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ABSTRACT

Initially far out-of-equilibrium, self-gravitating systems form quasi-stationary states (QSS) through a collisionless relaxation dynam-
ics. These may arise from a bottom-up aggregation of structures or in a top-down frame; their quasi-equilibrium properties are well
described by the Jeans equation and are not universal. These QSS depend on initial conditions. To understand the origin of such de-
pendence, we present the results of numerical experiments of initially cold and spherical systems characterized by various choices of
the spectrum of initial density fluctuations. The amplitude of such fluctuations determines whether the system relaxes in a top-down
or bottom-up manner. We find that statistical properties of the resulting QSS mainly depend upon the amount of energy exchanged
during the formation process. In particular, in the violent top-down collapses the energy exchange is large and the QSS show an inner
core with an almost flat density profile and a quasi Maxwell-Boltzmann (isotropic) velocity distribution, while their outer regions
display a density profile ρ(r) ∝ r−α (α > 0) with radially elongated orbits. We show analytically that α = 4, in agreement with nu-
merical experiments. In the less violent bottom-up dynamics, the energy exchange is much smaller, the orbits are less elongated, and
0 < α(r) ≤ 4, where the density profile is well fitted by the Navarro-Frenk-White behavior. Such a dynamical evolution is shown by
both nonuniform spherical isolated systems and by halos extracted from cosmological simulations. We consider the relation of these
results with the core-cusp problem and conclude that this can be solved naturally if galaxies form through a monolithic collapse.
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1. Introduction

Unlike typical short-range interacting systems, which tend to
relax to thermodynamical equilibria through collisions, long-
range interacting systems are driven to quasi-equilibrium con-
figurations, or quasi-stationary states (QSS), by a mean-field
collisionless relaxation dynamics. These QSS are close to virial
equilibrium and their lifetime diverges with the number of parti-
cles N because of the decreasing effect of two-body encounters
(Lynden-Bell 1967; Padmanabhan 1990; Dauxois et al. 2002;
Campa et al. 2014; Levin et al. 2014; Capuzzo-Dolcetta 2019).
Comprehension of the statistical properties of the QSS requires
the understanding of how their dynamics determines the evo-
lution of the system from an out-of-equilibrium condition to a
quasi-stationary configuration.

If the long-range force at work is self-gravity, QSS are
reached in two different frames, corresponding to that of a finite
and isolated system or to that of a system “embedded” in an
expanding space, respectively, this latter representing a typical
cosmological case. In both cases, depending on the initial con-
ditions (IC), the dynamics may correspond to a top-down mono-
lithic collapse or to a bottom-up aggregation of substructures. In
this work we single out the properties of the IC by determining
which evolutionary path brings a certain configuration towards
a QSS, regardless of whether the system is finite and isolated or
embedded in an infinite expanding background.

The top-down monolithic collapse is modeled, in the sim-
plest way, as the progression of a gravitational instability out
of the linearity because such a collapse happens when the over-

density is such that the self-gravity dominates over the expand-
ing background (Peebles 1980). If the amplitude of a local over-
density is large enough then tidal effects of neighboring density
perturbations can be neglected and its evolution proceeds, essen-
tially, as that of an isolated perturbation. These are precisely
the hypotheses assumed in the nonlinear, gravitational instability
model, known as the spherical collapse model, which is analyt-
ically solvable and paradigmatic (Sahni & Coles 1995). Indeed,
the evolution of an isolated over-density in an expanding back-
ground should reproduce, in physical coordinates, that obtained
in open boundary conditions without expansion (Joyce & Sylos
Labini 2013). The collapse and stabilization of such an over-
density has been studied since the first numerical experiments
with self-gravitating systems in both isolated and embedded
cases (Henon 1964; van Albada 1982; Aarseth et al. 1988; Aguilar
& Merritt 1990; Theis & Spurzem 1999; Boily et al. 2002; Roy &
Perez 2004; Boily & Athanassoula 2006; Barnes et al. 2009; Joyce
et al. 2009; Sylos Labini 2012, 2013a; Worrakitpoonpon 2015;
Merritt&Aguilar1985;Aguilar&Merritt1990;Theis&Spurzem
1999; Sylos Labini et al. 2015; Benhaiem & Sylos Labini 2015,
2017; Benhaiem et al. 2016; Spera & Capuzzo-Dolcetta 2017).

On the other hand, a QSS can be originated from a bottom-
up hierarchical aggregation process, in which smaller substruc-
tures merge to form larger and larger systems. If the system is
infinite this process continues without ending, while if the sys-
tem is finite the aggregation eventually halts. Bottom-up struc-
ture formation is typical of standard cosmological scenarios, like
the cold dark matter (CDM) scenario because of the long-range
nature of density correlations (Blumenthal et al. 1982, 1984;
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Bond et al. 1982; Peebles 1980). In the case of cosmological
systems, if the velocity dispersion is large then the collapse
occurs for objects that are big enough to make their gravitational
potential overcoming the pressure due to random motions, which
corresponds to the so-called hot dark matter scenarios. In this
latter case, density correlations have a sharp cutoff beyond a
scale corresponding to the size of the perturbations that first
become nonlinear (Peebles 1980).

The statistical properties of the QSS depend on which of
the two evolutionary paths described above was followed by the
system in exam. In particular, in this paper we show that these
properties are essentially related to the violence, in terms of the
particle energy variation, of the process leading toward settling
the system in a QSS. This process is very quick in the case of
a top-down monolithic collapse, while slower for a hierarchical,
bottom-up, aggregation process.

The focus of our study is the investigation of QSS with
power-law density profiles and for this reason we consider cold
IC that correspond to far out-of-equilibrium configurations (i.e.,
with a virial ratio1 |Q| � 1: if |Q| ≈ 1) then the collapse is inhib-
ited and the system relaxes gently to form a compact core with
an exponentially decaying density profile (Sylos Labini 2013a;
Benetti et al. 2014).

In order to study the two dynamical mechanisms outlined
above, in this paper we consider, through numerical N-body
experiments, the evolution of simple systems corresponding to
finite spherical distributions with various initial density fluctua-
tions power spectra. Changing the amplitude of such fluctuations
allows us to pass from a top-down to a bottom-up process, and
thus to explore the full dynamics phase-space. This study aims
to develop a unified understanding of the properties of the QSS
generated by both dynamical mechanisms. We also consider the
properties of QSS formed in cosmological N-body simulations,
that is, the so-called halos. To this purpose, we consider halos
extracted from the Abacus simulations (Garrison et al. 2018,
2019), where a CDM scenario is adopted. We show that their
properties can be understood in the same theoretical framework
developed above and discuss the reason for such a case.

The paper is organized as follows. In Sect. 2 we present
the main characteristics of our N-body experiments for isolated
systems we considered and of those of the Abacus simulations
leading to cosmological halos. In Sect. 3 we discuss the case of
models of uniform and nonuniform spherical collapses that show
the transition from a bottom-up to a top-down clustering. The
properties of cosmological halos are also considered. The astro-
physical implications of our findings are discussed in Sect. 4, in
which we also draw our conclusions.

2. Models and methods

2.1. Isolated systems

We considered two types of IC in our numerical experiments
of finite systems. The first is represented by spherical, isolated,
spatially homogeneous, and cold over-densities of N particles of
mass m with zero initial velocity in which particles are randomly
distributed, that is, have Poisson density fluctuations,

δ =

√
〈∆N2〉

〈N〉2
∼ N−1/2.

1 The virial ratio q is defined in this work as Q ≡ 2K
W , where K and W

are the total kinetic and potential energy, respectively.

In order to explore the role of fluctuations we let N vary in the
range 104−106 while the total mass and size of the system are
taken as constant. We chose a normalization to an astrophysical
object; the total mass is M = 1010 M� and the initial radius is
R0 = 100 kpc, therefore the free-fall time

τff ≈
1
√

Gρ
≈ 1.5 Gyr, (1)

where ρ = 3M/(4πR3
0) is the system density. As mentioned in the

introduction, the most violent evolution occurs, of course, when
the initial velocity dispersion is zero (Q = 0); when the initial
virial ratio is in the range −0.5 < Q < 0 then the collapse is
less violent but, qualitatively, the dynamical evolution remains
the similar to that of Q = 0 (Sylos Labini 2013a). For warmer IC
(i.e., −1 < Q < −0.5) the collapse is halted by the effect of the
large velocity dispersion and the system reaches a configuration
characterized by a compact core a very diluted halo (Benetti et al.
2014). We focussed our attention on cold IC because a nontrivial
power-law density profile is found to develop for those cases
alone.

The second family of IC is still represented by isolated,
almost spherical, spatially homogeneous and cold systems that
have the same M,R0 as before, but that have initial density fluc-
tuations that are larger than Poisson fluctuations. These are gen-
erated by randomly distributing Nc points in a sphere of radius R.
Each of these points is then considered as a center of a spherical
subsystem of Np particles that are also randomly distributed in a
smaller spherical volume. We take the radius of each subsystem
to be rs = 2Λc, where Λc is the average distance between the Nc
particles (i.e., Λc = 0.55(3Nc/3πR3

0)1/3). In this way a moderate
overlap between different subclumps is allowed to smooth out
initial fluctuations when Nc is sufficiently large (i.e., Nc > 102).
The total number of particles is thus N = Nc × Np ≈ 106. A
realization can be characterized by the parameter

γ =
N
Nc
, (2)

where we chose γ ∈ [10, 105], where γ = 105 for the initially
strongly clustered case and γ = 10 for the less clustered case.
Indeed, the smaller Nc is, the larger γ is and the larger the initial
fluctuations δ ∼ N−1/2

c ∼ (γ/N)1/2 in sufficiently large scale r >
Λc. The initial velocities are taken to be zero as in the previous
case.

2.2. The code

We performed all our simulations by means of the publicly avail-
able and widely used code Gadget-2 (Springel 2005). The grav-
itational interaction is evaluated by direct summation over close
neighbors and via a multipolar expansion on a larger scale. In
this way, the number of computations is sensibly lower com-
pared to the usual N2 scaling, which is characteristic of the
direct-summation N-body algorithms. The gravitational inter-
action on the small distance scale is regularized with the so-
called gravitational softening ε. The force has its purely New-
tonian value at separations greater than ε (r ≥ ε) while it is
smoothed at shorter separations. The assumed functional form of
the regularized potential is a cubic spline interpolating between
the exact Newtonian potential at r = ε and a constant value at
r = 0, where the mutual gravitational force vanishes (the exact
expression can be found in Springel 2005). A detailed study
of the parameter space of the code Gadget-2, for simulations
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considering only Newtonian gravity, has been reported in Joyce
et al. (2009), Sylos Labini (2013a). In the simulations that we
discuss in what follows we always keep energy, momentum, and
angular momentum conservation at a level of precision better
than 1%.

The criterion for our choice of softening length ε is that this
is sufficiently small so the numerical results are independent of
it, and we interpret our results as being representative of the limit
ε = 0. A convergence study by varying ε is presented in Joyce
et al. (2009), where it was concluded that results are ε indepen-
dent as long the minimal radius of the system Rmin during the
collapse is larger than ε. We take ε = 0.05 kpc but we also con-
sidered experiments with ε = 0.005 kpc. Given that collisional
effects are negligible, occurring on much longer timescales than
the collapse characteristic timescale, this result can be under-
stood as due to the system mean-field, whose variation is the
source of the dynamics, remains Newtonian as long as Rmin � ε.

2.3. Cosmological halos

We analyzed several halo catalogs2 from the Abacus project
(Garrison et al. 2018, 2019). A high-resolution simulation was
run to produce halos with a relatively large number of particles
(i.e., N ∼ 105−106). This simulation has a total of 7003 parti-
cle in a box of side L = 200 Mpc h−1. The cosmology was a
CDM with a cosmological constant and neutrinos included in the
background expansion. With these parameters the particle mass
is M = 2× 109 M�. Halos are identified by means of the Abacus
halo finder, called the CompaSO Halo Finder3. The softening
length is fixed in proper, that is, not comoving, coordinates, and
it is chosen to be ε = 7 kpc h−14 (Plummer-equivalent, although
spline softening was used). Then halo catalogs were generated
at a few epochs.

It should be emphasized that there is a long-standing discus-
sion in the literature concerning small-scale resolution effects in
cosmological N-body that is still not clarified. Beyond issues of
numerical convergence, it is important to understand the limits
imposed on the accuracy of results by the use of a finite num-
ber of particles to represent the theoretical continuum density
field, and the associated introduction of a smoothing scale ε in
the gravitational force that imposes a lower limit on the spatial
resolution. The question of the suitable value of the ratio ε/`,
where ` is the initial inter-particle distance, has been the subject
of long-standing controversy (see, e.g., Joyce & Sylos Labini
2013; Sylos Labini 2013b; Baushev & Barkov 2018 and ref-
erences therein). The use of a softening length that is fixed in
physical coordinates rather than in comoving coordinates should
mitigate the resolution effects, but a more detailed study is
needed to proof that this is the case. Hereafter we are not going
to discuss this issue. Rather the point of view we adopt in this
work is to identify and study the physical properties of the
QSS without investigating the difficult problem of whether res-
olution effects, especially on small scales, have modified the
QSS with respect to those expected in the proper continuum
limit.

2 Data are available from https://lgarrison.github.io/
AbacusCosmos/
3 This is a hybrid algorithm described in https://abacussummit.
readthedocs.io/en/latest/compaso.html
4 The convention that a = 1 at z = 0 was used, so the proper and
comoving softening lengths are both equal to 7 kpc h−1 at z = 0.

3. Properties of the quasi-stationary states

3.1. Statistical estimators

Let us call ki, φi, and ei the kinetic, potential, and total (i.e., ei =
ki +φi) energy of the ith particle of the system of fixed mass mi =
m. Let K, W, and E = K + W the system kinetic, potential, and
total mechanical energy, and M = Nm the total system mass. In
absence of dissipative mechanisms, the system total energy E(t)
is clearly conserved along the system evolution as well as its total
linear and angular momenta. As mentioned above, by monitoring
the behavior of these quantities we have global control of the
accuracy of the numerical integration.

The quantity

∆(t) =
1
〈e(0)〉

√∑N
i=1(ei(t) − ei(0))2

N
(3)

is a measure of the global exchange of the particle energies over
the interval from zero and a generic time t, in units of the initial
average energy per particle

〈e(0)〉 =
1
N

N∑
i=1

ei(t = 0). (4)

We can consider the estimators

n(r, t) =
1

∆V

∆N(r)∑
i=1

δ(r − ri, t), (5)

k(r, t) =
1

∆N

∆N∑
i=1

ki(r, t), (6)

φ(r, t) =
1

∆N

∆N∑
i=1

φi(r, t), (7)

which are volume averages in a sampling volume ∆V containing
∆N particles of the number density profile (in Eq. (5) δ(r − ri)
is the Dirac’s delta function), and of the kinetic and potential
energy. Other useful statistical indicators are the particle energy
distribution, p(e), and the velocity distribution f (u).

The description of the QSS arising from a non-collisional
dynamics can be approached in terms of the self-consistent
Vlasov-Poisson system of equations (Binney & Tremaine 2008).
When the long-range force is gravity and specified to stellar
dynamics, the Vlasov equation turns in the Jeans equation (Jeans
1915; Binney & Tremaine 2008). In spherical symmetry, the
Jeans equilibrium implies that the function

ψ(r) = −

〈v2
r (r)〉
ρ(r)

dρ(r)
dr

+
d〈v2

r (r)〉
dr

+
2β(r)〈v2

r (r)〉
r

dφ(r)
dr

≈ 1 (8)

where, in Eq. (8), ρ(r) is the mass density, vr(r)/vt(r) the
radial/tangential velocity, and

β(r) = 1 −
〈vt(r)2〉

2〈vr(r)2〉

the anisotropy parameter such that β = 0 for isotropic orbits and
β = 1 for radial orbits.
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3.2. Power-law profiles of quasi-stationary states

Numerical simulations show that the QSS formed by the collapse
of an isolated, cold, and initally uniform spherical over-density
has a density profile of the type (van Albada 1982; Aarseth et al.
1988; Joyce et al. 2009; Sylos Labini 2012)

nvr(r) =
n0

1 +
(

r
r0

)4 , (9)

where n0, r0 are two parameters that depend on the specific case
under study.

On the other hand, in the context of cosmological simula-
tions in the CDM scenario, a universal density profile nicely fits
the dark matter structures in the highly nonlinear regime, the
so-called halos. This fitting formula is the Navarro-Frenk-White
(NFW) profile (Navarro et al. 1997, 2004; Taylor & Navarro
2001), that is,

n(r) =
n0(

r
r0

) (
1 + r

r0

)2 · (10)

The main difference of the profile in Eq. (10) stands in its cuspy
behavior and in its shallower decay at large distances (r � r0).

It should be noted that the dynamical processes underlin-
ing the formation of the profiles in Eqs. (9) and (10) are differ-
ent. Indeed, in CDM models the clustering proceeds bottom-up
through the subsequent merger of structures into larger struc-
tures. This happens because initial density fluctuation fields are
characterized by long-range correlations. The correlation func-
tion decays as ∼r−1 in the range of scales relevant for cos-
mological structure formation, and, correspondingly, the power
spectrum grows as ∼k2 (where k = 2π/r) (Peebles 1980).
Although halos are commonly considered as the building blocks
of nonlinear structures formed in a cosmological context, a full
theoretical understanding of their properties is still lacking (see,
e.g., Theis & Spurzem 1999; Binney & Knebe 2001; Diemand
et al. 2004; Levin et al. 2008).

With regard to the density profile in Eq. (9), reached as
QSS of an isolated monolithic collapse, we show at virializa-
tion, the orbital distribution is radially biased, which implies a
non-isotropic velocity distribution (Sylos Labini 2013a). In what
follows we derive a similar conclusion using the Jeans equation;
further we show that this analysis can shed light on the more
general case of the density profile in Eq. (10), which is not char-
acterized by a single exponent.

Upon the assumption of velocity isotropy many solutions for
the distribution function (DF) of given spherically symmetric
density laws are found, such as the so-called γ-model family[
(Dehnen 1993; Arca-Sedda & Capuzzo-Dolcetta 2014). Nev-
ertheless, correct modeling of non-isotropic (in velocity space)
systems, such as those coming from both isolated (Sylos Labini
2013a) and non-isolated (Hansen & Moore 2006) N-body exper-
iments, remains an open problem.

3.3. Case of a uniform and isolated spherical over-density

The collapse of an initially uniform sphere is a paradigmatic case
investigated numerically by a large number of authors (Henon
1964; van Albada 1982; Aarseth et al. 1988; Aguilar & Merritt
1990; Theis & Spurzem 1999; Boily et al. 2002; Roy & Perez
2004; Boily & Athanassoula 2006; Barnes et al. 2009; Joyce
et al. 2009; Sylos Labini 2012, 2013a; Worrakitpoonpon 2015;
Merritt & Aguilar 1985; Sylos Labini et al. 2015). The specific
key role played by density fluctuations during the collapse has

0.1 1 10 100 1000
r

0

1

2

3

4

ψ
(r

)

Fig. 1. Behavior of the function ψ(r) defined in Eq. (8) at t = 9 Gyr in the
case of the initially uniform sphere, where N = 106. At small distances
the deviation from ψ = 1 is due to sparse sampling fluctuations while
at large distances, (i.e., r > 100 kpc) the deviation is due to the out-of-
equilibrium nature of the system.

been studied by, for example, Aarseth et al. (1988) and Spera
& Capuzzo-Dolcetta (2017), while the mechanism of the parti-
cle energy change was firstly discussed by Joyce et al. (2009).
We are now going to consider the properties of the QSS, that
are formed after the virialization, in particular the differentiation
between core and halo5.

The QSS is in equilibrium and indeed Eq. (8) is satisfied (see
Fig. 1). The signal is noisy at small distances because the num-
ber of particles in shells is small (i.e., N < 102), and at larger
distances (i.e., r > 100 kpc) there is a clear deviation because
the particles have positive energy. The behavior of ψ(r) for this
system represents a useful reference for the analysis of the more
complex situations presented in what follows.

Let us now consider the core and the halo of the QSS sepa-
rately. The core is defined as the region within the length scale
r0 found by fitting the density profile with Eq. (9). Figure 2
shows the normalized particle energy distribution of the QSS
at t = 9 Gyr (i.e., at a time much longer than τff ≈ 1.5 Gyr).
In particular, the three main components of the system after the
collapse are highlighted: the first two constitute the actual QSS,
namely the core (i.e., r < r0), and the outermost bound parti-
cles that forms the halo (r > r0 and e < 0), while the remaining
component is comprised of free particles.

A gas under steady-state conditions at a temperature T
immersed in a conservative force field is characterized by a
distribution function that differs from the Maxwell-Boltzmann
(MB) distribution by the exponential factor exp(−Φ(r)/kT ),
where in this case the temperature can be defined through the
particle velocity dispersion. In this situation, the equilibrium dis-
tribution function for this case is written as

f (u, r) = n0

( m
2πkT

)3/2
exp

(
−

mv2/2 + Φ(r)
kT

)
· (11)

Consequently, the number density for a system described by this
distribution function is given by

n(r) = n0 exp(−Φ(r)/kT ). (12)

The velocity distribution function in the core (see the top
and middle panels of Fig. 3) is well approximated by a MB
distribution. We carried out the fit by defining the core in two

5 Unless specified all distances are expressed in kpc and all times in
Gyr. The velocities are measured in km s−1.
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f

Fig. 2. Particle energy distribution of the QSS at t = 9 Gyr in units of e0
(see Eq. (4)). The system after the collapse is made of three components:
two form the QSS (tail and core) and the third, where e > 0, is made of
“free” particles. The core is comprised of particles with radial distance
r < r0; the free particles have positive energy or r > rf , where rf = rf(t)
must be estimated from the numerical data.

different ways: (i) all particles with r < r0, where r0 was esti-
mated from the best fit of the density profile; and (ii) by consid-
ering an energy threshold, that is, e/e0 < −20, where e/e0 = −20
corresponds to the inner peak of p(e) and e0 is defined in Eq. (4).
In the latter case the fit is better than in the former. We inter-
pret this as a consequence of the energy threshold selecting the
particles in the inner core better than the distance cut because in
that case particles that have higher energy, and thus belonging
to the halo at a subsequent time, can be confused with the core
particles. The temperature T can be thought to be an effective
temperature related to an isotropic and scale-independent veloc-
ity dispersion, that is, it does not represent a real equilibrium
thermodynamical temperature. Figure 3 (bottom panel) shows
the almost flat density distribution in the central region where,
additionally, the velocity distribution is isotropic.

Thermal equilibrium is reached in the core driven by two-
body collisions. The order of magnitude of the timescale of col-
lisional relaxation is (Binney & Tremaine 2008) given by

τ2b ≈
N

log N
τdyn ≈

N
log N

√
ρ

ρ0
τff , (13)

where τff is the free-fall time of the system (that has initial den-
sity ρ; see Eq. (1)) and τdyn ∼ (Gρ0)−1/2 is the dynamical time
of the core with density ρ0 � ρ. In the core (i.e., for r < r0),
we find that ρ/ρ0 ∼ 10−5 and N/log(N) ∼ 102−103 (log is the
decimal logarithm) and thus τ2b ≈ τff : two-body relaxation is
efficient enough to establish thermal equilibrium in the core in
a timescale of order of τff . We note that an approximate ther-
mal equilibrium is reached in the short timescale correspond-
ing to the global collapse of the system τdyn and that on a much
longer timescale, driven by two-body encounters, eventually the
QSS that emerges from the violent relaxation process undergoes
a gravothermal collapse.

The power-law fit to the density profile is very well defined
for r ≥ 4r0. Such a region contains most of the mass of the
system and it is surrounded by a lower density region of bound
particles, still spherically symmetric distributed, in which the
density displays a power-law decay and whose velocity distribu-
tion is radially biased. Given these conditions, we aim to find the
relation between the exponent α of the power-law fit to the den-
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Fig. 3. Top panel: velocity distribution function in the core by applying
a selection i in energy and the corresponding best fit with a MB distri-
bution with v0 = 250 km s−1 in linear and (middle panel) bi-logarithmic
scale. Bottom panel: measured density profile together with the Boltz-
mann factor (see Eq. (12)).
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Fig. 4. Absolute value of the force as a function of scale in the QSS.

sity profile (i.e., ρ(r) ∼ r−α) and the anisotropy parameter β(r)
given that the Jeans equation (Eq. (8)) is satisfied. We note that,
under the hypotheses mentioned above, the gravitational poten-
tial decays, for r > r0, as φ(r) ∼ −GM0/r – thus corresponding
to a force that decays as r−2 (see Fig. 4).

In this external zone, owing to low density, the self-
interaction between particles can be neglected so that the maxi-
mum speed of a particle at distance r is the local escape velocity
(i.e., vM

r (r) =
√

GM0/r; see the top panel of Fig. 5).
By assuming that the probability distribution function (PDF)

of vr(r) is uniform in the range [−vM
r (r), vM

r (r)], a situation that
occurs if the system is virialized (see the middle panel of Fig. 5),
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we find

v2
r (r) =

∫ vM
r (r)

−vM
r (r)

p(vr)v2
r dvr =

1
3

GM0

r
· (14)

The bottom panel of Fig. 5 shows that Eq. (14) well approxi-
mates the measured behaviors. From Eqs. (8) and (14) we find
that for r > r0

1
ρ(r)

dρ(r)
dr

=
1
r

 φ0

v2
r (0)

+ 1 − 2β(r)

 =
−2(1 + β(r))

r
· (15)

If we take β(r) = 1 we find

ρ(r) ∼
ρ0

r4 , (16)

which well approximates the power-law tail observed in numer-
ical simulations (see Eq. (9)).

In these same approximations we find, for r � r0

α ≈ 2(1 + β)→ 4 for β→ 1. (17)

However, we urge caution in extrapolating Eq. (17) for any value
of β, α. In general the situation is more complicated as neither
Eq. (14) nor |φ| ∼ 1/r is satisfied when the density decays slower
than r−4 and we should consider Eq. (8) instead of Eq. (17) and
thus α is expected to have a nontrivial dependence on β and on
the whole mass distribution.

In summary, in the case of a violent relaxation of a iso-
lated, cold, spherically symmetric, uniform mass distribution we
obtained the limiting behaviors (see Fig. 6)

α→ 0 for β→ 0 r ≤ r0 (18)
α→ 2(1 + β) for β→ 1 r � r0.

3.4. Isolated spherical over-densities with non-Poissonian
fluctuations

As discussed Sect. 2 the key parameter of the second family of
IC is γ (see Eq. (2)); when γ = 10 the number of centers is only
ten times less than the number of particles, and thus fluctuations
are slightly greater than in the purely Poissonian case. On the
contrary, when γ ≈ 105 the IC consist of subclumps that have
collapse timescales shorter than that of the system as a whole.
In this situation, subclumps collapse almost independently from
each other and then the different substructures merge. A separa-
tion of spatial and temporal scales occurs only when the IC is
highly inhomogeneous with few centers The intermediate range
for γ, 10 < γ < 105, is the most interesting to study.

Figure 7 shows the behavior of the quantity ∆(t), defined by
Eq. (3), which measures the amount of energy exchanged among
system particles. A clear tread shows that the more uniform the
IC the larger is the energy variation. This trend is in line with
the Poissonian case, where the larger N is, the smaller the initial
fluctuations over the mean and the larger the variation of ∆(t)
(Joyce et al. 2009).

Consequently, the asymptotic value of the virial ratio
becomes closer to −1 as the energy exchange gets smaller, and
thus the amount of particles that have been ejected from the sys-
tem after the collapse is smaller (see Fig. 8). The reflection of
this situation can be clearly seen in the asymptotic shape of the
particle energy distribution (see Fig. 9). The more clustered the
initial distribution is, the softer the collapse and the less spread
p(e) after the collapse.
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Fig. 5. Top panel: radial component of the velocity vr as function of the
distance for particles in the tail. Middle panel: example of the veloc-
ity distribution f (vr) in a tail shell. Bottom panel: 〈v2

r (r)〉 and 〈v2
r (r)〉 as

function of the radial distance.

The density profiles of the QSS in the various simulations
are shown by Fig. 10. While there is a clear change of slope in
all cases between the inner core and the outer regions, the softer
the collapse and the less marked is such a change. That is, while
for the uniform case there is a clear change from n(r) ∼ const.
in the inner core to n(r) ∼ r−4 in the outer regions, when the
initial fluctuations are large enough (i.e., γ ≈ 102−104), then the
density profile in the inner core is closer to n(r) ∼ r−1 and in the
outer region to n(r) ∼ r−3.

The QSS formed are close to the Jeans equilibrium in all
cases. We find that ψ(r) ≈ 1 in an intermediate range of scales
between the inner regions, where shot noise fluctuations are pre-
dominant, and the outermost regions, where particles have posi-
tive energy.

To clarify the statistical and dynamical properties of the QSS
we focus on the case in which initial fluctuations are large but
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the number of subclusters is still large enough so that they have
a substantial overlap and thus there is not a separation of length
and timescales in the collapsing phases of the whole structure
and its substructures. We thus focus on the case γ = 104.
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Fig. 9. Asymptotic particle energy distribution in the two non-
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Figure 11 shows the velocity dispersions as a function of dis-
tance to the center in the asymptotic QSS. We can identify three
different regimes that correspond to the following:
(i) an inner region, in which the dispersion grows slightly

inward in an almost isotropic manner (i.e., 〈v2
t 〉 ≈ 2〈v2

r 〉),
corresponding to β(r) ≈ 0,

(ii) a tail, in which the dispersion (in all components) decreases
as a function of the radial distance and 〈v2

r 〉 > 〈v
2
t 〉,

(iii) an outermost region, in which 〈v2
t 〉 ≈ 0, that is, where highly

energetic particles move on quasi-radial orbits.
Figure 12 shows the particle energy distribution. Particles in the
core are selected as those having r < r0, where in this case r0
approximately coincides with the peak of 〈v2(r)〉 (see Fig. 11)
and the ejected particles have r > rf , where rf is estimated to
be the (time-dependent) scale at which 〈v2(r)〉 ≈ 〈v2

r (r)〉. The
core is populated by the most bound particles, the tail is made
by particles with slightly negative energy, while particles in the
outermost region have e > 0.

Figure 13 shows the velocity distribution of the particles in
the core region. As for the case of the Poissonian IC, a MB distri-
bution represents a good fit, clearly at a much lower temperature
(i.e., velocity dispersion) than for the uniform case. We selected
the inner regions in two ways: by considering a limit in radial
distance (i.e., r < r0) and a limit in energy (e < −10 e0). In
the latter case the MB distribution fit better interpolates the data.
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In the inner core, thermal equilibrium is reached driven by tow-
body collisions even in this case.

Figure 14 shows the density profile in the inner region for
γ = 104. Even in this case, the density distribution is well
described by Eq. (12). Figure 15 shows the behavior of the
anisotropy parameter β(r) (bottom panel) and that of the expo-
nent of the density profile α(r) (top panel) as functions of the
distance from the center. We note that, as in the case of the cold
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case of a very clustered IC, i.e., γ = 104; the best-fitting with Eq. (12)
is also shown.
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Fig. 15. Top panel: behavior of the exponent of the density profile α(r)
of a QSS with γ = 104. Bottom panel: behavior of the anisotropy param-
eter β(r) as a function of the distance from the center.

uniform spherical over-density, β(r)→ 0 in the core and β(r)→
1 in the outermost region; correspondingly the exponent of the
density profile α→ 0 in the core and α→ −4 in the tail. Beyond
these two limiting cases it is not possible to obtain an analytical
expression of α(β) for the general case. The actual mass distribu-
tion is more spread than in the simplest model, where ρ∼ const.
in the inner region and ρ ∼ r−4 in the outer tail. This is quan-
titatively illustrated by the behavior of the gravitational force in
models with different values of γ (see Fig. 16); at short distances
from the center the linear growth (implied by a constant matter
density) is clear only when γ < 103. For large γ, for instance
γ = 104, the force has a short range of radial growth to decay
after as r−1 in a intermediate range of distance scales.

3.5. Cosmological halos

As mentioned in Sect. 2 we also considered a set of data
extracted 6 from the Abacus simulations (Garrison et al. 2018,
2019) representing the halos typical of cosmological simula-
tions. Their shape is typically ellipsoidal and is characterized
by several substructures. Nevertheless, we treat these systems
in spherical symmetry, as the ratio between the axes is close to
one, and we compute the center as the minimum of the poten-
tial energy. A certain degree of arbitrariness in the definition of
the outermost cutoff of a halo is present. In this work, we just
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consider the outputs of the Abacus halo finder keeping in mind
that faraway low density particles with high energy may not be
included because of a selection effect.

In what follows, we report results for the three more
massive halos, H49850, H40661, and H965, which contain,
respectively, ∼(8, 4, 3) × 105 particles. We checked that when
considering smaller halos the results do not qualitatively change
but the statistical estimators are noisier.

The density profiles of two halos are shown in the top panel
of Fig. 17. The density profile slope changes from α ≈ −1 in the
inner region to α = −2 in the outer region of the system. The
NFW profile (see Eq. (10)) provides good fits of the behaviors
but in the outermost part of the tail, where there is some arbi-
trariness in the definition of the particle memberships. The radial
behavior of the average square velocity resembles that observed
in isolated spherical collapse models with non-Poissonian fluctu-
ations (see Fig. 11): indeed, 〈v2(r)〉 grows with distance reaching
a maximum at ∼r0 and then decays at large distances. The radial
and transverse velocity dispersion (not plotted) display a similar
behavior. The radial scale r0 roughly separates the two regimes.

The particle energy distribution in shown in Fig. 18; a small
fraction of the particles have positive energy in all the three
cases. This fraction clearly depends on the manner in which
the external part of the halos has been selected. Differently
from Figs. 2 and 9 in this case the energy is normalized to
e0 = Wm/M, where W is the gravitational potential energy of
the system at redshift z = 0 (i.e., not the initial), M its mass,
and m the particle mass: this is clearly much larger (in absolute
value) than the initial one. We treat each halo as being isolated;
this is clearly an approximation that works better when the halo
density contrast is larger. The overall shape of these p(e) is very
similar to those obtained in the case of isolated spherical col-
lapse models with non-Poissonian fluctuations and large γ. (see
Fig. 9).

The halos are close to an equilibrium condition as described
by the Jeans equation (see Eq. (8)), that is, ψ(r) ≈ 1 (see Fig. 19).
At small distances ψ(r) has shot-noise fluctuations while the out-
ermost region of the tail is out of equilibrium as particles have
positive energy. In the intermediate region ψ(r) presents larger
fluctuations than for the case of the uniform sphere (Fig. 1). This
is probably results from the presence of more substructures and
the influence of neighboring density perturbations because now
these over-densities are not isolated as in the previous cases.

The inner region shows the velocity distribution that is well
approximated by a MB distribution (see Fig. 20). Inner region
particles were selected by considering a radial distance cut (i.e.,
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Fig. 17. Top panel: density profile in two of most massive halos. The
two solid lines represent the best fit for H49850 and H965, respectively,
with a NFW profile. Bottom panel: velocity dispersion 〈v2(r)〉 for the
same halos together with H40661.
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Fig. 18. Particle energy distribution in the three largest Abacus halos. In
this case the energy is normalized to e0 = Wm/M, where W is the total
gravitational potential energy of the system at z = 0 (i.e., not the initial
one), M is its mass, and m the particle mass.

r < r0) and, alternatively, an energy cut; in the latter case the
MB distribution fits the data better, as for the cases of Figs. 3
and 13. If we use Eq. (12) to compute the density profile of the
inner region we obtain a fit that is worse than in the cases dis-
cussed previously (see Fig. 21) but that is still reasonably good.
On the other hand, the fit is particularly rough at large radial dis-
tances. This is probably because the halo is not isolated in these
simulations system.

Figure 7 shows the behavior of the absolute value of the grav-
itational force in the three examined massive halos. This value is
approximately constant at small radii and then decays as ∼r−1
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Fig. 21. Density profile of the most massive Abacus halo (i.e., H49850).
The best-fitting halo with Eq. (12) is also shown.

at large distances, which is a behavior consistent with the den-
sity profile shown in Fig. 17. The large fluctuations in the force
profile, especially for the case of the halo H49850, are due to
substructures. Finally, the anisotropy parameter (bottom panel
of Fig. 22) is β ≈ 0 in the inner zone (where n(r) ∼ r−1), while
β ≈ 0.5 in the outer regions of the system (where n(r) ∼ r−2).
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Fig. 22. Top panel: derivative of the density profile for the three largest
Abacus halos. Bottom panel: anisotropy parameter.

3.6. Discussion

In high-resolution simulations of CDM halos (Taylor & Navarro
2001) the coarse-grained phase-space density decays as

ρ(r)
〈v2

r (r)〉3/2
∼

1
rµ
, (19)

where µ ≈ 1.875. We compare the results of our experiment with
the above behavior, starting from the violent collapse case of a
uniform sphere. In this case, combining Eqs. (9) and (14) we
find µ = 5/2 in the tail, while in the core µ ' 0 (see top panel of
Fig. 23). The QSS established after the collapse of spherical dis-
tributions with non-Poissonian fluctuations show a behavior that
depends on the parameter γ: when γ is small, and thus the initial
fluctuations are close to Poissonian, then the slope µ is similar to
that of the Poissonian case. When instead the distribution is ini-
tially clustered (i.e., γ = 103−104), then the slope is µ ≈ 1.875
(see the middle panel of Fig. 23).

The different behavior observed for the isolated and clus-
tered simulations as a function of γ is again good evidence that,
by changing such a parameter, the mean-field and collisionless
dynamics that drive system to reach a QSS passes from being
close to a top-down monolithic collapse to a bottom-up hierar-
chical aggregation process. Finally, in the cosmological halos of
the Abacus simulations of the previous subsection we find µ ≈
1.875, thus very similar to the isolated case with γ = 103−104

(see the bottom panel of Fig. 23).
For the case of cosmological halos, there have been attempts

to determine the slope of the density profile α for spherically
symmetric and isotropic systems that are in Jeans equilibrium
and that exhibit power-law, coarse-grained, phase-space density
(Taylor & Navarro 2001). It was formally shown that the allowed
density slopes α lie in the range [1, 3] (Hansen 2004). It was then
noticed that in halos extracted from cosmological simulations
there is a linear relationship between the density slope and the
anisotropy parameter (Hansen & Moore 2006; Hansen & Stadel
2006; Hansen et al. 2006); this relationship, however, has a large
scattering, where for α → 3 for β → 0.5 and α → 1 for β → 0.
These trends are similar to what we obtain in examining the Aba-
cus halos, but not for case in which the more violent relaxation
occurring when a monolithic collapse takes place as in this lat-
ter case α → 0 for β → 0. This situation thus shows that the
relation between α and β is determined by the dynamical mech-
anism at work rather being universal as argued by Hansen &
Moore (2006).
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Fig. 23. Coarse-grained phase-space density in the uniform case (top
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tom panel).

From an analytical point of view, by using the hypotheses
that both the coarse-grained phase-space density and the density
profile being a power law in distance, allowing for the possibil-
ity that the velocity distribution is not isotropic and the empirical
linear relation between α and β, it is possible to solve the Jeans
equations analytically and extract the relevant statistical infor-
mation of the system (Dehnen & McLaughlin 2005). However, a
purely power-law, coarse-grained, phase-space density approxi-
mates well the observed behavior only for the case of a bottom-
up dynamics but not for the top-down case.

4. Conclusions

Two competing processes work to determine the dynamical evo-
lution of finite initially spherical and cold self-gravitating sys-
tems. On one hand they undergo a global (top-down) collapse
driven by their own rapidly varying gravitational field, and, on
the other hand, internal density fluctuations lead to formation
of local substructures of growing size through a (bottom-up)

aggregation process. Therefore, in general, there is a sort of com-
petition between a top-down and a bottom-up mean-field colli-
sionless dynamics. Anyway, in both cases collisional effects are
negligible because of their much longer timescale with respect
to that giving rise to QSS.

The properties of the QSS formed depend on the evolution-
ary paths they have followed, and thus on which of the above-
mentioned two mechanisms prevails during the relaxation from
the out-of-equilibrium IC to the quasi-stationary configuration.
In particular, the dynamics is different depending on the type
of correlation properties between initial density perturbations.
When the amplitude of initial fluctuations is small, a global
collapse takes place and the system relaxes into a QSS in a
very short time: the signature of this process is a wide energy
exchange between particles. On the other hand, in case of large
initial fluctuations, the bottom-up aggregation process becomes
predominant over the global collapse and, so, clustering at small
scales builds up larger and larger substructures halting the global
collapse. That is, the fragmentation into large and growing sub-
structures inhibits the occurrence of a large variation of the over-
all system size and, consequently, the particle energy distribution
only moderately changes.

We considered a family of simple IC representing isolated,
spherical, and cold distributions of particles with different spec-
tra of initial density fluctuations. By varying the initial ampli-
tude of initial density perturbations, we find that it is possible to
select the mechanism through which the out-of-equilibrium IC
are driven to form a QSS.

As we said above, for the case of a top-down (monolithic)
collapse, which occurs whenever the amplitude of initial density
fluctuations are small, the particle energy distribution changes
significantly in a rapid interval of time centered around the time
of maximum system contraction (essentially the free-fall time):
such variation is given by the interplay of the finite size of the
system with the growth of density perturbations during the col-
lapse. In this situation, the QSS are characterized by a com-
pact core, which contains a significant fraction of the system
mass and shows an almost isotropic velocity distribution. The
core is surrounded by a low-density region in which orbits are
very elongated, that is, where the velocity anisotropy parame-
ter β tends to 1. Based on an assumption of the validity of the
Jeans equation, we were able to show that the inner region of a
system emerging by a violent top-down collapse is characterized
by an almost flat density profile. However, the outer power-law
decay of density is ρ(r) ∼ r−4, a behavior that is observed in the
numerical experiments of initially cold and uniform systems.

On the other hand, when initial perturbations are of large
enough amplitude then a QSS is reached through a bottom-up,
hierarchical, aggregation process in which small substructures
merge to form larger and larger substructures. This process is
accelerated when initial density correlations are long range. That
is, at given initial fluctuations amplitude, the smaller the power-
law index, n ∈ (−3, 0], of the density fluctuation power spectrum,
P(k) ∼ kn, the faster the evolution of the bottom-up mechanism
of structure formation. In this latter situation, the variation of the
particle energy distribution is smaller than in the former and, for
this reason, the orbits in the outermost regions of the system are
less radially elongated. The exponent of the density profile is 0 <
α ≤ 4 and the anisotropy parameter is 0 ≤ β < 1. When initial
density perturbations are large enough the core-halo structure is
not formed. In this case the profile is better fitted by a NFW
behavior.

We also demonstrated that the halos formed in cosmologi-
cal N-body simulations in the standard CDM scenario, although
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they are not isolated but rather embedded in the tidal field of
neighboring structures, show properties similar to QSS obtained
in the simple isolated and spherical cases considered in this
work, in the case of large enough initial fluctuation amplitudes.
In CDM-like cosmologies, density fluctuations are long-range
correlated (i.e., P(k) ∼ k−2) and, as said above, this situation
implies the development of a bottom-up aggregation process
rather than a top-down scenario through the collapse of large
over-densities. We can thus conclude that isolated, spherical, and
dynamically cold systems with different choices of initial den-
sity perturbations amplitude represent a useful tool to study the
formation of QSS through a mean-field collisionless dynamics,
both when the clustering proceeds in a bottom-up and in top-
down way. The fact that systems emerging from cosmological
environment have similar properties to those emerging from iso-
lated IC a imply that, when fluctuations are highly nonlinear,
the evolution of a cosmological halo is well approximated by
neglecting tidal interactions with neighboring structures.

To conclude, we now consider a long-standing observational
puzzle that can be related to these results. This is the core-
cusp problem, that is, the well-known difference between the
observed inner density profiles of dark matter in low-mass galax-
ies and the density profiles obtained in cosmological N-body
simulations. Observations seem to indicate an approximately
constant dark matter density in the inner parts of galaxies (the
core), while CDM halos profiles show instead a ∼r−1 power-law
cusp at short distances (Navarro et al. 1997). This fact, known as
the “core/cusp controversy”, stands as one of the unsolved prob-
lems in small-scale cosmology (see for a recent review De Blok
2010 and references therein). Our results suggest that a possi-
ble solution to this puzzle could be found in the violent origin
of the galaxies through something more similar to a monolithic
collapse than a bottom-up aggregation process. Benhaiem et al.
(2017, 2019), Sylos Labini et al. (2020) provide further discus-
sions of this specific topic. Concerning the latter point, we note
that the case for galaxy formation through a monolithic collapse
has also been very recently advocated by Peebles (2020).
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