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Abstract

The most frequently used approach for protein structure prediction is currently homology

modeling. The 3D model building phase of this methodology is critical for obtaining an accu-

rate and biologically useful prediction. The most widely employed tool to perform this task is

MODELLER. This program implements the “modeling by satisfaction of spatial restraints”

strategy and its core algorithm has not been altered significantly since the early 1990s. In

this work, we have explored the idea of modifying MODELLER with two effective, yet com-

putationally light strategies to improve its 3D modeling performance. Firstly, we have investi-

gated how the level of accuracy in the estimation of structural variability between a target

protein and its templates in the form of σ values profoundly influences 3D modeling. We

show that the σ values produced by MODELLER are on average weakly correlated to the

true level of structural divergence between target-template pairs and that increasing this cor-

relation greatly improves the program’s predictions, especially in multiple-template model-

ing. Secondly, we have inquired into how the incorporation of statistical potential terms

(such as the DOPE potential) in the MODELLER’s objective function impacts positively 3D

modeling quality by providing a small but consistent improvement in metrics such as GDT-

HA and lDDT and a large increase in stereochemical quality. Python modules to harness

this second strategy are freely available at https://github.com/pymodproject/altmod. In sum-

mary, we show that there is a large room for improving MODELLER in terms of 3D modeling

quality and we propose strategies that could be pursued in order to further increase its

performance.

Author summary

Proteins are fundamental biological molecules that carry out countless activities in living

beings. Since the function of proteins is dictated by their three-dimensional atomic
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structures, acquiring structural details of proteins provides deep insights into their func-

tion. Currently, the most frequently used computational approach for protein structure

prediction is template-based modeling. In this approach, a target protein is modeled using

the experimentally-derived structural information of a template protein assumed to have

a similar structure to the target. MODELLER is the most frequently used program for

template-based 3D model building. Despite its success, its predictions are not always accu-

rate enough to be useful in Biomedical Research. Here, we show that it is possible to

greatly increase the performance of MODELLER by modifying two aspects of its algo-

rithm. First, we demonstrate that providing the program with accurate estimations of

local target-template structural divergence greatly increases the quality of its predictions.

Additionally, we show that modifying MODELLER’s scoring function with statistical

potential energetic terms also helps to improve modeling quality. This work will be useful

in future research, since it reports practical strategies to improve the performance of this

core tool in Structural Bioinformatics.

Introduction

In silico protein structure prediction constitutes an invaluable tool in Biomedical Research,

since it allows to obtain structural information on a large number of proteins currently lacking

an experimentally-determined 3D structure [1]. Template-based modeling (TBM) is the most

frequently employed prediction strategy. In the past years it has been considered as the most

accurate one [2], but recently it has been shown that template-free strategies have reached

comparable levels of performance with protein targets that lack good templates [3] (for exam-

ple, with members of several membrane protein families [4]). Despite this fact, TBM methods,

thanks to their speed, flexibility and growing template libraries [5], currently remain the

instrument of choice for many researchers.

Homology modeling (HM) is a fast and reliable TBM method in which a target protein is

modeled by using as a structural template an homologous protein. HM predictions usually

consist of three phases. In the first, the sequence of the target is used to search for suitable tem-

plates in the PDB [6–7]. In the second, a sequence alignment between the target and templates

is built with the goal of inferring the equivalences between their residues [8]. In the final, the

information of the templates is used to build a 3D atomic model of the target.

The overall accuracy of HM has remarkably increased in the last 25 years. While a major fac-

tor for this advancement has been the increase of the size of sequence and structural databases

[5], it has been shown that progress in HM algorithms has also played a key role [9]. These

improvements have consisted mainly in advances in template searching and alignment building

algorithms, while only minor advances have been witnessed in the 3D model building step [10].

However, recent breakthroughs in protein structure refinement methods [11–12] envisage a

large room for improvement in HM which could originate from advances in 3D model building.

MODELLER [13] is the most frequently used program for 3D model building in HM. One

of the main reasons of its success has been its accurate [14], yet fast algorithm. In MODELLER,

the information contained in an input target-template alignment is used to generate a series of

homology-derived spatial restraints (HDSRs), acting on the atoms of the 3D protein model.

Sigma (“σ”) values of homology-derived distance restraints (HDDRs) determine the amount

of conformational freedom which the model is allowed to have with respect to its templates.

MODELLER uses a statistical “histogram-based” strategy to estimate σ values [15]. These

restraints are incorporated into an objective function which also includes physical energetic
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terms from CHARMM22 [16]. A fast, but effective optimization algorithm based on a combi-

nation of conjugate gradients (CG) and molecular dynamics with simulated annealing

(MDSA) is then used to identify a model conformation that satisfies as much as possible the

HDSRs, while retaining stereochemical realism.

The core MODELLER algorithm was developed in the early 1990s and it was essentially left

unchanged over the years. Despite its importance, there have been relatively few attempts to

improve it.

In 2015, Meier and Söding designed a novel probabilistic framework for building HDDRs

[10], whose aim was to help MODELLER tolerate alignment errors and to combine the infor-

mation from multiple templates in a statistically rigorous way. This system increased 3D

modeling quality, especially for multiple-template modeling. However, since it is integrated in

the HHsuite project [17] it can be employed only when the first two phases of HM are carried

out by programs of the HHsuite package.

Researchers from Lee’s group developed a modified version of MODELLER which they

have been using in CASP experiments [18–20]. First, they replaced the MODELLER optimiza-

tion algorithm with the more thorough conformational space annealing (CSA) method [21].

Secondly, they pioneered a new strategy to assign σ values to HDDRs relying on machine

learning [22]. Finally, they included a series of additional terms to the MODELLER objective

function, such as terms for the DFIRE [23] and DFA [24] knowledge-based potentials, for

hydrogen bond formation [25] and to enforce in models predictions of structural properties.

In terms of 3D modeling quality, this system outperformed the original MODELLER [20].

Unfortunately, the separated contribution of several of these modifications is not reported and

much of this system remains in-house (only the CSA algorithm is publicly available).

Although these seminal studies have shown that the core MODELLER algorithm has room

for improvement, most of its users employ its original version, probably because existing modifi-

cations either depend on additional packages to install, or are computationally too expensive

(e.g., the CSA algorithm alone was reported to increase computational times by a factor of ~130).

Since MODELLER is a core tool in Structural Bioinformatics, it is of paramount importance to

investigate in detail the inner working of its algorithm and to develop it further. Here, we have

explored two computationally light strategies to improve it in terms of 3D modeling quality.

Particular attention has been dedicated in understanding how the level of accuracy in the

estimation of structural variability between the target and templates expressed as σ values influ-

ences 3D modeling. Although in this work we have not modified the MODELLER algorithm

for σ values assignment, we propose strategies that could be likely pursued in the next-future in

order to greatly increase the performance of the program. Additionally, we have investigated

how the incorporation of statistical potential terms, such as DOPE [26], in the program’s objec-

tive function is able to impact positively 3D modeling and under certain conditions (for exam-

ple in single-template modeling) it can be coupled synergistically to the previous strategy.

To rigorously validate these approaches, we have benchmarked them using protein targets

from a diverse set of high-resolution structures from the PDB and we quantified the individual

impact on 3D modeling of each modification. This information will be useful in future

research, since it shows in which areas there is still room for improvement and in which areas

it might be difficult to advance further.

Materials and methods

Outline of MODELLER’s homology-derived distance restraints

The MODELLER approach relies on the generation of HDSRs for interatomic distances and

dihedral angles [15]. Each HDSR is treated as a probability density function (pdf). HDSRs
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acting on interatomic distances (that is, HDDRs) have a predominant role in determining the

3D structure of a model. The way they are built is summarized here.

For a couple of atoms i and j of the model, the program finds in the template the equivalent

atoms k and l which have a distance in space of dt. The distance dm between i and j is assumed

to be normally distributed around dt with a standard deviation σ and the pdf restraining it is:

f dmð Þ ¼
1

s
ffiffiffiffiffiffi
2p
p e

� ðdm � dt Þ2

2s2 : ð1Þ

In MODELLER pdfs are converted in objective function terms as follows:

obj dmð Þ ¼ � ln f ðdmÞð Þ ¼ � ln
1

s
ffiffiffiffiffiffi
2p
p e

� ðdm � dt Þ2

2s2

� �

¼
ðdm � dtÞ

2

2s2
� ln

1

s
ffiffiffiffiffiffi
2p
p

� �

; ð2Þ

therefore Gaussian HDDRs correspond to harmonic potential terms. Since HDDRs are con-

sidered to be independent, their objective function terms are summed. HDDRs are built for

four groups of atoms: the Cα-Cα, backbone NO, side chain-main chain (SCMC) and side

chain-side chain (SCSC) groups (see S2 Table). MODELLER generates its σ values (hereinafter

named σMOD values) through an histogram-based approach [15].

MODELLER allows to take advantage of multiple templates, a strategy that (when templates

are chosen adequately) usually outperforms single-template modeling [27]. When employing

U templates to restrain a distance dm, MODELLER uses the following pdf:

f dmð Þ ¼
PU

u¼1
wu

1

su

ffiffiffiffiffiffi
2p
p e

� ðdm � dt;uÞ2

2s2
u ; ð3Þ

where u is the template index, wu is a template-specific weight, dt,u and σu are the distance

observed in template u and its σ value respectively. In MODELLER, wu is a function of the

local sequence similarity between the target and template u.

The total objective function of MODELLER (FTOT) can be expressed as follows:

FTOT ¼ FPHYS þ FHOM; ð4Þ

where FPHYS contains five physical terms (see S1 Table) and FHOM contains HDSRs terms. In

this work, the weights for FPHYS and FHOM were always left to 1.0 (therefore they are omitted

from the formula above).

Benchmarking MODELLER modifications with an analysis set

In order to benchmark modifications of MODELLER, we built an analysis set of selected target

proteins. We obtained 926 X-ray structure chains from PISCES [28], using the following crite-

ria to filter the PDB:

• the maximum mutual sequence identity (SeqId) among the chains was 10%;

• their structures had a resolution< 2.0 Å and R-factor< 0.25;

• they contained no missing residues due to lacking electron density;

• their length was between 70 and 700 residues.

These chains were our target candidates. To obtain their templates, we culled from PISCES

another set using similar filters, except that this time the maximum mutual SeqId was 90%.

We removed from this larger set all the targets, obtaining 6224 chains. Each target was then
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aligned to these chains using TM-align [29] and we selected as template candidates the chains

meeting the following criteria:

• the SeqId in the structural alignment built by TM-align was between 15% and 95%;

• the two TM-scores [30] produced by TM-align (each score is normalized by the length of

one of the aligned proteins) were at least 0.6, a threshold to consider two proteins as homolo-

gous [31].

We retained for each target only its top five templates in terms of TM-score (normalized on

the target length). In this way, we obtained a final set of 225 target chains (suitable templates

could not be found for 701 targets, a result of using only high-resolution template structures).

For each target, we performed single-template modeling only with its top template and there-

fore we had 225 single-template models, which constituted the Analysis Single-template (AS)

set. 118 targets had at least two templates (with an average of 3.3), which constituted the Analy-

sis Multiple-templates (AM) set.

The average SeqId for the AS target-template alignments is 0.38. Improving the perfor-

mance of MODELLER with targets having templates with a SeqId< 0.40 is important, because

these cases are the most frequent ones in Biomedical Research [5] and the accuracy of TBM is

often low in this regimen. The well-equilibrated distributions of SeqId, target coverage, target

length and of CATH structural classes [32] of the analysis set (see S1 Fig) assure that our

results have a general validity.

Alignment building

In order to align target-template pairs we employed the accurate HHalign program [7], which

confronts two profile hidden Markov models. To build input profiles for HHalign, we ran

HHblits [33] with its default parameters and three search iterations against the uni-
prot20_2016_02 database. After employing HHalign to align pairs of target-template profiles,

we extracted from the program’s output their pairwise alignments. Multiple target-templates

alignments were obtained by joining pairwise alignments.

Whenever specified, we also employed target-template alignments built with TM-align in

order to assess the effect on 3D modeling of HDDRs derived from error-free structural

alignments.

3D model building and evaluation

For all benchmarks we used MODELLER version 9.21. In order to modify its objective func-

tion terms and optimization schedules we interfaced with its Python API. To modify the

restraints parameters we employed Python scripts to edit the default restraints files generated

by the program (see the “Restraints files building” section).

In MODELLER, the final quality of a model is largely determined in the MDSA phase. In

this work, unless otherwise stated, we employed the default very_fast MDSA protocol of the

program (corresponding to a 5.4 ps run). When specified, we also employed the more thor-

ough slow protocol (corresponding to a 18.4 ps run). The CG protocol was always left to its

default parameters.

The approach used to evaluate the quality of an homology model was to build 16 different

copies of it (hereinafter defined as decoys), and to report as an overall quality score (see below)

the average score of the 16 decoys.

To evaluate the quality of the backbones we used the GDT-HA metric [9] computed by the

TM-score program. In order to evaluate the quality of local structures and side chains, we used

the lDDT metric [34], computed by the lDDT program. Detailed descriptions of these two
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metrics are given in S1 Text. To evaluate the stereochemical quality of models we employed

MolProbity scores computed by the MolProbity suite [35]. A MolProbity score expresses the

global stereochemical quality of a 3D model. The lower it is, the higher is the quality of the

model.

Optimal σ values for homology-derived distance restraints

σ values of HDDRs have a fundamental role in MODELLER. A natural question is: given a tar-

get-template alignment, what is the set of σ values which will maximize 3D modeling accuracy?

The concept of optimal σ values in single-template modeling was addressed for the first time

by the Lee group [22]. They reported that for a Gaussian HDDR acting on a distance dm
between atoms i and j in a 3D model, the optimal σ value is:

jDdnj ¼ jdn � dtj; ð5Þ

where dt is the distance between the template atoms equivalent to i and j and dn is the distance

between i and j observed in the experimentally-determined native target structure. We show

that the use of |Δdn| values for Gaussian HDDRs is supported by theory, as it can be analytically

proven that they maximize the likelihood of obtaining a model in which each restrained dm is

equal to its corresponding dn (see S2 Text).

In the case of multiple-template HDDRs, we demonstrate that the combination of optimal

σ values and weights can be found again analytically (see S3 Text). In this situation, the opti-

mal σ values are again |Δdn| values. The associated template weighting scheme assigns a weight

of 0 to all templates with the exception of the template with the lowest σ, which should have a

weight of 1. We termed this scheme as the “only-lowest” (OL) scheme. Note that the OL

scheme is an extreme case of the weighting scheme proposed in [36] (see S3 Text).

Whenever using |Δdn| values as σ parameters, we had to modify them by setting their mini-

mum value at 0.05 Å. Raw |Δdn| values are extracted directly from pairs of homologous protein

structures and they are often close to 0 Å (see Fig 1A). In MODELLER, HDDRs having very

small σ values will seldom be satisfied because their quadratic objective function terms will

penalize enormously even minimal deviations from templates. In fact, using unmodified |Δdn|
values often leads to modeling failures, since the total objective function of models surpasses

the allowed limit of MODELLER, stopping the model building process. Setting a lower limit to

their value, allows their use in 3D modeling.

Fig 1. Distribution of |Δdn| and σMOD values. Distributions of the |Δdn| (A) and σMOD (B) values observed in the AS models for the four HDDR

groups of MODELLER. Beside the names of the restraints groups, their mean values are reported.

https://doi.org/10.1371/journal.pcbi.1007219.g001
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Restraints file building

In MODELLER, the restraints used in the 3D model building phase are supplied in a specific

file. In this work, we explored how the choice of parameters for the HDDRs influences 3D

modeling. Therefore, our approach for building restraints files was to let MODELLER generate

its default restraints files and then to modify it by leaving unaltered all the stereochemical and

homology-derived dihedral angle restraints and by modifying only the HDDRs parameters.

The Python code we used to customize restraints files is available at https://github.com/

pymodproject/altmod. This code allows to modify the list of HDDRs of a model by supplying

a list of user-specified parameters for them. Users may specify both the location and scale

parameters of the Gaussian HDDRs, see Eq (1). Additionally, we provide code for running

MODELLER with optimal HDDRs, which can be employed whenever users can supply a

native structure file for the target protein.

Perturbing optimal |Δdn| values

To understand the effect of using error-containing |Δdn| estimations on 3D modeling, we ran-

domly perturbed the |Δdn| values of target-template pairs. Our aim was to simulate a series of |
Δdn| estimators having different performances in terms of the Pearson correlation coefficient

(PCC) between the perturbed values and their unperturbed counterparts. To perturb a |Δdn|
list of a target-template pair in order to reach a selected PCC (referred to as PCCSEL), we added

to the Δdn values of the pair a list ε of errors in order to obtain a list p of perturbed values,

whose elements are:

pi ¼ jDdn þ εij; ð6Þ

where pi is the i-th perturbed value and εi is a random error extracted from a Laplace distribu-

tion with location 0 and scale parameter b. We chose Laplace distributions since adding errors

extracted from them results in pi values being distributed approximately as exponentials,

which resemble the original |Δdn| distributions (see Fig 1A and also Fig F in S2 Fig). To obtain

the desired PCCSEL, a |Δdn| list was perturbed in 5000 trials by drawing ε from Laplace distri-

butions with different b values and in each trial the PCCs between p and the original |Δdn| list

was computed (b was linearly increased from 0.005�mobs to 25.0�mobs, where mobs is the mean

of the |Δdn| list). At the end of these trials, the p list having the observed PCC as close as possi-

ble to PCCSEL was selected. The |Δdn| values of each HDDR group (that is, the Cα-Cα, NO,

SCMC and SCSC groups) were perturbed independently. This heuristic procedure usually

selects PCCs being not more than 0.003 units away from PCCSEL (thus giving practically the

same level of perturbation of PCCSEL). Note that larger b values result in larger amounts of

noise (and in lower PCCs), but they also increase the mean of p lists far beyond the typical val-

ues observed for |Δdn| data. Therefore, the p lists of the four HDDR groups were always scaled

so that their mean (referred to as mpt) would be equal to:

mpt ¼ ðPCCSELÞmobs þ ð1 � PCCSELÞmgrp; ð7Þ

where mgrp is the mean |Δdn| value observed in all our AS models for HDDR group grp (see Fig

1A). In this way, if PCCSEL is near 1, the mean of a p list tends to the mean of the unperturbed |
Δdn| list, while if PCCSEL is near 0, its mean tends to the “global” mean observed for the corre-

sponding group in our whole |Δdn| data sets. This whole perturbation scheme has three impor-

tant characteristics. (i) Adding noise to every |Δdn| value of a target-template pair allows us to

properly simulate the effect of a real-life |Δdn| estimator in which every estimation would have

some uncertainty. (ii) Since 3D modeling quality tends to decrease when the average σ value of

a model increases (see Fig 2A and 2B), the scaling procedure ensures that when employing
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highly perturbed |Δdn| lists, alterations in the quality of 3D models will not be caused by just

unrealistically increasing their mean σ. (iii) The choice of Laplace distributions as error-gener-

ators ensures that alterations in quality will not be caused by drastically changing the shape of

the perturbed values distributions with respect to the observed |Δdn| ones. An example of the

effects of this perturbation scheme are found in S2 Fig (while the code that implements it is

available in our Git repository, see above).

To simulate various levels of accuracy in |Δdn| estimation, we used 10 PCCSEL values (line-

arly spacing from 0.0 to 0.9). For each PCCSEL, we generated 5 sets of perturbed |Δdn| values

per target-template pair, which allowed to better sample the effect of perturbations. For each

perturbed set, we built 8 decoys per target with MODELLER (resulting in a total of 5�8 = 40

decoys per target for each PCCSEL value). For a certain PCCSEL value, the quality score for a 3D

model was recorded as the average score of all its 40 decoys.

To quantify in terms of PCC the actual amount of perturbation introduced in the |Δdn| val-

ues of a single model, we used a score defined as PCCMODEL. This score is computed as:

PCCMODEL ¼
1

nR

PnR
r¼1

1

U
PU

u¼1
PCCu;r

� �

; ð8Þ

where nR is the number of perturbed |Δdn| sets (in our case 5), r is the index for these sets, U is

the number of templates of the model and PCCu,r indicates the observed PCC between the list

of |Δdn| values associated with the u-th template and the corresponding list of perturbed values

in set r. For each HDDR group, the relationship between PCCSEL values and the average

PCCMODEL observed in the AS and AM sets is almost perfectly linear (see Fig G and H in S2

Fig), confirming the efficacy of the perturbation scheme.

Inclusion of statistical potential terms in the objective function of

MODELLER

In this work, we explored the effect of including in the objective function of MODELLER

terms for interatomic distance statistical potentials. These potentials are developed with the

aim of recognizing native-like protein conformations [37], therefore their use could help

MODELLER to approach these conformations [38].

We employed the DOPE potential [26], which is integrated in the MODELLER package

where it is commonly used to evaluate qualities of 3D models. DOPE is an “all atom” potential.

Fig 2. Modeling with uniform σ values. Average GDT-HA (A) and lDDT (B) scores of the AS models as a function of the uniform σ value (ranging

from 0.01 to 7.0 Å) applied to their HDDRs. The horizontal dashed lines represent the average scores obtained with the original σMOD values.

https://doi.org/10.1371/journal.pcbi.1007219.g002
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Its 12561 terms are approximated with interpolating cubic splines, which can be differentiated

analytically and used in the gradient-based optimization algorithm of the program.

The Lee group previously included the DFIRE [23] potential in the MODELLER objective

function [18]. To compare their performances in 3D model building, we also integrated

DFIRE in MODELLER (DFIRE parameters were obtained from its source code).

When including statistical potential terms, the MODELLER objective function becomes:

FTOT ¼ FPHYS þ FHOM þ wSPFSP; ð9Þ

where FSP contains the statistical potentials terms and wSP is their weight. For obtaining best

3D modeling results, we tested several values of wSP.

We employed statistical potentials using a contact shell value of 8.0 Å. Higher values can be

safely avoided because the terms of DOPE and DFIRE start to acquire a flat shape over the 8.0

Å threshold (see Fig A in S3 Fig). The code we used to employ these potentials in MODELLER

is freely available at https://github.com/pymodproject/altmod.

Results

Effects of optimal σ values on 3D modeling

Effects on single-template modeling. Gaussian HDDRs are the heart of the MODELLER

approach. At first, we explored how the use of optimal σ values (that is, |Δdn| values) influences

single-template modeling. The Lee group already reported it to bring significant improve-

ments for a small number of proteins. Here, we extended the analysis to a larger set to derive

general conclusions. As shown in Table 1, employing restraints bearing |Δdn| values greatly

increases 3D modeling accuracy. In terms of global Cα backbone quality, the average

GDT-HA score of the AS models increases by 6.0% with respect to the score obtained with

σMOD values. An improvement is also observed for local all-atom quality, as the average lDDT

score increases by 4.2%. Increments in GDT-HA and lDDT are seen for 224/225 and 225/225

AS models respectively (see Fig 3A and 3B).

Increasing target-template alignment quality is one of the current challenges in TBM. In

our AS models, the average accuracy of HHalign sequence alignments with respect to error-

free TM-align structural alignments is 0.87 (see S4 Fig). When rebuilding the AS models using

Table 1. 3D modeling qualities of the AS single-template models built with optimal HDDRs and alignments.

Strategy GDT-HA lDDT MolProbity score

MODELLERa 0.6014 (-) 0.6563 (-) 3.0104 (-)

OPTIMALb 0.6377 (+6.0%)� 0.6842 (+4.2%)� 3.0311 (+0.7%)�

MODELLER-SLOWc 0.6036 (+0.4%)� 0.6594 (+0.5%)� 2.8512 (-5.3%)�

OPTIMAL-SLOW 0.6377 (+6.0%)� 0.6853 (+4.4%)� 2.9039 (-3.5%)�

MODELLER-TMalignd 0.6383 (+6.1%)� 0.6951 (+5.9%)� 3.0411 (+1.0%)�

OPTIMAL-TMalign 0.6805 (+13.2%)� 0.7259 (+10.6%)� 3.0870 (+2.5%)�

The “GDT-HA”, “lDDT” and “MolProbity score” columns report the average values for those metrics. Percent improvements are computed with respect to the scores of

the default MODELLER (first row).
aThe “MODELLER” prefix indicates that the strategy employs HDDRs generated by MODELLER.
bThe “OPTIMAL” prefix indicates the use of optimal HDDRs.
cThe “SLOW” suffix indicates the use of the slow MDSA protocol instead of the default very_fast one.
dThe “TMalign” prefix indicates the use of target-template alignment built through TM-align.

�Asterisks denote a statistically significant difference (according to a Wilcoxon signed-rank test with a significance level of 0.05) between the scores of a strategy and the

scores of the default MODELLER. See S3 Table for a full list of the numerical p-values.

https://doi.org/10.1371/journal.pcbi.1007219.t001
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σMOD values and TM-align alignments, the average GDT-HA and lDDT scores improve by

6.1% and 5.9% respectively over the scores obtained with σMOD values and HHalign alignments

(see Table 1). These results show that by optimizing parameters of the 3D model building

phase of single-template HM, the same improvement obtainable by optimizing alignment

building can be reached.

It might be thought that |Δdn| values aid 3D modeling by compensating for alignment

errors, that is, by assigning misaligned residues more conformational freedom to help MOD-

ELLER repositioning them in a correct way. However, their effect can not be explained only by

this mechanism, since they yield a 6.6% and 4.4% increase in GDT-HA and lDDT also when

models are built with TM-align alignments (see Table 1).

Effects on multiple-template modeling. Next, we explored the effect of optimal HDDRs

in multiple-template modeling, which has never been assessed before. As shown in Table 2,

applying an optimal set of σ values and template weights results in an enormous improvement

in the quality of 3D models (see also Fig 3C and 3D). When building the AM models with

optimal restraints, their average GDT-HA and lDDT scores improve by 38.9% and 18.9% over

the scores obtained by using MODELLER-generated restraints. These increments are larger

than the one observed when performing multiple-template modeling with MODELLER-gen-

erated restraints and error-free TM-align structural alignments, which results in a 5.7% and

5.1% improvements in GDT-HA and lDDT.

Optimal HDDRs increase even more the beneficial effect of using multiple templates. With

MODELLER-generated restraints, employing multiple templates leads to an improvement of

1.9% and 2.0% in the average GDT-HA and lDDT of the AM models over single-template

modeling performed with top-templates (see the MODELLER-ST strategy in Table 2). On the

other hand, with optimal HDDRs, it leads to an improvement of 33.2% and 16.0% in

GDT-HA and lDDT over single-template modeling performed with optimal HDDRs (see the

OPTIMAL-ST strategy in Table 2).

The reason for this large improvement is the following. In MODELLER, the pdf for a multi-

ple-template HDDR includes a weighted contribution from each template. In optimal

HDDRs, |Δdn| values are employed as σ values in conjunction with the OL weighting scheme

(see the “Methods” section). In this scheme, only the contribution of the best template is

selected for each HDDR (when considering a single HDDR, the best template is defined as the

one having a distance dt as close as possible to the target distance dn, that is, the template with

lowest |Δdn| value). On the other hand, in MODELLER-generated HDDRs, the weights are

usually non-zero for every template, meaning that the contribution of the best template is

always weakened. This effect increases the allowed conformational space for the restrained dis-

tance, thus making it less likely to build a model with a near-native distance.

The importance of the template-weighting scheme [10] is illustrated by the fact that when

employing |Δdn| values and a uniform weighting scheme (that is, for an HDDR with U tem-

plates each template is given a weight wu = 1/U), the average GDT-HA and lDDT scores of the

AM models improve only by 18.3% and 8.9% over the standard MODELLER (see the OPTI-

MAL-U strategy in Table 2).

Our data shows that if the best template can be identified for each restrained distance, a

substantial improvement in 3D modeling quality can be reached. A relevant matter is therefore

to understand whether for a single residue (on which several HDDRs are usually acting) or for

some stretch of contiguous residues, the best template always happens to be the same, or

instead if multiple templates are effectively used together. S4 Text shows that in the AM set,

for regions of the target sequences covered by multiple templates, all templates are frequently

used at the same time. When every template has the same level of sequence similarity with the

target (e.g.: all of them have around 30% SeqId), usually no template dominates over some
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extended region of the target sequence. Even when considering only the HDDRs acting on a

single residue, different best templates are most often used concomitantly (see Fig A and C in

S4 Text). In situations where there is a large difference in SeqId among the templates, even if

the template with the highest SeqId tends to be picked more frequently, also other templates

may maintain a significant contribution throughout the target sequence (see Fig B in S4 Text).

Therefore, in order to optimally model most target residues, multiple templates have to be

effectively used. This fact suggests that in order to harness the full potential of multiple-tem-

plates in homology modeling, the concept of the “best template” for single restrained distances

Fig 3. The use of optimal parameters for HDDRs improves 3D modeling quality. (A) and (B) GDT-HA and lDDT scores of the AS models built

with σMOD (reported on the x-axis) and with optimal |Δdn| (y-axis) values. (C) and (D) GDT-HA and lDDT scores for the AM models obtained with

MODELLER-generated (x-axis) and optimal (y-axis) HDDRs.

https://doi.org/10.1371/journal.pcbi.1007219.g003
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should be considered. In a real-life protein structure prediction scenario (where the structure

of the target protein is unknown), the ability to select the best template for each distance

would be related to our ability to directly estimate |Δdn| values. If our accuracy in estimation is

sufficiently high, the impact on multiple-template 3D modeling quality will be largely benefi-

cial (see the “Perturbing optimal σ values” section).

Effects on stereochemical quality. In both single and multiple-template modeling, the

use of optimal HDDRs appears to decrease the stereochemical quality of models, as seen by

increased MolProbity scores (see Table 1 and Table 2). The increment is more prominent in

multiple-template modeling (2.4%) than in single-template modeling (0.7%). While optimal

restraints may guide the models in conformations near the native state, at the same time they

probably force stereochemical inaccuracies. However, employing a more through MDSA

Table 2. 3D modeling qualities of the AM multiple-template models built with optimal HDDRs and alignments.

Strategy GDT-HA lDDT MolProbity score

MODELLER 0.6287 (-) 0.6819 (-) 3.0725 (-)

OPTIMAL 0.8733 (+38.9%)� 0.8106 (+18.9%)� 3.1478 (+2.4%)

MODELLER-SLOW 0.6310 (+0.4%)� 0.6850 (+0.5%)� 2.9143 (-5.2%)�

OPTIMAL-SLOW 0.8747 (+39.1%)� 0.8133 (+19.3%)� 3.0475 (-0.8%)�

OPTIMAL-Ua 0.7438 (+18.3%)� 0.7427 (+8.9%)� 3.1744 (+3.3%)

MODELLER-STb 0.6168 (-1.9%)� 0.6683 (-2.0%)� 3.0231 (-1.6%)�

OPTIMAL-ST 0.6557 (+4.3%)� 0.6986 (+2.5%)� 3.0398 (-1.1%)

MODELLER-TMalign 0.6645 (+5.7%)� 0.7165 (+5.1%)� 3.0529 (-0.6%)

OPTIMAL-TMalign 0.9222 (+46.7%)� 0.8498 (+24.6%)� 3.1044 (+1.0%)

See Table 1 for the description of contents, columns and most modeling strategies names.
aThe “U” suffix indicates the use of uniform template weights for multiple-template HDDRs.
bThe “ST” suffix indicates that only the top template for each target was used (thus resulting in single-template modeling).

�Asterisks denote a statistically significant difference (according to a Wilcoxon signed-rank test with a significance level of 0.05) between the scores of a strategy and the

scores of the default MODELLER. See S4 Table for a full list of the numerical p-values.

https://doi.org/10.1371/journal.pcbi.1007219.t002

Fig 4. Correlation between σMOD and |Δdn| values in the AS models. (A) Distributions for the PCCs between σMOD and |Δdn| values for the HDDRs of

the 225 AS models. (B) PCC distributions for the AS models rebuilt with TM-align alignments.

https://doi.org/10.1371/journal.pcbi.1007219.g004
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protocol is sufficient to almost entirely relax these inaccuracies, while maintaining high

GDT-HA and lDDT scores (see the strategies with the “SLOW” suffix in the tables).

Perturbing optimal σ values

As first demonstrated in [22], σMOD values are weakly correlated with their optimal counter-

parts. In the AS models, the distributions of |Δdn| and σMOD values are markedly different (see

Fig 1A and 1B) and the average PCCs between them are 0.262, 0.277, 0.183 and 0.221 for the

Cα-Cα, NO, SCMC and SCSC restraints groups respectively (see Fig 4A). Even with accurate

alignments built through TM-align, the histogram-based approach of MODELLER produces σ
values which are weakly correlated to |Δdn| values (see Fig 4B).

In the previous section we have seen that the use of optimal σ values greatly improves

MODELLER’s predictions. However, since |Δdn| values can not be directly inferred without

the prior knowledge of the actual 3D structure that we are trying to predict, a strategy to

improve MODELLER would consist in accurately estimating them. Irrespective of the predic-

tive algorithm, it is reasonable to suppose that |Δdn| estimations will always bear a certain

amount of error. In order to understand how 3D modeling quality changes as a function of

this error, we rebuilt the models of the analysis set by perturbing their |Δdn| values with ran-

dom noise.

Effects on single-template modeling. Fig 5A shows how the average GDT-HA of the

AS models changes when increasing the fraction of |Δdn| values substituted with a random

σ (see Fig 5B for the relationship with lDDT). In the absence of any perturbation, the aver-

age GDT-HA is at its maximum of 0.6377. When the mean Cα-Cα PCCMODEL of the AS

models is approximately 0.9, the average GDT-HA decreases by 2.6%. Further increasing

the amount of random perturbation in σ values leads to a continuous decrease in quality.

When the average Cα-Cα PCCMODEL approximates 0, the average GDT-HA is 0.6056

(resulting in a 5.0% decrease with respect to the optimal state). This score is 0.8% higher

than the average GDT-HA obtained using the default σMOD values, which is 0.6009.

Although the difference between these two scores is statistically significant (Wilcoxon

signed-rank test, p-value = 1.6e-5) it is only minimal from a structural point of view. In

other words, in single-template modeling, provided that the average σ of a model does not

surpass a certain threshold (that is, the average |Δdn| observed in nature), randomly gener-

ated σ values are surprisingly as effective as those generated by the MODELLER histogram-

based approach. This is also confirmed by the fact that the use of uniform σ values < 1.0 Å
does not significantly alter the GDT-HA and lDDT scores of models with respect to the

standard MODELLER algorithm (see Fig 2A and 2B).

Effects on multiple-template modeling. Next, we performed perturbation experiments

with multiple-template models (see Fig 5C and 5D). Again, the average quality decreases as

perturbation increases. However, when the average Cα-Cα PCCMODEL approximates 0, the

average GDT-HA now becomes 9.1% lower than the one obtained using the default MODEL-

LER. This behavior is likely to be explained by the fact that in perturbation experiments the

OL template weighting scheme was employed. When this scheme is applied with optimal (or

near-optimal) σ values, it boosts 3D modeling quality, but when it is applied with σ values

being weakly correlated with |Δdn| values, it has a detrimental effect (since for each HDDR it

uses only the contribution of a randomly chosen template, while the contribution from the

best template is likely to be suppressed).

This data shows that if we were able to predict |Δdn| values with sufficiently high accuracy,

the performance of MODELLER would greatly increase. In single-template modeling, obtain-

ing predictions with a PCC of ~0.6 would lead to an increase in GDT-HA of ~2.0%. In
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multiple-template modeling, the potential gain is higher, as the same PCC would increase

GDT-HA by a larger ~8.0%.

Modifying the objective function of MODELLER with statistical potential

terms

Effect on single-template modeling. In order to identify the optimal way to incorporate

the DOPE potential within MODELLER, we performed benchmarks with the AS single-tem-

plate models by tuning wSP values from 0.1 to 3.5 and by employing HDDRs bearing either

σMOD or |Δdn| values. Fig 6A to 6C show that, with both types of σ, the inclusion of DOPE

leads to improvements in 3D modeling. Strikingly, depending on the type of σ, the amount of

improvement and the best wSP vary greatly.

With σMOD values, the maximum increase in GDT-HA is observed with a wSP of 0.5. As

shown in Table 3, when employing DOPE with this wSP, the average GDT-HA improves by a

statistically significant 1.3% with respect to the default MODELLER. At the same time, the

average lDDT score increases by 2.0%, showing that the use of DOPE also aids local modeling.

Of note, when applying DOPE along with the slow MDSA protocol, an additional improve-

ment is obtained: the average GDT-HA and lDDT scores now increase by 1.6% and 2.8%.

Fig 5. Effect of |Δdn| perturbation on 3D modeling. (A) and (B) Average GDT-HA and lDDT scores of the AS models as a function of their average

Cα-Cα PCCMODEL values (see the “Methods” section). (C) and (D) Similar data obtained for the multiple-templates AM models. In (A) through (D), the

dashed horizontal lines represent the average quality scores obtained by the default MODELLER.

https://doi.org/10.1371/journal.pcbi.1007219.g005
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When modeling with |Δdn| values, the best results are instead obtained with a wSP of 3.5. In

this case, DOPE increases the average GDT-HA and lDDT scores by 8.0% and 4.6% with

respect to the scores obtained with the same restraints and the standard objective function of

Fig 6. Average quality scores of the models of the analysis set as a function of the wSP with which the DOPE potential has been included in the objective

function of MODELLER. (A) to (C) Quality scores of the AS models. (D) to (F) Quality scores of the AM models. (A) through (F) The horizontal dashed lines

correspond to the scores obtained when modeling with MODELLER-generated (blue color) or optimal (orange) HDDRs without the use of DOPE.

https://doi.org/10.1371/journal.pcbi.1007219.g006

Table 3. 3D modeling qualities of the AS single-template models built by including DOPE in the objective function of MODELLER.

Strategy GDT-HA lDDT MolProbity score

MODELLER 0.6014 (-) 0.6563 (-) 3.0104 (-)

OPTIMAL 0.6377 (+6.0%)� 0.6842 (+4.2%)� 3.0311 (+0.7%)�

MODELLER-DOPE-0.5a 0.6089 (+1.3%)� 0.6692 (+2.0%)� 2.1138 (-29.8%)�

MODELLER-SLOW-DOPE-0.5 0.6112 (+1.6%)� 0.6746 (+2.8%)� 2.0344 (-32.4%)�

MODELLER-DOPE-3.5 0.5631 (-6.4%)� 0.6397 (-2.5%)� 2.9977 (-0.4%)

OPTIMAL-DOPE-0.5 0.6549 (+8.9%)� 0.7029 (+7.1%)� 2.2960 (-23.7%)�

OPTIMAL-DOPE-3.5 0.6885 (+14.5%)� 0.7158 (+9.1%)� 2.6280 (-12.7%)

See Table 1 for the description of contents, columns and most modeling strategies names.
aThe “DOPE-X.X” suffix indicates the use of DOPE with a wSP of X.X.

�Asterisks denote a statistically significant difference (according to a Wilcoxon signed-rank test with a significance level of 0.05) between the scores of a strategy and the

scores of the default MODELLER. See S3 Table for a full list of the numerical p-values.

https://doi.org/10.1371/journal.pcbi.1007219.t003
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MODELLER. The increments in these two metrics are extremely large if computed with

respect to the default MODELLER protocol (14.5% and 9.1%). Fig 7 shows that with the

default MODELLER, secondary structure elements that show divergence in the target and

template structures are most often modeled in the template conformation. By using optimal

HDDRs and DOPE, it is common to see these elements shifting towards target conformations.

Remarkably, the same wSP of 3.5 leads to a large decrease in modeling quality when DOPE

is applied along with σMOD values: in this case, the average GDT-HA and lDDT scores decrease

by a large 6.4% and 2.5% with respect to the score obtained without using DOPE.

This data shows that in single-template modeling, the addition of DOPE is much more

effective with |Δdn| values than with σMOD values. Additional insights into this behaviour were

provided by the analysis of DOPE energetic landscapes. Fig 8 shows the representative case of

the 1lam_chain_A and 1dk8_chain_A targets, where the DOPE energies of models are plotted

as a function of their GDT-HA scores. When using single-template HDDRs with σMOD values,

applying DOPE with increasingly high wSP values leads to a decrease in both GDT-HA and

DOPE energies. These energies eventually become even lower than the native target structure

one. It seems that in the DOPE landscape, near-native conformations are not at an absolute

minimum. On the other hand, when modeling with single-template optimal HDDRs, increas-

ing wSP values leads to improvements in GDT-HA while maintaining DOPE energies relatively

high. Similar trends are observed in the landscapes of almost all AS models. We speculate that

this behaviour is caused by the fact that optimal HDDRs strongly restrain those regions of

models which are structurally conserved between the native structures and templates, while

they weakly restrain divergent regions. This probably allows to pinpoint the effect of DOPE in

the divergent regions (where its addition likely improves modeling over the use of the standard

MODELLER objective function) and to keep “rigid” the conserved regions (which are already

extremely well-modeled and where DOPE can hardly improve the situation), thus giving rise

to a synergistic effect.

Effect on multiple-template modeling. Next, we explored the effect of DOPE in multi-

ple-template modeling (see Fig 6D to 6F). The trend observed when employing MODELLER-

generated restraints is reminiscent of the single-template modeling one, although the improve-

ments are slightly smaller. Table 4 shows that the best wSP is 0.5, which results in an average

increase in GDT-HA and lDDT of 0.6% and 1.6% with respect to the scores obtained with the

default MODELLER. By employing DOPE with this wSP along with the slow MDSA protocol,

an additional improvement can be reached: the average GDT-HA and lDDT scores now

improve by 1.0% and 2.2%. When further increasing wSP, we assist to a decrease in 3D model-

ing qualities.

The results observed when combining DOPE with optimal multiple-template HDDRs are

different. No value of wSP is able to bring a relevant improvement in GDT-HA. As wSP

increases over 1.0, the scores even start to decrease in a significant way, although it seems that

DOPE is able to bring at least a small improvement in lDDT.

This counterintuitive behaviour can in part be explained from the analysis of DOPE energy

landscapes. Fig 8 shows that when using optimal multiple-template HDDRs, the quality of

models is already higher than the one obtained with optimal single-template HDDRs. In this

case, applying large wSP values leads to a decrease in DOPE energies and GDT-HA. The plots

show that the models built with optimal HDDRs seem to be attracted towards a local energy

minimum of DOPE, which does not correspond to the native state, but is located relatively

near it. Therefore, when using optimal restraints, minimizing the DOPE of a structure distant

from the native state (like in the case of single-template modeling), tends to increase its

GDT-HA, but when the structure is already very close to the native state (such as in the case of

multiple-template modeling), it tends to decrease its GDT-HA.
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Effects on stereochemical quality. In terms of stereochemichal quality, the use of DOPE

seems to be highly beneficial in both single and multiple-template modeling and with both

MODELLER-generated and optimal HDDRs (see Fig 6, Tables 3 and 4). For example, when

employing σMOD values and DOPE with a wSP of 0.5, the average MolProbity score of the AS

models decreases by a large 29.8% with respect to the default MODELLER. Additional

improvements in MolProbity scores are observed when coupling DOPE to the slow MDSA

protocol. We found that the MolProbity score component in which DOPE brings the largest

improvement is by far the “Clash Score”, meaning that the potential helps to remove steric

Fig 7. Effects on 3D modeling of optimal σ values and DOPE. Effects brought by the use |Δdn| values and DOPE (with a

wSP of 3.5) on the 3D modeling of target 1yd0_chain_A (colored in orange) using as a template 1yd6_chain_D (pale green).

In the model built using the default MODELLER (colored in white, superposed to its target and template on the left image)

the three helices shown in the image are positioned in the same conformation of the template. In the model built

employing |Δdn| values and DOPE with a wSP of 3.5 (pale cyan, shown on the right) the helices are repositioned in a native-

like conformation. Figures rendered with PyMOL [39].

https://doi.org/10.1371/journal.pcbi.1007219.g007

Fig 8. DOPE energy landscapes. DOPE energy landscapes for target (A) 1dk8_chain_A and (B) 1lam_chain_A modeled using different strategies. 100 decoys were

built for each strategy and their GDT-HA scores are plotted here against their DOPE energies. The strategies with the “MOD-ST” prefix adopted MODELLER-

generated HDDRs and a single template (blue-shaded dots), those with the “OPT-ST” prefix adopted optimal HDDRs and a single template (orange-shaded dots) and

those with the “OPT-MT” prefix adopted optimal HDDRs and multiple templates (red-shaded dots). The “SP-X.X” suffix indicates the use of DOPE with a wSP of X.X.

The green dots correspond to the DOPE-minimized native target structure.

https://doi.org/10.1371/journal.pcbi.1007219.g008
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clashes from models. Therefore, the inclusion of DOPE in the objective function of MODEL-

LER represents a fast and effective way of improving the stereochemical quality of its models.

This approach increases computational times by a factor of ~6.5 when employing the very_fast
MDSA protocol (and ~16.5 with the slow protocol), but on modern hardware the default

MODELLER algorithm usually takes a few seconds to complete a model, therefore in absolute

terms the model building process is still relatively fast.

Comparison between DOPE and DFIRE in 3D modeling. We also tested the effect of

adding DFIRE in the objective function of MODELLER. Overall, DFIRE seems to have very

similar effects to the ones described for DOPE (see S3 Table, S4 Table and S5 Fig), because

their terms have very similar forms (see Fig B in S3 Fig). However, when modeling with σMOD

values, DOPE seems to slightly outperform DFIRE in terms of all-atom local quality (expressed

by lDDT scores). When using a wSP of 0.5 and σMOD values, DOPE yields for the AS models an

average lDDT score 0.5% higher than the one obtained with DFIRE, a small but statistically

significant improvement (Wilcoxon signed-rank test, p-value = 4.6e-35). Therefore, we suggest

that in MODELLER, DOPE should be preferred over DFIRE.

Discussion

Improving the quality of HM predictions is clearly an area of great relevance in Biomedical

Research [40], given that the applicability of this methodology is expected to increase in the

next years [5]. Right now, a large portion of targets can be modeled only with low accuracy,

due to the remote homology relationship (under 30% SeqId) with their templates. A solution

to this problem could potentially come from advances in 3D model building or refinement

algorithms. In this work, we have explored two main promising strategies to increase the accu-

racy of the original MODELLER algorithm.

The use of optimal σ values (that is, |Δdn| values) greatly increases the 3D modeling quality

of the program. Since |Δdn| values can only be obtained by knowing the exact amount of diver-

gence between the structure of a target and its templates, they can not be used in real-life pro-

tein structure prediction scenarios (where the target structure is of course unknown).

However, as first shown by the Lee group [22], |Δdn| values may be estimated through a

machine learning system. These authors developed a random forest which obtained estima-

tions with an average Cα-Cα PCC of ~0.35. The use of this predictor led to only a very small

improvement in terms of 3D modeling quality. Our data (which describes the relationship

between 3D modeling quality and errors in |Δdn| estimations) shows that increasing the PCC

Table 4. 3D modeling qualities of the AM multiple-template models built by including DOPE in the objective function of MODELLER.

Strategy GDT-HA lDDT MolProbity score

MODELLER 0.6287 (-) 0.6819 (-) 3.0725 (-)

OPTIMAL 0.8733 (+38.9%)� 0.8106 (+18.9%)� 3.1478 (+2.4%)

MODELLER-DOPE-0.5 0.6327 (+0.6%)� 0.6926 (+1.6%)� 2.2086 (-28.1%)�

MODELLER-SLOW-DOPE-0.5 0.6347 (+1.0%)� 0.6971 (+2.2%)� 2.1152 (-31.2%)�

MODELLER-DOPE-3.5 0.5646 (-10.2%)� 0.6453 (-5.4%)� 3.1267 (+1.8%)�

OPTIMAL-DOPE-0.5 0.8736 (+39.0%)� 0.8229 (+20.7%)� 2.5635 (-16.6%)�

OPTIMAL-DOPE-3.5 0.8519 (+35.5%)� 0.8061 (+18.2%)� 2.7520 (-10.4%)�

See Table 1 for the description of contents, columns and most modeling strategies names.

�Asterisks denote a statistically significant difference (according to a Wilcoxon signed-rank test with a significance level of 0.05) between the scores of a strategy and the

scores of the default MODELLER. See S4 Table for a full list of the numerical p-values.

https://doi.org/10.1371/journal.pcbi.1007219.t004
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of a similar predictor by at least 0.2–0.3 units could translate in a significant improvement of

MODELLER.

The other strategy that we have investigated is the inclusion of statistical potential terms,

such as DOPE, in the objective function of MODELLER. We show that employing such poten-

tials in the 3D model building phase of MODELLER robustly increases 3D modeling quality

and provides a fast and effective way to improve the stereochemical details models. In order to

allow the user community of MODELLER to deploy this strategy in their modeling pipelines,

we share the Python code implementing it. In future research, it will be interesting to see if

there exist potentials with an even more beneficial effect on 3D model building in

MODELLER.

Our results have implications also for other Structural Bioinformatics tools. RosettaCM and

I-TASSER borrow from MODELLER the use of HDDRs [36, 41–42] and programs like MUL-

TICOM [43] and Pcons [44] implement MODELLER at some point in their protein modeling

pipelines. The strategies presented in this work can certainly be implemented in these proto-

cols to improve their quality.

Of note, in the protein structure refinement field, restraints are built from a starting model

and the aim is to guide the model towards its native conformation [45]. While in the HM con-

text we may estimate |Δdn| values between a target native structure and a template, in protein

structure refinement they could be similarly estimated between a native structure and its unre-

fined model. Methods to predict the local accuracy of 3D models already reach good perfor-

mances [46]. It is reasonable to think that with a sufficiently accurate predictor, the |Δdn|
prediction strategy could also lead to improvements in current refinement strategies.

The development of deep learning techniques [47] has recently brought advances in the

field of contact and distance map prediction [48]. We suggest that such methodologies could

be well adapted to the problem of |Δdn| estimation. In future studies, we will concentrate on

using this type approach to tackle the problem of σ values assignment. Since a machine learn-

ing model usually performs predictions in a relatively small amount of time, the |Δdn| estima-

tion approach has the potential to greatly improve the “modeling by satisfaction of spatial

restraints” strategy of MODELLER at the price of small computational cost.

Supporting information

S1 Table. Physical terms of the MODELLER objective function. Note how by default the

objective function does not include any “physical” attractive term between non-bonded atoms

(Lennard-Jones and Coulomb potential terms from CHARMM22 [1] are missing). The only

attractive terms in the objective function are homology-derived distance restraints (see S2

Table).

(PDF)

S2 Table. Homology-derived terms of the MODELLER objective function.

(PDF)

S3 Table. 3D modeling qualities of the AS single-template models built with different

modeling strategies. See Table 1 in the main text for the description of contents, columns and

most modeling strategies names.

(PDF)

S4 Table. 3D modeling qualities of the AM multiple-templates models built with different

modeling strategies. See Tables 1 and 2 in the main text and S3 Table for the description of

contents, columns and most modeling strategies names.

(PDF)
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S1 Fig. Properties of the analysis set. (A) SeqId histogram of the pairwise target-template

alignments in the AS models obtained using TM-align and HHalign. (B) Target coverage his-

tograms of the same alignments. (C) Chain length histograms of the 225 AS targets, the 118

AM targets and all the 472 template chains of the analysis set. (D) CATH classes frequencies of

the AS and AM targets compared to those in the entire CATH 4.2.0 database [1].

(PDF)

S2 Fig. Details of the |Δdn| perturbation scheme. (A) to (E) the Cα-Cα |Δdn| values of the

5jwo_chain_B (target) - 1thx_chain_A (template) pair were perturbed to various PCCSEL levels

using the perturbation scheme described in the “Methods” section of the main text. The

observed PCCs between the perturbed and the original |Δdn| values are reported. (F) Distribu-

tions of the original |Δdn| values and three perturbed values lists shown in previous figures.

The mean values of the lists are reported in brackets. Thanks to the use of Laplace distributions

for extracting random errors, the perturbed values are distributed approximately as exponen-

tials, which resemble the original |Δdn| distribution. (G) and (H) average PCCMODEL values of

the AS and AM models in |Δdn| perturbation experiments plotted as a function of PCCSEL. On

average, each PCCSEL value allows to obtain almost exactly the desired level of perturbation

(quantified as PCCMODEL). Data for the four HDDRs groups of MODELLER is shown. (G) AS

models. (H) AM models.

(PDF)

S3 Fig. Analysis of the terms of the DOPE and DFIRE potentials. (A) Forms of the 12561

terms of DOPE [1]. Each term is associated to a couple of heavy atom types from the 20 stan-

dard residues. Irrespective of the atom types, all the functions start to acquire a flat shape

above the 8.0 Å threshold. (B) Confrontation of DOPE and DFIRE [2] terms. An hexbin den-

sity plot compares 364269 data points from all the 12561 terms of DOPE (x-axis) and DFIRE

(y-axis) (each term has 29 points, which report the score of the potential in a linear space from

0.75 to 14.75 Å). The scores of the two potentials are highly correlated (Pearson correlation

coefficient = 0.99).

(PDF)

S4 Fig. Accuracy of the pairwise target-template HHalign alignments of the AS models.

The x-axis reports the SeqId between the target and template sequences in TM-align align-

ments. The y-axis reports the accuracy of the corresponding HHalign alignment. The accuracy

is computed as the ratio Hm/Tm, where Tm is the total number of matches in the TM-align

alignment and Hm is the number of “correct” matches in HHalign alingments (that is, those

HHalign matches which are also found in the TM-align alignment). The average accuracy is

0.87.

(PDF)

S5 Fig. Average quality scores of the analysis set models as a function of the wsp value with

which the DFIRE or DOPE statistical potentials have been included in the objective func-

tion of MODELLER. The horizontal dashed lines correspond to the scores obtained when

modeling with MODELLER-generated (blue color) or optimal (orange) HDDRs without the

use of statistical potentials. (A) to (C) quality scores of the AS models. (D) to (F) quality scores

of the AM models.

(PDF)

S1 Text. Description of the GDT-HA and lDDT metrics for model quality evaluation.

(PDF)
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S2 Text. Obtaining optimal parameters for single-template HDDRs.

(PDF)

S3 Text. Obtaining optimal parameters for multiple-template HDDRs.

(PDF)

S4 Text. Distribution of best templates for multiple-template HDDRs along target

sequences.

(PDF)
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