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Abstract: LoRaWAN (Long Range Wide Area Network) is a Low-Power Wide Area Networks
(LPWAN) technology with very rapid uptake during the previous years, developed by the LoRa
(Long Range) Alliance as an open standard operating over the unlicensed band. Current LoRaWAN
architecture foresees specific techniques for bootstrapping end-to-end encryption during network
initialization. In particular, this work focuses on the Over-The-Air Activation (OTAA) method, which
uses two keys (Network key (NwkKey) and Application key (AppKey)) that are hard-coded into the
device and do not change throughout the entire lifetime of the deployment. The inability to refresh
these two keys is as a weak point in terms of the overall security of the network especially when
considering deployments that are expected to operate for at least 10–15 years. In this paper, the
security issues of OTAA are presented in detail highlighting the vulnerabilities against the specific
type of attacks. A new scheme for network activation is proposed that builds upon the current
LoRaWAN architecture in a way that maintains backwards compatibility while resolving certain
vulnerabilities. Under the new mechanism, the devices periodically negotiate new keys securely
based on elliptic-curve cryptography. The security properties of the proposed mechanism are ana-
lyzed against a specific type of attacks. The analysis indicates that the new secure rejoin mechanism
guarantees (i) computational key secrecy, (ii) decisional key secrecy, and (iii) key independence,
forward and backward, for both root keys thus properly addressing the considered security vul-
nerabilities of LoRaWAN. Moreover, the method is implemented in software using the RIOT-OS, a
hardware-independent operating system that supports many different architectures for 8 bit, 16 bit,
32 bit and 64 bit processors. The resulting software is evaluated on the FIT IoT-Lab real-world
experimentation facility under a diverse set of ARM Cortex-M* devices targeting a broad range
of IoT applications, ranging from advanced wearable devices to interactive entertainment devices,
home automation and industrial cyber-physical systems. The experiments indicate that the overall
overhead incurred in terms of energy and time by the proposed rejoin mechanism is acceptable given
the low frequency of execution and the improvements to the overall security of the LoRaWAN1.1
OTAA method.

Keywords: network activation; key agreement; low-power long range networks; internet of things;
network security; protocol design; performance evaluation; RIOT OS; real-world experimentation

1. Introduction

The need to deliver scalable and long-term networks of devices that integrate sensing,
computation and wireless communication in small, low-power devices that can be seam-
lessly embedded in complex physical indoor and outdoor environments has given rise
to sub-GHz wireless communication [1,2]. The approach of trading-off data transmission
rate while keeping power consumption at low levels has created the so-called Low-Power
Wide Area Networks (LPWANs) [3]. In contrast to more high-frequency communication,
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low-frequency signals are not as attenuated by thick walls or multipath propagation as
high-frequency signals contributing in this way to robustness and reliability of the signal [1].
Overall, LPWANs are considered promising candidates to deliver urban-scale coverage in
the context of smart city services [4–6] or deployments over rural environments, since they
allow high energy autonomy of the connected devices, low device and deployment costs, high
coverage capabilities and support large number of devices [7,8].

LPWAN technologies allow embedded devices to wireless communicate directly to
gateways (also called a collector or concentrator) over distances in the range of several
kilometres. Although this single-hop connectivity simplifies communication, it exposes
message exchanges to malicious nodes that could be potentially located at long distances.
Recent studies concentrate on the security vulnerabilities in LPWANs [9,10] providing
alternative solutions for the used cryptographic primitives [11,12], e.g., the authors in [13]
focus on application server vulnerabilities and in [14] it is introduced an alternative key
management scheme. An experimental evaluation of the performance of Long-Range
Low-Power Wireless Communication is carried out in [15] that highlights the limitations of
the new technology. In [16] a hierarchical structure is proposed that combines LPWANs
with short-range IEEE 802.15.4 networks to reinforce network security [16]. The possibility
of introducing a Median Server to reinforce the trustworthiness of the network is proposed
in [17].

This paper looks into LoRaWAN (Long Range Wide Area Network), an LPWAN
technology developed by the LoRa (Long Range) Alliance as an open standard [18] that
can operate over private and/or public infrastructures spreading all over the world [19].
In particular, the focus is on the way nodes join the network under the Over-The-Air
Activation (OTAA) method of LoRaWAN, and how the key agreement protocol between the
end-devices and the Network/Join server can be improved in terms of security. Under the
latest LoRaWAN specifications v1.1 (LoRaWAN1.1), OTAA uses two root keys, the Network
key (NwkKey) and the Application key (AppKey), to compute the session keys. While OTAA
allows refreshing the session keys, it is not possible to refresh the aforementioned root keys.
These two keys are hard-coded into the device firmware and remain the same for the entire
duration of the network deployment. This is a vulnerability of OTAA taking into account
that a device may be expected to be operational for at least ten years. The paper presents a
series of security issues of OTAA and exposes specific vulnerabilities connected to passive
Man In the Middle and Replay attacks.

The solution proposed in this paper builds on top of the existing version of OTAA with-
out modifying the architecture of the LoRaWAN1.1 specification thus ensuring backwards
compatibility. In particular, the proposed solution uses the message structure defined in
LoRaWAN1.1 specification thus devices already deployed will continue to operate without
any disruption. It is, therefore, possible to deploy devices with a new version of OTAA that
implements the mechanism presented here without disrupting the operation of devices
deployed with the standard version of OTAA. The new mechanism introduces a new
type of Rejoin-Request and Join-Accept message that allow refreshing the root keys using
Elliptic-Curve Cryptography (ECC) in a way that guarantees computational key secrecy, key
secrecy, key independence and key freshness [20–22]. Elliptic-Curve Cryptography was first in
1986 [23] and since then it has widespread exposure and acceptance in a wide variety of
applications [24]. Recently, ECC-based security solutions have been introduced also in the
case of low end IoT and embedded devices with constrained execution environments [25].
Remark that the solution proposed here is using an asymmetric encryption scheme based
on ECC where a pair of public key and a private key are used to encrypt and decrypt mes-
sages when communicating. On the other hand, the current version of the LoRaWAN1.1
specification is using a symmetric encryption schema based on AES where only one key is
used to encrypt and decrypt information.

The proposed mechanism is implemented using the RIOT Operating System [26],
a multi-purpose operating system for IoT deployments, based on well-established crypto-
libraries for elliptic-curve cyrptography [27]. The resulting firmware was evaluated using
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the real-world experimentation facility of FIT IoT-LAB testbed [28]. The experimental
evaluation was based on a heterogeneous set of microcontrollers (MCU) based on the ARM
Cortex-M architecture group, ranging from low power M0/M0+ version up to M4/M4F
more powerful versions. The Arm Cortex-M is group of a 32-bit RISC ARM processor cores
optimized for low-cost and energy-efficient integrated circuits. These cores have been em-
bedded in tens of billions of consumer devices targeting a broad range of IoT applications,
ranging from ultra-low power wearable devices to interactive entertainment devices, home
automation and industrial cyber-physical systems. The experimental evaluation indicates
that the time and energy efficiency of the proposed mechanism and the overall overhead
incurred is acceptable given the low frequency of execution and the improvements to the
overall security of the LoRaWAN1.1 OTAA method.

The rest of the paper is organized as follows. In Section 2 the previous and related
work is presented. A detailed presentation of the Over-The-Air Activation (OTAA) under
the latest LoRaWAN specifications v1.1 (LoRaWAN1.1) is presented in Section 3 while in
Section 4 the weak points and possible vulnerabilities of the activation method, referring
to different attack models, are discussed. The new Secure Rejoin Mechanism is presented
in Section 5. The analysis of the security properties of the new mechanism is discussed in
Section 6 and in Section 7 the performance of the method is evaluated in terms of time and
energy efficiency by carrying out a series of real-world experiments. Finally, in Section 8
the conclusions and future work direction are presented.

2. Previous and Related Work

The security of LPWANs is an open issue, and several works analyze possible vul-
nerabilities. An important aspect of security is the heterogeneity of the end-devices that
can be connected to LPWANs, magnifying security threads with respect that to the current
internet and making it crucial to set high standards of security, privacy, and trust [29].
A detailed analysis of LoRaWAN security, ranging from the hazard of physical access to
the end-device to the possibility to perform an ACK spoofing attack or an Application-
Specific attack is presented in [30]. The analysis indicates how through eavesdropping one
can compromise the encryption method and manage to decrypt part or even the entire
cypher-text by employing frame counter resets when the session keys remain the same.
The analysis underlines the importance of having an efficient and complete key refresh
mechanism in every Key Agreement Protocol.

Regarding LoRaWAN1.1 specifically, some potential vulnerabilities are presented
in [31]. They focus on the possibility of performing replay attacks relaying on jamming
techniques, to lead to a Denial Of Service. They also point to a vulnerability to the non-
secured beacons in the case of LoRaWAN class B devices to de-synchronize the receive
windows and the possibility of network analysis. In [10] the combination of a jamming
attack to a replay attack is proposed. Additionally, they focus on a replay attack in the case
of a badly configured application server, i.e., when the frame counter is disabled. In [17] is
proposed a new architecture for LoRaWAN networks, to reinforce security and to provide
an end-to-end secure communication scheme. The authors point as a possible solution a
Median Server, a new entity in the architecture that has the role of a registration authority
for both end-devices and gateways. To fulfil this purpose a Central Authority is introduced
to ensure that only authenticated devices interact with the system and that they connect
only with authenticated gateways.

The method presented here does not modify the LoRaWAN1.1. specification but
rather relies on Elliptic-Curve Cryptography (ECC) [32,33] to allow the end-device and the
Join/Network server to agree on the new pair of root keys. ECC allows having the same
level of security of RSA using smaller parameters [34] for example an elliptic curve over a
283-bit field gives the same level of security as a 3072-bit RSA modulus or Diffie-Hellman
prime. As is shown in [35,36], ECC is a better alternative concerning RSA for resource-
constrained devices used in IoT context, both in terms of computational power and energy
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efficiency. In particular, in [35] it is shown how using ECC add a small run-time overhead
that is worth the gain in terms of security.

In terms of designing key agreement protocols for resource-constrained devices,
the authors in [37] perform an attack exploiting a vulnerability in the IEEE 802.15.4 ZigBee
OTAA and demonstrate how to update the firmware of smart lights with a malicious code
that spreads over other smart bulbs. This shows the importance of a secure activation
mechanism, both in the network initialization phase and in the phase of updating the
firmware or the keying material. A lightweight bootstrapping protocol for authentication
and establishing credentials for 4G/5G and Narrow-Band IoT (NB-IoT) networks is pre-
sented in [38]. The proposal finds LO-CoAP-EAP as a feasible and efficient solution for
NB-IoT and 5G networks. For wireless sensor networks, in [20] a Group Key Establishment
protocol is proposed that does not require many-to-many messages. In [39] an agent-based
key establishment protocol is proposed that does not rely on a global ordering of devices
or the construction and maintenance of a distributed structure that reflects the topology
of the network. These protocols are using the Elliptic-Curve Diffie-Hellman protocol to
generate a shared secret between the devices. Elliptic Curve Cryptography is also used
in [40] that propose two group key agreement protocols for enabling a secure multi-casting
in Wireless Sensor Networks (WSNs). Both protocols permit using asymmetric encryption
at a low cost in terms of energy consumption and computational power.

Regarding LoRaWAN OTAA, in [41] the authors propose some alternatives to the
actual key management in LoRaWAN. They explore the possibility of an approach based
respectively on Internet Key Exchange version 2 (IKEv2), Datagram Transport Layer
Security (DTLS) and Ephemeral Diffie-Hellman Over COSE (EDHOC), analysing the pros
and cons of each approach, but they do not formalize an alternative key management
scheme for LoRaWAN using one of the aforementioned protocols. In [42] it is proposed
a root key distribution scheme for LoRaWAN OTAA. The authors make use of Rabbit,
a high-efficient synchronous stream cypher, to generate a new pair of root key. After the
generation of the new keys, the end device will trigger a new Join-Request with the Join
Server. The authors in [43] propose a new key management schema for LoRaWAN based
on Hierarchical Deterministic Wallet using the BIP32 algorithm [44].

In contrast to the aforementioned solutions, the method presented here allows re-
freshing the root keys without any modification of the actual architecture of LoRaWAN1.1.
It provides an efficient way to generate a new pair of root keys by exchanging only two
messages. The analysis performed indicates that certain vulnerabilities of LoRaWAN1.1
can be improved without incurring significant overhead in the overall performance of the
network in terms of time and energy efficiency.

3. Over-The-Air Device Activation in LoRaWAN1.1

LoRa is a physical communication layer, using the proprietary modulation technique
LoRa Modulation, a derivative of the Chirp Spread Spectrum (CSS), which operates in
the Sub-GHz bands and is developed and distributed by Semtech [45]. LoRaWAN allows
end-nodes to communicate independently and asynchronously, similarly to an ALOHA
protocol with bit rates varying from 100 bps to around 5.5 kbps. A LoRa concentrator can
receive data on the same channel from multiple end-devices at the same time if the bit rates
are different.

In LoRaWAN the encryption of the payload is by default enabled in every transmission.
The data frame of an end-node has a 32-bit identifier, a 7-bit network identifier and a 25-bit
network address and the maximum payload is 250 bytes. Since end-devices are not assigned
to a specific concentrator, the data frames do not include any concentrator identifier. In this
way, anyone can receive the encrypted data packets. To prevent replaying packets, a frame
counter is used both for upstream and downstream messages which will block transmission
from being sent more than once.

Two different 128-bit AES keys are used for a two-step message chain for both up-
stream and downstream message exchanges. In the first step, the Application Session Key
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(AppSKey) is used to encrypt the data frame between the end device and the application
server. In the second step, a Network Session Key (NwkSKey) is used to verify the authentic-
ity of the nodes. The data frame exchanged between the end-device and the Join/Network
server is encrypted with the NwkSKey.

This work focuses on the Over-The-Air Activation—OTAA method that permits the
end-device and the Join/Network Server to agree upon the session and the integrity keys
using a handshake process [45]. OTAA makes use of some hard-coded keys that are used
to determine the needed keys.

3.1. Prerequisites for Device Activation Using OTAA

The OTAA method assumes that each device is uniquely identified by a 64 bit network-
wide identifier. The so-called DevEUI must be stored into the device before the network
activation. It can be public, and it is a recommended practice to make it available on the
device label.

Similarly, a cloud-based application that communicates with end-devices is also
uniquely identified by a 64 bit network-wide identifier. The so-called JoinEUI must also be
stored in the device before network activation.

In addition to the above identifiers that are encoded in the end-device and defined in
the Join/Network Server, both parties agree on a common set of keys before the network
initialization phase. These are the Device Root Keys, the NwkKey and the AppKey, two AES-
128 root keys. These keys are the ones used to derive the session and integrity keys. They
never change during the life-cycle of the end-device, so securing distribution, storage
and usage of them, both in the end-device and in the Join/Network Server, is crucial
for providing end-to-end network security and guaranteeing the confidentiality of data.
Finally, based on the NwkKey, the end-device is using two additional keys:

JSIntKey used to compute the Message integrity code (MIC) for the Rejoin-Request
message and the Join-Accept message as follows:

JSIntKey = aes128_encrypt(NwkKey, 0x06|DevEUI|pad16)

JSEncKey used to encrypt the Join-Accept message triggered by a Rejoin-Request.

JSEncKey = aes/encrypt(NwkKey, 0x05|DevEUI|pad16)

3.2. Initiating Device Activation Using the Join-Request Message

The device activation method is initiated with the end-device transmiting an up-stream
Join-Request message. The message contains the JoinEUI, the DevEUI, and a DevNonce that is
a counter, starting at 0, incremented at each Join-Request message. The counter is introduced
as a countermeasure for the replay attack since it cannot be used twice for a given JoinEUI.
The Join-Request message is NOT encrypted. The format of the Join-Request message is depicted
in Table 1. The MIC for the message is computed as follows:

cmac = aes128_cmac(NwkKey, MHDR|JoinEUI|DevEUI|DevNonce)

MIC = cmac[0...3]

Table 1. Join-Request packet format.

JoinEUI DevEUI DevNonce

8 Bytes 8 Bytes 2 Bytes

3.3. Device Activation Using the Join-Accept Message

The Join/Network server upon accepting the Join-Request message, verifies the iden-
tifiers and decides if the end-device should be accepted. If the end-device is accepted,
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the Join/Network server computes the DevAddr, a 32-bit identifier for the end-device within
the LoRaWAN network. The Join/Network server sends a down-stream Join-Accept message
to the device contains the DevAddr, a network identifier Home_NetID and the operational
parameters of the network (DLSettings, RxDelay, CFList). The message also includes
the JoinNonce, a device-specific counter that never repeats itself, used by the end-device
to derive the session and integrity keys. It is incremented at each Join-Request message.
The format of the Join-Accept message is depicted in Table 2.

Table 2. Join-Accept packet format.

JoinNonce Home_NetID DevAddr DLSettings RxDelay CFList

3 Bytes 3 Bytes 4 Bytes 1 Byte 1 Byte 16 Bytes
(optional)

The end-device after receiving the down-stream Join-Accept message it computes the
following session keys (for a graphical representation see Figure 1):

Forwarding Network Session Integrity Key—KNwkSIntKey—used by the device to calcu-
late the MIC for all up-link messages.

FNwkSIntKey = aes128_encrypt(NwkKey, 0x01|JoinNonce|JoinEUI|DevNonce|pad16)

Serving Network Session Integrity Key—SNwkSIntKey—used by the end-device to check
the MIC of all down-link messages.

SNwkSIntKey = aes128_encrypt(NwkKey, 0x03|JoinNonce|JoinEUI|DevNonce|pad16)

Network Session Encryption Key—NwkSEncKey—used to encrypt and decrypt both up-
link and down-link MAC commands transmitted as payload on port 0 or in the FOpt
field.

NwkSEncKey = aes128_encrypt(NwkKey, 0x04|JoinNonce|JoinEUI|DevNonce|pad16)

Application Session Key—AppSKey—used by both the device and the Application Server
to encrypt and decrypt the payload field of application-specific messages.

AppSKey = aes128encrypt(AppKey, 0x02|JoinNonce|JoinEUI|DevNonce|pad16)

Figure 1. LoRaWAN 1.1 Key Derivation scheme [45].
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3.4. Refress Session Keys Using the Rejoin-Request Message

Throughout the lifetime of an end-device, the session keys computed during the
device activation can be periodically refreshed. In such a case, the end-device sends an
upstream Rejoin-Request message to the Join/Network server. The Rejoin-Request message is
NOT encrypted. Three types of Rejoin-Request message exist:

Rejoin-Request type 0—used to reset a device context including all four session keys. It
contains the NetId, the DevEUI and the RJcount0 counter that is incremented at every
transmission of Rejoin-Request message of type 0. If the RJcount0 reaches 216 = 1 the
device shall stop transmitting Rejoin-Request of the given types, and restart device
activation method using a Join-Request message. The format of the Rejoin-Request
message of type 0 is depicted in Table 3.

Rejoin-Request type 1—is similar to to type 0 but transmitted on top of normal application
traffic without disconnecting the end-device. It contains the JoinEUI, the DevEUI and
the RJcount1 counter that is incremented at every transmission of a Rejoin-Request
message of type 1. The RJcount1 counter shall never warp around, due to the lifecycle
of the device for a given JoinEUI value. The format of the Rejoin-Request message of
type 1 is depicted in Table 4.

Rejoin-Request type 2—is to update the 32 bit identifier of the end-device within the
LoRaWAN network devAddr while keeping the same radio parameters. The message
format is the same with the Rejoin-Request message of type 0 apart from the RJcount0
that is replaced by RJcount2 (see Table 3). The RJcount2 is incremented at every
Rejoin-Request message of type 2 and when it reaches 216 = 1 the device shall restart
device activation method using a Join-Request message.

Table 3. Rejoin-Request message of type 0 or type 2.

Rejoin Type = 0 or 2 NetID DevEUI RJcount0

1 Byte 3 Bytes 8 Bytes 2 Byte

Table 4. Rejoin-Request type 1 message.

Rejoin Type = 1 JoinEUI DevEUI RJcount1

1 Byte 8 Bytes 8 Bytes 2 Byte

For all the three types of the Rejoin-Request message the Join/Network Server responds
by transmitting a down-link Join-Accept message to modify the device’s network identity.
The RJcount0 or the RJcount1 replaces the DevNonce in the key derivation.

4. Security Issues & Vulnerabilities of LoRaWAN1.1 Over-The-Air-Activation

In LoRaWAN1.1, the keys used for securing communication are stored by the end-
devices, the Network Server and the Application Server. If one of the Network/Application
servers is compromised the attacker could view and modify all the communication with
the corresponding end-devices. This paper looks into the Over-The-Air activation of end
devices, hence the proposed mechanism does not look into how the keys are stored within
the Network/Application Servers. Moreover, no mechanism is proposed to reinforce the
overall security of these central elements of the architecture. Instead, the proposed method
looks into the way the end-device and the Join/Application server can generate a new
pair of keys in a secure way that overcomes certain types of attacks while maintaining
specific properties.

When examining the possible vulnerabilities of LoRaWAN1.1 and in particular the
Over-The-Air-Activation method one needs to take into consideration the goals of the
attacker [9]. Since this paper looks into the key agreement process between the end-device
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and the Join/Application Server, it is assumed that the goal of a potential attacker is to
collect any information that will be useful when trying to guess the session and integrity
keys used to encrypt the communication between the end-devices and the application
server. An attacker that succeeds in guessing the session keys can decrypt the messages,
impersonate the end device and in general carry out various active or passive attacks for the
particular period where the device remains active. An attacker that succeeds in guessing
the root keys can decrypt all the messages and in general impersonate the end-device until
the end of its lifetime.

Since message authentication code is produced using the NwkSkey which is confirmed
by the Network server, the Network server needs to be a trusted element to perform this
task properly. However, both the Network Server and the intermediate concentrator (or an
attacker on the intermediate network) are in a position to modify the encrypted payload
without the Application server being able to notice the change. An adversary possessing
the session key can generate a LoRaWAN message that will pass the signature checking
procedure at the network server.

Another consideration related to certain application scenaria is connected to the fact
that end-device may be placed in unprotected locations and are expected to operate for
a very long time. In such deployments, it may be impractical and/or costly to increase
the physical security level of the end devices for the complete duration of operation of
the network. It is, therefore, possible that an adversary may manage to extract or acquire
access to a small number of end devices to retrieve the secret keys. Although this paper
does not look into how to reinforce the physical security of the device, it is, however,
important to guarantee that the theft of keys from one end-device does not compromise
other end-devices in the network.

The encryption mechanism used in LoRaWAN1.1 relies on AES operating in counter
mode (CTR). In this mode of operation, end-devices generate ciphertexts which are the
output of the XOR procedure on the string that contains a counter, the AppSkey and the
plaintext (for a more detailed description of AES encryption in counter mode see [46]).
This mode of operation is selected to reduce energy consumption and minimize the overall
message encryption delays. As a result, encryptions are vulnerable to chosen ciphertext
attack since if an attacker changes the payload data she can figure out which bit position
in the encrypted payload corresponds to the same bit position in the plaintext (see [47]).
On top of this, since authentication control is handled by the network server, the application
server cannot verify the authenticity of the messages.

Assuming that an attacker manages to collect the root keys hard-coded into the end-
device during fabrication, LoRaWAN1.1 does not provide a mechanism to change these
keys during the entire life-cycle of the device. Therefore, the only way to refresh these keys
is to manually change them, both in the Network/Application Server and into the end
device. In such a case, the end-devices need to be reached physically, a process that may be
expensive in application scenaria where end-devices are placed in remote or locations that
are hard to reach.

A third element that needs to be examined regarding the effective security measures
used in existing LoRaWAN deployments has to do with the protection against the tam-
pering of the concentrators. In current deployments, it is fairly easy to take over some
concentrators participating in the LPWAN and monitor all traffic passing through this
point of the deployment. An attacker can record, replay and potentially manipulate the
traffic passing through the concentrator. In the solution proposed in this paper, concen-
trators do not participate in the establishment of the security keys and the mechanisms
introduced assume that only the end-device and the Join/Application servers can be
considered trustworthy.

Looking into the Over-The-Air-Activation phase of the network, an attacker perform-
ing a simple passive Man In The Middle Attack that eavesdrops on messages exchanged by
an end device can read any encrypted contents. Such an attacker can collect the following
information that may be useful for an attacker to compromise the session and the integrity
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keys are the NwkKey, AppKey, JoinNonce, JoinEUI, and the DevNonce. In particular, when
an end-device transmit a Join-Request message since it is not encrypted the attacker collects
the JoinEUI and the DevNonce. This information is always available to the attacker even
in the case of a Rejoin-Request message since also this message is unencrypted. From a
Rejoin-Request of type 0 or 2, an attacker can extract the DevEUI, and the RJcount0. From a
Rejoin-Request message of type 2 instead, the attacker can collect the JoinEUI and the
RJcount1. The RJcount0 or the RJcount1 take the place of the DevNonce during a rejoin
request. So an attacker knows the DevNonce and the JoinEUI at each time of the life-cycle of
the device. Remark also that the JoinNonce is a device-specific counter incremented at each
Join-Request message, so it is easy for the attacker to compute the value of this information
by counting the number of Join-Request the end-device send to the Network Server.

Another potential vulnerability of the Over-The-Air-Activation phase of the network
is related to potential replay attack as pointed out in [31]. Using a selective RF jamming
technique an attacker can potentially jam and capture the first Join-Request message
transmitted by the end device. Given that the jamming attack will block the message from
arriving at the Network server, no Join Accept message will be generated. After a fixed
timeout period the device will be forced to re-transmit a second Join-Request message.
Assuming that the attacker will succeed in jamming the second Join-Request message as
well, it will now transmit the first jammed Join-Request message to the Network server.
In such a scenario, the Network Server will respond to the first Join-Request with a Join
Accept message. At this point and on, the Network Server, the Join Server and the end-
device are de-synchronized.

5. A New Secure Rejoin Mechanism

In this section, the details of the proposed Secure Rejoin mechanism are presented
along with technical details that support and motivate the choices made. Given the
architecture of LoRaWAN1.1 and the fact that the protocol is already rolled out and used in
operational environments, the proposed mechanisms are backwards compatible. This is
achieved by maintaining the architectural elements of LoRaWAN and thus the solution
proposed here is backwards compatible with the three types of Rejoin-Request described
in Section 3.4. Moreover, the new mechanism follows the philosophy of LoRaWAN1.1 and
requires the exchange of only two messages, a new type of Rejoin-Request message and a
respective new type of Join-Accept message, to refresh all the keying material, including the
root keys.

The proposed mechanism refreshes the LoRaWAN root keys using the Elliptic-Curve
Diffie-Hellman protocol (ECDH) [48]. The ECDH is is similar to the classical Diffie-Hellman
Key Exchange protocol but it uses Elliptic-Curve Cryptography (ECC) and specifically ECC
point Multiplication instead of modular exponentiation [49].

The ECC curves are implemented over two number fields, the prime field, and the
binary field. The binary field curve has worse performance and energy efficiency when exe-
cuted on general-purpose processors [36], but outperforms the prime field curve if dedicated
hardware is used. Since the end-devices are heterogeneous and in most cases are cheap
boards with no particular hardware capabilities, it is recommended to use a prime field
curve to implement the new type of Rejoin. In this way, good time and energy efficiency can
for all devices. For a detailed evaluation of the performance of the proposed mechanism
for a heterogeneous set of end-devices, see Section 7. In particular, the secp256k1 and the
secp256r1 curves as the most suitable for low-power end-devices since smaller curves do
not guarantee always better performances [36] while the key size of these two curves fit
the purpose of the proposal.

The main difference between the two candidate curves is that the secp258k1 curve is
generated over a prime field associated with a Koblitz curve, on the other hand, the secp256r1
curve is generated over random domain parameters. Koblitz curves are generally less secure
but in the 256-bit curve, the impact is minimal [50]. The secp256k1 curve is generally faster
than the other curve if the implementation is optimized, in particular for the signature
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generation and verification, and that is one of the motives the curve is used by Bitcoin [51].
On the other hand, the elapsed time difference for public key and secret generation in the
two types of curves is very low [52]. Since the differences in terms of time and energy
efficiency are negligible, the secp256r1 curve is selected as it offers a higher level of security.

Based on the above choice of ECC curve, the ECDH protocol works as follows:

1. The end-device (A) and Join/Network server (B) have to agree on a common Elliptic-
Curve Group G of order n, and on a Primitive Element P ∈ G of order n. The secp256r1
curve defines these parameters.

2. A selects an integer a ∈ [2, n− 1] and it computes Q = [a]P. Where Q is the public
key of A, and a is the private key.

3. B selects an integer b ∈ [2, n− 1] and computes it R = [b]P. Where R is the public
key of B, and b the private key.

4. The two parties exchange their public keys.
5. A computes the secret SA = [a]R = [a][b]P
6. B computes the secret SB = [b]Q = [b][a]P
7. The two parties have a common secret SA = [a]R = [a][b]P = [b]Q = SB

5.1. Initiate the Root Key Refresh Mechanism Using a Rejoin-Request Message of Type 3

The process starts with the end-device generating a new pair of public/private ECC
keys using the secpr256r1 curve. A new type of Rejoin-Request message is used that permits
refreshing all the key materials at once. The Rejoin-Request message of type 3 uses one byte
for the RejoinType, which is set to 3; the NetID; the DevEUI; the RJcount3, which behaves
in the same way of the RJcount0 and RJcount1, and it will substitute the DevNonce for the
subsequent session key generation; and the previously generated compressed public key of
the device. Following the LoRaWAN1.1 OTAA specification, the Rejoin-Request message is
NOT encrypted. The contents of the new packet type are depicted in Table 5. The Message
Integrity Code of the Rejoin-Request message of type 3 is computed as follows:

cmac = aes128_cmac(SNwkSIntKey,

MHDR|RejoinType|NetID|DevEUI|RJcount3|DeviceCompressedPublicKey)

MIC = cmac[0...3]

Notice that the RJcount3 is a counter that is incremented at each Rejoin-Request of
type 3, it shall never wrap around, due to the lifecycle of the device for a given NwkKey
and AppKey value. The RJcount3 prevents replay attacks for the given type of the Rejoin-
Request since the Join/Network Server will discard all the Rejoin-Request messages with
a counter value less or equal to the last valid Rejoin-Request message of type 3 received.
The RJcount3 restarts from 0 after a successful type 3 Rejoin, so it has to be unique for a
given value of NwkKey and AppKey.

Table 5. Rejoin-Request type 3 packet format.

Rejoin Type = 3 NetID DevEUI RJcount3 End-Device Public
Compressed Key

1 Byte 3 Bytes 8 Bytes 2 Bytes 33 Bytes

5.2. Complete the Root Key Refresh Mechanism Using Join-Accept Message of Type 1

As soon as the Join/Network Server receives a valid Rejoin-Request message of type
3, it will generate a new pair of public/private ECC keys using the secp256r1 curve.
The Join/Network server will now compute a secret using the public key of the end-device
and its private key using the ECDH protocol. It will transmit a down-stream Join-Accept
message of type 1 with the following fields: the JoinNonce, the Home_NetID, the DevAddr,
the DLSetting, the RxDelay, and the compressed public key of the Join/Network Server.
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The contents of the new packet type are depicted in Table 6. The MIC of the Join-Accept
message of type 1 is computed as follows:

cmac = aes128_cmac(JSIntKey,

RejoinRequestType|JoinEUI|RJcount3|MDHR|JoinNonce|NetiD|DevAddr|

DLSetting|RxDelay|ServerCompressedPublicKey)

MIC = cmac[0...3]

The Join-Accept message of type 1 will be encrypted as follows:

aes128_decrypt(JSEncKey, JoinNonce|NetID|DevAddr|DLSettings|RxDelay|

ServerCompressedPublicKey|MIC|pad16)

where pad16 is a pad of 3 bytes to make the Join-Accept message 48 bytes long, multiple of 16.
It is used the AES decrypt operation in ECB mode to encrypt the message, the same as the
actual Join-Accept message.

Table 6. Join-Accept type 1 message.

JoinNonce Home_NetId DevAddr DLSettings RxDelay Server Public
Compressed Key

3 Bytes 3 Bytes 4 Bytes 1 Byte 1 Byte 33 Bytes

The end-device, after receiving the Join-Accept message of type 1, can also compute the
same secret using its private key and the public key of the Network Server. Since both the
end-device and the Network Server have a common 256-bit secret, the 128 most significant
bits will be used as new NwkKey, meanwhile the 128 less significant bits as new AppKey.
The derivation of the new root keys is depicted in Figure 2.

ECDH Shared secret

256 Bits

New NwkKey

128 Bits

New AppKey

128 Bits

0 127 128 255

Figure 2. New Root Keys derivation.

After the generation of the new root keys both the end-device and the Network Server
can discard the private/public keys previously generated, and they can recompute all key-
ing material: JSIntKey, JSEncKey, FNwkSIntKey, SNwkSIntKey, NewSEncKey and AppSKey.

In case the end device faces a restart failure, the device needs to reissue a new Join-
Request as specified in the actual specification of LoRaWAN1.1, but the two parties will
use the newly computed root keys to generate the session and integrity keys.

6. Security Analysis

The most important requirement for LPWANs is the confidentiality and integrity of
the data transmitting by IoT devices. Therefore, key distribution is critical for the protec-
tion of LPWAN networks and the prevention of adversaries from attacking the network
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and potentially compromising the privacy and integrity of the data. The capabilities and
the constraints of IoT devices’ hardware influence the type of security mechanisms and
protocols that can be hosted on the device’s hardware. Moreover, the long-range wireless
networking topology makes it susceptible to link attacks ranging from passive eavesdrop-
ping to active interference. For these reasons, the choice of a key establishment protocol
for the creation of a shared, secret key must be done very carefully and should exhibit the
following critical properties:

• Key authentication—assuring only intended IoT devices can access a key,
• Integrity—ensuring that there is no unauthorized data modification and
• Confidentiality—by providing security measures to avoid eavesdropping.

Given that IoT devices are designed to operate for very long periods, in many appli-
cation scenaria such as Smart Metering, for periods longer than ten years, it is important
to refresh the keys periodically while at the same time guaranteeing the above proper-
ties. It is, therefore, important to also consider Key Freshness as a minimum requirement
for LPWANs [20–22]. It is, therefore, important to also consider the following crypto-
graphic properties:

• Computational key secrecy—it must be computationally infeasible for any passive
adversary to discover any key.

• Decisional key secrecy—there must be no information leaked other than public key in-
formation.

• Key independence—a passive adversary that knows a subset of keys must not discover
any other information of the remaining keys. This property decomposes into:

– Forward Secrecy—a passive adversary that knows a subset of keys must not
discover any subsequent keys.

– Backward secrecy—a passive adversary that knows a subset of keys must not
discover any preceding keys.

LoRaWAN1.1 current specification respects these requirements and properties with re-
spect to the integrity and session keys (FNwkSIntKey, SNwkSIntKey, NwkSEncKey, AppSKey),
but it does not guarantee key freshness in the case of the root keys (NwkKey, AppKey) and
consequently for the JSIntKey and JSEncKey keys.

The secure rejoin mechanism presented here guarantees key freshness for all these
keys within the aforementioned cryptographic properties. Consider that an adversary
that has acquired access to a public key, and thanks to the Elliptic Curve Cryptography,
it is computationally infeasible to retrieve the private keys of both parties [53] or the
shared secret computed via ECDH. So computational key secrecy and decisional key secrecy
are guaranteed.

Regarding key independence, consider that the new root keys are completely indepen-
dent of the previous and the subsequent ones since the computation of new root keys is
based on the execution of the Elliptic-curve Diffie-Hellman protocol. Moreover, previous
pairs of private/public ECC keys are discarded and a new pair is generated from scratch at
each Rejoin-Request, both from the server and the end device.

In respect to the vulnerabilities listed in Section 4 and in particular, the Man In The
Middle attack, remark that a malicious node can eavesdrop on the Rejoin-Request message
since it is not encrypted. So the following information are plainly accessible: the NetID,
the DevEUI, the RJcount3 (i.e., the DevNonce), and the end-device public key. However,
the attacker cannot obtain any information from the Join-Accept type 1 message, since it
is encrypted. Nevertheless, it can derive the JoinNonce as it was described in Section 4.
Based on the information collected, the attacker will still be unable to guess the value of
the new NwkKey and AppKey keys or the new session keys. Hence, the attacker will not be
able to compute the value of the ECDH shared secret knowing only the public key of the
end device.

As for the Replay Attack, in the Rejoin-Request type 3 method, the RJcount3 is a
counter that is incremented each time the Rejoin-Request type 3 is invoked. The Network
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Server will discard any Rejoin-Request of type 3 messages received with a RJcount3 value
smaller or equal to the value of the last Rejoin-Request type 3 valid message, for a given
value of the NwkKey and AppKey. When the Rejoin of type 3 concludes, the RJcount3
value will restart from zero. In this way, the Replay Attack can be countered. Therefore,
the value of the RJcount3 counter substitutes the DevNonce in the session keys generation
but more importantly it is used to prevent Replay Attacks. Remark however that the
proposed mechanism is still vulnerable to a Replay Attack combined with a selective RF
jamming attack.

7. Experimental Evaluation

The proposed mechanism is evaluated regarding its suitability for devices with re-
stricted resources in terms of time and energy efficiency. The evaluation is based on a
series of experiments carried out using real-world devices provided by the FIT IoT-LAB
testbed [28]. In total, six different microcontrollers are selected that are based on the ARM
Cortex-M family, microcontroller cores designed for a wide range of embedded applications:

ARM Cortex-M0—one microcontroller, the nRF51422 by Nordic Semiconductor is imple-
menting the ARMv6-M architecture providing a 16 MHz 32-bit RISC core, with up
to 256 KB of Flash memory, and up to 32 KB of RAM. It also includes an 128-bit
AES/ECB/CCM/AAR co-processor.

ARM Cortex-M0+—two microcontrollers, the STM32L072CZ by ST Microelectronics and
the ATSAMR21G18A by Atmel operate a 32 MHz 32-bit RISC core and aim to be much
more compatible with 8 bit and 16 bit processors, with reduced energy consumption
of up to 30% compared to ARM Cortex-M0 cores. The Cortex-M0+ has complete
instruction set compatibility with the Cortex-M0 thus allowing the use of the same
compiler and debug tools. The STM32L072CZ provides 192 KB of Flash program
memory and 20 KB of RAM, while the ATSAMR21G18A provides 256 KB of Flash
program memory and 32 KB of RAM. Both microcontrollers offer hardware support
for 128-big AES operations.

ARM Cortex-M3—one microcontroller, the STM32F103REY by ST Microelectronics is the
ARMv7-M architecture providing a 32-bit RISC core operating at a 72 MHz frequency,
equipped with 64 KB of RAM and 256 KB of ROM. This microcontroller offers a
performance of 1.25 DMIPS/MHz with a 3-stage pipeline, multiple 32-bit busses,
clock speeds up to 200 MHz and very efficient debug options. The STM32F103REY does
not provide any hardware support either for AES operations or for Pseudo-Random
Number Generation.

ARM Cortex-M4—one microcontrollers, the nRF52832 by Nordic Semiconductor is based on
the ARM Cortex-M4 design that builds on top of Cortex-M3 by providing DSP instruc-
tions. It operates a 32-bit RISK core at 64 MHz and provides 512 KB of Flash memory
and 64 KB of RAM and is equipped with a 128-bit AES/ECB/CCM/AAR co-processor.

ARM Cortex-M4F—one microcontrollers, the nRF52840 by Nordic Semiconductor is based
on the ARM Cortex-M4 design also a Floating-Point Unit. It operates a 32-bit RISK
core at 64 MHz and provides 1 MB of Flash memory and 256 KB of RAM. More-
over, the 128-bit AES/ECB/CCM/AAR co-processor it is also equipped with an ARM
TrustZone CryptoCell 310 security subsystem that provides a Pseudorandom number
generator (PRNG) as well as support for Elliptic curve cryptography (ECC) and in
particular, the SEC 2 recommended curve secp256r1 using pseudorandom parameters,
up to 521 bits.

These six microcontrollers are targeting a broad range of IoT applications, ranging
from advanced wearable devices to interactive entertainment devices, home automation
and industrial cyber-physical systems. For example, the STM32F103REY is used within
the Apple TV 4 remote control. The selected set allows evaluating the performance over
different combinations of resource constraints in terms of computational power (e.g.,
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16 MHz of the nRF51422), limited memory (e.g., 20 KB of RAM by the STM32L072CZ),
the availability of hardware support for 128-bits AES or the availability of hardware support
for Pseudo-Random Number Generation and the secp256r1 ECC curve. The specifications
of the selected microcontrollers are summarized in Table 7.

Table 7. Overview of microcontroller specifications used in the experimental evaluation.

Microcontroller Architecture Frequency RAM Hardware Support
AES PRNG ECC

nRF51422 Cortex-M0 16 MHz 20 KB YES NO NO
STM32L072CZ Cortex-M0+ 32 MHz 20 KB YES NO NO

ATSAMR21G18A Cortex-M0+ 32 MHz 32 KB YES NO NO
STM32F103REY Cortex-M3 72 MHz 64 KB NO NO NO

nRF52832 Cortex-M4 64 MHz 64 KB YES NO NO
nRF52840 Cortex-M4F 64 MHz 256 KB YES YES YES

In software, the proposed mechanism is implemented using the RIOT Operating
System [26] since it supports many different architectures for 8 bit, 16 bit, 32 bit and 64 bit
processors, provides a simple process manager with support for multi-threading, provides
a generic network stack and also power management [54]. RIOT OS incorporates the
micro-ecc library [27] that implement ECDH and ECDSA for 8-bit, 32-bit, and 64-bit
processors. The implementation of the 128-bits AES encryption was based on the crypto
module provided by RIOT OS [55]. These cryptographic function can be used within
security protocols at the system level by providing seamless crypto support across software
and hardware components [56].

A comprehensive resource analysis for widely used cryptographic primitives across
different off-the-shelf IoT platforms, and quantify the performance impact of crypto-
hardware is carried out in [57]. Interestingly, the results reported in [57] indicate that
RIOT, a multi-purpose operating system for IoT deployments, integrating crypto-libraries,
achieves a time and energy efficiency very close to having the code running directly on the
microcontrollers, as reported in [58,59].

7.1. Time Efficiency

The first part of the experimental evaluation looks into the running times of the
operations used by the proposed mechanism to generate the public and private keys using
ECC and compressing/decompressing the keys. The running times of each operation for
each different microcontroller are presented in Table 8. For comparison with AES, the table
also includes the running time for the encryption of a single 128-bits AES block of plain
text. The measurements are conducted using the RIOT OS timer module that uses the
hardware RTC running at 32,768 Hz and provides a precision down to 30 µs. To obtain
good average results, the operations were repeated at least 100 times.

Overall, the experimental results indicate the feasibility of the proposed secure rejoin
mechanism in resource constraint devices. The computation of the EC-DH secret and
the generation of the public and private keys are an order of magnitude slower than the
other operations considered. These operations are implemented within the micro-ecc
library and are based on multiplications of random numbers with a point on the elliptic
curve that requires operations on 64 bytes long variables. The running time is therefore
directly connected to the hardware design of the microcontroller in terms of memory access
times. Nevertheless, even for the case of the nRF51422 microcontroller that operates a
16 MHz ARM Cortex-M0 core, the required time averages out to 2.09 s. For the case of
ARM Cortex-M3 and M4 microcontrollers considered in this study, this time is significantly
reduced to about 350 ms.

For the case of the nRF52840 microcontroller, one would expect that the availability
of the external crypto-chip would improve the running times. The experimental results
indicate that the running times are almost identical to those acquired from the nRF52832
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microcontroller where no such external board is available. Once again this can be partially
justified by the hardware design and the way the peripheral crypto module is interfaced
with the microcontroller in terms of data access and control overhead. Remark that similar
observations are reported in [57].

Taking into account that the proposed Rejoin mechanism needs to be executed at
low frequencies, the overhead in terms of the running time is acceptable concerning the
enhancement of the overall security of the LoRaWAN1.1 Over-The-Air Activation method.

Table 8. Time consumption of each ECC operations and the encryption of a single 128-bits AES block (in microseconds).

Operation nRF51422 STM32L072CZ ATSAMR21G18A STM32F103REY nRF52832 nRF52840

Compute ECC Pub/Priv Keys 1,045,543 523,432 387,376 184,052 161,234 161,279
Compress ECC Public Key 43 20 22 12 10 10

Decompress ECC Public Key 79,216 39,639 29,298 13,881 11,778 11,754
Compute EC-DH Secret 1,045,496 523,353 387,330 184,035 161,253 161,245
128-bit AES encryption 216 116 97 48 41 41

7.2. Energy Efficiency

Given the above running times for performing the necessary cryptography opera-
tions, the evaluation looks into the performance of the mechanism in terms of energy
consumption. The evaluation of the energy consumption of each microcontroller is based
on the Consumption Monitor of the FIT IoT-LAB testbed [28] that is available only for the
ATSAMR21G18A and the STM32F103REY microcontrollers. This is because the consumption
monitor is based on an external board that is attached to the microcontroller and measures
the consumption through an INA226 hardware component of Texas Instruments. The de-
vice monitors both a shunt voltage drop and bus supply voltage using a programmable
calibration value, conversion times and averaging. The conversion times (CT) for these
measurements can be selected from as fast as 140 µs to as long as 8.244 ms. The conversion
time settings, along with the programmable averaging mode (AV), allow the INA226 to
be configured to optimize the available timing requirements in a given application. In the
experiments reported here, the consumption monitor is configured to convert a filtered
signal every 204 µs with the averaging mode set to 10 to have a periodic measure of 4.08 ms.
Remark that a greater number of averages enables the INA226 to be more effective in
reducing the noise component of the measurement.

The energy efficiency of the ECC operations used by the proposed secure rejoin
mechanism are listed in Table 9. The table also includes the energy consumption when
the microcontroller is in an idle state and also the energy consumption for the encryption
of a single 128-bits AES block of plain text. The experiments indicate that the overall
consumption of energy for the crypto mechanisms is comparable to the consumption during
the idle state or for performing encryption using the AES module. The ATSAMR21G18A chip
that is based on the ARM Cortex-M0+ design achieves higher energy efficiency than the
STM32F103REY chip that follows the ARM Cortex-M3 design.

Like in the case of time efficiency, in the case of energy efficiency it seems that the
overall overhead incurred by the rejoin mechanism is acceptable given the low frequency of
execution and the improvements to the overall security of the LoRaWAN1.1 OTAA method.
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Table 9. Power consumption of each ECC operations, the encryption of a single 128-bits AES block
and during the idle state (in Watt).

Operation ATSAMR21G18A STM32F103REY

Idle State 0.056 W 0.5200 W
Compute ECC Public/Private Keys 0.130 W 0.542 W

Compress ECC Public Key 0.058 W 0.5210 W
Decompress ECC Public Key 0.129 W 0.5237 W

Compute EC-DH Secret 0.129 W 0.5420 W
128-bit AES encryption 0.068 W 0.5230 W

8. Conclusions and Future Work

Emerging Low-Power Wide Area Network technologies can deliver scalable and
long-term IoT deployments within urban environments or provide long-range coverage
in rural environments. Such large-scale deployments require very careful consideration
of all possible technical and security aspects as well as the establishment of users’ trust.
In this paper, the network initialization mechanism of LoRaWAN is examined, an LPWAN
technology developed by the LoRa Alliance as an open standard that can operate over
private and/or public infrastructures spreading all over the world.

Under the latest LoRaWAN specifications v1.1 (LoRaWAN1.1), the network initial-
ization relies on two root keys, the NwkKey and the AppKey, which are hardcoded into the
device firmware and remain the same for the entire duration of the network deployment.
The security of the current specifications are evaluated against various active or passive
attacks for the particular period where the device remains active. An attacker that manages
to guess these keys can significantly impact the confidentiality of the messages and integrity
of the network for the entire duration of the deployment. Taking into consideration that
LPWANs are expected to operate for at least ten years, where devices need to be operational
in remote locations, this is an important vulnerability.

In this paper, a secure method to refresh the root keys is proposed that can be executed
at any time throughout the operation of an LPWAN. The method is using Elliptic Curve
Cryptography to enable the secure exchange of the new root keys. The method proposed is
taking advantage of the asymmetric encryption with an affordable overhead in terms of
computational power, energy and time consuming, fitting particularly well in resource-
constrained LoRaWAN devices. Moreover, the proposed method does not require any
changes to the core architecture of LoRaWAN1.1 as it builds upon the existing Rejoin-
Request message format. In this way backwards compatibility is guaranteed. The length of
both the new type of messages introduced, even if they are bigger than the other messages
used by the existing mechanism, they still fit within the maximum payload size defined
by LoRaWAN1.1 that range from 51 to 222 bytes depending on the spreading factor,
the frequencies and the bandwidth [60].

The security properties of the method are examined against a specific type of attacks.
The analysis indicates that the new secure rejoin mechanism guarantees (i) computational
key secrecy, (ii) decisional key secrecy, and (iii) key independence, both forward and
backward secrecy, for both root keys. In respect to the Man in the Middle and Replay
attacks considered, a malicious node that manages to eavesdrop on a Rejoin-Request
message will still not be able to guess the value of the new root keys or the new session
keys. Remark however that the proposed mechanism is still vulnerable to a Replay Attack
combined with a selective RF jamming attack.

Apart from the analysis of the security properties of the proposed method, the method
is implemented in software using the RIOT OS. The resulting software is evaluated re-
garding its suitability for devices with restricted resources in terms of time and energy
efficiency. The evaluation is based on a series of experiments carried out using real-world
devices provided by the FIT IoT-LAB testbed. In total, six different microcontrollers are
selected that are based on the ARM Cortex-M family, over different combinations of re-
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source constraints in terms of computational power, limited memory, the availability of
hardware support for 128-bits AES or the availability of hardware support for Pseudo-
Random Number Generation and the secp256r1 ECC curve. These six microcontrollers are
targeting a broad range of IoT applications, ranging from advanced wearable devices to
interactive entertainment devices, home automation and industrial cyber-physical systems.
The results indicate that the agreement of the new root keys requires a very short time and
incurs a very limited energy consumption over a heterogeneous set of microcontrollers.
The experiments indicate that the overall overhead incurred in terms of energy and time
by the proposed rejoin mechanism is acceptable given the low frequency of execution and
the improvements to the overall security of the LoRaWAN1.1 OTAA method.

As future work, it is important to continue the security analysis of LoRaWAN1.1 in
terms of replay attacks that are combined with a selective RF jamming technique and also
look into other types of attacks that may compromise network security.
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56. Gündoğan, C.; Amsüss, C.; Schmidt, T.C.; Wählisch, M. IoT content object security with OSCORE and NDN: A first experimental

comparison. In Proceedings of the 2020 IFIP Networking Conference (Networking), Paris, France, 22–26 June 2020; pp. 19–27.
57. Kietzmann, P.; Boeckmann, L.; Lanzieri, L.; Schmidt, T.C.; Wählisch, M. A Performance Study of Crypto-Hardware in the

Low-end IoT. In Proceedings of the International Conference on Embedded Wireless Systems and Networks (EWSN), New York,
NY, USA, 17–19 February 2021.

58. Gura, N.; Patel, A.; Wander, A.; Eberle, H.; Shantz, S.C. Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In
Proceedings of the International Workshop on Cryptographic Hardware and Embedded Systems, Cambridge, MA, USA, 11–13
August 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 119–132.

59. Zhou, L.; Su, C.; Hu, Z.; Lee, S.; Seo, H. Lightweight implementations of NIST P-256 and SM2 ECC on 8-bit resource-constraint
embedded device. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–13. [CrossRef]

60. Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the limits of LoRaWAN.
IEEE Commun. Mag. 2017, 55, 34–40. [CrossRef]

https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange
https://cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange
http://dx.doi.org/10.11591/ijeecs.v13.i3.pp910-918
http://dx.doi.org/10.2307/1971363
https://api.riot-os.org/group__sys__crypto.html
http://dx.doi.org/10.1145/3236010
http://dx.doi.org/10.1109/MCOM.2017.1600613

	Introduction
	Previous and Related Work
	Over-The-Air Device Activation in LoRaWAN1.1
	Prerequisites for Device Activation Using OTAA
	Initiating Device Activation Using the Join-Request Message
	Device Activation Using the Join-Accept Message
	Refress Session Keys Using the Rejoin-Request Message

	Security Issues & Vulnerabilities of LoRaWAN1.1 Over-The-Air-Activation
	A New Secure Rejoin Mechanism
	Initiate the Root Key Refresh Mechanism Using a Rejoin-Request Message of Type 3
	Complete the Root Key Refresh Mechanism Using Join-Accept Message of Type 1

	Security Analysis
	Experimental Evaluation
	Time Efficiency
	Energy Efficiency

	Conclusions and Future Work
	References

