
CLASSICAL AND VARIATIONAL POISSON COHOMOLOGY

BOJKO BAKALOV, ALBERTO DE SOLE, REIMUNDO HELUANI, VICTOR G. KAC,
AND VERONICA VIGNOLI

Abstract. We prove that, for a Poisson vertex algebra V, the canonical in-
jective homomorphism of the variational cohomology of V to its classical co-
homology is an isomorphism, provided that V, viewed as a differential algebra,
is an algebra of differential polynomials in finitely many differential variables.
This theorem is one of the key ingredients in the computation of vertex algebra
cohomology. For its proof, we introduce the sesquilinear Hochschild and Har-
rison cohomology complexes and prove a vanishing theorem for the symmetric
sesquilinear Harrison cohomology of the algebra of differential polynomials in
finitely many differential variables.
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1. Introduction

In the series of papers [BDSHK19, BDSHK20, BDSK20, BDSKV21, BDSK21],
the foundations of cohomology theory of vertex algebras have been developed. The
main tool for the computation of this cohomology is the reduction to the variational
Poisson vertex algebra (PVA) cohomology. The latter is a well-developed theory
with many examples computed explicitly [DSK13, BDSK20]. Its importance stems
from the fact that vanishing of the first variational PVA cohomology leads to the
construction of integrable hierarchies of Hamiltonian PDEs.

The reduction of the computation of the vertex algebra cohomology to the vari-
ational PVA cohomology is performed via the classical PVA cohomology in three
steps as follows. First, let V be a vertex algebra over a field F, with an increasing

Key words and phrases. Poisson vertex algebra (PVA), classical operad, classical PVA coho-
mology, variational PVA cohomology, sesquilinear Hochschild and Harrison cohomology.
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filtration by F[∂]-submodules such that V := grV carries a canonical structure of a
PVA. Let (Cch(V ), d) be the vertex algebra cohomology complex of V . A filtration
on V induces a decreasing filtration on Cch(V ), and we have a canonical injective
map [BDSHK19]:

grCch(V ) ↪→ Ccl(V), (1.1)
where (Ccl(V), gr d) is the classical PVA cohomology complex of V. Moreover, the
map (1.1) is an isomorphism, provided that V ' V , as F[∂]-modules [BDSHK20].

Second, in [BDSK21], we constructed a spectral sequence from the classical PVA
cohomology of V to the vertex algebra cohomology of V .

Third, in [BDSHK19], we constructed a canonical injective map

HPV(V) ↪→ Hcl(V) (1.2)

from the variational PVA cohomology of V to its classical PVA cohomology, and we
conjectured that (1.2) is an isomorphism, provided that V, viewed as a differential
algebra, is an algebra of differential polynomials in finitely many indeterminates.
The main goal of the present paper is to prove this conjecture.

Recall that a Poisson vertex algebra (abbreviated PVA) is a differential algebra
V with a derivation ∂, endowed with a bilinear λ-bracket V × V → V[λ], satisfying
the axioms of a Lie conformal algebra and the Leibniz rules (see (i)–(iii) and (iv)-
(iv’), respectively, in Definition 2.1). In order to construct the variational PVA
cohomology complex (CPV(V), d), introduce the vector spaces

Vn = V[λ1, . . . , λn]/(∂ + λ1 + · · ·+ λn)V[λ1, . . . , λn] , n ≥ 0 , (1.3)

where λ1, . . . , λn are indeterminates. Then the space of n-cochains CnPV(V) consists
of all linear maps

f : V⊗n → Vn , v 7→ fλ1,...,λn(v), (1.4)
satisfying the sesquilinearity conditions (2.2), the skewsymmetry conditions (2.3),
and the Leibniz rules (2.4). The variational PVA differential d : CnPV(V)→ Cn+1

PV (V)
is defined by formula (2.5).

In order to define the classical PVA cohomology complex (Ccl(V), d), denote by
G(n) the set of oriented graphs with vertices {1, . . . , n} and without tadpoles. Then
the space of n-cochains Cncl(V) consists of linear maps (cf. (1.3), (1.4))

Y : FG(n)⊗ V⊗n → Vn , Γ⊗ v 7→ Y Γ
λ1,...,λn(v) , (1.5)

satisfying the skewsymmetry conditions (4.3), the cycle relations (4.4), and the
sesquilinearity conditions (4.7). The classical PVA differential is defined by formula
(4.9).

The complexes (CPV(V), d) and (Ccl(V), d) both look similar to the Chevalley–
Eilenberg complex for a Lie algebra with coefficients in the adjoint representation.
The reason for this similarity is the operadic origin for all these cohomology theories,
as explained in [BDSHK19].

An important observation is that we have a canonical injective map of complexes
ϕ : CPV(V)→ Ccl(V) defined by

ϕ(f)(Γ⊗ (v1 ⊗ · · · ⊗ vn)) = δΓ,[n]f(v1 ⊗ · · · ⊗ vn) , (1.6)

where [n] denotes the graph with n vertices and no edges. It was proved in
[BDSHK19] that the map (1.6) induces an injective map in cohomology

ϕ∗ : HPV(V) ↪→ Hcl(V) . (1.7)
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The main result of the present paper is the following (see Theorem 5.2).

Theorem 1.1. Provided that, as a differential algebra, the PVA V is a finitely-
generated algebra of differential polynomials, the map ϕ∗ is an isomorphism.

The proof of this theorem uses the s-sesquilinear Hochschild cohomology com-
plex, defined for an associative algebra A with a derivation ∂ and a differential bi-
module M over A as follows. For s = 1, this complex is the differential Hochschild
cohomology complex, for which the space of n-cochains is HomF[∂](A

⊗n,M) and
the differential d is defined by the usual Hochschild’s formula

(df)(a1 ⊗ · · · ⊗ an+1) = a1f(a2 ⊗ · · · ⊗ an+1)

+

n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1 .

(1.8)

For an arbitrary positive integer s, the definition is similar but more complicated.
Given k = (k1, . . . , ks) ∈ Zs≥0, let

K0 = 0 , Kt = k1 + · · ·+ kt , t = 1, . . . , s ,

and
n = Ks = k1 + · · ·+ ks .

Given v1, . . . , vn ∈ A, we denote

vtk = vKt−1+1 ⊗ · · · ⊗ vKt ∈ A⊗kt , t = 1, . . . , s ,

so that
v = v1 ⊗ · · · ⊗ vn = v1

k ⊗ · · · ⊗ vsk .
Then the space of s-sesquilinear Hochschild n-cochains consists of linear maps (cf.
(1.3), (1.4)):

FΛ1,...,Λs : A⊗n →M [Λ1, . . . ,Λs]/(∂ + Λ1 + · · ·+ Λs)M [Λ1, . . . ,Λs] ,

satisfying the sesquilinearity conditions (t = 1, . . . , s),

FΛ1,...,Λs(v
1
k ⊗ · · · ∂vtk · · · ⊗ vsk ) = −ΛtFΛ1,...,Λs(v) . (1.9)

The definition of the differential is similar to (1.8): see formulas (6.12) and (6.14).
Note that for s = 1 this coincides with the differential Hochschild complex if we
identify M with M [Λ1]/(∂ + Λ1)M [Λ1].

If A is a commutative associative algebra and M is a symmetric bimodule over
A, the differential Hochschild complex contains the Harrison subcomplex, defined
by the Harrison conditions (6.5). We define a similar s-sesquilinear Harrison sub-
complex of the s-sesquilinear Hochschild complex by Proposition 6.6. Moreover, we
define by (6.15) the action of the symmetric group Ss on the s-sesquiinear Harrison
complex, and the symmetric s-sesquiinear Harrison complex of Ss-invariants, which
we denote by (Cssym,Har(A,M), d).

Our key observation is that the classical PVA complex (Ccl(V), d) is closely re-
lated to the complex (Cssym,Har(V,V), d). Namely, introduce an increasing filtration
of Cncl by letting

FsC
n
cl =

{
Y ∈ Cncl

∣∣Y Γ = 0 if s > n− e(Γ)
}
,

where e(Γ) is the number of edges of the graph Γ. We prove the following (see
Theorem 7.2):
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Theorem 1.2. For a PVA V and s ≥ 1, we have a canonical isomorphism of
complexes:

grs Ccl(V) ' Cssym,Har(V,V) ,

where on the right the first V is viewed as a commutative associative differential
algebra and the second V as a symmetric bimodule over it.

Consequently, Theorem 1.1 follows from Theorem 1.2 and the following vanishing
theorem for the sesquilinear Harrison cohomology (see Theorem 8.7).

Theorem 1.3. Let V be a finitely-generated algebra of differential polynomials.
Then

Hn(Cssym,Har(V,V), d) = 0 for 1 ≤ s < n .

In order to simplify the exposition, we restricted to the purely even case. How-
ever, the same proofs work in the super case. Namely, Theorem 1.2 holds for any
Poisson vertex superalgebra V, while Theorems 1.1 and 1.3 hold if V is a superal-
gebra of differential polynomials in finitely many commuting and anticommuting
indeterminates.

Throughout the paper, the base field F has characteristic 0, and, unless otherwise
specified, all vector spaces, their tensor products and Homs are over F.
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author was partially supported by the Bert and Ann Kostant fund and by a Simons
Fellowship. We would like to thank Pavel Etingof for providing a proof of the
differential HKR theorem for the algebra of differential polynomials.

2. Variational PVA cohomology

2.1. Poisson vertex algebras.

Definition 2.1. A Poisson vertex algebra (PVA) is a differential algebra V, i.e. a
commutative associative unital algebra with a derivation ∂, endowed with a bilinear
(over F) λ-bracket [· λ ·] : V × V → V[λ] satisfying:

(i) sesquilinearity: [∂aλb] = −λ[aλb], [aλ∂b] = (λ+ ∂)[aλb];
(ii) skewsymmetry: [aλb] = −[b−λ−∂a], where ∂ is moved to the left to act on

coefficients;
(iii) Jacobi identity: [aλ[bµc]]− [bµ[aλ, b]] = [[aλb]λ+µc].
(iv) left Leibniz rule [aλbc] = [aλb]c+ [aλc]b.

From the skewsymmetry (ii) and left Leibniz rule (iv) we immediately get the

(iv’) right Leibniz rule [abλc] = [aλ+∂c]→b+ [bλ+∂c]→a,

where the arrow means that ∂ is moved to the right, acting on b in the first term,
and on a in the second term.
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2.2. Variational PVA complex. Given a Poisson vertex algebra V, the corre-
sponding variational PVA cohomology complex (CPV, d) is constructed as follows
[DSK13]; see also [BDSK20]. The space CnPV of n-cochains consists of linear maps

f : V⊗n −→ V[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉 , (2.1)

where 〈Φ〉 denotes the image of the endomorphism Φ, satisfying the sesquilinearity
conditions (1 ≤ i ≤ n):

fλ1,...,λn(v1 ⊗ · · · ⊗ (∂vi)⊗ · · · ⊗ vn) = −λifλ1,...,λn(v1 ⊗ · · · ⊗ vn) , (2.2)

the skewsymmetry conditions (1 ≤ i < n):

fλ1,...,λi,λi+1,...,λn(v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn)

= −fλ1,...,λi+1,λi,...,λn(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn) ,
(2.3)

and the Leibniz rules (1 ≤ i ≤ n):

fλ1,...,λn(v1, . . . , uiwi, . . . , vn) = fλ1,...,λi+∂,...,λn(v1, . . . , ui, . . . , vn)→wi

+ fλ1,...,λi+∂,...,λn(v1, . . . , wi, . . . , vn)→ui .
(2.4)

For example, C0
PV = V/∂V and C1

PV = Der∂(V) is the space of all derivations of V
commuting with ∂.

The variational PVA differential d : CnPV → Cn+1
PV , for n ≥ 0, is defined by

(df)λ1,...,λn+1
(v1 ⊗ · · · ⊗ vn+1) = (−1)n

n+1∑
i=1

(−1)i
[
viλif

λ1,
i
.̌..,λn+1

(v1⊗
i
ˇ. . . ⊗vn+1)

]
+ (−1)n+1

∑
1≤i<j≤n+1

(−1)i+j f
λi+λj ,λ1,

i
.̌..
j
.̌..,λn+1

([viλivj ]⊗ v1⊗
i
ˇ. . .

j

ˇ. . . ⊗vn+1) .

(2.5)

One shows that d2 = 0, hence we can define the variational PVA cohomology

HPV(V) =
⊕
n≥0

Hn
PV(V) , Hn

PV(V) = Ker
(
d|CnPV

)
/d
(
Cn−1

PV

)
. (2.6)

Remark 2.2. It was shown in [DSK13] and [BDSHK19], that the variational PVA
cohomology complex associated to the PVA V has the structure of a Z-graded Lie
superalgebra. The element X ∈ C2

PV, given by

Xλ,−λ−∂(a⊗ b) = [aλb] , (2.7)

is odd and satisfies [X,X] = 0. Hence, (adX)2 = 0, and d = adX was taken as
the differential of the variational PVA cohomology complex. As a consequence, the
variational PVA cohomology HPV(V) has an induced Lie superalgebra structure.
Actually, what we call here variational PVA cohomology was called in [DSK13]
PVA cohomology; the variational PVA cohomology was a subcomplex there, which
is equal to the PVA cohomology if V is an algebra of differential polynomials.
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3. Preliminaries on the symmetric group and on graphs

3.1. Shuffles. A permutation σ ∈ Sm+n is called an (m,n)-shuffle if

σ(1) < · · · < σ(m) , σ(m+ 1) < · · · < σ(m+ n) .

The subset of (m,n)-shuffles is denoted by Sm,n ⊂ Sm+n. Observe that, by def-
inition, S0,n = Sn,0 = {1} for every n ≥ 0. If either m or n is negative, we set
Sm,n = ∅ by convention.

3.2. Monotone permutations. The following notion is due to Harrison [Har62]
(see also [GS87]), and it will be used in Section 6 to define Harrison cohomology.

Definition 3.1. A permutation π ∈ Sn is called monotone if, for each i = 1, . . . , n,
one of the following two conditions holds:

(a) π(j) < π(i) for all j < i;
(b) π(j) > π(i) for all j < i.

(Not necessarily the same condition (a) or (b) holds for every i.) When (b) holds,
we call i a drop of π. Also, π(1) = k is called the start of π (and we say that π
starts at k).

We denote byMn ⊂ Sn the set of monotone permutations, and byMk
n ⊂ Mn

the set of monotone permutations starting at k.
Here is a simple description of all monotone permutations starting at k. Let us

identify the permutation π ∈ Sn with the n-tuple [π(1), . . . , π(n)]. To construct all
π ∈ Mk

n, we let π(1) = k. Then, for every choice of k − 1 positions in {2, . . . , n}
we get a monotone permutation π as follows. In the selected positions we put the
numbers 1 to k−1 in decreasing order from left to right; in the remaining positions
we write the numbers k+1 to n in increasing order from left to right. (The selected
positions are the drops of π.)

Example 3.2. The only monotone permutation starting at 1 is the identity, while
the only monotone permutation starting at n is

σn = [n n− 1 · · · 2 1] . (3.1)

Example 3.3. Let n = 5 and k = 3. The monotone permutations starting at 3
are

[3 2 1 4 5] , [3 2 4 1 5] , [3 2 4 5 1 ] ,

[3 4 2 1 5] , [3 4 2 5 1 ] , [3 4 5 2 1 ] ,

where we underlined the positions of the drops.

Given a monotone permutation π, we denote by dr(π) the sum of all the drops
with respect to π. According to the previous description, we can easily see that

(−1)dr(π) = (−1)k−1 sign(π) , (3.2)

if k is the start of π.
6



3.3. Graphs. For an oriented graph Γ, we denoted by V (Γ) the set of vertices
of Γ, and by E(Γ) the set of edges. We call an oriented graph Γ an n-graph if
V (Γ) = {1, . . . , n}. Denote by G(n) the set of all n-graphs without tadpoles, and
by G0(n) the set of all acyclic n-graphs.

An n-graph L will be called an n-line, or simply a line, if its set of edges is of
the form {i1 → i2, i2 → i3, . . . , in−1 → in}, where {i1, . . . , in} is a permutation of
{1, . . . , n}.

We have a natural left action of Sn on the set G(n): for the n-graph Γ and the
permutation σ, the new n-graph σ(Γ) is defined to be the same graph as Γ but with
the vertex which was labeled as i relabeled as σ(i), for every i = 1, . . . , n. So, if
the n-graph Γ has an oriented edge i→ j, then the n-graph σ(Γ) has the oriented
edge σ(i)→ σ(j). Obviously, Sn permutes the set of n-lines.

Example 3.4. Let

Γ =
1 2 3 4 5 6

.

For σ = (6 5 4) and τ =

(
1 2 3 4 5 6
3 4 1 5 6 2

)
, we have:

σ

(
1 2 3 4 5 6

)
=

1 2 3 4 5 6
,

and

τ

(
1 2 3 4 5 6

)
=

1 2 3 4 5 6
.

3.4. Graphs of type k and proper k -lines. For s ≥ 1, let

k = (k1, . . . , ks) ∈ Zs≥0 and n = k1 + · · ·+ ks ,

and denote
K0 = 0 and Kt = k1 + · · ·+ kt , t = 1, . . . , s , (3.3)

so that Ks = n. We denote by Γ k ∈ G(n) the standard k -line, union of connected
lines of lengths k1, . . . , ks, with the labeling of the vertices ordered from left to
right:

Γ k =
1 2

· · ·
K1 K1+1

· · ·
K2

· · ·
Ks−1+1

· · ·
n (3.4)
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We allow some of the ki’s to be zero, in which case the corresponding connected
component of Γ k is empty. In the special case s = 1 we recover the standard n-line

Γn =
1 2

...
n

.
(3.5)

An arbitrary k -line is obtained by permuting the vertices of Γ k :

Γ =
i11 i12

· · ·
i1k1

i21 i22

· · ·
i2k2

· · ·
is1 is2

· · ·
isks (3.6)

where the set of indices {iab} is a permutation of {1, . . . , n}. Note that, if Γ is a k -
line, then it is a σ( k )-line for every permutation σ ∈ Ss. Hence, when considering
k -lines we can (and we will) assume that k1 ≤ · · · ≤ ks. We say that a k -line is
proper if the following further condition holds on the indices of the vertices:

il1 = min{il1, . . . , ilkl} ∀ l = 1, . . . , s . (3.7)

We then let

L(n) =
{
proper k -lines Γ ∈ G(n) with k ∈ Zs≥1, s ≥ 1, k1 + · · ·+ ks = n

}
.

(3.8)
Note that, in order not to have repetitions in the set (3.8), we may assume that
k1 ≤ · · · ≤ ks, and that, if kl = kl+1, then il1 < il+1

1 . Obviously, Γ k ∈ L(n) for
every k ∈ Zs≥1, while a permutation of Γ k does not necessarily lie in L(n).

Finally, we say that a graph Γ ∈ G(n) is of type k if it is disjoint union of s
connected components of sizes k1 ≤ · · · ≤ ks. Obviously, any k -line is of type k .

We can extend the definition of Γ k for k ∈ Zs≥0 by removing all 0’s from k . In
particular Γ0 is the empty graph.

3.5. Cycle relations on graphs. Let FG(n) be the vector space with basis the
set of graphs G(n), and R(n) ⊂ FG(n) be the subspace spanned by the following
cycle relations:
(i) all Γ ∈ G(n) \ G0(n) (i.e., graphs containing a cycle);
(ii) all linear combinations

∑
e∈C Γ \ e, where Γ ∈ G(n) and C ⊂ E(Γ) is an

oriented cycle.
By convention, FG(0) = F and R(0) = 0.

Note that reversing an arrow in a graph Γ ∈ G(n) gives us, modulo cycle relations,
the element −Γ ∈ FG(n). For example, for n = 3, a cycle relation of type (ii) is:

2 3

1

+ 2 3

1

+ 2 3

1

(3.9)

Theorem 3.5 ([BDSHK20, Theorem 4.7]). The set L(n) is a basis for the quotient
space FG(n)/R(n).

3.6. Harrison relations. The following result will be used in Section 7.

Lemma 3.6. [BDSKV21, Lemma 4.8] Let Γn be the standard n-line, as in (3.5).
For every m ∈ {2, . . . , n}, the following identity holds:

Γn + (−1)m
∑

π∈Mm
n

πΓn ∈ R(n) , (3.10)
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where the sum is over all monotone permutations π starting at m and the action
of Sn on graphs is described in Section 3.3.

3.7. Notation for subgraphs and collapsed graphs. Let us introduce the fol-
lowing notation. For h ∈ {1, . . . , n} and Γ ∈ G(n), we denote by Γ\h ∈ G(n − 1)
the complete subgraph obtained from Γ by removing the vertex h and all edges
starting or ending in h, and relabeling the vertices from 1 to n− 1. Moreover, for
i, j ∈ {1, . . . , n}, we define the graph πij(Γ) ∈ G(n− 1) obtained by collapsing the
vertices i and j (and any edges between them) into a single vertex, numbered by
1, and renumbering the remaining vertices from 2 to n− 1.

Example 3.7. For example, if

Γ =
1 2 3 4

.

we have
Γ\2 =

1 2 3
, Γ\3 =

1 2 3
,

and

π12(Γ) =
1 2 3

, π23(Γ) =
2 1 3

.

For Γ ∈ G0(n) and i ∈ {1, . . . , n}, we denote by deg−Γ (i) the indegree of i in Γ,
namely the number of edges of Γ incoming to i, by deg+

Γ (i) the outdegree of i in Γ,
namely the number of edges of Γ outcoming from i, and

degΓ(i) := deg−Γ (i) + deg+
Γ (i) ,

the degree of i in Γ. For i, j ∈ {1, . . . , n}, we also let

εΓ(i, j) :=


1 if i→ j ∈ E(Γ) ,

−1 if i← j ∈ E(Γ) ,

0 otherwise .

Note that, since Γ ∈ G0(n), i→ j and j → i cannot be both in E(Γ).

4. Classical PVA cohomology

4.1. Space of classical cochains. Let V be a Poisson vertex algebra. The cor-
responding classical PVA cohomology complex (Ccl, d) is constructed as follows
[BDSHK19]. The space Cncl of classical n-cochains consists of linear maps

Y : FG(n)⊗ V⊗n −→ V[λ1, . . . , λn]
/
〈∂ + λ1 + · · ·+ λn〉 , (4.1)

mapping the n-graph Γ ∈ G(n) and the monomial v1 ⊗ · · · ⊗ vn ∈ V ⊗n to the
polynomial

Y Γ
λ1,...,λn(v1 ⊗ · · · ⊗ vn) , (4.2)

satisfying the skewsymmetry conditions, cycle relations, and sesquilinearity condi-
tions described below.
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The skewsymmetry conditions on Y say that, for each permutation σ ∈ Sn, we
have

Y
σ(Γ)
λ1,...,λn

(v1 ⊗ · · · ⊗ vn) = sign(σ)Y Γ
λσ(1),...,λσ(n)

(vσ(1) ⊗ · · · ⊗ vσ(n)) , (4.3)

where σ(Γ) is defined in Section 3.3.
Recall that R(n) ⊂ FG(n) is the subspace spanned by the cycle relations (i) and

(ii) from Section 3.5. The cycle relations on Y say that

Y Γ = 0 for Γ ∈ R(n) . (4.4)

Hence, Y induces a map on FG(n)/R(n). As an example, observe that, by the first
cycle relation (i), changing orientation of a single edge of the n-graph Γ ∈ G(n)
amounts to the change of sign of Y Γ.

Let Γ = Γ1t· · ·tΓs be the decomposition of Γ as a disjoint union of its connected
components, and let I1, . . . , Is ⊂ {1, . . . , n} be the sets of vertices of these connected
components. For each Γα we write

λΓα =
∑
i∈Iα

λi , ∂Γα =
∑
i∈Iα

∂i , (4.5)

where ∂i denotes the action of ∂ on the i-th factor in the tensor product V⊗n. Then,
the sesquilinearity conditions on Y say that, for v ∈ V⊗n,

Y Γ
λ1,...,λn(v) is a polynomial in λΓ1

, . . . , λΓs , (4.6)

(and not in the variables λ1, . . . , λn separately), and, for every α = 1, . . . , s,

Y Γ
λ1,...,λn((∂Γα + λΓα)v) = 0 . (4.7)

Observe that the second sesquilinearity condition (4.7) implies

Y Γ
λ1,...,λn(∂v) = −

n∑
i=1

λi Y
Γ
λ1,...,λn(v) = ∂

(
Y Γ
λ1,...,λn(v)

)
, v ∈ V⊗n , (4.8)

i.e. Y Γ : V⊗n → V[λ1, . . . , λn]
/
〈∂+λ1+· · ·+λn〉 is an F[∂]-module homomorphism.

Remark 4.1. When the graph Γ is connected, the first sesquilinearity condition
(4.6) implies that Y Γ

λ1,...,λn
(v) is a polynomial of λ1 + · · · + λn ≡ −∂. Hence, it is

an element of

V[λ1 + · · ·+ λn]
/
〈∂ + λ1 + · · ·+ λn〉 ' V .

In this case, we will omit the subscript of Y Γ.

By convention, for n = 0 the graph Γ is empty and s = 0; hence C0
cl = V/∂V.

Note also that C1
cl = EndF[∂] V.

10



4.2. Differential. The classical PVA cohomology differential d : Cncl → Cn+1
cl is

defined by the following formula:

(dY )Γ
λ1,...,λn+1

(v1 ⊗ . . .⊗ vn+1)

=
∑

h: degΓ(h)=0

(−1)n−h
[
vhλhY

Γ\h

λ1,...
h
g...,λn+1

(v1 ⊗ . . .
h
g . . .⊗ vn+1)

]
+

∑
h: degΓ(h)=1
j: εΓ(j,h)6=0

(−1)deg+
Γ (h)+n−h+1Y

Γ\h

λ1,...
h
g...,λj+x,...,λn+1

(v1 ⊗ . . .
h
g . . .⊗ vn+1)

(∣∣
x=λh+∂

vh
)

+
∑

i<j: εΓ(i,j)=0

(−1)n+i+j−1Y
πij(Γ)

λi+λj ,λ1,...
i,j
g ...,λn+1

(
[viλi+X(i)vj ]⊗

⊗
(∣∣
x1=λ1+∂

v1

)
⊗ . . .

i,j
g . . .⊗

(∣∣
xn+1=λn+1+∂

vn+1

))
+
∑
i<j

εΓ(i, j)(−1)n+i+j−1Y
πij(Γ)

λi+λj ,λ1,...
i,j
g ...,λn+1

(vivj ⊗ v1 ⊗ . . .
i,j
g . . .⊗ vn+1) ,

(4.9)

where X(i) is the sum of the variables xk with k 6= i in the same connected com-
ponent as the vertex i.

Theorem 4.2. Formula (4.9) defines a differential on the space of classical cochains
Ccl =

⊕
n≥0 C

n
cl, i.e. d

2 = 0.

Proof. As we will see in Section 4.3, formula (4.9) corresponds to the differential of
the classical PVA cohomology defined in [BDSHK19] with an operadic aproach. �

Remark 4.3. The Poisson vertex algebra structure on V defines an element X ∈ C2
cl

by
X•−→•(a⊗ b) = ab , X• •λ,−λ−∂(a⊗ b) = [aλb] . (4.10)

The skewsymmetry of X is equivalent to the commutativity of ab and the skewsym-
metry of [aλb], while the sesquilinearity of X is equivalent to the sesquilinearity of
[aλb] and the fact that ∂ is a derivation of ab. Moreover, the associativity for ab, the
Jacobi identity for [aλb] and the Leibniz rule relating them, together are equivalent
to the condition that dX = 0, see [BDSHK19, Thm.10.7].

Example 4.4. Consider the completely disconnected graph Γ = • • · · · •. Then
in formula (4.9), all degΓ(h), εΓ(i, j) and X(i) vanish, and we obtain

(dY )• ··· •λ1,...,λn+1
(v1 ⊗ . . .⊗ vn+1)

=

n+1∑
h=1

(−1)n−h
[
vhλhY

• ··· •
λ1,...

h
g...,λn+1

(v1 ⊗ . . .
h
g . . .⊗ vn+1)

]
+

∑
1≤i<j≤n+1

(−1)n+i+j−1Y • ··· •
λi+λj ,λ1,...

i,j
g ...,λn+1

(
[viλivj ]⊗ v1 ⊗ . . .

i,j
g . . .⊗ vn+1

)
,

which is the same as (2.5).

Example 4.5. Consider the case when Γ = Γn+1 is the standard (n+1)-line (3.5).
Then degΓ(h) = 1 for the endpoints h = 1 or n + 1, degΓ(h) = 2 otherwise, so
that the first sum in (4.9) vanishes. The third sum vanishes as well because, when

11



εΓ(i, j) = 0, the graph πij(Γ) has a cycle. In the fourth sum we only have the terms
with j = i+ 1. Thus we obtain

(dY )Γn+1(v1 ⊗ · · · ⊗ vn+1)

= (−1)n+1v1Y
Γn(v2 ⊗ · · · ⊗ vn+1) + Y Γn(v1 ⊗ · · · ⊗ vn)vn+1

+

n∑
i=1

(−1)n+i−1Y Γn(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vn+1) .

For the last term we used the skewsymmetry of Y to bring the factor vivi+1 in
position i. This is the formula for the Hochschild differential [Hoc45].

4.3. Proof of the formula for the differential. In the present paper, the for-
mula (4.9) for the classical PVA cohomology differential d is taken as a definition.
Here, we show how that formula is derived from the approach of [BDSHK19]. This
implies Theorem 4.2.

Recall from [BDSHK19, Sec.10] the classical operad Pcl(ΠV), defined as follows.
The space Pcl(ΠV)(n) consists of maps (4.1) satisfying the cycle relations (4.4)
and the sesquilinearity conditions (4.6)-(4.7). There is a natural action of the
symmetric group Sn on Pcl(ΠV)(n) defined by simultaneously permuting all the
λi’s, the vectors vi’s and the vertices of the graph Γ, and multiplying by the sign
of the permutation, since all vectors in ΠV are odd. Explicitly (see [BDSHK19,
Eq.(10.10)])

(Y σ)Γ
λ1,...,λn(v1 ⊗ · · · ⊗ vn) = sign(σ)Y

σ(Γ)
λσ−1(1),...,λσ−1(n)

(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)) .

(4.11)
Then the skewsymmetry conditions (4.3) are equivalent to the Sn invariance of Y .
Therefore

Cncl = Wn−1
cl (ΠV) =

(
Pcl(ΠV)(n)

)Sn (4.12)

is the space of fixed points under the action of the symmetric group Sn in the
classical operad Pcl(ΠV).

The composition products in Pcl(ΠV) are given by [BDSHK19, Eq.(10.11)]. Here
we need the special case of ◦1-product (see [BDSHK19, Rem.10.3 and Eq.(8.18)]).
For A ∈ Pcl(k), B ∈ Pcl(m) and G ∈ G(m + k − 1), the ◦1-product A ◦1 B ∈
Pcl(m+ k − 1) is given by

(A ◦1 B)Gλ1,...,λm+k−1
(v1 ⊗ · · · ⊗ vm+k−1)

= AḠ
′′

λG′ ,λm+1,...,λm+k−1

(
BG

′

λ1+λG1
+∂G1

,...,λm+λGm+∂Gm
(v1 ⊗ · · ·

· · · ⊗ vm)⊗ vm+1 ⊗ · · · ⊗ vm+k−1

)
.

(4.13)

Here G′ is the subgraph of G with vertices 1, . . . ,m and all edges from G among
these vertices; G′′ is the subgraph of G that includes all edges of G not in G′; and
Ḡ′′ is the graph with vertices labeled 1,m + 1, . . . ,m + k − 1 and edges obtained
from the edges of G′′ by replacing any vertex 1 ≤ i ≤ m with 1, keeping the same
orientation. Finally, the graph Gi (1 ≤ i ≤ m) is the subgraph of G′′ obtained from
the connected component of the vertex i in G′′ by removing from it the vertex i
and all edges connected to i.

By [BDSHK19, Thm.3.4], Wcl(ΠV) =
⊕

k≥−1W
k
cl(ΠV) has the structure of a

Z-graded Lie superalgebra. In particular, for X ∈ W 1
cl(ΠV) and Y ∈ Wn−1

cl (ΠV),
12



their Lie bracket is given by [BDSHK19, Eqs. (3.13), (3.16)]:

[X,Y ] =
∑

σ∈Sn,1

(X ◦1 Y )σ
−1

+ (−1)n
∑

τ∈S2,n−1

(Y ◦1 X)τ
−1

, (4.14)

where Sn,1 and S2,n−1 denote the sets of shuffles from Section 3.1.
The element X ∈ C2

cl = W 1
cl(ΠV) in (4.10) is odd and satisfies [X,X] = 0,

see [BDSHK19, Thm.10.7]. Hence, (adX)2 = 0, and d = adX was taken as the
differential of the classical PVA cohomology complex in [BDSHK19, Def.10.8]. As a
consequence, the classical PVA cohomology Hcl(V) has an induced Lie superalgebra
structure. Here we show that the differential d in (4.9) coincides with adX from
(4.14):

Proposition 4.6. For Y ∈ Cncl = Wn−1
cl (ΠV), we have dY = [X,Y ].

Proof. Recalling from Section 3.1 the definition of shuffles, we have Sn,1 = {σh}n+1
h=1

where

σh =

(
1 · · · · · · · · · n n+ 1

1 · · ·
h
g · · · n+ 1 h

)
,

and S2,n−1 = {τi,j}1≤i<j≤n+1 where

τi,j =

(
1 2 3 · · · · · · · · · n+ 1

i j 1 · · ·
i,j
g · · · n+ 1

)
.

Clearly,
sign(σh) = (−1)n−h+1 and sign(τi,j) = (−1)i+j−1 .

Hence, formula (4.14) becomes

[X,Y ]Γλ1,...,λn+1
(v1 ⊗ · · · ⊗ vn+1) (4.15)

=

n+1∑
h=1

((X ◦1 Y )σ
−1
h )Γ

λ1,...,λn+1
(v1 ⊗ · · · ⊗ vn+1)

+ (−1)n
∑
i<j

((Y ◦1 X)τ
−1
i,j )Γ

λ1,...,λn+1
(v1 ⊗ · · · ⊗ vn+1)

=

n+1∑
h=1

(−1)n−h+1(X ◦1 Y )
σ−1
h (Γ)

λ1,...
h
g...,λn+1,λh

(v1 ⊗ . . .
h
g . . .⊗ vn+1 ⊗ vh)

+
∑
i<j

(−1)n+i+j−1(Y ◦1 X)
τ−1
i,j (Γ)

λi,λj ,λ1,...
i,j
g ...,λn+1

(vi ⊗ vj ⊗ v1 ⊗ . . .
i,j
g . . .⊗ vn+1) ,

where
h
g denotes a missing factor.

Let us study the two summands in the right-hand side of (4.15) separately. To
compute the first summand, we use equation (4.13) with A = X, B = Y , k = 2,
m = n and G = σ−1

h (Γ). Note that σ−1
h (Γ) is obtained by moving the h-th vertex

at the end of the graph. Hence, G′ = Γ\h and G′′ is the subgraph of Γ obtained
by keeping only the edges in or out of the vertex h. Then Ḡ′′ is a graph with two
vertices labeled 1 and h, and

Ḡ′′ =


• • if degΓ(h) = 0 ,

1•→•h if degΓ(h) = deg−Γ (h) = 1 ,

1•←•h if degΓ(h) = deg+
Γ (h) = 1 ,
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and Ḡ′′ has a cycle if degΓ(h) ≥ 2. Moreover, if degΓ(h) = 0 then Gi = ∅ for all i,
while if degΓ(h) = 1 and there is an edge connecting h with j then Gi = ∅ for all
i 6= j and Gj = •h. As a result, provided that degΓ(h) ≤ 1, we obtain

(X ◦1 Y )
σ−1
h (Γ)

λ1,...
h
g...,λn+1,λh

(v1 ⊗ . . .
h
g . . .⊗ vn+1 ⊗ vh) (4.16)

=


X• •−λh−∂,λh

(
Y

Γ\h

λ1,...
h
g...,λn+1

(v1 ⊗ . . .
h
g . . .⊗ vn+1)⊗ vh

)
if degΓ(h) = 0 ,

X•→•
(
Y

Γ\h

λ1,...
h
g...,λj+λh+∂h,...,λn+1

(v1 ⊗ . . .
h
g . . .⊗ vn+1)⊗ vh

)
if j → h ∈ E(Γ) ,

X•←•
(
Y

Γ\h

λ1,...
h
g...,λj+λh+∂h,...,λn+1

(v1 ⊗ . . .
h
g . . .⊗ vn+1)⊗ vh

)
if j ← h ∈ E(Γ) ,

where ∂h denotes the action of ∂ on vh, while (X ◦1 Y )σ
−1
h (Γ) = 0 if degΓ(h) > 1.

To compute the second summand in the right-hand side of (4.15), we use equation
(4.13) with A = Y , B = X, k = n, m = 2 and G = τ−1

i,j (Γ). Note that τ−1
i,j (Γ)

is obtained by moving vertices i and j at the beginning of Γ, keeping the order
between i and j. Hence,

G′ =


• • if there is no edge between i and j in Γ ,

•→• if i→ j ∈ E(Γ) ,

•←• if i← j ∈ E(Γ) ,

while Ḡ′′ = πij(Γ). As a result, we obtain

(Y ◦1 X)
τ−1
i,j (Γ)

λi,λj ,λ1,...
i,j
g ...,λn+1

(vi ⊗ vj ⊗ v1 ⊗ . . .
i,j
g . . .⊗ vn+1) (4.17)

=



Y
πij(Γ)

λi+λj ,λ1,...
i,j
g ...λn+1

(
X• •λi+λGi+∂Gi ,λj+λGj+∂Gj

(vi ⊗ vj)⊗ v1 ⊗ . . .
i,j
g · · · ⊗ vn+1

)
if εΓ(i, j) = 0 ,

Y
πij(Γ)

λi+λj ,λ1,...
i,j
g ...λn+1

(
X•→•(vi ⊗ vj)⊗ v1 ⊗ . . .

i,j
g · · · ⊗ vn+1

)
if εΓ(i, j) = 1 ,

Y
πij(Γ)

λi+λj ,λ1,...
i,j
g ...λn+1

(
X•←•(vi ⊗ vj)⊗ v1 ⊗ . . .

i,j
g · · · ⊗ vn+1

)
if εΓ(i, j) = −1 .

Combining equations (4.15), (4.16) and (4.17) and recalling (4.10), we obtain (4.9).
�

5. The Main Theorem

To a Poisson vertex algebra V we associate two cohomology complexes: the vari-
ational PVA cohomology complex CPV introduced in Section 2.2, and the classical
PVA cohomology complex Ccl introduced in Section 4. Recall also from Remark
2.2 and Section 4.3, that these complexes have the structure of a Lie superalgebra.
It is natural to ask what is the relation between these two cohomology theories. A
partial answer was provided by the following:

Theorem 5.1 ([BDSHK19, Theorem 11.4]). We have a canonical injective homo-
morphism of Lie superalgebras

HPV(V) ↪→ Hcl(V) (5.1)
14



induced by the map that sends f ∈ CnPV to Y ∈ Cncl such that

Y • ··· • = f and Y Γ = 0 if |E(Γ)| 6= ∅ .

It was left as an open question in [BDSHK19] whether (5.1) is, in fact, an iso-
morphism. The main result of this paper will be the proof that this is indeed the
case, under some regularity assumption on V .

Theorem 5.2. Assuming that the PVA V, as a differential algebra, is a finitely-
generated algebra of differential polynomials, the Lie superalgebra homomorphism
(5.1) is an isomorphism.

The remainder of the paper will be devoted to the proof of Theorem 5.2. In
Section 6, we introduce a new cohomology complex, called the sesquilinear Harrison
cohomology complex. In Section 7, we define a filtration of the classical PVA
cohomology complex and we prove that its associated graded is isomorphic to the
sesquilinear Harrison cohomology complex. We then show, in Section 8 that the
cohomology of the sesquilinear Harrison cohomology complex vanishes in positive
degree. Using that, we complete, in Section 9, the proof of Theorem 5.2.

6. Sesquilinear Harrison cohomology

In the present Section we introduce the sesequilinear Hochschild and Harrison
cohomology complexes. In order to do so, we first review the differential Hochschild
and Harrison cohomology complexes.

6.1. Differential Hochschild cohomology complex. Let A be an associative al-
gebra over the base field F, andM be an A-bimodule. The corresponding Hochschild
cohomology complex of A with coefficients in M is defined as follows [Hoc45]. The
space of n-cochains is

Hom(A⊗n,M) , (6.1)

and the differential d : Hom(A⊗n,M)→ Hom(A⊗n+1,M) is defined by

(df)(a1⊗ · · · ⊗ an+1) = a1f(a2 ⊗ · · · ⊗ an+1)

+

n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1 . (6.2)

If A is an associative algebra with a derivation ∂ : A→ A, andM is a differential
bimodule over A (i.e., the action of ∂ is compatible with the bimodule structure), we
may consider the differential Hochschild cohomology complex by taking the subspace
of n-cochains

HomF[∂](A
⊗n,M) . (6.3)

It is clear by the definition (6.2) that the differential d maps HomF[∂](A
⊗n,M) to

HomF[∂](A
⊗n+1,M). Hence, we have a cohomology subcomplex.
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6.2. Differential Harrison cohomology complex. Let us now recall Harrison’s
original definition of his cohomology complex [Har62], see also [GS87, L13]. Let
A be a commutative associative algebra, and M be a symmetric A-bimodule, i.e.,
such that am = ma, for all a ∈ A and m ∈ M . For every 1 < k ≤ n define the
following endomorphism on the space Hom(A⊗n,M):

(LkF )(a1 ⊗ · · · ⊗ an) :=
∑
π∈Mk

n

(−1)dr(π)F (aπ(1) ⊗ · · · ⊗ aπ(n)) , (6.4)

where Mk
n is the set of monotone permutations starting at k, defined in Section

3.2.
A Harrison n-cochain is defined as a Hochschild n-cochain F ∈ Hom(A⊗n,M)

fixed by all operators Lk:

LkF = F , for every 2 ≤ k ≤ n . (6.5)

We will denote by
CnHar(A,M) ⊂ Hom(A⊗n,M) (6.6)

the space of Harrison n-cochains.
Furthermore, if A is a differential algebra with a derivation ∂ : A → A, and

M is a symmetric differential bimodule, we may consider the space of differential
Harrison n-cochains

Cn∂,Har(A,M) ⊂ HomF[∂](A
⊗n,M) , (6.7)

again defined by Harrison’s conditions (6.5).

Proposition 6.1 ([GS87, BDSKV21]).
(a) The Harrison cohomology complex (CHar(A,M), d) is a subcomplex of the Hochschild

cohomology complex.
(b) If A is a differential algebra, with a derivation ∂ : A→ A, the differential Har-

rison cohomology complex (C∂,Har(A,M), d) is a subcomplex of the differential
Hochschild cohomology complex.

The cohomology of the complex (C∂,Har(A,M), d) is the differential Harrison
cohomology of A with coefficients in M , and is denoted by H∂,Har(A,M). Clearly,
H0
∂,Har(A,M) = M and H1

∂,Har(A,M) = Der∂(A,M) is the space of all derivations
from A to M commuting with ∂.

Remark 6.2. It follows from [GS87] that Hn
∂,Har(A,M) is a direct summand of the

differential Hochschild cohomology, for n ≥ 2.

6.3. The sesquilinear Hochschild cohomology complex. Let V be an asso-
ciative differential algebra with derivation ∂, and let M be a differential bimodule
over V. Fix s ≥ 1 and let, as in Section 3.4,

k = (k1, . . . , ks) ∈ Zs≥0 , K0 = 0 , Kt = k1 + · · ·+ kt , t = 1, . . . , s ,

and
n = Ks = k1 + · · ·+ ks .

Given v1, . . . , vn ∈ V, we denote

vtk = vKt−1+1 ⊗ · · · ⊗ vKt ∈ V⊗kt , t = 1, . . . , s , (6.8)

so that
v := v1 ⊗ · · · ⊗ vn = v1

k ⊗ · · · ⊗ vsk ∈ V⊗n . (6.9)
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Note that we allow kt to be 0, and in this case vtk = 1 ∈ F.
The s-sesquilinear Hochschild cohomology complex (Cssesq,Hoc(V,M), d) of V with

coefficients in M , is defined as follows. First we introduce the space C k
Hoc of all

linear maps

FΛ1,...,Λs : V⊗n →M [Λ1, . . . ,Λs]/〈∂ + Λ1 + · · ·+ Λs〉 , v 7→ FΛ1,...,Λs(v) , (6.10)

satisfying the sesquilinearity conditions (t = 1, . . . , s),

FΛ1,...,Λs(v
1
k ⊗ · · · ∂vtk · · · ⊗ vsk ) = −ΛtFΛ1,...,Λs(v) . (6.11)

For every t = 1, . . . , s, we define the t-th differential d(t) : C
k
Hoc → C

k+ e t
Hoc , where

e t is the s-tuple with all 0 except for 1 in position t, given by

(d(t)F )Λ1,...,Λs(v1 ⊗ · · · ⊗ vn+1)

= (−1)Kt−1
(∣∣
x=∂

vKt−1+1

)
FΛ1,...,Λt+x,...,Λs(v1 ⊗ . . .

Kt−1+1
g · · · ⊗ vn+1)

+

Kt∑
i=Kt−1+1

(−1)iFΛ1,...,Λs(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vn+1)

+ (−1)Kt+1FΛ1,...,Λt+x,...,Λs(v1 ⊗ . . .
Kt+1
g · · · ⊗ vn+1)

(∣∣
x=∂

vKt+1

)
.

(6.12)

In other words, up to the overall sign (−1)Kt−1 and up to the shift by ∂ in the
variable Λt, this is the Hochschild cohomology differential of F , viewed as a function
of vtk+ e t

= vKt−1+1 ⊗ · · · ⊗ vKt+1, considering all other vectors vt
′

k+ e t
with t′ 6= t

as fixed parameters. In equation (6.12) and throughout the rest of the paper, the
substitution |x=∂ means that the polynomial in x is expanded, x is replaced by
∂, and it is applied, in this case, to the vector vKt−1+1 in the first term of the
right-hand side, and to the vector vKt+1 in the last term.

Remark 6.3. Note that M [Λ1]/〈∂ + Λ1〉 ' M . Using this, we identify the 1-
sesquilinear Hochschild cohomology complex with the differential Hochschild coho-
mology complex, defined in Section 6.1.

Remark 6.4. Note that, for s > 1, by the sesquilinearity condition (6.11), we have
C
k
Hoc = 0 if one of the ki’s is zero.

Theorem 6.5. For each k ∈ Zs≥0, equation (6.12) gives well defined maps

d(t) : C
k
Hoc → C

k+ e t
Hoc , t = 1, . . . , s ,

which are anticommuting differentials:

d(t)d(t′) = −d(t′)d(t) for all t, t′ = 1, . . . , s .

Hence, we get a Zs≥0-graded s-complex,( ⊕
k∈Zs≥0

C
k
Hoc, d

(1), . . . , d(s)
)
. (6.13)

As a consequence, letting

Cs,nHoc =
⊕

k :Ks=n

C
k
Hoc and d =

s∑
t=1

d(t) : Cs,nHoc → Cs,n+1
Hoc , (6.14)

we get a cohomology complex
(
Cssesq,Hoc(V,M) =

⊕
n≥0 C

s,n
Hoc, d

)
.
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Proof. In order to prove that d(t) is well defined, we first check that, if

FΛ1,...,Λs(v) = (∂ + Λ1 + · · ·+ Λs)GΛ1,...,Λs(v) ,

for every v ∈ V⊗n, then the right-hand side of (6.12) lies in 〈∂ + Λ1 + · · · + Λs〉.
Indeed, using the fact that ∂ is a derivation of the product in V, the first term of
the right-hand side is equal to

(−1)Kt−1(∂ + Λ1 + · · ·+ Λs)
(
GΛ1,...,Λt+∂,...,Λs(v1 ⊗ . . .

Kt−1+1
g · · · ⊗ vn)→vKt−1+1

)
.

The second and third term are similar.
Next, we check that d(t)F satisfies the sesquilinearity conditions (6.10) for every

t′ ∈ {1, . . . , s} in place of t and for k+ e t in place of k . Let v = v1
k+ e t

⊗· · ·⊗v1
k+ e t

be the factorization of v ∈ V⊗(n+1) as in (6.9). If ∂ acts on the factor vt
′

k+ e t
with

t′ 6= t, then in each term of the right-hand side of (6.12) we get a factor of −Λt′ ,
by the sesquilinearity of F . In the case when t′ = t we observe that

vtk+ e t = vKt−1+1 ⊗ w , where w = vKt−1+2 ⊗ · · · ⊗ vKt+1 .

Then
∂vtk+ e t = ∂vKt−1+1 ⊗ w + vKt−1+1 ⊗ ∂w .

Hence, if we replace vtk+ e t
by ∂vtk+ e t

in (d(t)F )Λ1,...,Λs(v), the first term in the
right-hand side of (6.12) becomes, up to the sign (−1)Kt−1 ,

FΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · · ∂w · · · ⊗ vn)→vKt−1+1

+ FΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·w · · · ⊗ vn)→∂vKt−1+1

= FΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·w · · · ⊗ vn)→(−Λt − ∂)vKt−1+1

+ FΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·w · · · ⊗ vn)→∂vKt−1+1

= −ΛtFΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·w · · · ⊗ vn)→vKt−1+1 .

The other two terms in (6.12) are similar, proving the sesquilinearity of d(t)F .
Next, we prove that d(t) and d(t′) anticommute for all t, t′. For t′ 6= t, d(t)

and d(t′) act on a different set of variables, hence, due to the overall signs, they
anticommute. For t′ = t we need to show that (d(t))2 = 0, which is similar to
the proof that the square of the Hochschild differential is zero. For simplicity of
notation, let us check this for t = 1. Then K1 = k1 will be denoted simply as k.
Applying formula (6.12) twice, we obtain:

(d(1)(d(1)F ))Λ1,...(v1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

=
(∣∣
x=∂

v1

)
(d(1)F )Λ1+x,...(v2 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k+1∑
i=1

(−1)i(d(1)F )Λ1,...(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+ (−1)k+2(d(1)F )Λ1+x,...(v1 ⊗ · · · ⊗ vk+1 ⊗ · · · )
(∣∣
x=∂

vk+2

)
=
(∣∣
x=∂

v1

)(∣∣
y=∂

v2

)
FΛ1+x+y,...(v3 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k+1∑
j=2

(−1)j−1
(∣∣
x=∂

v1

)
FΛ1+x,...(v2 ⊗ · · · ⊗ vjvj+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+ (−1)k+1
(∣∣
x=∂

v1

)
FΛ1+x+y,...(v2 ⊗ · · · ⊗ vk+1 ⊗ · · · )

(∣∣
y=∂

vk+2

)
18



−
(∣∣
x=∂

(v1v2)
)
FΛ1+x,...(v3 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k+1∑
i=2

(−1)i
(∣∣
x=∂

v1

)
FΛ1+x,...(v2 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k+1∑
i=3

i−2∑
j=1

(−1)i+jFΛ1,...(v1 ⊗ · · · ⊗ vjvj+1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

−
k+1∑
i=2

FΛ1,...(v1 ⊗ · · · ⊗ vi−1vivi+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k∑
i=1

FΛ1,...(v1 ⊗ · · · ⊗ vivi+1vi+2 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k−1∑
i=1

k+1∑
j=i+2

(−1)i+j−1FΛ1,...(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vjvj+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k∑
i=1

(−1)i+k+1FΛ1+x,...(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+1 ⊗ · · · )
(∣∣
x=∂

vk+2

)
+ FΛ1+x,...(v1 ⊗ · · · ⊗ vk ⊗ · · · )

(∣∣
x=∂

(vk+1vk+2)
)

+ (−1)k
(∣∣
x=∂

v1

)
FΛ1+x+y,...(v2 ⊗ · · · ⊗ vk+1 ⊗ · · · )

(∣∣
y=∂

vk+2

)
+

k∑
i=1

(−1)k+iFΛ1+x,...(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+1 ⊗ · · · )
(∣∣
x=∂

vk+2

)
− FΛ1+x+y,...(v1 ⊗ · · · ⊗ vk ⊗ · · · )

(∣∣
x=∂

vk+1

)(∣∣
y=∂

vk+2

)
.

An inspection of the right-hand side shows that all terms pairwise cancel with each
other. The remaining assertions of the theorem are an immediate consequence. �

The symmetric group Ss acts naturally on each Cs,nHoc as follows. A permutation
σ ∈ Ss maps C k

Hoc → C
σ( k )
Hoc , where we recall that σ( k ) = (kσ−1(1), . . . , kσ−1(s)).

Given F ∈ C k
Hoc, its image Fσ ∈ Cσ( k )

Hoc is given by

(Fσ)Λ1,...,Λs(v) = ±FΛσ−1(1),...,Λσ−1(s)
(v
σ−1(1)
k ⊗ · · · ⊗ vσ

−1(s)
k ) , (6.15)

where the sign in the right-hand side is

± = (−1)
∑
t<t′ : σ(t′)<σ(t) ktkt′ , (6.16)

which is the Koszul sign obtained by permuting vectors v1, . . . , vn, viewed as having
odd parity, according to (6.15). Moreover, for every σ ∈ Ss and t = 1, . . . , s, we
have

σ ◦ d(t) = d(σ(t)) ◦ σ . (6.17)

6.4. The sesquilinear Harrison cohomology complex. Let V be a commuta-
tive associative differential algebra, andM be a differential symmetric V-bimodule.
We define the s-sesquilinear Harrison cohomology complex (Cssesq,Har(V,M), d) as
a subcomplex of the sesquilinear Hochschild cohomology complex of V with co-
efficients in M . First, let C k

Har be the subspace of C k
Hoc consisting of all linear
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maps FΛ1,...,Λs as in equation (6.10) satisfying, in addition to the sesquilinearity
conditions (6.11), the following Harrison conditions (1 ≤ t ≤ s, 2 ≤ m ≤ kt):

L(t)
m F :=

∑
π∈Mm

kt

(−1)dr(π)FΛ1,...,Λs(v
1
k ⊗ · · ·π−1(vtk ) · · · ⊗ vsk ) = FΛ1,...,Λs(v) ,

(6.18)
whereMm

kt
is the set of monotone permutations in Skt starting at m, cf. (6.4).

Proposition 6.6. For every k ∈ Z≥0, 1 ≤ t, t′ ≤ s and 2 ≤ m ≤ kt we have

d(t)L(t′)
m = L(t′)

m d(t) .

In particular, we obtain a cohomology subcomplex Cssesq,Har(V,M) of Cssesq,Hoc(V,M)
given by

Cs,nHar =
⊕

k :Ks=n

C
k
Har and d =

s∑
t=1

d(t) : Cs,nHar → Cs,n+1
Har . (6.19)

Proof. For t 6= t′, the operators d(t) and L(t′)
m commute because they act on different

sets of variables, vtk and vt
′

k respectively. For t = t′, the equation d(t)L
(t)
m =

L
(t)
m d(t) holds by a straightforward computation, which is similar to the proof that

the Harrison cohomology complex is a subcomplex of the Hochschild complex, see
[GS87]. �

Proposition 6.7. Equation (6.15) gives a well defined action of the symmetric
group Ss on Cs,nHar, which maps C k

Har to C
σ( k )
Har . Moreover, σ commutes with the

differential d in (6.14).

Proof. Recall from the end of the previous subsection, that we have an action σ

which maps C k
Hoc to Cσ( k )

Hoc . We only need to check that this action preserves the
Harrison conditions (6.18). This is true because L(t)

m acts on the vectors from the
t-th group v(t)

k , while σ permutes the groups. The claim that σ commutes with d
follows from (6.17). �

Thanks to Proposition 6.7, we get a cohomology subcomplex given by the Ss-
invariants: (

Cssym,Har(V,M) =
⊕
n≥0

(Cs,nHar)
Ss , d

)
, s ≥ 1 . (6.20)

We will call this complex the symmetric s-sesquilinear Harrison cohomology com-
plex of V with coefficients in M . The degenerate case s = 0 corresponds to setting

k = ∅ , n = K0 = 0 , v = 1 ∈ V ⊗0 = F .

In this case, the symmetric (s = 0)-sesquilinear Harrison cohomology complex
Cs=0

sym,Har(V,M) is concentrated in degree n = 0 and it is equal to M/∂M , with the
zero differential.

Remark 6.8. As in Remark 6.3, we have M [Λ1]/〈∂ + Λ1〉 'M , and, using this, we
identify the (s = 1)-sesquilinear Harrison cohomology complex with the differential
Harrison cohomology complex, defined in Section 6.1.
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7. Relation between symmetric sesquilinear Harrison and classical
PVA cohomology complexes

We introduce a filtration of the classical PVA complex (Ccl, d) defined in Section
4.1. For a graph Γ we let s(Γ) be the number of connected components of Γ. Recall
that for an acyclic graph Γ ∈ G0(n) with n vertices, we have s(Γ) = n−|E(Γ)|. We
then let, for s ∈ Z,

FsCcl =
{
Y ∈ Ccl

∣∣Y Γ = 0 for every graph Γ such that s(Γ) < s
}
. (7.1)

This defines a decreasing filtration of vector spaces. Note that FsCcl = Ccl for
s ≤ 0, because any graph Γ with n vertices and |E(Γ)| > n has a cycle and therefore
Y Γ = 0 by definition. The same argument also gives F1C

n
cl = Cncl for n ≥ 1, because

any non-empty graph Γ with n vertices and |E(Γ)| > n − 1 has a cycle. However,
F1C

0
cl = 0, and moreover, FsCncl = 0 for s > n, since s(Γ) = n− |E(Γ)| ≤ n.

Proposition 7.1. The filtration (7.1) is preserved by the action of the differential
d defined by (4.9).

Proof. For Y ∈ FsCncl, we need to prove that dY ∈ FsCn+1
cl . This means that, for

any Γ ∈ G(n+1) such that s(Γ) < s, we have (dY )Γ = 0. Let us consider separately
the four terms in the right-hand side of (4.9).

First, if degΓ(h) = 0, then h is an isolated vertex of Γ and s(Γ\h) = s(Γ)− 1 <
s − 1, so that Y Γ\h = 0. Second, if degΓ(h) = 1, then h is a leaf of Γ and
s(Γ\h) = s(Γ) < s, so that again Y Γ\h = 0. Third, if εΓ(i, j) = 0, then there is no
edge connecting i and j. Hence when we collapse them into a single vertex, either
we get a loop in πij(Γ), if i and j are in the same connected component of Γ, or else
s(πij(Γ)) = s(Γ) − 1 < s. In both cases Y πij(Γ) = 0. Finally, if εΓ(i, j) 6= 0, then
there is an edge connecting i and j. In this case s(πij(Γ)) = s(Γ) < s, and again
Y πij(Γ) = 0. In conclusion, all four terms in the right-hand side of (4.9) vanish if
s(Γ) < s, as claimed. �

As a consequence, the s-degree component of the associated graded of the clas-
sical PVA complex

grs Ccl = FsCcl/Fs+1Ccl

is again a complex for any fixed s ≥ 0 with the induced action of the differential
d. Note that in the special case s = 0 we have gr0 Ccl = C0

cl = V/∂V, which is
concentrated in degree n = 0.

By the proof of Proposition 7.1, if Γ ∈ G(n+ 1) and degΓ(h) = 0, then s(Γ\h) =
s(Γ) − 1. Moreover, if εΓ(i, j) = 0, then either πij(Γ) has a loop or s(πij(Γ)) =
s(Γ) − 1. As a consequence, for Y ∈ FsCncl, the first and third term in the right-
hand side of (4.9) vanish. Therefore, we get the following explicit formula for the
differential of [Y ] = Y +Fs+1C

n
cl ∈ grs Cncl, evaluated at Γ ∈ G(n+1) with s(Γ) = s:

(d[Y ])Γ
λ1,...,λn+1

(v1 ⊗ . . .⊗ vn+1)

=
∑

h: degΓ(h)=1
j: εΓ(j,h)6=0

(−1)deg+
Γ (h)+n−h+1Y

Γ\h

λ1,...
h
g...,λj+x,...,λn+1

(v1 ⊗ . . .
h
g . . .⊗ vn+1)

(∣∣
x=λh+∂

vh
)

+
∑
i<j

εΓ(i, j)(−1)n+i+j−1Y
πij(Γ)

λi+λj ,λ1,...
i,j
g ...,λn+1

(vivj ⊗ v1 ⊗ . . .
i,j
g . . .⊗ vn+1) .

(7.2)
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Theorem 7.2. For every s ≥ 0 we have an isomorphism of complexes between
the s-degree component of the associated graded of the classical PVA cohomology
complex and the symmetric s-sesquilinear Harrison cohomology complex:

grs Ccl ' Cssym,Har . (7.3)

Explicitly, for Y ∈ FsCncl and k ∈ Zs≥0 such that Ks = n, the image of the linear
map

Y Γ k : V⊗n → V[λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉

depends only on the sums

Λt = λKt−1+1 + · · ·+ λKt , t = 1, . . . , s , (7.4)

and therefore it can be viewed as a linear map

Y Γ k : V⊗n → V[Λ1, . . . ,Λs]/〈∂ + Λ1 + · · ·+ Λs〉 .

Then the isomorphism (7.3) maps

Y + Fs+1C
n
cl 7→

∑
k∈Zs≥0

:Ks=n

Y Γ k ∈ (Cs,nHar)
Ss . (7.5)

Proof. The case s = 0 is obvious, so we shall assume s ≥ 1. Clearly, for k ∈ Zs≥0,
we have s(Γ k ) ≤ s. Hence, for Y ∈ Fs+1C

n
cl, we have Y Γ k = 0, and the map (7.5)

is well defined.
Next, we show that Y Γ k ∈ C k

Har for each k ∈ Zs≥0. By the first sesquilinearity
condition (4.6), Y Γ k is a map V⊗n → V[Λ1, . . . ,Λs]/〈∂ + Λ1 + · · · + Λs〉, since
Λt = λ(Γ k )t . The second sesquilinearity condition (4.7) for Y implies the sesquilin-
earity (6.11) of Y Γ k . Moreover, the Harrison conditions (6.18) for Y Γ k follow
from Lemma 3.6, or more precisely from equation (3.10) applied to the t-th con-
nected component (Γ k )t = Γkt of Γ k , and the cycle relations (4.4) for Y . Hence,
Y Γ k ∈ C k

Har, as stated.
In order to check that the right-hand side of equation (7.5) is invariant under the

symmetric group Ss, pick a permutation σ ∈ Ss and consider its action on Y Γ k ,
for a fixed k ∈ Zs≥0. Using equation (6.15), we find

((Y Γ k )σ)Λ1,...,Λs(v) = ±Y Γ k
Λσ−1(1),...,Λσ−1(s)

(v
σ−1(1)
k ⊗ · · · ⊗ vσ

−1(s)
k ) . (7.6)

where ± is as in (6.16). Let σ̃ ∈ Sn be the permutation

σ̃(Kt−1 + i) = kσ−1(1) + · · ·+ kσ−1(σ(t)−1) + i , t = 1, . . . , s, i = 1, . . . , kt . (7.7)

This permutation is defined so that

vσ̃−1(1) ⊗ · · · ⊗ vσ̃−1(n) = v
σ−1(1)
k ⊗ · · · ⊗ vσ

−1(s)
k . (7.8)

Indeed, we have, by (6.8),

v
σ−1(1)
k ⊗ · · · ⊗ vσ

−1(s)
k = (vKσ−1(1)−1+1 ⊗ · · · ⊗ vKσ−1(1)

)⊗ (vKσ−1(2)−1+1 ⊗ . . .
· · · ⊗ vKσ−1(2)

)⊗ · · · ⊗ (vKσ−1(s)−1+1 ⊗ · · · ⊗ vKσ−1(s)
) .
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On the other hand, we obviously have

vσ̃−1(1) ⊗ · · · ⊗ vσ̃−1(n) = (vσ̃−1(1) ⊗ · · · ⊗ vσ̃−1(kσ−1(1))
)⊗ (vσ̃−1(kσ−1(1)+1) ⊗ . . .

· · · ⊗ vσ̃−1(kσ−1(1)+kσ−1(2))
)⊗ · · · ⊗ (vσ̃−1(kσ−1(1)+···+kσ−1(s−1)+1) ⊗ . . .

· · · ⊗ vσ̃−1(kσ−1(1)+···+kσ−1(s))
) .

The above two formulas match thanks to the definition (7.7) of σ̃ with t replaced
by σ−1(t). Notice also that, for the same reason, (cf. (7.4))

λσ̃−1(kσ−1(1)+···+kσ−1(t−1)+1) + · · ·+ λσ̃−1(kσ−1(1)+···+kσ−1(t))
= Λσ−1(t) , (7.9)

and
σ̃(Γ k ) = Γσ( k ) , (7.10)

or, equivalently, σ̃−1(Γ k ) = Γσ−1( k ). We then use the skewsymmetry of Y (4.3)
with respect to σ̃−1 evaluated on the graph Γ k :

Y
σ̃−1(Γ k )
λ1,...,λn

(v1⊗· · ·⊗vn) = sign(σ̃)Y
Γ k
λσ̃−1(1),...,λσ̃−1(n)

(vσ̃−1(1)⊗· · ·⊗vσ̃−1(n)) . (7.11)

Notice that the ± sign in (7.6) is precisely sign(σ̃). Hence, combining equations
(7.6)–(7.11), we get

(Y Γ k )σ = Y Γσ−1( k ) . (7.12)
As a consequence, the sum in the right-hand side of (7.5) is Ss-invariant, as claimed.

Next, we observe that the map (7.5) is injective. Indeed, if
∑
k∈Zs≥0

:Ks=n
Y Γ k =

0 in Cs,nHar =
⊕

k :Ks=n
C
k
Har, then Y

Γ k = 0 for every k ∈ Zs≥0, and therefore, by
Theorem 3.5, Y Γ = 0 whenever s(Γ) ≤ s. Hence, Y ∈ Fs+1C

n
cl, so its image in

grs C
n
cl is zero.

Now we prove that (7.5) is surjective. Take an element

F =
∑
k

F k ∈ Cs,nHar =
⊕

k :Ks=n

C
k
Har ,

which is invariant under the action of the symmetric group Ss. We want to construct
Y ∈ FsCncl such that Y Γ k = F k for every k ∈ Zs≥0. Note that, by Remark 6.4,
we can restrict to k ∈ Zs>0. In the degenerate case s = 1 and k1 = 0, we have
n = 0 and in this case the claim is obvious. First, we define Y ∈ Pcl(ΠV)(n), see
Section 4.3. Recall by Theorem 3.5 that the proper k -lines Γ ∈ L(n), defined by
(3.6), (3.7), form a basis for the vector space FG(n)/R(n), if k1 ≤ · · · ≤ ks and
il1 < il+1

1 whenever kl = kl+1. Hence, it is enough to define Y Γ for each proper
k -line Γ satisfying these conditions. Given such Γ, there is a permutation τ ∈ Sn
such that Γ = τ(Γ k ), and we set

Y Γ
λ1,...,λn(v1 ⊗ · · · ⊗ vn) = sign(τ)F

k
Λ1,...,Λs

(vτ(1), . . . , vτ(n)) , (7.13)

where the Λt’s are as in (7.4). This is well defined, since if τ ∈ Sn fixes Γ k , then
τ = σ̃ for some σ ∈ Ss fixing k , and in this case the right-hand side of (7.13)
equals F k

Λ1,...,Λs
(v1, . . . , vn) by the Ss-symmetry of F . The cycle relations (4.4)

and the first sesquilinearity condition (4.6) on Y hold by construction. The second
sesquilinearity condition (4.7) follows immediately from the sesquiinearity (6.11) of
F .

We are left to check that the map Y defined by (7.13) satisfies the skewsymmetry
(4.3), or equivalently, the Sn-invariance Y = Y σ, σ ∈ Sn, with respect to the action
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(4.11). It is enough to check this separately in the cases when the permutation
only acts on the vertices of a single line, or when it permutes the lines. In the first
case, the invariance condition reduces to the case s = 1, for which the sesquiinear
Harrison complex is equivalent to the differential Harrison complex, and the claim
was proved in [BDSKV21, Lemm4.9]. In the second case, when the permutation σ
permutes the lines, the σ-invariance of Y holds by construction.

Finally, we show that the map (7.5) commutes with the action of the differentials
(4.9) and (6.14). Recall that the differential (4.9) induces, in the associated graded
complex grs Ccl the differential (7.2). Let us evaluate the right-hand side of (7.2) for
Γ = Γ k . In the first sum, h is a vertex of degree 1, hence it must be the beginning
or end point of one of the s lines in Γ k , and j is the vertex adjacent to it in the line.
Hence, when h is the first vertex of the t-th line, we get the first term of (6.12),
while when h is the last vertex of the t-th line, we get the third term of (6.12).
Furthermore, in the second sum of the right-hand side of (7.2), the only non-zero
terms have εΓ k (i, j) = 1, which means that i and j are consecutive vertices of the
same line in Γ k . When they are in the t-th line we recover the second term of
(6.12). This completes the proof. �

8. Vanishing of the sesquilinear Harrison cohomology

In this section, we prove a vanishing theorem for the (symmetric) sesquilin-
ear Harrison cohomology, introduced in Section 6.4. First, we recall some basic
facts about the Hochschild homology and cohomology, and a weak form of the
Hochschild–Kostant–Rosenberg (HKR) Theorem. Next, we give the proof by P.
Etingof of an analogous statement for the differential Hochschild cohomology. We
generalize this to the sesquilinear Hochschild cohomology, introduced in Section
6.3, to derive the vanishing theorem for the (symmetric) sesquilinear Harrison co-
homology.

8.1. The Bar complex. Let A be an associative F-algebra. Its Bar-resolution
B•(A) is a complex of A-A-bimodules with

Bk(A) = A⊗ · · · ⊗A︸ ︷︷ ︸
k+2–times

, k ≥ 0, (8.1)

where the differential d : Bk(A)→ Bk−1(A) is given by

d
(
a0 ⊗ · · · ⊗ ak+1

)
=

k∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak+1, k ≥ 1.

Let Aop be A with the opposite product and Ae = A⊗Aop. Then B(A) is a complex
of left Ae-modules by letting

(a⊗ b) · a1 ⊗ · · · ⊗ ak+2 = a · a1 ⊗ · · · ⊗ ak+2 · b.
Any A-A-bimodule M can be viewed as a right Ae-module by letting m · (a⊗ b) =
b ·m · a. Then

B•(A,M) := M ⊗Ae B(A)

is a complex of F-vector spaces. The homology of this complex is known as the
Hochschild homology of A with coefficients in M and is denoted by HH•(A,M).

Given an A-A-bimodule M , we obtain a complex of F-vector spaces

C•(A,M) := HomA-A-bimod
(
B•(A),M

)
.
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The homology of this complex is known as the Hochschild cohomology of A with
coefficients in M . It is easy to see that this cohomology coincides with the one
defined in Section 6.1.

For a unital algebra A, we will use the normalized Hochschild complex C̄•(A,M)
[L13, 1.5.7] consisting on Hochschild cochains f ∈ C•(A,A) vanishing on elements of
the form a0⊗· · ·⊗ak, where one of the aj is 1. The inclusion C̄•(A,A) ↪→ C•(A,A)
is a quasi-isomorphism. Indeed the map

a1 ⊗ · · · ⊗ ak+2 → 1⊗ a1 ⊗ · · · ⊗ ak+2,

induces a homotopy between the identity map of C•(A,A) and its projection to
C̄•(A,A). Suppose that the algebra A is unital and augmented, with an augmen-
tation ideal A+; in this case we have

C̄i(A,A) = HomF(A⊗i+ , A). (8.2)

8.2. Kähler differentials. Let A be an associative commutative F-algebra, and
I ⊂ A ⊗ A be the kernel of the multiplication map A ⊗ A → A. The A-module
Ω1
A := I/I2 is called the module of Kähler differentials of A.
For an A-module M , a derivation of A with values in M is a linear map D ∈

HomF(A,M) satisfying

D(a · b) = a ·D(b) + b ·D(a).

The space of all derivations Der(A,M) is an A-module and we have

Der(A,M) ' HomA(Ω1
A,M).

In particular, the identity map of Ω1
A gives a derivation d ∈ Der(A,Ω1

A); explicitly,

da = a⊗ 1− 1⊗ a mod I2.

We define the module of n-forms by

ΩnA :=
∧n

A
Ω1
A, n ≥ 0.

Let V be a F-vector space, and consider the free commutative associative unital
algebra A = S(V ) generated by V . In this case,

ΩnA ' A⊗
∧n

V,

since Ω1
A is a free A-module of rank = dimV . We view Ω•A =

⊕
n≥0 ΩnA as a complex

with zero differential. We have the following map of complexes ε : Ω•A → B•(A,A),
called the antisymmetrization map, defined by

ε
(
a⊗ v1 ∧ · · · ∧ vn

)
=
∑
σ∈Sn

sign(σ)a⊗ vσ−1(1) ⊗ · · · ⊗ vσ−1(n). (8.3)

Theorem 8.1 (HKR Theorem [L13, Thm. 3.2.2]). Let A = S(V ) as above. Then
the antisymmetrization map ε, given by (8.3), is a quasi-isomorphism. In partic-
ular, we have an isomorphism ε∗ : ΩnA

∼−→ HHn(A,A) for all n ≥ 0 induced in
homology. Its inverse is given by the surjective map

π∗ : HH•(A,A)→ Ω•A, π∗
(
a0 ⊗ · · · ⊗ ak

)
= a0da1 ∧ · · · ∧ dak.

Similarly, we have:
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Theorem 8.2. For A = S(V ) as above, the inclusion of complexes

π] :
∧•

A
Der(A,A) ↪→ C•(A,A)

is a quasi-isomoprhism. Consequently, we have an isomorphism of cohomology
groups

ε]∗ : HH•(A,A)→
∧•

A
Der(A,A) ' A⊗

∧•
V ∗,

defined as the inverse of the map π]∗ induced by π] in cohomology.

8.3. The differential setting. Let now A be a differential associative algebra,
that is an associative algebra over F with a derivation ∂. Then the complex B(A)
is a complex of F[∂]-modules. Given a differential A-bimodule M , we have the
complex of F-vector spaces

C•∂(A,M) := Hom∂
A-A-bimod(B•(A),M),

where the Hom is taken in the category of differential A-A-bimodules. The homol-
ogy of this complex is the differential Hochschild cohomology of A with coefficients
in M , denoted by HH•∂(A,M). It is clear that this definition coincides with the
definition in Section 6.1.

Let A = F[x
(j)
i | 1 ≤ i ≤ N, j ≥ 0] be a differential polynomial algebra in N

variables xi = x
(0)
i and their derivatives ∂x(j)

i := x
(j+1)
i , j ≥ 0. Let A+ ⊂ A be the

augmentation ideal. We will need the following well known result, whose proof we
provide for completeness

Lemma 8.3. A+ is free as an F[∂]-module.

Proof. Consider first the case when A is a differential polynomial algebra in one
variable x = x(0), that is A = F[x(0), x(1), . . . ]. An F-basis of A+ is given by the
monomials

x(λ) = x(λ1) · · ·x(λk), λ = λ1 ≥ · · ·λk ≥ 0, k ≥ 1. (8.4)

We have

∂x(λ) =

k∑
i=1

x(λ1) · · ·x(λi+1) · · ·x(λk). (8.5)

The module A+ is a graded F[∂]-module with deg x(λ) = k+
∑k
i=1 λi, and deg ∂ = 1.

Notice that the homogeneous components (A+)n of degree n are finite dimensional
over F. We consider the weighted reverse lexicographic order on the set of monomials
(8.4): for two partitions λ, µ we let x(λ) > x(µ) if deg x(λ) > deg x(µ) or deg x(λ) =
deg x(µ) and there exists i0 ≥ 1 such that λi = µi for 1 ≤ i ≤ i0 and λi0 > µi0 .
This is a total ordering on the set of monomials (8.4).

We construct an F[∂]-basis of A+ as follows. For each homogeneous degree
component (A+)n, we consider a set of monomials Bn ⊂ (A+)n such that their
images in (A+)n

/
∂(A+)n−1 form an F-basis. This set exists since we have a total

ordering of a monomial basis of (A+)n over F. We let B =
∐
n≥1 Bn. We claim

that B is an F[∂]-basis of A+.
First, let us prove by induction that B spans A+. Let a ∈ A+ be a homogeneous

element of degree n. We prove by induction that a can be written as a linear
combination with coefficients in F[∂] of elements of B. When n = 1 there is nothing
to prove as (A+)1 has as a basis B1 = {x(0)}. Assume that every homogeneous
element of degree less than n is in the F[∂]-span of B. We can assume that a is a
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monomial. By the definition of Bn, there exist b ∈ (A+)n and c ∈ (A+)n−1 such
that a = b + ∂c with the property that b is an F-linear combination of elements
of Bn. By our induction hypothesis, c (and therefore ∂c) can be written as an
F[∂]-linear combination of elements of B. Therefore, B spans A+ over F[∂].

Let us now prove that the elements of B are linearly independent over F[∂].
Suppose we are given b1, . . . , br ∈ B such that

α1∂
j1b1 + · · ·+ αr∂

jrbr = 0, αi ∈ F, αi 6= 0, ji ≥ 0. (8.6)

We may assume that each summand is homogeneous of degree n and that j1 ≥
· · · ≥ jr. Since ∂ is injective on A+, we may assume that jr = 0. Let i0 be the
minimum such that ji0 = 0. Thus bi ∈ Bn for i0 ≤ i ≤ r. It follows that

∑r
i=i0

αibi
vanishes modulo ∂(A+)n−1, which contradicts our choice of Bn. This proves that
B is an F[∂]-basis of A+.

For general N , writing AN in place of A and denoting the case N = 1 again by
A, we have an isomorphism of F[∂]-modules

AN ' A⊗N = (A+ ⊕ F1)⊗N .

Hence, the augmentation ideal (AN )+ is a direct sum of tensor products of free
F[∂]-modules, and so is free. �

Now we introduce the subspace of poly-vector fields

P • ⊂ HomF(A⊗•, A),

i.e., alternating maps that are derivations in each argument. We consider P • as a
complex with the zero differential. Since A is a differential algebra, P • is naturally
an F[∂]-module; let P •∂ = Ker ∂.

Theorem 8.4. Let A = F[x
(j)
i | 1 ≤ i ≤ N, j ≥ 0] be a differential polynomial

algebra in N variables and their derivatives. Then for all k ≥ 0 we have an iso-
morphism

HHk
∂ (A,A) ' P k∂ .

Proof. (P. Etingof) We consider the normalized Hochschild complex C̄•(A,A) de-
fined in (8.2). It follows from Theorem 8.2 that π] : P • ↪→ C̄•(A,A) is a quasi-
isomorphism. Notice also that the inclusion π] commutes with the F[∂]-action.
That is, the complexes P • and C̄•(A,A) are quasi-isomorphic as complexes of
F[∂]-modules. Considering F as a trivial F[∂]-module, it follows that we have a
quasi-isomorphism of complexes of vector spaces:

RHomF[∂](F, P •)→ RHomF[∂](F, C̄•(A,A)), (8.7)

where RHom is the right derived functor of Hom, whose cohomology computes
the Ext groups. To compute the cohomology of these complexes, we consider the
resolution

F[∂]
∂·−→ F[∂]� F. (8.8)

We replace F by the two term complex F[∂]→ F[∂] in (8.7) and therefore the space
of morphisms of F[∂]-modules(

F[∂]
∂·−→ F[∂]

)
→ P •,

(
F[∂]

∂·−→ F[∂]
)
→ C̄•(A,A),
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are naturally bi-complexes of vector spaces. They consist of complexes with two
rows and infinitely many columns. Thus, the cohomology of the complexes in
(8.7) are given by the cohomology of the total complexes associated to the two-
row bicomplexes P • ∂−→ P • and C̄•(A,A)

∂−→ C̄•(A,A). We compute the vertical
cohomology of the complex P • ∂−→ P • first.

We claim that the map ∂ : P i → P i is surjective for i ≥ 1. In fact, if we let
T i ⊂ C̄(A,A)i be the subspace of all maps that are derivations on each argument,
we see that P i ↪→ T i is a split injection since T i decomposes as a representation
of the symmetric group Si on i elements. It suffices to prove that ∂ : T i → T i

is surjective for i ≥ 1. This is equivalent to showing that Ext1
F[∂](F, T i) = 0 for

i ≥ 1. Indeed, we may replace F by (8.8) and computing the Ext groups amounts
to computing the cohomology of the complex T i ∂−→ T i, which vanishes in degree 1
if and only if ∂ is surjective. Notice that

T i = HomF
(
(A+/A

2
+)⊗i, A

)
,

since a derivation is determined on A2
+ by the Leibniz rule. Also note that A+/A

2
+

is a free F[∂]-module M ' F[∂]N , with basis given by {x(0)
i }1≤i≤N . Since M is a

free F[∂]-module, we obtain

Ext1
F[∂](F, T i) = Ext1

F[∂]

(
F,HomF

(
M⊗i, A

))
= 0, i ≥ 1.

Since the horizontal differentials of P • ∂−→ P • vanish (as the differential of P •

vanishes), we obtain that the total cohomology of the bicomplex P • ∂−→ P • is given
as follows. In degree i ≥ 2, it is P i∂ , that is the ϕ

i ∈ P i such that ∂ϕi = 0. In degree
1, we have P 1

∂ ⊕A/∂A, the first summand corresponds to the vertical cohomology
in degree 0 of P 1 while the second is the vertical cohomology of degree 1 of P 0 = A.
Finally, in degree 0, we have P 0

∂ = F.
We now consider the cohomology of the complex C̄•(A,A)

∂−→ C̄•(A,A) which
computes the right-hand side of (8.7). It follows from Lemma 8.3 that

Ext1
F[∂](F, C̄i(A,A)) = Ext1

F[∂](F,HomF(A⊗i+ , A)) = Ext1
F[∂](A

⊗i
+ , A) = 0, i ≥ 1.

Thus, the vertical differentials of C̄•(A,A)
∂−→ C̄•(A,A) are also surjective for

i ≥ 1. The vertical cohomology of this bicomplex is therefore C̄i∂(A,A) for i ≥ 1,
while in the first column we have the cohomology C̄0

∂(A,A) = A∂ = F in degree
0 and C̄0(A,A)/∂C̄0(A,A) = A/∂A in degree 1. Computing now the horizontal
cohomology, we obtain that the total cohomology of the bicomplex C̄•(A,A) →
C̄•(A,A) consists of Hi(C̄∂(A,A)) for i ≥ 2. In degree 1 we have H1(C̄∂(A,A))⊕
A/∂A, and in degree 0 we have F. We have therefore obtained Hi(C̄∂(A,A)) ' P i∂
for all i ≥ 0 as claimed. �

8.4. The sesquilinear setting. Let A be an associative differential algebra and
s ≥ 1. Consider the total complex of the s-complex

B(A)⊗s = B(A)⊗A · · · ⊗A B(A)︸ ︷︷ ︸
s times

.

This is a complex of A-A-bimodules and of F[∂1, . . . , ∂s]-modules. Let M be a
differential A-A-bimodule. Define

∆sM = M ⊗F[∂] F[∂1, . . . , ∂s],
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where the left F[∂]-module structure on F[∂1, . . . , ∂s] is given by the diagonal map
∂ 7→

∑
∂i. Then ∆sM is an A-A-bimodule and an F[∂1, . . . , ∂s]-module. We have

the complexes

Cs,• = HomA–A–bimod(B(A)⊗s,∆sM), Cs,•∂ = Hom(B(A)⊗s,∆sM),

the Hom in the right-hand side being taken in the category of A-A-bimodules and
F[∂1, . . . , ∂s]-modules. It is clear from the definition that Cs,•∂ (A,A) coincides with
the complex Cs,•Hoc from (6.14).

Remark 8.5. Notice that the complexes Cs,• and Cs,•∂ decompose under the action
of products of symmetric groups as follows. For each degree i and a partition
k1 + · · ·+ ks = i, the complex Cs,• has a direct summand consisting of maps

Bk1(A)⊗ · · · ⊗Bks(A)→ ∆sM.

The group Sk1 × · · · ×Sks acts by permuting the entries on the left-hand side. The
complex Cs,• is a direct sum of these symmetric group representations for all i and
all partitions.

Let now A be in addition commutative, let Ω1
A be the module of Kähler differ-

entials of A, and let
Ω•A =

∧•
A

Ω1
A

be the module of differential forms. We consider Ω•A as a complex with zero differ-
ential. We have P • = Hom(Ω•, A). Note that Ω1

A and therefore Ω•A are differential
A-modules. Hence P •∂ = HomA−F[∂](Ω

•
A, A), where the Hom is taken in the cate-

gory of differential A-modules.

Theorem 8.6. Let A = F[x
(j)
i | 1 ≤ i ≤ N, j ≥ 0] be a differential polynomial alge-

bra, and M be its differential module. Then for every i ≥ 0 we have isomorphisms

Hi(Cs,•(A,M)) ' Hi
(
Hom((Ω•A)⊗s,∆sM)

)
,

Hi(Cs,•∂ (A,M)) ' Hi
(
HomA−F[∂1,...,∂s]((Ω

•)⊗s,∆sM)
)
.

Proof. The first isomorphism is simply a consequence of the HKR Theorem 8.1 for
A stating that B(A) is quasi-isomorphic to Ω•A. Since the latter is a free A-module,
it is flat, and therefore B(A)⊗s is quasi-isomorphic to (Ω•A)⊗s. The result follows
by taking Homs into ∆sM .

The quasi-isomorphism B(A)⊗s → (Ω•A)⊗s is a quasi-isomorphism of complexes
ofA-modules and F[∂1, . . . , ∂s]-modules. It follows that we have a quasi-isomorphism
of complexes of A-modules and F[∂1, . . . , ∂s]-modules

Cs,•(A,M)→ HomA

(
(Ω•A)⊗s,∆sM

)
,

and hence the following two complexes are quasi-isomorphic

RHomF[∂1,...,∂s]

(
F, Cs,•(A,M)

)
→ RHomF[∂1,...,∂s]

(
F,HomA

(
(Ω•A)⊗s,∆sM

))
.

(8.9)
In order to compute the cohomology of (8.9), we use the Koszul resolution of F
as an F[∂1, . . . , ∂s]-module. We consider the free module Ω1

F[∂1,...,∂s]
with a basis

d1, . . . , ds and the resolution

· · · →
∧k

Ω1
F[∂1,...,∂s]

→
∧k−1

Ω1
F[∂1,...,∂s]

→ · · · → Ω1
F[∂1,...,∂s]

→ F[∂1, . . . , ∂s]→ F.
(8.10)

This resolution coincides with the two-term resolution (8.8) when s = 1.
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The complex (8.10) is non-negatively graded, with F[∂1, . . . , ∂s] in degree 0. The
Koszul differential is defined by di 7→ ∂i and extending by the Leibniz rule to a
derivation of degree −1 of the free commutative superalgebra

∧•
Ω1

F[∂1,...,∂s]
. Hence,

in order to compute the cohomology of (8.9), we need to compute the cohomology
of the total complexes with s+ 1 rows∧•

Fs ⊗ Cs,•(A,M) and
∧•

Fs ⊗HomA

(
(Ω•A)⊗s,∆sM

)
. (8.11)

We compute first the vertical cohomology of the complex on the right. We claim
that for each column i ≥ 1 the vertical cohomology in

∧• Fs⊗Hom ((Ω•A)⊗s,∆sM)
vanishes in positive degrees. Indeed, let T s,• be the set of all maps in Cs,•(A,M)
that are derivations in each argument. We have a split injection Hom((Ω•A)⊗s,∆sM)
↪→ T i, since the latter splits as a representation of the symmetric group as in Re-
mark 8.5. It suffices then to prove that the vertical cohomology of

∧• Fs ⊗ T s,•
vanishes in positive degrees. For each partition k1 + · · · + ks = i ≥ 1, the corre-
sponding summand of T s,• is given by maps

(A+/A
2
+)⊗k1 ⊗ · · · ⊗ (A+/A

2
+)⊗ks → ∆sM. (8.12)

Notice that if some ki = 0, the corresponding space of maps vanishes since there are
no non-trivial derivations of F. So we may assume that all ki > 0. Since A+/A

2
+

is free as an F[∂]-module, it follows that the left-hand side of (8.12) is free as an
F[∂1, . . . , ∂s]-module. Hence

ExtjF[∂1,...,∂s]
(F, T i) = 0, i, j ≥ 1,

proving that the vertical cohomology of the second complex in (8.11) vanishes in
positive degrees for each column i ≥ 1. The zeroth column is given by the complex∧• F ⊗ ∆sM , where the differential is defined by di ⊗ m 7→ m∂i extended to a
derivation of degree −1. Since the horizontal differentials are zero, we obtain the
following description of the total cohomology. In each degree i ≥ 1, we have

Hi
(
HomA−F[∂1,...,∂s]

(
(Ω•)⊗s,∆sM

))
⊕Hi

(∧•
Fs ⊗∆sM

)
, (8.13)

where the first summand corresponds to the i-th horizontal cohomology of the
zeroth row, while the second is the i-th vertical cohomology of the zeroth column.
In degree 0, we have F.

We now analyze the vertical cohomology of the first bicomplex in (8.11). We
notice that, in the same way as in the proof of Theorem 8.4, for any partition
k1 + · · ·+ks = i where all ki > 0, we have (A+)⊗

∑
kj is a free F[∂1, . . . , ∂s]-module.

Hence, we obtain
ExtjF[∂1,...,∂s]

(
F, Cs,j

)
= 0, i, j ≥ 1.

The cohomology is therefore again concentrated in the zeroth row and the zeroth
column. The zeroth vertical cohomology is given by Cs,•∂ , while the zeroth column
is given by

∧•⊗∆sM . We see that the zeroth column contributes the same coho-
mology to the second summand of (8.13), while the horizontal cohomology of the
zeroth row is now given by Hi

(
Cs,•∂ (A,M)

)
, proving the theorem. �

8.5. The sesquilinear Hodge decomposition. We recall here the Hodge decom-
position of the Hochschild cohomology of a commutative algebra A with coefficients
in its module M ; see [GS87, L13]. The symmetric group Sn acts on

Cn := Cn(A,M) ' Hom(A⊗n,M)
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by permuting the n factors. Recall the Eulerian idempotents e(i)
n ∈ Q[Sn] of the

group algebra of Sn (see [L13, 4.5.2] for an explicit description). They satisfy

1 = e(1)
n + · · ·+ e(n)

n ,

e(i)
n e(j)

n = 0, if i 6= j, and e(i)
n e(i)

n = e(i)
n .

It follows from [L13, 4.5.10] that, putting Cn(k) := e
(k)
n Cn, and lettingHHn

(k)(A,M) ⊂
HHn(A,M) consist of cohomology classes of elements in Cn(k), we obtain a direct
sum decomposition

HHn(A,M) = HHn
(1)(A,M)⊕ · · · ⊕HHn

(n)(A,M), n ≥ 1.

The first summand HHn
(1)(A,M) is identified canonically with the Harrison co-

homology Hn(C•Har(A,M)) by [L13, 4.5.13]. The last summand is identified with
polyvector fields [L13, 4.5.13]:

HHn
(n)(A,M) ' Hom

(∧n
Ω1
A,M

)
. (8.14)

The above description generalizes to the sesquilinear setting. Recall from the
proof of Proposition 6.7 that the complexes Cs,•∂ (A,M) are complexes in the cate-
gory of representations of symmetric group Ss, so that the action of the symmetric
group Ss as described in Section 6.3 commutes with the differential. In addition, it
preserves the Harrison conditions (6.18). For each s and k1 + · · ·+ ks = n, we have
an action of the product Sk1×· · ·×Sks on C

s,•
∂ (A,M) by permuting the entries and

commuting with the differential. Consider the corresponding Eulerian idempotents
e

(i)
kj
∈ Q[Skj ], for i ≥ 0 and j = 1, · · · , s. For i = (i1, · · · , is) and k = (k1, · · · , ks),

we let
e

(i)
k = e

(i1)
k1
⊗ · · · ⊗ e(is)

ks
∈ Q[Sk1

× · · · × Sks ].
For each i, we set

Cs,n(i),∂(A,M) =
⊕

k1+···+ks=n

e
(i)
k C

s,k
∂ (A,M).

We obtain the corresponding decomposition of the sesquilinear Hochschild coho-
mology

Hn
(
Cs,•∂ (A,M)

)
=
⊕
i

Hn
(
Cs,•(i),∂(A,M)

)
.

Denote by 1 the s-tuple (1, . . . , 1). The summand for i = 1 is identified with the
sesquilinear Harrison cohomology in the same way as above:

Hn
(
Cs,•sesq,Har(A,M)

)
= Hn

(
Cs,•(1),∂(A,M)

)
. (8.15)

In the other extreme case, we obtain from (8.14) the identification of sesquilinear
polyvector fields with the following sum

Hn
(
HomA−F[∂1,...,∂s]((Ω

•)⊗s,∆sM)
)
'

⊕
k1+···+ks=n

Hn
(
Cs,•(k),∂(A,M)

)
. (8.16)

The main result of this section is the following:

Theorem 8.7. Let A = F[x
(j)
i | 1 ≤ i ≤ N, j ≥ 0] be a differential polynomial

algebra, and M be its differential module. Then for every n > s > 0 the sesquilinear
Harrison cohomology of A with coefficients in M vanishes:

Hn
(
Cs,•sesq,Har(A,M)

)
= 0.
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Proof. Let n > s > 0 and consider the sesquilinear Hochschild cohomology of A
with coefficients in M , namely Hn(Cs,•∂ (A,M)). By Theorem 8.6 and (8.16), we
have an isomorphism

Hn(Cs,•∂ (A,M)) '
⊕

k1+···+ks=n

Hn
(
Cs,•(k),∂(A,M)

)
.

If n > s this implies that in the sum in the right-hand side we must have some
ki > 1, and hence k 6= 1. This implies that

Hn
(
Cs,•(1),∂(A,M)

)
= 0,

and therefore the theorem follows by (8.15). �

Corollary 8.8. With the notation of Theorem 8.7, for every n > s > 0 the sym-
metric s-sesquilinear Harrison cohomology of A with coefficients in M vanishes:

Hn
(
Cs,•sym,Har(A,M)

)
= 0.

Proof. It follows from Proposition 6.7 that the sesquilinear Harrison cohomology
complex Cs,•sesq,Har is a complex of Ss-modules. The symmetric s-sesquilinear Har-
rison cohomology complex Cs,•sym,Har(A,M) is defined in (6.20) as its subcomplex of
Ss-invariants. It follows that the symmetric s-sesquilinear Harrison cohomology is
a direct summand of the s-sesquilinear Harrison cohomology. �

9. Proof of the Main Theorem 5.2

Recall that by Theorem 5.1 the map (5.1) is injective, and we only need to prove
that it is surjective. In other words, we need to show that for every closed element
Y ∈ Cncl in the classical complex, dY = 0, there exist Z ∈ Cn−1

cl and Ỹ ∈ Cncl such
that

Y = dZ + Ỹ , (9.1)

and
Ỹ Γ = 0 if |E(Γ)| 6= 0 . (9.2)

Recall the filtration FsCncl of the classical complex, given by equation (7.1). Clearly,
Y ∈ F1C

n
cl = Cncl, and the condition (9.2) on Ỹ is equivalent to saying that Ỹ ∈

FnC
n
cl. Hence, by induction, it suffices to prove that, for 1 ≤ s ≤ n − 1 and

Ys ∈ FsC
n
cl such that dYs = 0, we can find Zs ∈ Cn−1

cl and Ys+1 ∈ Fs+1C
n
cl

satisfying
Ys = dZs + Ys+1 . (9.3)

Consider the coset Ys + Fs+1C
n
cl ∈ grs C

n
cl. Then, since the differential d of Ccl

preserves the filtration (7.1), Ys+Fs+1C
n
cl is a closed element of the complex grs Ccl.

By Theorem 7.2, the complex grs Ccl is isomorphic to the complex Cssym,Har, which,
by Corollary 8.8, has trivial n-th cohomology, since s ≤ n − 1. As a consequence,
there exists Zs + Fs+1C

n−1
cl ∈ grs C

n−1
cl such that

Ys + Fs+1C
n
cl = d(Zs + Fs+1C

n−1
cl ) .

This is equivalent to Ys+1 := Ys − dZs ∈ Fs+1C
n
cl, proving the theorem.
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