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Abstract—We study expansion and information diffusion prop-
erties of dynamic networks, i.e., networks whose topologies evolve
over time as nodes enter or leave the system and edges are
continuously created or destroyed. In this scenario, we investigate
flooding as a basic information diffusion mechanism.

We are interested in models that are likely to result in
sparse networks, i.e., in networks containing O(n) edges, with
n the number of nodes that are present at any given time of
interest, with a focus on models in which edges are created
randomly according to simple probabilistic mechanisms, rather
than according to carefully designed distributed algorithms. In
this perspective, in all models we consider, upon joining the
network, a node connects to d = O(1) random nodes currently
in the system. On the other hand, an edge remains alive as long
as both its endpoints are.

For the case in which edges that fail (because one endpoint
left the network) are not replaced, we show that, although the
network is likely to contain Ωd(n) isolated nodes, flooding still
informs a fraction 1− exp(−Ω(d)) of the nodes in time O(logn)
with large, constant probability. Moreover, we are able to show,
that at any given time, the graph exhibits a “large-set expansion”
property.

We further investigate models that exhibit edge regeneration,
meaning that, whenever an edge (v, w) established by v fails
because w leaves the network, it is replaced by a new random
edge (v, z). We show that models with edge regeneration result in
evolving networks that, at any given time, are vertex expanders
with high probability, so that flooding takes O(logn) time.

The above results hold both for a simplfied streaming model
of node churn and in a more realistic, continuous-time setting,
in which the interval between two consecutive node arrivals
follows a Poisson distribution, while nodes’ lifetimes follow an
exponential distribution.

Previous work considered models in which either the vertex
set is fixed or edges are established according to more or less
sophisticated algorithms. Our motivation for studying models
with simple and random edge creation mechanisms is to move
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one step further towards models that may eventually capture key
aspects of the formation of social or peer-to-peer networks.

I. INTRODUCTION

In this paper, we investigate information diffusion in dy-
namic networks, with a focus on flooding, the basic mechanism
whereby each informed node in turn relays the information
received to each of its neighbors. Flooding represents the
fastest protocol for broadcast, a fundamental communication
primitive in distributed systems.

We use the term dynamic network to denote communication
networks that change over time, as nodes enter or leave the
system and links between nodes are created or destroyed.
Several important cases of information diffusion occur in
networks that evolve over time, such as social or peer-to-peer
networks.

Information diffusion in dynamic networks has been the
focus of extensive previous work, surveyed in Section II. We
are interested in models that i) exhibit node churn (that is, in
which nodes enter and leave the network over time) and ii)
in which edges are created randomly, rather than according to
sophisticated distributed algorithms. Our motivation is that a
satisfactory modeling of network formation in social networks
and peer-to-peer networks will have to meet both requirements.
To the best of our knowledge, information diffusion in dy-
namic networks with node churn and with random, uniform
edge creation was not studied before.

We kept all other modeling choices as simple as possible,
defining models with as few parameters as possible, in order to
identify qualitative features that we believe might prove robust
to different modeling choices. If, as a result, our models are
too simplistic to reflect all properties of realistic networks,
one of the models we consider (the Poisson model with edge
regeneration defined below) bears a certain resemblance to the
way peer-to-peer networks such as bitcoin are formed [20],
[24].

We study models in which the network is sparse, meaning
that it has O(n) edges, where n is the number of nodes at
any given time under consideration. Specifically, when a node
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is “born,” it connects to d = O(1) random nodes. We show
that dynamic random graphs created in this fashion maintain
interesting expansion properties over time, with flooding in-
forming all or most nodes (depending on details of the model)
in O(log n) time.

A. Modeling dynamic networks

A dynamic network model is specified by describing i)
how nodes enter and leave the network and ii) how edges
are generated and destroyed.

a) Modeling node churn: We initially study an unrealis-
tic, yet very simple and insightful model of node churn: at each
discrete time unit, one node enters the network and each node
is alive for exactly n time units. We refer to this as a streaming
model of node churn. After the first n time units, the network
always has exactly n nodes, and precisely one node is born and
one node dies in each time unit. We then study a more realistic
continuous-time model, in which the number of nodes’ births
within each time unit follows a Poisson distribution with mean
λ, while the lifetime of each node is independently distributed
as an exponential distribution with parameter µ, so that the
average lifetime of a node is 1/µ and the average number of
nodes in the network at any given time is λ/µ. In order to
reduce the number of parameters, we assume that the time
it takes to deliver a message along an edge is the same, or
the same order as, the typical time between consecutive node
births, which is 1 in the streaming model and λ in the Poisson
model. In order to use a consistent notation for the two models,
we choose time units in the continuous model so that λ = 1,
and we set n = 1/µ. With these conventions, the results we
prove in the streaming model extend to the continuous time
model (despite proofs becoming considerably more technical
in some cases), suggesting that the results exhibit a certain
robustness and that the streaming model, despite its simplicity,
might have some predictive power on the behavior of more
realistic models.

b) Modeling edge creation and destruction: When a
node enters the network, we assume that it connects to
d = O(1) nodes chosen uniformly at random among those
currently in the network. Once an edge (u, v) is created, it
remains active as long as both u and v are alive. We consider
two models: in the one without edge regeneration edges are
created only when a new node joins the network. In the model
with edge regeneration, a node creates its outgoing edges not
only upon joining the network, but also every time it looses an
outgoing edge because one of its neighbors left the network,
so that the out-degree of every node is always d.
Remark. Although the assumption that a node can pick
its neighbors uniformly at random among all nodes of the
network is unrealistic in many scenarios, the edge creation
and regeneration processes in our models are reminiscent of
the way some unstructured peer-to-peer networks maintain
a “random” topology. For example, each full-node of the
Bitcoin network running the Bitcoin Core implementation
has a “target out-degree value” and a “maximum in-degree
value” (respectively 8 and 125, in the default configuration)

and it locally stores a large list of (ip addresses of) “active”
nodes. This list is initialized with nodes’ addresses received in
response to queries to some DNS seeds. Whenever its number
of current neighbors falls below the configured target value, a
full-node tries to create new connections with nodes sampled
from its stored list of active nodes. The list stored by a full-
node is periodically advertised to and updated with the lists
advertised from its neighbors. Hence, in the long run, each
full-node samples its out-neighbors from a list containing a
“sufficiently random” subset of all nodes in the network [9],
[24].

B. Results and techniques

In the next two subsections, we describe our positive and
negative results, summarized in Table I, for all models we
consider.

1) Models without edge regeneration: For models without
edge regeneration, we prove that, at any given time, with high
probability1 (for short, w.h.p.), there are Ωd(n) isolated nodes
in the network. A node v becomes isolated if i) all d edges
it created at birth were to destinations that died in the interim
and ii) v was never chosen as a neighbor by a younger node.

Because of the presence of such isolated nodes, we can show
the following two statements for a flooding process initiated at
time t, for sufficiently large t: (i) there is a constant probability
that the flooding process dies out after informing only O(1)
nodes; ii) W.h.p. the flooding time is Ωd(n) in the streaming
model and Ωd(n log n) in the Poisson model, where, as usual,
the flooding time is defined as the time required by flooding to
broadcast the source message to all nodes. We remark here that
flooding is the most resilient and fastest broadcast protocol:
hence, the statements above hold for any broadcast protocol
as well.

On the other hand, we show that, with large constant
probability (in detail, 1 − exp(−Ω(d)), thus tending to 1 as
d → ∞), flooding will broadcast the source message to, say,
90% (in general, a fraction 1−exp(−Ω(d)) of the nodes, thus
again tending to 1 as d→∞) in O(log n) time.

To prove such fast convergence we establish two results.
One is that, in O(log n) time, flooding reaches at least, say,
n/10 nodes. To prove this, we argue that, as long as the num-
ber of informed nodes is below n/10, there is a sufficiently
high probability that the number of informed nodes grows by
a constant factor in each step (the probability that the above
condition fails after exactly t steps decreases exponentially
with t, so that we can take a union bound over all t). The basic
idea of this proof is to apply the principle of deferred decisions
to the d edges chosen by each node, assuming that those
edges are chosen upon informing the destination node itself,
so that the “frontier” of newly informed nodes keeps growing.
Unfortunately, two problems arise when implementing this
approach. One is that, in the generic step of diffusion, older
nodes are more likely to have chosen neighbors that have

1As usual, we say that an event E holds with high probability if a constant
γ > 0 exists such that P(E) > 1 − n−γ .
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Poisson/Streaming dynamic graphs
without Edge Regeneration with Edge Regeneration

Expansion properties Negative results Constant fraction of isolated nodes (w.h.p.) —

Positive results Ω(1)-expansion of big-size node subsets (w.h.p.) Ω(1)-expansion
(w.h.p.)

Flooding Negative results Flooding may not complete, with probability Ω(1) —

Positive results
Flooding informs a fraction 1 − exp(−Ω(d))

of the nodes in O(logn) time,
with probability 1 − (exp(−Ω(d)))

Flooding time is
O(logn) (w.h.p.)

TABLE I
SUMMARY OF OUR RESULTS.

meanwhile died, so that they are unlikely to significantly
contribute to the number of newly informed nodes in the
next step. The second difficulty is that a node might become
informed by a message received from one of the d neighbors it
chose at birth, so that we cannot really apply deferred decision
in the way we would like.

To sidestep these difficulties, we consider a modified dif-
fusion process, which underestimates the number of truly
informed nodes in every step, but at the same time re-
moves dependencies that would be otherwise hard to tackle.
Specifically, we only consider paths of diffusion that alternate
between “young” nodes, whose ages are below the median age,
and “old” nodes, whose ages are above the median. Moreover,
we arbitrarily split the d edges established by each node at
birth into two subsets of d/2 “type-A” edges and d/2 “type-
B” edges, so that only edges of one type are used to move
back and forth between young and old nodes in each step
of alternating path construction. This way, some cumbersome
dependencies are removed and we able to apply deferred
decisions again.

Using the above approach, we are able to show that at least
n/10 nodes are informed within O(log n) steps. To complete
the argument, we show that, if d is a sufficiently large constant,
all node sets of cardinality at least n/10 have constant node
expansion, which leads to informing at least .9n nodes within
O(1) further steps. In the argument sketched above, 1/10 can
be replaced by exp(−Ω(d)). This tradeoff is best possible
since, as argued above, Ωd(n) nodes will be isolated and thus
will not be reachable by the flooding process.

2) Models with edge regeneration: In the model with edge
regeneration we show that, in each time step, w.h.p., the graph
has constant node expansion. This in turn implies that the
flooding protocol informs all nodes within O(log n) steps,
despite the presence of node churn.

In the streaming model, since the number of nodes is fixed
in each step, the proof of node expansion proceeds along
the lines generally used to prove expansion in static random
graphs: we bound the probability that a fixed set of k nodes
fails to have constant node expansion, then we take a union
bound by multiplying by

(
n
k

)
and then by summing over k.

The main difficulty is in characterizing the probability that an
edge exists between a pair of nodes u, v, because it is a non-
trivial function of the ages of u and v. On the other hand,
since node churn is limited and deterministic in the streaming
model, the result on node expansion easily lends a logarithmic

bound on flooding time.
The analysis becomes considerably more technical in the

Poisson model. The main difficulty is that, in order to compute
the probability that an edge (u, v) exists, we need to argue
about the ages of u and v, which brings to considering a union
bound over all possible demographics of the nodes (i.e., age
distributions). In the Poisson model however, there is constant
probability that nodes of age up to n log n exist. The point
is that most of the

(
n
k

)
ways of choosing k nodes of all

possible ages involve the choice of many old nodes, which
are unlikely to have all survived. In order to carefully account
for the “demographics” of all possible sets of edges in our
union bound, we consider the logarithm of the probability
that a certain set fails to expand, interpret it is as the KL
divergence of two appropriately defined distributions, and
then leverage properties of the KL divergence itself. Finally,
derivation of a bound on flooding time from node expansion
requires more technical care in the Poisson model, since we
need to account for the presence of a random number of node
insertions/deletions during each 1-hop message transmission.

C. Roadmap

Due to (strict) page limits, the rest of this extended abstract
is devoted to two technical contributions, which we believe
are the most innovative and interesting ones. The first one
is the analysis of the flooding process via the alternating
path argument (the so called onion-skin process) in the model
without edge regeneration: In Section III, we describe this
analysis in the (simpler) streaming model, since it essentially
proposes the main ingredients for both the streaming and
Poisson model, without some complications of the latter. In
Section IV, we describe our main idea to establish node
expansion for the model with edge regeneration, using a notion
of edge subset “demographics”, which is quantified using the
KL divergence. In order to discuss some important technical
issues of this analysis and our approach to tackle them, we
present the analysis for the (more complex) Poisson model.
Remark. The full version of our paper, including all technical
statements and their proofs, is available in the ArXiv Reposi-
tory [5].2

II. RELATED WORK

A first, rough classification of dynamic graphs follows a key
feature: whether or not the set of nodes is static or evolves over

2Available at https://arxiv.org/abs/2007.14681
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time. In the former case, we have an edge-dynamic graph, in
which a topology dynamics defines the way the edges spanning
a fixed set V of nodes change over time. For this class of
dynamic graphs, several models [6], [7], [15], [16], [18], have
been introduced and rigorously analyzed.

In contrast, the case in which the set of nodes changes
over time received less attention in the past. This class of
dynamic graphs {Gt = (Vt, Et), t > 0} are often called
dynamic networks with churn [1]: in this framework, a specific
graph dynamics describes both the node arrival/departure rule
for the time sequence Vt and the edge updating rule for the
time sequence Et. The number of nodes that can join or leave
the network in every round is called churn rate. For brevity’s
sake, in the remainder we only discuss previous analytical
results on dynamic networks with churn that are more closely
related to the models we investigate in this paper. In particular,
we mostly focus on previous works that rigorously analyzed
connectivity properties of dynamic networks with churn.

As remarked in the introduction, to the best of our knowl-
edge, previous analytical studies focus on distributed algo-
rithms that are suitably designed to maintain topologies with
desired connectivity properties.

In this line of work, Pandurangan et al. [22] introduced a
partially-distributed protocol that constructs and maintains a
bounded-degree graph which relies on a centralized cache of
a constant number of nodes. In more detail, their protocol
ensures the network is connected, has logarithmic diameter,
and has always bounded degree. The protocol manages a
central cache which maintains a subset of the current set
of nodes. When joining the network, a new node chooses a
constant number of nodes in the cache. The centralized cache
update procedures follow rather complex rules that require
O(log n) overhead and delays, w.h.p.

In [13], Duchon et al presented ad-hoc protocols that
maintain a given distribution of random graphs under an
arbitrary sequence of node insertions and deletions. More in
detail, given that the graph Gt is random uniform over the
set of k-out-degree graphs with n nodes, they provide suitable
distributed randomized protocols that can insert (respectively
delete) a node such that the graph Gt+1 at round t is again
random uniform over the set of k-out-degree graphs with n+1
(respectively, n− 1) nodes. They do not assume a centralized
knowledge of the whole graph but, instead, their protocol relies
on some random primitives to sample arbitrary-sized subsets
of nodes uniformly at random. For instance, once a new node
u is inserted, a random subset of nodes is selected (thanks
to one of such centralized primitives). Then, each of the
sampled nodes in turn deletes one of its links deterministically
connects to u. The basic versions of their insertion/deletion
procedures require each node to communicate with nodes
at distance 2, while more sophisticated variants (achieving
optimal performance) require communications over longer
paths.

An important and effective approach to ensure good expan-
sion properties in dynamic graphs with churn relies on the
use of ID random walks. Roughly speaking, in this approach,

every participating node starts k independent random walks to
circulate tokens containing its ID. All other nodes cooperate to
perform these random walks long enough, so that each token
is well-mixed over the network. Once a token is mature, it can
be used by any node that, in that step, needs a new edge by
simply connecting to the corresponding ID. The probabilistic
analysis then typically shows two main, correlated invariants:
on one hand, the edge set resulting from the above process
corresponds to a random graph exhibiting good expansion
properties. On the other hand, random walks are well-mixed
within a small number of steps. In this line of work, Cooper et
al [8] consider two deterministic churn processes: in the first
one, at every round, a new node is inserted while no nodes
leave the network, while, in the second process, the size n of
the graph never changes since, at every round, a new node is
inserted and the oldest node leaves the graph (this is in fact
the streaming model we study in this paper). They provide a
protocol where each node v starts c ·m independent random
walks (containing the ID-label of v) until they are picked up,
m at a time, by new nodes joining the network. The new node
connects to the m peers that contributed the tokens it got.
The resulting dynamic topology is shown to have diameter
O(log n), and to be fault-tolerant against adversarial deletion
of both edges and nodes. We remark that the tokens in the
graph must be constantly circulated in order to ensure that
they are well-mixed. Moreover, the rate at which new nodes
can join the system is limited, as they must wait while the
existing tokens mix before they can use them.

Law and Siu [17] provide a distributed algorithm for
maintaining a regular expander in the presence of a limited
number of insertions/deletions. The algorithm is based on a
complex procedure that is able to sample uniformly at random
from the space of all possible 2d-regular graphs formed by d
Hamiltonian circuits over the current set of alive nodes. They
present possible distributed implementations of this sample
procedure, the best of which, based on random walks, have
O(log n) overhead and time delay. Such solutions cannot
manage frequent node churn.

Further distributed algorithms with different approaches
achieving O(log n) overhead and time delay in the case of
slow node churn are proposed in [4], [14], [19], [23].

In [2], Augustine et al present an efficient randomized
distributed protocol that guarantees the maintenance of a
bounded degree topology that, with high probability, contains
an expander subgraph whose set of nodes has size n− o(n),
where n is the stable network size. This property is preserved
despite the presence of a large oblivious adversarial churn rate
— up to O(n/polylog(n)). In more detail, considering the
node churn adopted in [3], i.e., an oblivious churn adversary
that: can remove any set of nodes up to the churn limit in every
round, and, at the same time, it should add (an equal amount
of) nodes to the network with the following constraints. A new
node should be connected to at least one existing node and the
number of new nodes added to an existing node should not
exceed a fixed constant (thus, all nodes have constant bounded
degree).
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The expander maintenance protocol is efficient even though
it is rather complex and the local overhead for maintaining
the topology is polylogarithmic in n. A complication of the
protocol follows from the fact that, in order to prevent the
emergence of large clusters of nodes outside the expander
subgraph, specific criteria to “refresh” the links of some nodes
are needed, even when these were not involved in any edge
deletions following from node churn.

Recently, flooding has been analytically investigated in
dynamic graph models with churn in [1], [3]. Here, the authors
consider the model analysed in [2], that we discussed above.
Using the expansion property proved in [2], they show that,
for any fixed churn rate C(n) 6 n/polylog(n) managed by
an oblivious worst-case adversary, there is a set S of size
n−O(C(n)) of nodes such that, if a source node in S starts
the flooding in round t, then all except O(C(n) nodes get
informed within round t+O(log(n/C(n)) log n), w.h.p.

Our models are inspired by the way some unstructured
P2P networks maintain a “well-connected” topology despite
node arrivals and departures, in an almost fully decentralized
fashion and typically with small average degree. For example,
after an initial bootstrap in which they rely on DNS seeds for
node discovery, full-nodes of the Bitcoin network [20] running
the Bitcoin Core implementation turn to a fully-decentralized
policy to regenerate their neighbors when their degree drops
below a configured threshold [9]. This allows them to sample
new neighbors essentially at random among all nodes of the
network [24]. In this respect, it should be noted that the real
topology of the Bitcoin network is hidden by the network
formation protocol and discovering the real network structure
has been recently an active research area [11], [21].

III. THE STREAMING MODEL WITHOUT EDGE
REGENERATION

A discrete-time dynamic graph G is a sequence of graphs
G = {Gt = (Nt, Et) : t ∈ N} in which the sets of
nodes and edges can vary in each discrete round. If they can
change randomly, we call the corresponding random process
a dynamic random graph. We call Gt the snapshot of the
dynamic graph at round t. For a set of nodes S ⊆ Nt, we
denote by ∂tout(S) the outer boundary S in snapshot Gt, i.e.,
∂out(S) = {v ∈ N \ S : {u, v} ∈ E for some u ∈ S}; we
omit superscript t when it is clear from context. In this section,
we study a dynamic random graph model in which nodes join
and leave the network according to a deterministic streaming
process, while edges are created randomly by the nodes.

Definition III.1 (Streaming node churn). The set of nodes Nt
evolves as follows: It starts with N0 = ∅; At each round t > 1
a new node joins the network and it stays in the network for
exactly n rounds (i.e., node joining at round t stays up to round
t + n − 1), then it leaves the network (or dies). We say that
a node has age k at round t if it joined the network at round
t − k. We say that a node u is older (respectively, younger)
than a node v if u joined the network before (respectively,
after) v.

In the streaming model SDG edges are created only when
a new node joins the network, more precisely:

Definition III.2. A Streaming Dynamic Graph without edge
regeneration (for short, SDG) G(n, d) is a dynamic random
graph {Gt = (Nt, Et) : t ∈ N} where the set of nodes Nt
evolves according to Definition III.1, while the set of edges
Et obeys the following topology dynamics: i) When a new
node appears, it establishes d independent connections, each
one with a node chosen uniformly at random among nodes
currently in the network3. ii) When a node dies, all its incident
edges disappear.

A remark on terminology. To the purpose of communication,
the graphs we consider are always undirected. However, to
the purpose of the analysis that follows in this section and in
Section IV, it is useful to associate a direction to an edge,
depending on which of its endpoints was responsible for its
creation. More precisely, considered any active node v, its out-
edges are the edges that were established by v towards other
nodes (for this reason, we sometimes use the term request
when discussing the event of an edge being established), while
v’s in-edges are edges incident to v that were established by
other nodes with v as destination. Moreover, here and in Sec-
tion IV, the terms birth and arrival are used interchangeably
to refer to the event of a node joining the network, while the
terms death and departure are used to denote the event of a
node leaving the network.

A. Partial broadcast in the SDG model
We are interested in estimating the time a message sent by

a node takes to reach a large fraction of the nodes. To this
end, we formalize the flooding process over a discrete-time
dynamic (random) graphs.

Definition III.3 (Flooding). Let G = {Gt = (Nt, Et) : t ∈
N} be a dynamic (random) graph. The flooding process over
G starting at time t0 from the source node v0 ∈ Nt0 is the
sequence of (random) sets of nodes {It : t ∈ N} where,
It = ∅ for all t < t0, It0 = {v0}4 and, for every t > t0, It
contains all nodes in Nt that were neighbors of some node in
It−1 in the snapshot Gt−1, i.e.,

It = (It−1 ∪ ∂t−1out (It−1)) ∩Nt .

We say that It is the subset of informed nodes at round t.

We next show that there is a large constant probability that
the flooding process will reach a large fraction of nodes within
O(log n) rounds.

Theorem III.4 (Flooding completes for a large fraction
of nodes). For every constant5 d > 200, for every suf-

3To the sake of simplicity, in all our models, we allow the presence of
multi-edges.

4In this paper we will assume that I0 contains the node joining the network
at round t0.

5Our probabilistic analysis definitely does not aim at optimizing absolute
constants. Moreover, though it is an absolute constant, in the upper bound on
τ that follows we leave the exact, asymptotic dependence on d for the sake
of completeness.
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ficiently large n and for every fixed t0 > n, there is a
τ = O(log n/ log d + d), such that the flooding process over
an SDG sampled from G(n, d) starting at t0 satisfies the
following:

Pr
(
|It0+τ | > (1− e−d/10)n

)
> 1− 4e−d/100 − o(1) .

We now give a detailed outline of the proof of the above
result, since this allows us to present, in a simplified setting,
some key technical ingredients that are also used for the
Poisson model.

Proof of Theorem III.4: The proof consists of two parts.
Assuming the source node s joined the network in round t0,
we first show (Lemma III.5) that, with probability at least
1 − 4e−d/100, a restriction of the true topology dynamics
establishes a bipartite graph which i) contains s, ii) only
connects nodes with ages in the interval {1, . . . , n/2} to nodes
with ages in the interval {n/2 + 1, . . . , n − log n}, iii) has
diameter O(log n/ log d), iv) includes at least 2n/d nodes.
This is enough to prove that, with probability 1 − 4e−d/100,
2n/d nodes are informed at time t0+τ1, where τ1 = O(log n).

The second part in turns consists of two steps: i) we first
show that every sufficiently large subset of nodes has high
expansion, w.h.p. ii) Thanks to this expansion property of
large subsets, once 2n/d nodes have been informed, at least
(1− e−d/10)n nodes will become informed within a constant
number τ2 = Θ(d) of additional steps, w.h.p.

Overall, the above prove that within time t0+τ1+τ2, at least
(1− e−d/10)n, nodes have been informed, with probability at
least 1− 4e−d/100 − o(1).

For the sake of space, we only describe the first part of the
proof, corresponding to the following lemma.

Lemma III.5 (Flooding completes for a large fraction of
nodes, phase 1). Under the hypotheses of Theorem III.4, there
is a τ1 = O(log n/ log d) such that

Pr

(
|It0+τ1 | >

2n

d

)
> 1− 4e−

d
100 . (1)

Proof. We begin by defining the following subsets of Nt0 :
• the set of the young nodes:
Y = {v ∈ Nt0 | v has life l with 2 6 l < n

2 }.
• the set of the old nodes:
O = {v ∈ Nt0 | v has life l with n

2 6 l 6 n− log n}.
• the set of the very old nodes: Ô = Nt0 − (Y ∪O) =
{v ∈ Nt0 | v has life l with n− log n < l 6 n}.

To prove (1) we show that Gt0 = (Nt0 , Et0) contains a
bipartite subgraph with logarithmic diameter, containing the
informed node s and such that i) links are established only
between nodes in Y and in O and ii) it contains no very old
node. The graph in question is the result of the onion-skin
process described below.

a) The onion-skin process.: The iterative process we
consider operates in phases, each consisting of two steps.
Starting from s, the onion-skin process builds a connected,
bipartite graph, corresponding to alternating paths in which
young nodes only connect to old ones. In particular, each

realization of this process generates a subset of the edges
generated by the original topology dynamics. Moreover, each
iteration of the process corresponds to a partial flooding in
the original graph, in which a new layer of informed nodes
is added to the subset of already informed ones, hence the
term onion-skin. Flooding is partial since i) the network uses
a subset of the edges that would be present in the original
graph.

In the following, we denote by Yk ⊆ Y and Ok ⊆ O the
subsets of young and old nodes that are informed by the end
of phase k, respectively. In the remainder, we let O−1 = ∅ for
notational convenience.

Onion-skin process
Phase 0: Y0 = {s}; O0 is obtained as follows: s establishes
d links. We let O0 ⊂ O denote the subset of old nodes that
are destinations of these links. Links with endpoints in Y
or Ô are discarded;

Phase k > 1: Yk and Ok are iteratively obtained as follows:
Step 1. Each node in Y −Yk−1 establishes d/2 links. More
precisely:

Yk \ Yk−1 = {v ∈ Y \ Yk−1 | v connects to Ok−1 by a

request i ∈ {d2 + 1, . . . , d}}

Links to nodes not belonging to O are discarded;
Step 2. Each node in Yk \ Yk−1 establishes d/2 links to
nodes in O \Ok−1. More precisely:

Ok \Ok−1 = {v ∈ O\Ok−1| some w ∈ Yk connects to

v by a request i ∈ {1, . . . , d2}}

Links to nodes not belonging to O are discarded.

A couple remarks are in order. It is clear that the links in Et0
can be established in any order, as long as they are created
from younger nodes towards older ones. As a consequence,
each realization of the onion-skin process produces a subset of
Et0 . In particular, i) nodes in O and Ô do not create any links,
though they can still be the targets of links originating from
Y ; ii) a node v ∈ Y created at time t̂ (6 t0) generates d links,
with possible destinations the nodes created in the interval
[t̂, t0], but only links with destinations in O are retained, the
others are discarded.

The next claim states that, in each step, the sets of informed
nodes Yk ⊆ Y and Ok ⊆ O grow by a constant factor d/20.
The proof proceeds by analyzing Phases 0 and the generic
Phase k separately. Concentration bounds are derived using
the method of bounded differences (see for instance [12]).

Claim III.6. In Phase 0, it holds
Pr (|O0| > d/20) > 1 − e−d/100. In the generic phase k >
1, if |Yk−1| 6 n/d, |Ok−1| 6 n/d, y 6 10n/d and x 6
20(n/2− log n)/d it holds:
Pr
(
|Yk \ Yk−1| > d

20y | |Ok−1 \Ok−2| > y
)
> 1−e−yd/100,
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and
Pr
(
|Ok \Ok−1| > d

20x | |Yk \ Yk−1| > x
)
> 1− e−dx/100.

Using the above claim and the chain rule, we obtain for
each k > 0,

Pr (|Ok \Ok−1| > a2k+1) >
2k∏
i=0

(
1− e−ai(d/100)

)
Pr (|Yk \ Yk−1| > a2k) >

2k∏
i=0

(
1− e−ai(d/100)

)
,

where ak =
(
d
20

)k
and as long as a2k and a2k+1 are smaller

than n/d. Then, after some τ1 = log n/ log d rounds, we get
|Yt0+τ1 | > n/d and |Ot0+τ1 | > n/d, with probability at least

c =
∞∏
i=0

(
1− e−ai(d/100)

)
.

By using standard calculus, we can then prove the following
claim, which concludes the proof.

Claim III.7. For each d > 200, if ai = (d/20)i,

c =
∞∏
i=0

(
1− e−ai(d/100)

)
> 1− 4e−

d
100 .

IV. THE POISSON MODEL WITH EDGE GENERATION

A continuous dynamic graph G is a continuous family of
graphs G = {Gt = (Nt, Et) : t ∈ R+} in which the sets
of nodes and edges can change at any time t ∈ R+. As in
the discrete case, we call Gt the snapshot of the dynamic
graph at time t and, for a set of nodes S ⊆ Nt, we denote
with ∂tout(S) the outer boundary of S (see Definition IV.8) in
snapshot Gt and we omit subscript t when it is clear from
context. We consider continuous-time dynamic graph models
in which nodes’ arrivals follow a Poisson process and their
lifetimes obey an exponential distribution.

Definition IV.1 (Poisson node churn). Initially N0 = ∅.
Node arrivals in Nt follow a Poisson process with mean λ.
Moreover, once a node joins the network, its lifetime has
exponential distribution with parameter µ.

We first discuss useful properties of Poisson dynamic graphs
that only depend on the random node churn process. We
remark that, according to Definition IV.1 above, the time in-
terval between two consecutive node arrivals is an exponential
random variable of parameter λ, while the number of nodes
joining the network in a time interval of duration τ is a
Poisson random variable with expectation τ · λ. We finally
note that the stochastic continuous process {Nt : t ∈ R+} is
clearly a continuous Markov Process. A first important fact
our analysis relies on is that we can bound the number of
active nodes at every time. In particular, it is easy to show
that E [|Nt|]→ λ/µ. Moreover, we have the following bound
in concentration.

Lemma IV.2 (Pandurangan et al. [22] - Number of nodes
in the network). For every pair of parameters λ and µ such
that n = λ/µ is sufficiently large, the following holds for the
Poisson node churn {Nt : t ∈ R+} defined in Definition IV.1:
for every fixed real t > 3n, |Nt| = Θ(n) w.h.p. More precisely,

Pr (0.9n 6 |Nt| 6 1.1n) > 1− 2e−
√
n .

Leveraging Lemma IV.2, our analysis of the Poisson con-
siders the setting λ = 1 without loss of generality. In the
remainder, we define the key parameter n = 1

µ representing the
“expected” size of the network. Moreover, since the probability
that two or more churn events occur at the same time is zero,
the points of change of the dynamic graph yield a discrete-
time sequence of events. In particular, we can observe and
prove properties of the dynamic graph by restricting ourselves
to time instants in which one event changing the graph occurs,
namely, the arrival of a new node or the departure of an
existing one.

Definition IV.3. Let {Nt : t ∈ R+} be the Poisson node
churn process from Definition IV.1. We define the infinite
sequence of random steps (also called rounds) {Tr : r ∈ N}
(with parameters λ and µ) as follows: T0 = 0, and
Tr+1 = inf{t > Tr : Nt 6= NTr

}, for r = 0, 1, . . .

It is worth noting that, since the Poisson stochastic process
{Nt : t ∈ R+} is a countinuous Markov process, the stochastic
process {NTr : r ∈ N}, with the Tr’s defined above,
consistently is a discrete Markov chain. It is then possible
to derive the law of the random variables that define the time
steps at which new events occur and get the following results.

Lemma IV.4. For every sufficiently large n, consider the
Markov chain {NTr

, r ∈ N} in Definition IV.3 with param-
eters λ = 1 and µ = 1/n. Then, for every fixed integer
r > n log n,

0.47 6Pr
(
|NTr+1

| = |NTr
| − 1

)
6 0.53

0.47 6Pr
(
|NTr+1

| = |NTr
|+ 1

)
6 0.53 .

Moreover, if v ∈ NTr ,

0.45

n
6 Pr

(
v 6∈ NTr+1

| v ∈ NTr

)
6

0.56

n
. (2)

The next lemma provides a useful bound on the lifetime of
any node in the network.

Lemma IV.5 (Lifetime of the nodes). For every sufficiently
large n consider the Markov chain {NTr , r ∈ N} in Definition
IV.3 with parameters λ = 1 and µ = 1/n. Then, for every fixed
integer r > 7n log n, with probability at least 1−2/n2.1, each
node in NTr

was born after step Tr−7n logn.

A. Node expansion of Poisson graphs with edge regeneration

We next consider graph dynamics in which active nodes
replace out-edges that fail as their endpoints leave the network.

Definition IV.6. A Poisson Dynamic Graph with edge Regen-
eration G(λ, µ, d) (for short, PDGR) is a continuous dynamic

982

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on April 06,2022 at 13:45:27 UTC from IEEE Xplore.  Restrictions apply. 



random graph {Gt = (Nt, Et) : t ∈ R+} where the set of
nodes Nt evolves according to Definition IV.1, while the set of
edges Et evolves according to the following topology dynam-
ics: i) When a new node appears, it creates d independent
connections, each of them with a node chosen uniformly at
random among the nodes currently in the network. ii) When
a node dies, all its incident edges disappear. iii) When one
of the d out-edges of a node v fails,6 v establishes a new
connection with a node chosen uniformly at random among
all nodes currently in the network.

Our first technical step is to provide an upper bound on the
probability that a fixed node chooses any other active node in
the network as destination of one of its d requests/out-edges.
A major technical issue to cope with here is the presence of
“very old” nodes (i.e. nodes having ages ω(n)). In fact, a
very old nodes can be selected as destination of a link request
from a younger node with probability ω(1/n). The next lemma
formalizes this fact as function of the age of the nodes.

Lemma IV.7. For every constant d > 20 and for every
sufficiently large n, let {Gt = (Nt, Et) : t ∈ R+} be a PDGR
sampled from G(λ, µ, d) with λ = 1 and µ = 1/n. Then, for
every fixed integer r > 7n log n, consider the snapshot GTr

.
Let u ∈ NTr be a node born in round Tr−i for some integer
i 6 r. Then, if another node v ∈ NTr was born before u,
the probability that a single, specific request of u has v as its
destination is at most

1.3

n

(
1 +

0.6i

n

)
. (3)

While, if v was born after u, the probability that a single
request of u has destination v is always 6 1.3

n .

Proof. We define the following events:

Au,v = {a specific request of u has destination v at time Tr} .

Notice that we avoid to index a specific request in the above
definition, since the considered graph process is perfectly
symmetric w.r.t. the d random requests made by every node.
We first bound the probability that a fixed, single request of u
has destination v when v is younger than u. To this purpose,
we define Lr as the event

Lr = {each node in NTr
was born after time Tr−7n logn}

∩{|NTi
∈ [0.9n, 1.1n] with i = r − 7n log n, . . . , r}.

Note that the event Lr implies that, when each node in NTr

joined the network, the network consisted of at least 0.9n
and at most 1.1n nodes. Now, Lemma IV.2 and Lemma IV.5
together imply Pr (Lr) > 1 − 1/n2. So, Pr (Au,v | Lr) 6
1/0.9n since, being v younger than u, u can choose v only
after the death of one of its neighbors. From the law of total
probability, we then have that Pr (Au,v) 6 1/(0.8n).

6I.e., the other endpoint of the edge left the network.

We next analyze the case in which v is older than u, while u
was born in step Tr−i. Again from the law of total probability
we have:

Pr (Au,v) 6 Pr (Au,v | Lr) +
1

n2
. (4)

The next step is to evaluate Pr (Au,v | Lr). To this aim, for
each k > 1 and w ∈ NTk

, we define the event

Dw,k = {w dies at time Tk} .

To bound Pr (Dw,k | Lr), for each k = r− i, . . . , r and w ∈
NTk

, we use Lemma IV.4 to get Pr (Dw,k) 6 1/(1.8n), and,
hence, from Bayes’ rule,

Pr (Dw,k | Lr) =
Pr (Dw,k ∩ Lr)

Pr (Lr)
6

Pr (Dw,k)

1− 1/n2
6

0.6

n
.(5)

Now, for each j = r− i, . . . , r, we define the following events

Aju,v = {a specific request of u connects to v at time Tj} ,

and write Au,v = ∪rj=r−iAju,v . Notice that there is some
difference between the probability distribution of Ar−iu,v and
that of Aju,v for each j > r − i. Indeed, the following holds

Pr
(
Ar−iu,v | Lr

)
6

1.2

n
, (6)

since this is the probability that the request of u has destination
v at the time of u’s arrival (since v is older than u). On
the other hand, for each j = r − i + 1, . . . , r, thanks to the
memoryless property of the exponential distribution,

Pr
(
Aju,v | Lr

)
6 1 · 0.6

n
· 1.2

n
. (7)

The above bound holds since any specific request of u can
choose v as destination at round Tj only if, at round Tj−1, u
was not already connected to v. So, the first factor 1 in the
r.h.s. of (7) is an upper bound on the probability that, at time
Tj−1, u is not connected to v. The second factor, 1/(1.7n),
is the upper bound on the probability (conditional to Lr from
(5)) that the node to which u is connected dies at time Tj .
Moreover, 1/(0.9n) is the probability, conditional to Lr, that
the request of u connects to v at time Tj , if its neighbour is
died at time Tj .

So, recalling that Au,v = ∪rj=r−iAju,v , from (6) and (7),

Pr (Au,v | Lr) 6
r∑

j=r−i
Pr
(
Aju,v | Lr

)
6

1.2

n

(
1 +

0.6i

n

)
.

(8)
Finally, since conditional to Lr we have that i 6 7n log n,
using (8) into (4), the proof is completed.

We now recall the notion of node expansion of a graph.

Definition IV.8 (Node expansion). The node isoperimetric
number hout(G) of a graph G = (N,E) is

hout(G) = min
06|S|6|N |/2

|∂out(S)|
|S|

,
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where we used ∂out(S) for the outer boundary of S

∂out(S) = {v ∈ N \ S : {u, v} ∈ E for some u ∈ S} .

Given a constant ε > 0, a graph G is an (node) ε-expander
if hout(G) > ε.

As for the Poisson model with edge regeneration, we can
prove the following expansion property.

Theorem IV.9 (Expansion). For every constant d > 35 and
for every sufficiently large n, let {Gt = (Nt, Et) : t ∈ R+}
be a PDGR sampled from G(λ, µ, d) with λ = 1 and µ = 1/n.
Then, for every fixed integer r > 7n log n, w.h.p. the snapshot
GTr

is an ε-expander with parameter ε > 0.1.

The proof proceeds analyzing three different size ranges of
the node subset S ⊆ NTr , the expansion of which has to be
shown. We here only provide the proof for subsets of middle
sizes, which represents one of the key technical contributions
of this paper.

a) Expansion of middle-size subsets: This case deals
with subsets of size in the range n/ log2 n 6 |S| 6 n/14.
The presence of a large number of subsets in this range does
not allow use of any rough worst-case counting argument: for
instance, assuming that all nodes in the considered subset S
have ages O(n log n) and applying the corresponding edge-
probability bound given by (3) would lead to a useless,
overestimate of the probability of non-expansion for some
subset S.

In a nutshell, we address this technical issue by classifying
and partitioning subsets S according to their age profiles. We
first define a sequence of Θ(log n) slices for possible nodes’
ages and then we provide an effective age profile of each
subset S (and T ), depending on how large its intersection
is with each of these slices. Thanks to the properties of
the exponential distributions of node lifetimes in the Poisson
model (see (2) in Lemma IV.4), we show that the existence of
a given subset in a given time has a probability that essentially
depends on its profile. Informally, the larger the number of old
nodes in S, the smaller the probability of S being a subset of
NTr

.
Combining age profiling with a more careful use of the pa-

rameterized bound on the edge probability of (3), we compute
a bound (see (25)) that, in turn, we show to be dominated
by the KL divergence of two suitably defined probability
distributions. Finally, our target probability bound, stated in
the next lemma, is obtained by the standard KL divergence
inequality (see [10] pag. 658-659, Theorem 17.1.7). In the end,
the arguments outlined above allow us to prove the following
result:

Lemma IV.10 (Expansion of middle-size subsets). Under
the hypothesis of Theorem IV.9, for subsets S of NTr , with
probability of at least 1− 2/n2,

min
n/ log2 n6|S|6n/14

|∂out(S)|
|S|

> 0.1 .

Proof. From Lemma IV.5, all nodes in NTr
were born after

time Tr−7n logn with probability at least 1− 1/n2. So, if we
define the event

Lr = {each node in NTr
was born after time Tr−7n logn} ,

we obtain Pr (Lr) > 1−1/n2. We will condition on this event
throughout the rest of this proof. In the remainder, we also use
i to denote the node that joined the network at round Tr−i+1

(i.e. the node whose age is i in terms of discrete rounds). So,
conditioning on Lr implies

NTr
⊆ {1, 2, 3, . . . , 7n log n} .

We next show that (conditioning on Lr) any two disjoint sets
S, T ⊆ {1, 2, . . . , 7n log n}, such that n/ log2 n 6 |S| 6
n/14, |T | = 0.1|S|, S, T ⊆ NTr , and ∂out(S) ⊆ T , may
only exist with negligible probability. To this aim, we define
the event

AS,T = {∂out(S) ⊆ T} ∩ {S, T ⊆ NTr
} .

From the law of total probability,

Pr

(
min

n/ log2 n6|S|6n/14

|∂out(S)|
|S|

6 0.1

)
6

∑
n/ log2 n6|S|6n/2,|T |=0.1|S|

S,T⊆{1,2,...,7n logn}

Pr (AS,T | Lr) +
1

n2
. (9)

Hence, our next goal is to upper bound the quantity
Pr (AS,T | Lr). For each i ∈ S, let Bi denote the event

Bi = {Each of the d requestsof node i
has destination in S ∪ T}.

Then, we can write

AS,T = ∩i∈SBi ∩ {S, T ⊆ NTr
} ,

and from Bayes’ rule

Pr (AS,T | Lr) (10)
= Pr (∩i∈SBi | S, T ⊆ NTr , Lr)Pr (S, T ⊆ NTr | Lr) .

From Lemma IV.7, conditioned on the event {S, T ⊆ NTr
},

we get

Pr (Bi | S, T ⊆ NTr
, Lr) =

[
1.3|S ∪ T |

n

(
1 +

0.6i

n

)]d
.

(11)
Since we use (10) to bound Pr (AS,T | Lr), we need an upper
bound on Pr (S, T ⊆ NTr

). To this aim, we use the bound
(2) from Lemma IV.4. However, the notion of round given
in Definition IV.3 implies that nodes’ deaths/departures are
not independent. In fact, if we know that, in a given round,
node v died, we also know that no other event occurred in
that round, including departures of other nodes. By the same
token, knowing that one node did not die in a given round
can only increase the probability of other nodes to die in that
round. To address this issue, we consider the probability that
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a fixed set of node survives in any given round. From Lemma
IV.4, for an arbitrary set of k nodes we have

Pr
(
v1, . . . , vk ∈ NTr

| v1, . . . , vk ∈ NTr−1
, Lr
)

6 1− 0.4k

n
6

(
1− 0.4

n

)k
, (12)

This is the probability that the next step does not see the death
of any of the k nodes under consideration. The last inequality
in (12) follows from the binomial inequality. So, thanks to (12)
and to the memoryless property of the exponential distribution,

Pr (S, T ⊆ NTr
| Lr) 6

∏
i∈S∪T

e−0.4i/n , (13)

where, in (13) we used the fact that, from (12), each node
contributes in the product with a factor 1 − 0.4/n for each
round of its life and that, for each i > 1, (1 − 0.4/n)i 6
e−0.4i/n. Since each node chooses the destination of its out-
edges independently of the other nodes, we can place (11) and
(13) into (10), and obtain

Pr (AS,T | Lr)

6
∏

i∈S∪T
e−0.4i/n ·

∏
i∈S

min

{
1,

[
1.3|S ∪ T |

n

(
1 +

0.6i

n

)]d}
.

(14)

For each set R ⊆ NTr
, we define the sequence (KR

1 , . . . ,K
R
L )

(where L = 7 log n), whose goal is to classify the nodes of
the set according to their age profile:

KR
1 = |R ∩ {1, 2, . . . , n}|, KR

2 = |R ∩ {n+ 1, . . . 2n}|
· · ·KR

L = |R ∩ {(L− 1)n+ 1, . . . , Ln}| .

Notice that, if |R| = r and KR
1 = r1, . . . ,K

R
L = rL, then∑L

m=1 rm = r. For each set R ⊆ NTr , we denote the vector
of random variables (KR

1 , . . . ,K
R
L ) as KR. According to this

definition, by setting k = (k1, . . . , kL) and h = (h1, . . . , hL),
we can rewrite (9) as follows:

Pr

(
min

n/ log2 n6|S|6n/14

|∂out(S)|
|S|

6 0.1

)
(15)

6
n/14∑

k=n/ log2 n

∑
k1+···+kL=k

h1+···+hL=0.1k

∑
S,T : KS=k

KT=h

Pr (AS,T | Lr) +
1

n2
.

Here, we have to sum over all the possible size k =
n/ log2 n, . . . , n/14 of the set S, all the possible vectors k
and h whose sum of the elements is equal to k and 0.1k,
respectively (i.e. the characterization of the age profiles of S
and T with |S| = k and |T | = 0.1|S| = 0.1k), and, finally,

over all the possible sets S, T characterized by KS = k and
KT = h, respectively. From (14), we get

Pr
(
AS,T s.t. KS = k, KT = h | Lr

)
6 p(k,h) (16)

=
∏

m=1,...,L

e−0.4(m−1)km
∏

m=1,...,L

e−0.4(m−1)hm

·
∏

m=1,...,L

min

{
1,

[
|S ∪ T |

0.8n
(1 + 0.6m)

]dkm}
.

The number of subsets S, T ⊆ {1, 2, . . . , 7n log n} such
that (KS

1 , . . . ,K
S
L) = (k1, . . . , kL) and (KT

1 , . . . ,K
S
L) =

(h1, . . . , hL) is bounded by

n(k,h) =

(
n

k1

)
·
(
n

h1

)
· · ·
(
n

k2

)
·
(
n

k2

)
· · ·
(
n

kL

)
·
(
n

hL

)
.

(17)
So, we introduce the quantity s(k,h) and get the following
bound from (16) and (17):

s(k,h) =
∑

S,T :KS=k

KT=h

Pr
(
AS,T s.t. KS = k, KT = h

)
6 n(k,h) · p(k,h) . (18)

We plug (17) and (16) into (18) and, since |S ∪ T | = 1.1k, if
we define

s1(k,h) =
L∏

m=1

(
n

hm

)
e−0.4(m−1)hm and s2(k,h) =

L∏
m=1

(
n

km

)
e−0.4(m−1)km ·min

{
1,

(
1.5k(1 + 0.6m)

n

)dkm }
,

we have s(k,h) 6 s1(k,h)·s2(k,h). The next step is to prove
that s(k,h) 6 2−0.15k. To this aim, we provide separate upper
bounds for log(s1(k,h)) and log(s2(k,h)). In particular, we
want to show that

log(s(k,h)) 6 −0.15k , (19)

which implies s(k,h) 6 2−0.15k. We start by bounding
log(s1(k,h)). Using

(
n
k

)
6
(
n·e
k

)k
,

log(s1(k,h)) 6
L∑

m=1

hm log

(
n

hm
e−0.4m+1.4

)
. (20)

Since log(x) is a concave function, we can apply Jensen’s
inequality and, recalling that

∑L
m=1 hm = 0.1k, we obtain

L∑
m=1

hm log

(
n

hm
e−0.4m+1.4

)
/

(
L∑

m=1

hm

)

6 log

(
n
∑L
m=1 e

−0.4m+1.4

0.1k

)
. (21)

Since
∑L
m=1 e

−0.4m+1.4 6 7, combining (20), (21) and since
k 6 n/14, we get

log(s1(k,h)) 6 0.1k log

(
7n

0.1k

)
6 k log

( n
7k

)
, (22)
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where the last inequality follows from a simple calculation.
As for log(s2(k,h)),

log(s2(k,h)) 6
L∑

m=1

km log

(
n

7k
· n · e
km

e−0.4(m−1)·

·
(

min

{
1,

1.5k(0.6m+ 1)

n

})d)
− k log

( n
7k

)
. (23)

Moreover, since log(s(k,h)) = log(s1(k,h))+log(s2(k,h)),
(22) and (23) imply,

log(s(k,h)) 6
L∑

m=1

km log

(
0.6n2

k · km
e−0.4m

(
min

{
1,

1.5k(0.6m+ 1)

n

})d)
.

So, from the above inequality,

− log(s(k,h))

k
>

L∑
m=1

km
k

log

(
km
k

9

10
· k2

0.6n2
e0.4m(

min

{
1,

1.5k(0.6m+ 1)

n

})−d)
+ log

(
10

9

)
. (24)

Now, notice that, if we prove that
L∑

m=1

km
k

log

(
km
k

9

10
· k2

0.6n2
e0.4m(

min

{
1,

1.5k(0.6m+ 1)

n

})−d)
> 0 , (25)

then (24) implies (19), since log(10/9) > 0.15.
Hence, our next step is proving (25). To this purpose,

thanks to the KL divergence inequality (see [10] pag. 658-659,
Theorem 17.1.7), it is sufficient to show that the following are
density mass functions over {1, 2, . . . , L}:

pm =
km
k

and

qm =
10

9
· 0.6n2

k2
e−0.4m min

{
1,

(
1.5k(0.6m+ 1)

n

)d}
.

Notice that
∑L
m=1 pm = 1, and

∑L
m=1 qm 6 1 if d is large

enough (d > 30) and k 6 n
14 . So, we have proved that qm

and pm are density mass functions over {1, 2, . . . , L} and thus,
thanks to KL divergence inequality, (25) holds, implying that
s(k,h) 6 2−0.15k.

By plugging (18) into (15) and using s(k,h) 6 2−0.15k,

Pr

(
min

n/ log26|S|6n/14

|∂out(S)|
|S|

6 0.1

)

6
n/14∑

k=n/ log2 n

∑
k1+···+kL=k

h1+···+hL=0.1k

s(k,h) +
1

n2
6

2

n2
,

where the last inequality holds since the number of integral
sequences k1, . . . , kL that sum up k is bounded by

(
k+L
L

)
(and

the same holds for hm), and from simple calculations.
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