϕη(s))ds

(9)

Moreover, we say that ϕ is maximal if its domain cannot be

extended and complete if I = [0,+∞). ◦

Remark 1. In [25], mild solutions to nonlinear evolution

equations are defined by relying on the semigroup generated

by the linear operator underlying the evolution equation. In

this paper, inspired by [5], we follow a different approach

and consider a definition of (mild) solution that is formulated

directly on the data of the system, i.e., the operator F and

the function f . On the other hand, it can be shown that when

F generates a C0-semigroup on Z and and f is Lipshchitz

continuous the two definitions are equivalent. ◦

B. Existence and uniqueness of solutions

In this subsection, we illustrate existence and uniqueness of

the solutions to (8).

Proposition 1 (Existence, uniqueness, and regularity of so-

lutions). Let ζ = (x0, χ0, ε0, η0) ∈ Z . Then, there exists a

unique maximal solution ϕ = (ϕx, ϕχ, ϕε, ϕη) to (8) such

that ϕ(0) = ζ. Furthermore ϕ is complete. In addition, if

ζ ∈ domF , then ϕ is a classical solution to (8), i.e:

ϕ ∈ C1(R>0,Z)

ϕ(t) ∈ domF ∀t ∈ R>0

ϕ̇(t) = Fϕ(t) + f(ϕχ(t), ϕη(t)) ∀t ∈ R>0

(10)

Sketch of the proof. As a first step, notice that F generates a

C0-semigroup T on the Hilbert space Z . This can be proven,

e.g., following an approach wholly similar as in the proof of

[16, Proposition 1]. Using this fact, it can be easily shown that

maximal solutions to (8) correspond to maximal solutions to

the following integral equation:

ϕ(t) = T (t)ϕ(0) +

∫ t

0

T (t− s)f(ϕχ(s), ϕη(s))ds (11)

In particular, for all ζ ∈ Z , [25, Theorem 1.2, page 184]

ensures that there exists a unique maximal solution to (11)

such that ϕ(0) = ζ and that such a solution is complete.

The last part of the statement, i.e., ϕ satisfies (10) when

ζ ∈ domF , follows directly from [25, Theorem 1.7, page

190].

Now we are in a position to state the problem we solve in

this paper. To this end, since the objective is to ensure that

the estimation error goes to zero as t approaches infinity, we

define the following closed subset of Z:

A := {(x, χ, ε, η) ∈ Z : ε = 0, η = 0} (12)

and observe that for all ξ = (x, χ, ε, η) ∈ Z , one has

|ξ|A =
»

〈ε, ε〉L2(0,1;Rnx) + 〈η, η〉Rnχ (13)

Problem 1. Given A ∈ R
nχ×nχ , C ∈ R

nx×nχ , M ∈
R

ny×nx , Λ ∈ D
nx

+ , B ∈ R
nχ×nl , Z ∈ R

nz×nχ and let A

be defined as in (12). Design L ∈ R
nχ×ny such that each

solution ϕ to (8) satisfies

|ϕ(t)|A ≤ κe−λt|ϕ(0)|A ∀t ∈ domϕ (14)

for some (solution independent) κ, λ ∈ R>0. ◦

Notice that due to completeness of maximal solutions to

(8), (14) ensures that the estimation error approaches zero

exponentially along maximal solutions.

III. SUFFICIENT CONDITIONS FOR OBSERVER DESIGN

In this section we propose sufficient conditions for the

solution to Problem 1. To this end, let us recall the following

result from [16] whose role will be clarified later in the proof

of Theorem 1.

Proposition 2. Let P1 ∈ D
nx

+ , P2 ∈ R
nχ×nx , P3 ∈ S

nχ

+ , and

µ ∈ R. Define

G : [0, 1] → S
nx+nχ

z 7→

ï

e−µzP1 PT

2

• P3

ò

(15)

For all (ε, η) ∈ domAO one has

2

∫ 1

0

≠

G(z)

ï

ε(z)
η

ò

,AO

ï

ε(z)
η

ò∑

R
nx+nχ

dz =

∫ 1

0





ε(z)
ε(1)
η





T

M(z)





ε(z)
ε(1)
η



 dz

(16)

where for all z ∈ [0, 1], M is defined in (17) (at the top of the

next page). ⋄

The following fact somehow extends Proposition 2 to the

setting considered in this paper.

https://doi.org/10.23919/ACC45564.2020.9147240
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M(z) =





−e−µzµΛP1 −PT

2 LM PT

2 A

• −ΛP1e
−µz −ΛPT

2 −MTLTP3

• • He(P3A+ P2ΛC) + CTΛP1C



 (17)

Fact 1. Let P1 ∈ D
nx

+ , P2 ∈ R
nχ×nx , P3 ∈ S

nχ

+ , µ ∈ R, and

ρ : R2nχ → R
nl be defined as in (5). Then, for all (ε, χ, η) ∈

L2(0, 1;Rnx)×R
2nχ one has:

2

∫ 1

0

≠

G(z)

ï

ε(z)
η

ò

,

ï

0
Bρ(χ, η)

ò∑

R
nx+nχ

dz =

∫ 1

0





ε(z)
η

ρ(χ, η)





T 



0 0 PT

2 B

• 0 P3B

• • 0









ε(z)
η

ρ(χ, η)



 dz

(18)

⋄

Theorem 1. Assume that there exist P1 ∈ D
nx

+ , P2 ∈ R
nχ×nx ,

P3 ∈ Snχ , L ∈ R
nχ×ny , ι ≥ 0, and µ ∈ R>0 such that:
ï

P1e
−µ PT

2

• P3

ò

≻ 0 (19)

K ≺ 0 (20)

where the matrix K is defined in (27). Then, any maximal

solution to (8) satisfies (14) with

λ =
α3

2α2
, κ =

…

α2

α1
(21)

where

α1 := λmin

Åï

P1e
−µ PT

2

• P3

òã

, α2 := λmax

Åï

P1 PT

2

• P3

òã

α3 := |λmax(K)|
(22)

Sketch of the proof. Let G be defined as in (15). Consider

the following Lyapunov functional candidate defined on

L2(0, 1;Rnx)×R
nχ :

V (ε, ϕ) :=

∫ 1

0

≠ï

ε(z)
ϕ

ò

,G(z)

ï

ε(z)
ϕ

ò∑

R
nx+nχ

dz (23)

In particular, observe that for all (x, χ, ε, ϕ) ∈ Z one has

α1|(x, χ, ε, ϕ)|
2
A ≤ V (ε, η) ≤ α2|(x, χ, ε, ϕ)|

2
A (24)

where α1 and α2 are strictly positive thanks to (19). We show

that the above results holds true for any classical solution to

(8). The extension of the proof to mild solutions is discussed

briefly at the end. Assume that ϕ(0) ∈ domF . Then, from

Proposition 1: ϕ ∈ C1(int domϕ,Z), ϕ(t) ∈ domF for all

t ∈ int domϕ, and

ϕ̇(t) = Fϕ(t) + f(ϕχ(t), ϕη(t)) ∀t ∈ int domϕ (25)

For all t ∈ int domϕ, ϕ being differentiable, one has

V̇ (t) :=
d

dt
V (ϕε(t), ϕη(t)) = DV (ϕε(t), ϕη(t))

ï

ϕ̇ε(t)
ϕ̇η(t)

ò

=

2

∫ 1

0

≠

G(z)

ï

(ϕε(t))(z)
ϕη(t)

ò

,

ï

(yε(t))(z)
yη(t)

ò∑

R
nx+nχ

dz

where for convenience we denoted:

L2(0, 1;Rnx)×R
nχ ∋ (yε, yη) := AO

ï

ϕε(t)
ϕη(t)

ò

Hence, by using Proposition 2 and Fact 1, it follows that for

all t ∈ int domϕ

V̇ (t) =

∫ 1

0









(ϕε(t))(z)
(ϕε(t))(1)
ϕη(t)

ρ(ϕχ(t), ϕη(t))









T

H(z)









(ϕε(t))(z)
(ϕε(t))(1)
ϕη(t)

ρ(ϕχ(t), ϕη(t))









dz

where for all z ∈ [0, 1]

H(z) :=

ï

M(z) Γ
• 0

ò

with

Γ :=





PT

2 B

0
P3B





At this stage notice that in view of (6), for all ι ≥ 0 and all

t ∈ int domϕ, the following bound holds:

V̇ (t) ≤

∫ 1

0









(ϕε(t))(z)
(ϕε(t))(1)
ϕη(t)

ρ(ϕχ(t), ϕη(t))









T

Q(z)









(ϕε(t))(z)
(ϕε(t))(1)
ϕη(t)

ρ(ϕχ(t), ϕη(t))









dz

where for all z ∈ [0, 1]

Q(z) :=









M(z) + ιℓ





0
0
ZT





[

0 0 Z
]

Γ

• −ιI









Thus, since for all z ∈ [0, 1], Q(z) � K, by using (20) one

has that for all t ∈ int domϕ

V̇ (t) ≤− α3

∫ 1

0

∣

∣

∣

[

(ϕε(t))(z)
T (ϕε(t))(1)

T ϕη(t)
T
]T
∣

∣

∣

2
dz

≤− α3|ϕ(t)|
2
A

the latter, thanks to (24), by standard manipulations yields for

all t ∈ domϕ

|ϕ(t)|A ≤

…

α2

α1
e
− α3

2α2
t|ϕ(0)|A (26)

which reads as (14) with λ =
α3

2α2
and κ =

»

α2

α1
. The

same bound can be established for solutions, defined as in

Definition 1, by relying on a density argument and on (11).

Remark 2. Condition (20) is a bilinear matrix inequality

(BMI). As such, the numerical solution to (20) can be chal-

lenging when the size of the unknown matrices gets large.

This is of course a limitation of the proposed approach and

https://doi.org/10.23919/ACC45564.2020.9147240
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K =









−e−µµΛP1 −PT

2 LM PT

2 A PT

2 B

• −ΛP1e
−µ −ΛPT

2 −MTLTP3 0
• • He(P3A+ P2ΛC) + CTΛP1C + ιℓ2ZTZ P3B

• • • −ιI









(27)

we are currently working to overcome this drawback. On the

other hand, it is worth stressing that, as opposed to [8], where

conditions in the form of linear matrix inequalities are given

for the design of observer (3), the feasibility of (20) does

not require asymptotic stability of the ODE dynamics. This

aspect is connected to the selection of the non-block diagonal

structure of the Lyapunov functional (23). Indeed, although

such a functional enables to relax the assumptions on the ODE

dynamics, it introduces some bilinear terms in (20). ◦

IV. NUMERICAL EXAMPLE

Consider a system of the form (1) defined by the following

data

Λ =

ï3
2 0
0 2

ò

, A =

ï

−1 2
2.05 −4

ò

, B =

ï

0
1
2

ò

Z =
[

1 1
]

, C = I, M =
[

1 1
]

,Ψ(z) = dz(z)

where for any z ∈ R, the function dz: R → R is defined as

dz(z) = 0 if |z| ≤ 1 and dz(z) = sign(z)(|z| − 1) otherwise.

Obviously, dz is Lipschitz continuous and, in particular, ℓ = 1.

It is worth stressing that, while the PDE dynamics are stable,

the boundary dynamics are not, i.e. the matrix A is not

Hurwitz. Let us now design an observer according to the

structure (3). With the objective of searching for a feasible

solution to (19)–(20), we employed an heuristic algorithm

wholly similar to [16, Algorithm 1]. In particular, for this

example a feasible solution to (19)–(20) is as follows:

P1 =

ï

11.76 0
0 16.24

ò

P2 =

ï

−6.904 −7.157
−4.254 −2.427

ò

P3 =

ï

14.4 4.976
4.976 7.52

ò

L =

ï

0.4593
0.2025

ò

µ = 0.4 ι = 3.335

To validate our theoretical findings, next we present some

simulations of the proposed observer1.

In Fig. 1, we report the evolution of the Lyapunov functional

(23) (a logarithmic scale is employed on the y-axis) along the

solution to (8) from the following initial condition:

x1(0, z) = cos(2πz) ∀z ∈ [0, 1]
x2(0, z) = −2 cos(4πz) ∀z ∈ [0, 1]
χ(0) = (1,−2)
x̂(0, z) = 0 ∀z ∈ [0, 1]
χ̂(0) = (0, 0)

(28)

Fig. 1 clearly shows that V converges exponentially to zero.

Exponential state reconstruction is confirmed by Fig. 2, and

Fig. 3 where the evolution of ε and η, respectively, are

reported.

1Numerical integration of hyperbolic PDEs is performed via the use of the
Lax-Friedrichs (Shampine’s two-step variant) scheme implemented in Matlab®

by Shampine [28].
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Fig. 1: Evolution of the Lyapunov functional (23) (on a log-

linear scale) along the solution to (8) from the initial condition

in (28).

V. CONCLUSION

In this paper, we considered the problem of designing an

observer to estimate the state of a system of linear conserva-

tion laws with Lipschitz nonlinear boundary dynamics. The

observer we propose is a copy of the plant augmented with

a linear output injection term. The interconnection of the

plant and the observer is analyzed via abstract differential

equations tools. The observer is designed to induce global

exponential stability of a closed set in which the estimation

error is equal to zero. By pursuing a Lyapunov approach, the

observer design problem is recast into the feasibility problem

of some bilinear matrix inequalities. Numerical simulations

are used to illustrate the effectiveness of the proposed observer

design strategy in an example.

Future research directions include the derivation of compu-

tationally affordable design algorithms for the observer based

on linear matrix inequalities.
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