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Abstract
We investigate the problemof separating cover inequalities ofmaximum-depth exactly.
We propose a pseudopolynomial-time dynamic-programming algorithm for its solu-
tion, thanks to which we show that this problem is weakly NP-hard (similarly to
the problem of separating cover inequalities of maximum violation). We carry out
extensive computational experiments on instances of the knapsack and the multi-
dimensional knapsack problems with and without conflict constraints. The results
show that, with a cutting-plane generation method based on the maximum-depth cri-
terion, we can optimize over the cover-inequality closure by generating a number of
cuts smaller than when adopting the standard maximum-violation criterion. We also
introduce the Point-to-Hyperplane Distance Knapsack Problem (PHD-KP), a problem
closely related to the separation problem for maximum-depth cover inequalities, and
show how the proposed dynamic programming algorithm can be adapted for effec-
tively solving the PHD-KP as well.
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1 Introduction

The separation ofmaximum-violation inequalities is the standard approach for generat-
ing valid inequalities inMixed Integer Linear Programs (MILPs) [33]. In the literature,
however, some authors have speculated that separating (fractional) solutions by using
a criterion different from maximizing the cut violation could be beneficial for the
performance of the cutting-plane methods [1,3,4,6,7,14]. The maximization of the cut
depth [6] (also referred to as “geometric distance” [7] or “efficacy” [4,11]) is one
such criterion. It is, in particular, one of the criteria used in, e.g., SCIP during the cut-
selection phase in which a subset of cuts is selected from the cut pool to be added to
strengthen the formulation of the problem [1]. Previous works, including [28,34,37],
tackled the problem of separating inequalities of maximum depth only heuristically,
due to its intrinsic difficulty.

In this work, we focus on the case of cover inequalities and address the problem of
their exact separation according to themaximum-depth criterion. Themain theoretical
result of our paper (see Sect. 5) is the characterization of the computational complexity
of this problem. To this end, we develop an exact pseudopolynomial-time dynamic
programming algorithm by means of which we show that the maximum-depth sepa-
ration problem is weakly NP-hard. This result shows that, even if it entails (as we
will show) the optimization of a hyperbolic objective function, the complexity class
of this separation problem is the same as for the standard one based on the maximum-
violation criterion. A second contribution of the paper (see Sect. 6) is the introduction
of the Point-to-Hyperplane Distance Knapsack Problem (PHD-KP), which, similarly
to the problem of separating maximum-depth inequalities, is a knapsack problem with
a hyperbolic objective function. We show that even this problem is weakly NP-hard
and that it can be solved by an adaptation of the dynamic programming algorithm we
propose for the separation problem of maximum depth.

Computational experiments (see Sect. 7) carried out on several classes of instances
reveal that the adoption of the cut depth allows for optimizing over the cover-inequality
closure by generating a number of cuts smaller than with the standard maximum-
violation criterion. Interestingly, our experiments also reveal that a reduction in the
number of cutting planes, inferior but similar to the one achieved with the maximum-
depth criterion, can be obtained by separating maximum-violation inequalities and
making the corresponding covers minimal via an a posteriori procedure. Finally, com-
putational experiments (see Sect. 8) on several classes of PHD-KP instances show that
our dynamic-programming algorithm can solve the problem more efficiently than a
state-of-the-art nonlinear-programming solver.

2 On themaximum-violation cover inequalities

Given a set of items N := {1, 2, . . . , n}, a non-negative integer weight w j for each
item j ∈ N , and positive knapsack capacity c, consider the knapsack constraint

∑

j∈N
w j y j ≤ c,
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where each variable y j ∈ {0, 1} encodes the decision of inserting (or not) item j ∈ N
into the knapsack.1 One (or several) such constraints are present in countless real-world
applications involving the solution of a MILP [23–25,30].

A cover is a subset of items C ⊂ N with a total weight exceeding the knapsack
capacity. This notion plays a central role in determining strong valid inequalities for the
convex hull of the solutions to optimization problems featuring one or more knapsack
constraints. In particular, since no more than |C | − 1 items of a given cover C ⊂ N
can be simultaneously inserted into the knapsack, the following family of constraints,
called cover inequalities, are valid for the convex hull of the problem:

∑

j∈C
y j ≤ |C | − 1 ∀ C ⊂ N :

∑

j∈C
w j ≥ c + 1. (1)

In either its original form (1) or in its lifted form (see the survey [23]), this
exponentially-large family of constraints constitutes one of the earliest combinatorial
inequalities adopted in a general-purpose 0–1 Integer Programming (IP) solver [17],
and it it still routinely generated (heuristically) in most state-of-the-art MILP solvers.

Given a (fractional) point ȳ ∈ [0, 1]n , the Separation Problem (SP) for the cover
inequalities calls for an inequality of type (1) with a strictly positive cut violation, i.e.,
with

∑

j∈C̄
ȳ j − |C̄ | + 1 > 0,

or for a proof that no such inequality exists. The standard solution approach for solving
the SP consists in searching for a cover with a cut violation as large as possible. By
introducing, for each j ∈ N , a decision variable z j ∈ {0, 1} equal to 1 if and only if
item j belongs to the cover, this problem can be formulated in terms of the following
Integer Linear Program (ILP):

max
z∈{0,1}n

⎧
⎨

⎩
∑

j∈N
(ȳ j − 1) z j + 1 :

∑

j∈N
w j z j ≥ c + 1

⎫
⎬

⎭ .

By complementing the z variables, i.e., by introducing a new set of x variables such that
x j := 1 − z j for each j ∈ N , the Maximum-Violation Separation Problem (MV-SP)
can be formulated in terms of the following Knapsack Problem (KP):

v := max
x∈{0,1}n

⎧
⎨

⎩
∑

j∈N
q j x j + Ψ :

∑

j∈N
w j x j ≤ Φ

⎫
⎬

⎭ , (MV-SP)

where q j := 1− ȳ j , for all j ∈ N ,Ψ := ∑
j∈N ȳ j −n+1,Φ := ∑

j∈N w j − (c+1).
We refer to v as the maximum cut violation. Let x∗ denote an optimal solution to

1 Non trivial instances have 0 ≤ w j ≤ c, for all j ∈ N , and c <
∑

j∈N w j .
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the (MV-SP) and let C∗ := { j ∈ N : x∗
j = 0}. If v > 0, the cover inequality

corresponding to C∗ is maximally violated by ȳ, whereas, if v ≤ 0, we have a proof
that no violated cover inequality exists.

3 On themaximum-depth cover inequalities

Given a cover C ⊂ N , let

HC :=
⎧
⎨

⎩y ∈ R
n :

∑

j∈C
y j = |C | − 1

⎫
⎬

⎭

be the hyperplane consisting in the set of points y ∈ R
n for which the inequality∑

j∈C y j ≤ |C | − 1 is tight. Given a point ȳ ∈ [0, 1]n , the depth of the cover inequal-
ity corresponding to C is defined as the Euclidean (or 2-norm) point-to-hyperplane
distance between ȳ and the point belonging to HC that is closest to ȳ in Euclidean
norm—such a point is often called the projection of ȳ onto HC .We denote this distance
by d2(ȳ, HC ). Letting z ∈ {0, 1}n be the characteristic vector of C , we have:

d2 (ȳ, HC ) :=

∣∣∣∣
∑

j∈N ȳ j z j − |C | + 1

∣∣∣∣
||z||2 , (2)

where ||z||2 is the Euclidean norm (or 2-norm) of z. A derivation of this classical
result using the tools of nonlinear optimization can be found in [29]. Besides the
aforementioned works belonging to the cutting-plane literature in which the cut depth
has been adopted, articles in which such a distance is either maximized or minimized
include [2,10,13]. We report an illustration in the following example.

Example 1 Consider a point ȳ = (0.75, 0.76, 0.5) ∈ R
3 and two covers C1 = {3}

and C2 = {1, 2}. The cover inequalities corresponding to C1 and C2 are y3 ≤ 0 and
y1 + y2 ≤ 1. The corresponding hyperplanes HC1 and HC2 have equations y3 = 0
and y1 + y2 = 1. The Euclidean point-to-hyperplane distance between ȳ and the two
hyperplanes is d2(ȳ, HC1) = |0.5−1+1|√

1
= 0.5 and d2(ȳ, HC2) = |0.75+0.76−2+1|√

2
=

0.51√
2

	 0.36. Hence, HC1 is farther away from ȳ than HC2 in terms of the Euclidean
2-norm point-to-hyperplane distance, whereas, in terms of cut violation, C1 has a
smaller violation (of 0.5 − 1 + 1 = 0.5) than C2 (which has a larger violation of
0.75 + 0.76 − 2 + 1 = 0.51). A graphical representation is reported in Fig. 1. 
�

The separation problem calling for a cover inequality of maximumEuclidean-norm
point-to-hyperplane distance, i.e., of maximum depth, can be cast as the following
Mixed Integer Non-Linear Program (MINLP):

max
z∈{0,1}n

⎧
⎨

⎩

∑
j∈N

(
ȳ j − 1

)
z j + 1

||z||2 :
∑

j∈N
w j z j ≥ c + 1

⎫
⎬

⎭ . (3)
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Fig. 1 An illustration of
Example 1. The two solid
segments connect ȳ to the
closest point in Euclidean-norm
point-to-hyperplane distance on
either hyperplane HC1 and HC2 .
According to such a distance,
HC1 is farther away from ȳ than
HC2

1

1

1

ȳ

HC2

HC1

y3

y2

y1 (0.75, 0.76, 0)

(0.5, 0.5, 0.5)

We call the corresponding problem the Maximum-Depth Separation Problem (MD-
SP). The objective function, obtained from (2) by dropping the absolute value,
corresponds to the opposite of the signed 2-normpoint-to-hyperplane distance between
ȳ and the set of all points y ∈ R

n that satisfy the cover inequality induced by
C := { j ∈ N : z j = 1}. Thus, it is equal to −d2(ȳ, HC ) if ȳ satisfies such an
inequality, and to d2(ȳ, HC ) otherwise.

Since the z variables are binary, ||z||2 =
√∑

j∈N |z j |2 =
√∑

j∈N z j . Comple-

menting such variables as before, i.e., by introducing a binary variable x j := 1 − z j
for each j ∈ N , we obtain the following equivalent MINLP formulation:

max
x∈{0,1}n

⎧
⎨

⎩

∑
j∈N q j x j + Ψ

√
n − ∑

j∈N x j
:

∑

j∈N
w j x j ≤ Φ

⎫
⎬

⎭ .

The irrationality of the objective function prevents us from solving the problem exactly
(i.e., up to an infinite precision) on a Turing machine. However, by discarding the
solutions to the problem having a non-positive violation, we can, without loss of
generality, raise the objective function to the second power. We obtain the following
problem:

d := max
x∈{0,1}n

⎧
⎪⎨

⎪⎩

(∑
j∈N q j x j + Ψ

)2

n − ∑
j∈N x j

:
∑

j∈N
w j x j ≤ Φ,

∑

j∈N
q j x j + Ψ > 0

⎫
⎪⎬

⎪⎭
,

(MD-SP)
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Fig. 2 An illustration of the
non-concave objective function
of the (MD-SP) for an instance
with n = 2, ȳ1 = 0.4, ȳ = 0.2,
q1 = 0.6, q2 = 0.8, Ψ = −0.4,
and Φ = 9, subject to the
constraint 5 x1 + 8 x2 ≤ Φ. The
objective function, which reads
(0.6 x1+0.8 x2−0.4)2

2−x1−x2
, is plotted

only for the (x1, x2) ∈ [0, 1]2
pairs which are feasible, i.e.,
which satisfy 5 x1 + 8 x2 ≤ Φ

and 0.6 x1 + 0.8 x2 − 0.4 > 0

0
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0.2
0.3
0.4
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0.6
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0.4

0.6
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where d is the square of the maximum cut-depth. Let x∗ be an optimal solution to
the (MD-SP) and let C∗ := { j ∈ N : x∗

j = 0}. If the problem is feasible, which
implies d > 0, C∗ corresponds to a violated cover inequality of maximum depth. In
contrast, if the problem is infeasible, we have a proof that no violated cover inequality
exists. We note that the objective function is well-defined as its denominator is equal
to 0 only for x j = 1 for all j ∈ N , which is infeasible because

∑
j∈N w j � Ψ =∑

j∈N w j − (c + 1).

4 On the nature of cover inequalities of maximum-depth

The (MD-SP) can be interpreted as a variant of the (MV-SP) in which, rather than a
single objective function, the ratio of two different objective functions is maximized:
the itemprofit incremented by the constantΨ (squared) and the cardinality of the cover,
which corresponds to the difference between n and the number of items contained in a
solution to the (MD-SP). Due to this ratio, in the (MD-SP) we look for solutions with
a large numerator and a small denominator. This results in a non-concave objective
function, as shown in Fig. 2.

It is well-known that a cover inequality is non-dominated whenever the corre-
sponding cover C is inclusion-wise minimal, i.e., whenever, for any j ∈ C , C \ { j} is
not a cover. When separating maximum-depth cover inequalities, the presence of the
denominator of the (MD-SP) implies the following:

Proposition 1 Any cover corresponding to an optimal solution to the (MD-SP) is
minimal.

Proof Let x∗ be an optimal solution to the (MD-SP) and let C∗ := { j ∈ N : x∗
j = 0}

be the corresponding cover. If C∗ is not minimal, there exists a minimal cover C̃ with
C̃ ⊂ C∗. Let x̃ j ∈ {0, 1}n such that C̃ = { j ∈ N : x̃ j = 0}. As C̃ ⊂ C∗, there is some
j ∈ N with j ∈ C∗ and j /∈ C̃ . Thus, x∗

j = 0 and x̃ j = 1, implying that x̃ achieves a
numerator at least as large as x∗ and a strictly smaller denominator, which shows that
x∗ is not optimal. 
�
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Besides this minimality property, the (MD-SP) establishes a trade-off between the
cut violation (in the numerator) and the cardinality of the cover (in the denominator),
often leading to solutions with a less-than-optimal violation which is compensated by
a smaller cardinality. This is illustrated by the following numerical example, which
also shows how the optimal solutions to the (MD-SP) and the (MV-SP) can be different
even when they correspond to minimal covers.

Example 2 Consider an instance of the (MV-SP) and the (MD-SP) with n = 4 items,
weights w1 = 3, w2 = 1, w3 = 2, w4 = 5, profits q1 = 0.25, q2 = 0.23, q3 = 0.24,
q4 = 0.5, capacity c = 5. With these values, we have Φ = 5 and Ψ = −0.22.
Consider two solutions, {1, 3} and {4}, which correspond to the covers {2, 4} and
{1, 2, 3}, both of which are minimal. From the perspective of the (MV-SP), {1, 3}
is suboptimal (it has value 0.25 + 0.24 − 0.22 = 0.27), whereas {4} is optimal
(it has value 0.5 − 0.22 = 0.28). From the perspective of the (MD-SP), {1, 3} is

optimal (it has value (0.25+0.24−0.22)2

4−2 ≈ 0.036), whereas {4} is suboptimal (it has

value (0.5−0.22)2

4−1 ≈ 0.026). This difference is due to the fact that, in the (MD-SP), the
smaller numerator of {1, 3} is compensated by a smaller denominator, whereas {4},
which has a larger numerator, is penalized by a larger denominator. 
�

5 An exact dynamic programming algorithm for the (MD-SP)

In this section, we discuss the computational complexity of the (MD-SP) and we
present a solution algorithm based on Dynamic Programming (DP) to solve it to
optimality. Thanks to such an algorithm, we also show that the problem is weakly
NP-hard.

The denominator of the objective function of the (MD-SP) takes discrete values in
the set {1, . . . , n−1} (recall that the (MD-SP) is infeasible for k = n) as a function of
the number of items in the solution. It is not difficult to see that, by removing any item
j from an optimal solution with k ∈ {1, . . . , n − 1} items, the remaining set of items
in the solution must be optimal for the subproblem with capacity Φ − w j , item set
N \ { j}, and containing k−1 items, as, if not, the solution with k items is not optimal.
Thus, the (MD-SP) exhibits the so-called optimal-substructure property, which can
be exploited by an approach relying on Bellman’s recursion [25,30].

Based on this observation, we now derive a Dynamic Programming (DP) algorithm
for the (MD-SP). For each item j ∈ N , integer k ∈ {1, . . . , n− 1}, and capacity value
s ∈ {0, . . . , Φ}, we denote by f kj (s) the maximum total profit in terms of the q values
increased by the constantΨ (this corresponds to the numerator of the objective function
of (MD-SP)) that is achievable by choosing k items belonging to {1, . . . , j} ⊆ N with
a total weight no larger than s ≤ Φ. The following proposition holds:

Proposition 2 The (MD-SP) can be solved in O(n2 Φ), and its optimal solution value
is:

d = max
k∈{1,...,n−1}

{
f kn (Φ)2

(n − k)
: f kn (Φ) > 0

}
,
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whereas, if f kn (Φ) ≤ 0 for all k ∈ {1, . . . , n − 1}, the (MD-SP) is infeasible.

Proof For j = 1 and s ∈ {0, . . . , Φ}, the following holds for all k ∈ {1, . . . , n − 1}:

f k1 (s) =
⎧
⎨

⎩

q1 + Ψ if k = 1 and w1 ≤ s
−∞ if k = 1 and w1 > s
−∞ if k ≥ 2.

(4)

The last case is due to the fact that no more than a single item can be chosen for j = 1.
For j ∈ {2, . . . , n}, s ∈ {w j , . . . , Φ}, and k = 1, we have that either (i) item j is

not chosen, leading to f 1j (s) = f 1j−1(s), or (i i) item j is the only chosen item, leading

to f 1j (s) = q j + Ψ .
Therefore:

f 1j (s) = max
{
f 1j−1(s), q j + Ψ

}
. (5)

Instead, for j ∈ {2, . . . , n}, s ∈ {0, . . . , w j −1}, and k = 1 we have f 1j (s) = f 1j−1(s)
as item j does not fit.

For j ∈ {2, . . . , n}, s ∈ {w j , . . . , Φ}, and k ∈ {2, . . . , n − 1}, we have that either
(i) item j is not chosen, leading to f kj (s) = f kj−1(s), or (i i) item j is chosen, leading

to f kj (s) = f k−1
j−1 (s − w j ) + q j .

Hence:

f kj (s) = max
{
f k−1
j−1 (s − w j ) + q j , f kj−1(s)

}
. (6)

Instead, for j ∈ {2, . . . , n}, s ∈ {0, . . . , w j − 1}, and k ∈ {2, . . . , n − 1} we have
f kj (s) = f kj−1(s) as item j does not fit.
The square of the optimal solution value of the (MD-SP) is obtained by evaluating

the largest value taken by ( f kn (Φ))2

(n−k) over k ∈ {1, . . . , n − 1}, and by ignoring any case
with f kn (Φ) ≤ 0. This last step takes O(n). If f kn (Φ) ≤ 0 for all k, the problem is
infeasible and d = −∞. Computing f kj (s) for all j ∈ N , k ∈ {1, . . . , n − 1}, and
s ∈ {0, . . . , Φ} via (4), (5), and (6) takes O(n2 Φ). As, by storing the values of f kj (s)
for all j ∈ N and s ∈ {0, . . . , Φ}, an optimal solution can be reconstructed in linear
time by backtracking. The statement follows. 
�

As a consequence of the pseudopolynomial-time dynamic programming algorithm
illustrated in Proposition 2, the following holds:

Corollary 1 The (MD-SP) is weakly NP-hard.

Proof The separation problem calling for a cover inequality of strictly positive viola-
tion (or for a proof that no such inequality exists) is known to be weakly NP-hard
[26]. As any algorithm for the solution of the (MD-SP) implicitly solves such a sepa-
ration problem as well, the (MD-SP) is at leastweaklyNP-hard. As the DP algorithm
we proposed runs in pseudopolynomial time, we deduce that the problem is weakly
NP-hard. 
�
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Wenote that it is not necessary to compute f kj (s) for all the values of k ∈ {1, . . . , n−
1}. In fact, it suffices to consider k ∈ {1, . . . , k̄} where

k̄ := max
x∈{0,1}n

⎧
⎨

⎩
∑

j∈N
x j :

∑

j∈N
w j x j ≤ Φ

⎫
⎬

⎭ .

This value can be computed in O(n log n) by sorting the items in N in non-increasing
order of weights and by adding them to the solution in that order until the capacity Φ

is saturated. This observation reduces the complexity of the algorithm to O(n k̄ Φ).
An additional further speed-up can be obtained by considering, in the recursion, val-
ues of k up to the minimum between k̄ and the index j of the item currently under
examination.

We conclude this section by showing an example of execution of the DP algorithm.

Example 3 Consider again the instance of Example 2, with n = 4, weights w1 = 3,
w2 = 1, w3 = 2, w4 = 5, profits q1 = 0.25, q2 = 0.23, q3 = 0.24, q4 = 0.5, Φ = 5,
and Ψ = −0.22. The maximum number of items that can be simultaneously chosen
is k̄ = 2. The values of the recursive function f kj (s) are shown in Table 1. For each
item j ∈ N , the values corresponding to k > j (which can be neglected) are denoted
by “–”. In order to retrieve the optimal solution value, it is sufficient to examine the
values of f j (s)k for j = 4 (the last item) and s = Φ = 5 for all the values of k. In

particular, we have a solution of value d = (0.5−0.22)2

4−1 ≈ 0.026 for k = 1 and one of

value d = (0.25+0.24−0.22)2

4−2 = 0.036 for k = 2. The optimal solution value, obtained
for k = 2, corresponds to the solution x∗ = (1, 0, 1, 0), which encodes the cover
C∗ := { j ∈ N : x∗

j = 0} = {2, 4}.

6 The point-to-hyperplane distance knapsack problem

In this section, we extend our study by introducing a problem related to the (MD-SP)
which arises when maximizing a hyperbolic function over the feasible region of the
knapsack problem, and show that the DP algorithm presented in Sect. 5 can be easily
adapted to also solve such a problem.

Given a set of items S ⊆ N , let y be the characteristic vector of S. For any

� ∈ N∪{∞}, we denote by ||y||� the �-norm of y, defined as ||y||� = �

√∑n
j=1 |y j |� =

�

√∑n
j=1 y j , if � ∈ N, and ||y||� = lim�→∞ �

√∑n
j=1 |y j |� = max j∈1,...,n |y j |, if

� = ∞. We introduce the following problem:
Point-to-Hyperplane Distance Knapsack Problem. Given a set N of n items, a

weight w j ∈ Z+, a profit p j ∈ Z+ for each item j ∈ N , a knapsack capacity c ∈ Z+,
a constant α ∈ Z−, and a (non-necessarily finite) positive integer � ∈ N ∪ {∞}, find
a subset of items S ⊆ N of total weight w(S) := ∑

j∈S w j no larger than c and of
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1 2 3 4 p1

1

2

3

4

p2

HS2

HS1

(2, 3)

Fig. 3 An example of an instance of the Point-to-Hyperplane Distance Knapsack Problem represented in
the p-space, with |N | = 2, (p1, p2) = (2, 3), α = −1 and � = 3. The example consider two possible
solutions, namely S1 = {1}, corresponding to the hyperplane p1 = 1 (HS1 ), and S2 = {1, 2}, corresponding
to the hyperplane p1 + p2 = 1 (HS2 ). The dashed lines correspond to the segment connecting p to the
closest point on each of the two hyperplanes, i.e., d2(p, HS1 ) and d2(p, HS2 ). The 3-norm length of the
segments corresponds to the objective function value of the corresponding PHD-KP� solution: 1 for S1 and

2
8
3 for S2

nonnegative total profit p(S) := ∑
j∈S p j +α such that ratio between p(S) and ||y||�

is maximized.2

The problem calls for the maximization of the opposite of the signed �-norm point-
to-hyperplane distance between the point p (i.e., the profit vector) and the hyperplane
HS := {

y ∈ R
n : ∑

j∈S y j + α = 0
}
. Such a distance reads

∑
j∈N p j y j + α

||y||�′
,

where � and �′ satisfy 1
�

+ 1
�′ = 1 (the corresponding norms are dual in the sense of

Hölder’s inequality). Figure 3 provides a geometric insight of such a signed distance.
By using an approach similar to the one that led to definition of the (MD-SP) in

Sect. 3, we directly cast the Point-to-Hyperplane Distance Knapsack Problem as the
following MINLP:

max
y∈{0,1}n

⎧
⎪⎨

⎪⎩

(∑
j∈N p j y j + α

)�

∑
j∈N y j

:
∑

j∈N
w j y j ≤ c,

∑

j∈N
p j y j + α ≥ 0

⎫
⎪⎬

⎪⎭
.

(PHD-KP�)

2 Notice that, if α ≤ 0, the empty solution y = 0 is optimal, as it achieves a value of α
0 = ∞.
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Fig. 4 An illustration of the non-concave objective function of the (PHD-KP�) for an instance with n = 2,
p1 = 4, p2 = 7, α = −1, and c = 9, subject to the constraint 5 x1 + 8 x2 ≤ c, with � = 3 (left) and

� = 6 (right). The objective function, which reads (4 y1+7 y2+α)3

y1+y2
(left) and (4 y1+7 y2+α)6

y1+y2
(right), is

plotted only for the (x1, x2) ∈ [0, 1]2 pairs which are feasible, i.e., which satisfy 5 x1 + 8 x2 ≤ c and
4 y1 + 7 y2 − 1 > 0

An illustration of the objective function of the (PHD-KP�) is given in Fig. 4. The
following proposition characterizes the computational complexity of the problem.

Proposition 3 An optimal solution to the (PHD-KP�) can be computed in O(n2 c) and
the problem is weakly NP-hard.

Proof The statement followsbyobserving that the (MD-SP) reduces to the (PHD-KP�).
Specifically, by setting p j = q j for all j ∈ N , α = Ψ , c = Φ, and � = 2,
and by observing that

∑
j∈N y j > 0, it holds that, if the optimal solution value

of the (PHD-KP�) is strictly positive, then the value d of an optimal solution to
the (MD-SP) is strictly positive as well, leading to a violated cover. Alternatively,
if the (PHD-KP�) is infeasible, then no cover exists for the (MD-SP). Now, observe
that the DP algorithm for the (MD-SP) presented in Sect. 5 can be easily adapted to
solve the (PHD-KP�). In particular, by denoting gkn(·) as the function f kn (·) in Sect. 5
in which p replaces q and α replaces Ψ , the (PHD-KP�) can be solved in O(n2 c).
Assuming that the problem is feasible, its optimal solution value is:

max
k∈{1,...,n−1}

{
gkn(c)

�

k
: gkn(c) > 0

}
.

Otherwise, gkn(c) ≤ 0 for all k ∈ {1, . . . , n − 1} and the problem is infeasible. As for
Proposition 2, by storing the values of gkj (s) for all j ∈ N and s ∈ {0, . . . , Φ}, an
optimal solution can be reconstructed in linear time by backtracking. 
�

Similarly to theDP algorithm for the (MD-SP), a speed-up technique can be applied
also when solving the (PHD-KP�). By computing k̄ as done in Sect. 5 and substituting
c for Φ, this leads to a complexity of O(n k̄ c).

Two special cases of the (PHD-KP�) areworthmentioning. First, we note that, if � =
1 and if the problem admits a solution containing at least an item, ||y||�′ = ||y||∞ = 1.
In such a case, the (PHD-KP�) coincides with the classical KP and, thus, it can be
solved in O(n c).We also note that, if � = ∞ andα = 0, then ||y||�′ = ||y||1 coincides
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with the cardinality of the solution. Hence, the optimal solution to the problem can be
obtained by selecting a single item of maximum profit, in which case the problem is
solved in O(n).

Finally, we note that the solutions to the (PHD-KP�) (i.e., the subsets S) are in
general not maximal, especially when p j = 0 for some j ∈ N . In contrast, the
solutions to the MD-SP are maximal by construction, even if the instance contains
items with q j = 0 for some j ∈ N . This is due to the fact that the denominator
of the (PHD-KP�) enforces solutions with a small cardinality, whereas the one of
the (MD-SP) enforces solutions with a large cardinality. Thus, even if the (PHD-KP�)
can be solved, in principle, for the separation of the cover inequalities, the covers that
one would find may not be minimal and, hence, could be dominated.

7 Experiments when optimizing over the cover-inequality closure

In this section, we investigate the impact of optimizing over the cover-inequality clo-
sure by generating maximum-depth cover inequalities within a cutting-plane method
where the (MD-SP) is solved to optimality. In line with previous works such as
[3,14,15,38], our goal is to assess whether the exact solution of a separation prob-
lem based on the cut depth may lead to the generation of a smaller number of cuts, and
to quantify how large such a reduction can be. For this reason, we adopt a pure cutting-
plane method in which all the separation problems are solved to optimality. As such,
the computing times are not our primary concern in the experiment that we are about
to present. Moreover, in order to assess the impact of the maximum-depth criterion in
a clean setting, we generate a single cut at a time, without resorting to branching, nor
to any heuristic separation method. In particular, we remark that assessing the number
of cuts generated by heuristic separation methods (which are used in state-of-the-art
MILP solvers such as CPLEX, Gurobi, or Xpress; also see the methods proposed
in [24]), would be of scarce interest, as such methods do not allow for optimizing
exactly over the cover-inequality closure.

We consider two main pure cutting-plane generation methods, MaxD and MaxV.
The first one,MaxD, consists in the generation of cover inequalities of maximum depth
by solving the (MD-SP) via the DP algorithm we proposed in Sect. 5. We recall that,
due to Proposition 1, every cover corresponding to an optimal solution to the (MD-SP)
is minimal. The second one, MaxV, is based on the generation of cover inequalities of
maximum violation by solving the (MV-SP) via the standard O(n Φ)DP algorithm for
the KP described in, e.g., [25,30]. We note that, if some component j ∈ N of the point
ȳ being separated is equal to 1 (which leads to a coefficient q j = 0 in the objective
function), the solution to the (MV-SP) may not be maximal, which implies that the
corresponding cover may not be minimal. In particular, this is the case in most of the
algorithm for solving the KP, including [25,30,31], where every item with q j = 0 can
be discarded.

For this reason, we also consider a third method, which we refer to as MaxV+, in
which, after a cover inequality of maximum violation has been obtained by solving
the (MV-SP) via the standard DP algorithm, we turn the corresponding cover into
a minimal one with an a posteriori linear-time procedure. From a maximum-depth
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perspective,wenote that the separation algorithm featured inMaxV+ can be interpreted
as a heuristic for solving the (MD-SP) (which still allows for optimizing over the
closure exactly). Indeed, the separation algorithm in MaxV+ computes, first, a solution
whichmaximizes the cut violation (which corresponds to thenumerator of the objective
function in the (MD-SP) and, then, it removes items with q j = 0 from the cover to
make it minimal. As the items are removed in order of non-increasing weight, this
second operation corresponds to minimizing the denominator in the (MD-SP) for
a fixed value of the numerator. Overall, this leads to a solution which heuristically
maximizes the cut depth.

All the exact separation algorithms that we consider are based on dynamic pro-
gramming and process the items in a given pre-defined order. To limit the impact of
such an order on the tie-breaking choices, in our implementations the items are always
taken into account in non-increasing order of weight.

As a case study, we consider two combinatorial problems featuring one or more
knapsack constraints: (i) the Knapsack Problem (KP) and (i i) the Multi-dimensional
KnapsackProblem (MKP). This family of problems can be cast as the followingMILP:

max
y∈{0,1}n

⎧
⎨

⎩
∑

j∈N
p j y j :

∑

j∈N
wi j y j ≤ ci i ∈ M

⎫
⎬

⎭ ,

where y j is a binary variable equal to 1 if and only if item j ∈ N is chosen, p j is
the item profit, and M is a set of m knapsack constraints, with capacities ci (i ∈ M)
and item weights wi j (i ∈ M, j ∈ N ). The KP, as well as its numerous variants, has
been extensively studied in the literature for over a century [25,30], with works dating
as early as 1897 [32]. We refer the reader to [18,20–22,25,30] for more details and
the KP and its variants, and to [5,23,24] for works focused on its polyhedral aspects.
The MKP is a multi-dimensional extension of the KP featuring m > 1 knapsack
constraints. This problem has also been extensively studied in the literature, see e.g.,
[25,30,36]. In addition, for both problems we also consider the generalization where
conflicts between the items are present. Let G = (N , E) be a conflict graph where
N is the set of items and E is the set of edges representing the conflicts. To prevent
the simultaneous selection of any pair of items i and j with {i, j} ∈ E , the following
constraints are imposed:

yi + y j ≤ 1 {i, j} ∈ E .

The generalization of the KP to the case with conflicts has been extensively studied
in the literature, see, e.g., [9,16,35].

In line with the classes of KP instances proposed in [31], we generate knapsack
items, weights, and profits considering the following three classes: uncorrelated,
weakly correlated, and subset sum.3 The instances depend on twouser-supplied param-
eters: c̄ and R̄. For each knapsack constraint, the capacity c is defined as a percentage

3 Preliminary experiments on other classes proposed in [31] revealed that, on the strongly correlated,
inversely correlated, and almost strongly correlated classes, the number of cover inequalities that is gener-
ated is extremely small (2 or 3 cuts on average).
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of the total itemweightW := ∑n
j=1 w j , and is set to c := �c̄·W�+1. R̄, which defines

the order of magnitude of the item profits and weights, is set to 1,000. We generate 1
or 5 knapsack constraints for each instance, except for those of the subset sum class.
For each KP constraint and for each class, we consider n ∈ {20, 40}, c̄ ∈ {10%, 20%}.
We first generate 200 instances per combination of the parameters. In order to better
assess the impact of the different cutting-plane methods, we drop any instance where
the total number of cover inequalities generated by MaxV is smaller than 15.We notice
that, in spite of this, the number of cover inequalities that are generated never exceeds
a couple of hundreds.4

As far as the conflicts are concerned, thanks to extensive preliminary experiments
we noticed that the number of generated cover inequalities decreases when increasing
the density of the conflict graph. For this reason, we consider a set of conflict graphs
generated by following the Erdös-Rény model with an edge probability of 1%. This
way, we obtain a testbed of 2721 KP and MKP instances in which each instance is
featured with or without a conflict graph.

TheDP algorithms are implemented inC++ and compiledwithgcc v9.2.1with flag
-O3. The LP relaxations are solved with CPLEX 12.9. The experiments are run on an
8-core Intel i7-3770 @ 3.4 GHz, equipped with 16 GB of RAM, and running Ubuntu
64-bit, release 19.10. The source code of the algorithms used in the experiments can
be downloaded from https://github.com/fabiofurini/COVER_MAX_DEPTH.

The results for the three methods MaxD, MaxV, and MaxV+ are summarized in
Table 2. Each row groups the results corresponding to n ∈ {20, 40}, c̄ ∈ {10%, 20%},
and 200 different seeds, i.e., 800 different instances. The column “conflict” reports
the percentage of conflicts, the column “class” reports the class of the instances, the
column “# const” reports the number of KP constraints. In the column “# inst”, we
report the number of instances (out of 800) in which MaxV generates at least 15 cover
inequalities inequalities. In each row, the table reports the average and the maximum
number of the cover inequalities that are generated to optimize exactly over the cover
closure by the corresponding method.

Let us first compare MaxD to MaxV, thus considering the clean setting in which
either the cut depth or the cut violation is considered. Our results show that MaxV
generates, in total, 103,198 inequalities on the whole testbed (with an average of 37.92
inequalities per instance), whereas MaxD only generates 47,316 (17.38 on average),
for a reduction of more than a factor of 2. The maximum difference per instance in
the number of generated cuts is 231, and the average one is of 20.54. The Subset Sum
instances are the class of instances in which the number of inequalities generated by
either algorithm is more substantial (more than twice the number of inequalities that
are generated for the instances of the other two classes). The number of instanceswhere
MaxV generates at least 15 cover inequalities is substantially larger. We observe that
MaxV generates a total of 70,081 inequalities (57.53 on average), in contrast to MaxD,
which generates a total of 27,325 inequalities (22.43 on average), for a total reduction
ofmore than a factor of 2.5. As Table 2 shows, the presence of conflict constraints leads
to an overall reduction in the number of cover inequalities, which also results in a less

4 We also tested the nine classes of MKP instances belonging to the OR Lib [8], introduced in [12].
Experimentally, we observed that the number of inequalities generated on these instances is extremely
small, often smaller than 5.
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Table 2 Total number of cover inequalities generated for optimizing over the corresponding closure for the
considered classes of instances

conflicts class # const # inst MaxV MaxD MaxV+
avg max avg max avg max

0% Uncorr. 1 210 23.7 106 14.2 37 15.0 57

5 185 20.6 43 13.2 27 13.4 28

Weakly Corr. 1 181 22.7 63 11.2 29 12.6 31

5 203 21.6 51 15.0 32 15.5 32

Subset Sum 1 681 64.6 251 23.1 59 26.4 56

1% Uncorr. 1 201 23.6 87 13.9 45 14.7 42

5 176 20.1 43 13.0 27 13.2 28

Weakly Corr. 1 159 22.7 66 10.7 31 12.2 36

5 188 21.2 51 14.5 32 15.1 33

Subset Sum 1 537 48.6 251 21.6 62 21.5 50

Bold indicates the results corresponding to the best algorithm

pronounced difference between the two methods. The total number of inequalities
that are generated on the instances where no conflicts are present (1460 instances)
is 26,209 for MaxD and 61,248 for MaxV; for the instances with conflicts (1261
instances), 41,950 inequalities are generated by MaxV and 21,107 cover inequalities
for MaxD. A similar phenomenon is observed when the number of KP constraints is
increased from1 (1969 instances) to 5 (752 instances). The total number of inequalities
that are generated on the instances with a single KP constraints is 87,499 for MaxV
and 36,830 for MaxD; for the instances with 5 KP constraints, 15,699 inequalities are
generated by MaxV and 10,486 cover inequalities for MaxD.

When also taking the performance of MaxV+ into consideration, we observe that
the latter leads to a very large reduction in the number of cover inequalities w.r.t.MaxV.
Interestingly, such a reduction seems to be almost comparable, albeit slightly inferior,
to the one obtained with MaxD. Indeed, MaxV+ generates, in total, 50,629 inequalities
(18.6 on average), whereas MaxD generates 47,316 inequalities (17.38 on average).
As we illustrated before, from a cut-depth perspective such a performance can be
explained by interpreting the separation algorithm featured in MaxV+ as a heuristic
for solving the separation problem in MaxD. The superior performance of MaxD and
MaxV+ confirms that, as can be expected, the impact of generating minimal covers
is substantial. Nevertheless, the experiments we carried out on our testbed show that,
whenmaximizing the ratio between the numerator and the denominator of the (MD-SP)
exactly, as done in MaxD, it is possible to achieve a further reduction w.r.t. MaxV+ by
7%.

As the separation algorithm embedded in MaxD runs in O(n k̄ Φ), its computing
time is larger than the one of the classical DP algorithm used in MaxV, which runs in
O(n Φ). While this may be compensated by the reduction in the number of cutting-
plane iterations (which also leads to solving a smaller number of LP relaxations), such
reduction is, while substantial on the two testbeds we considered, not sufficient to
obtain a cutting plane algorithm that is also faster in terms of computing time. Clearly,
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one of the main driver of the computational time is the number of items n. On average
on the 2721 instances we considered, the time taken by MaxD is of ≈ 0.3 s for n = 20
and of ≈ 3.8 s for n = 40. The time taken by MaxV+ is of ≈ 0.02 s for n = 20 and
≈ 0.08 for n = 40. The time taken by MaxV is of ≈ 0.03 s for n = 20 and ≈ 0.16
for n = 40. For MaxD, we have, on average, k̄ 	 17 for n = 20 and k̄ 	 36 for
n = 40. This shows that, with MaxV+, we obtain not only a reduction in the number
of cutting planes, but also in the computing times. The larger computing times of
MaxD are in line with the fact that the (MD-SP) solved in MaxD is intrinsically harder
than the MV-SP due to being a non-linear variant of the KP with a fractional objective
function. We further remark that most of the time is taken by solving the separation
problem, and only a fraction of it is spent by reoptimizing the LP after a cut has been
added. In a different context where the reoptimization problem that is solved after a
cut is added is harder (such as, e.g., a MILP or a very large LP), a reduction in the
number of cutting planes could have a beneficial effect on the computing time as well.

In summary, our experiments indicate that, when optimizing over the closure of
the cover inequalities, the cut depth is a valid measure whose inclusion can lead to
a substantial reduction in the number of cutting planes that are generated. They also
reveal that, rather than optimizing such a measure directly, which leads to a harder
separation problem, it is better to take it into account indirectly in a heuristic method
such as the one featured in MaxV+, whose complexity is the same as that for the
standard method in MaxV.

8 Computational experiments for solving the (PHD-KP�)

With this last set of experiments, we focus on the (PHD-KP�), comparing the perfor-
mance of the DP algorithm we presented in Sect. 6 to BARON v19.12.7, which is one
of the state-of-the-art spatial branch-and-bound solvers for global optimization.

Preliminary experiments by running BARON on the formulation (PHD-KP�)
reported in Sect. 6 revealed that the solved failed to solve most of the instances,
especially for larger values of �. This is due to the solver incurring in numerical issues
caused by the nature of the numerator, which consists in a high-degree polynomial
function. For this reason, the experiments in this section are carried out by using the
following formulation:

max
y∈{0,1}n

⎧
⎨

⎩

∑
j∈N p j y j + α

�

√∑
j∈N y j

:
∑

j∈N
w j y j ≤ c,

∑

j∈N
p j y j + α ≥ 0

⎫
⎬

⎭ .

We remark that, by solving this formulation with BARON, one does not have the
guarantee that the problem is solved to infinite precision, differently from the case of
our DP algorithm. For this reason, to limit as much as possible the impact of adopting
a finite precision on the accuracy of the solution to the formulation reported above,
we run BARON by setting the optimality tolerance to 0.

For these experiments, we generate the item profits p and weights w as pro-
posed in [31] according to the following 8 different classes: uncorrelated, weakly,
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Table 3 Computational comparison between the DP algorithm of Sect. 6 andBARON in terms of the average
solution time in seconds (t[s]) and the number of instances solved to optimality (#opt) for different values
of n, c̄, and � withing a time limit of 600 s

n c̄ #inst DP algorithm BARON
� = 2 � = 3 � = 10 � = 2 � = 3 � = 10
t[s] #opt t[s] #opt t[s] #opt t[s] #opt t[s] #opt t[s] #opt

75 25 8 0.1 8 0.1 8 0.1 8 0.3 6 0.2 6 0.2 6

50 8 0.2 8 0.2 8 0.2 8 0.2 6 0.2 6 0.8 6

75 8 0.4 8 0.4 8 0.4 8 15.9 8 16.2 8 27.0 8

100 25 8 0.1 8 0.1 8 0.1 8 0.9 8 1.0 8 0.9 8

50 8 0.5 8 0.5 8 0.5 8 0.4 8 0.4 8 0.8 8

75 8 0.8 8 0.8 8 0.8 8 0.1 6 0.2 6 0.2 6

150 25 8 0.6 8 0.6 8 0.6 8 0.5 6 0.8 6 0.4 6

50 8 1.8 8 1.7 8 1.8 8 0.4 6 0.4 6 0.7 6

75 8 3.5 8 3.5 8 3.5 8 0.3 6 0.4 6 0.6 6

Avg/tot 0.9 72 0.9 72 0.9 72 2.1 60 2.2 60 3.5 60

Bold indicates the results corresponding to the best algorithm

strongly, inverse-strongly, and almost-strongly correlated, subset sum, even–odd
subset sum, and even–odd strongly correlated. We consider n ∈ {75, 100, 150},
c̄ ∈ {25%, 50%, 75%}, which determines the knapsack capacity c := �c̄ · W� + 1,
R̄ = 1000, and α := −1. We also consider � ∈ {2, 3, 10}, leading us to a total of
216 (PHD-KP�) instances. We adopt a time limit of 600 s for each instance.

The results are reported in Table 3. Each row reports the average computing time
in seconds for the instances of the 8 classes generated with the same values of n and c̄
(t[s]) and the number of instances solved to optimality (#opt). The column # reports
the number of instances per row. The former is computed by only considering the
instances that have been solved to optimality by the associated method.

The table shows that the DP algorithm is able to solve all the 216 instances con-
sidered while BARON only solves 180 of them, i.e., ≈ 83%. It also shows that the
performance of the DP algorithm is not affected at all by the value of �, while the
performance of BARON tends to worsen for high values of � (see, in particular, the
instances with n = 75 and c̄ = 50, 75). The performance of both methods degrades
when increasing the number of items, but the impact of n on the performance of the
DP algorithm is much smaller than on BARON, showing that the DP algorithm enjoys
better scaling properties. In particular, for n = 150 and all the values of � and c̄,
BARON always fails to solve two instances. Across the whole testbed, the instances
BARON fails to solve are always of the categories even–odd subset sum and even–odd
strongly correlated. The table also shows that the knapsack capacity has a negative
impact on the performance of the DP algorithm, in line with its pseudopolynomial
complexity O(n k̄ c).
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9 Conclusions

This work constitutes a first step on the exact separation of maximum-depth
inequalities, focusing on the family of cover inequalities. We have proposed a
pseudopolynomial-time Dynamic Programming (DP) algorithm for the maximum-
depth separation of such inequalities, which has allowed us to established that the
problem is weaklyNP-hard. Our experiments have indicated that a maximum-depth
approach can lead to a reduction in the number of cuts that are generated when opti-
mizing over the cover-inequality closure using a pure cutting-plane algorithm. Since,
however, the computational complexity of the separation problem increases, this has
not lead to an overall reduction of the computing times in our experiments. Interest-
ingly, we have observed that a similar reduction in the number of cuts can be obtained
via the separation ofmaximally-violated inequalities whose covers are thenmademin-
imal via an a posteriori procedure (which leads to a reduction of the overall computing
time).

We have then introduced the Point-to-Hyperplane Distance Knapsack Problem
(PHD-KP), which is a variant of the Knapsack Problem with a hyperbolic objec-
tive function similar to the one featured in the separation problem of maximum-depth
cover inequalities. We have shown how such a problem can be solved to optimality
via an extension of the DP algorithm we proposed for the separation problem. For the
PHD-KP, our experiments have revealed that our DP algorithm is the most-effective
approachwhen compared to a state-of-the-art spatial branch-and-bound solver in terms
of both the computing time and the number of instances solved.

With this letter, we hope to stimulate the research of algorithms for the separation
of other families of valid inequalities, such as, e.g., clique constraints or 0–1

2 Gomory
cuts [4,27], adopting the maximum-depth criterion. Such a research may also include
the adoption of this criterion in the context of Column Generation methods such as
those for solving the Set-Partitioning formulation of the Bin Packing Problem, see,
e.g., [15,19], by generating columns corresponding to violated dual constraints of
maximum depth, whose pricing problem coincides with the PHD-KP.

Acknowledgements The authors are grateful to two anonymous referees and to the associate editor for
their comments, which helped to improve the quality of the paper. The first author acknowledges support
from the Université Catholique de Louvain via the “Fonds Spéciaux de Recherche” (FSR) 2017-2021, and
the Fondation Louvain via the research grant COALESCENS.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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