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ARTICLE

Occupational exposure to graphene and silica nanoparticles.
Part I: workplace measurements and samplings

Fabio Boccunia, Riccardo Ferrantea, Francesca Tombolinia, Claudio Natalea, Andrea Gordiania,
Stefania Sabellab and Sergio Iavicolia

aDepartment of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority
(INAIL), Monte Porzio Catone, Rome, Italy; bDepartment of Drug Discovery and Development, Italian Institute of Technology (IIT),
Genova, Italy

ABSTRACT
Few-Layers Graphene (FLG) are able to improve the performance of materials, due to their
chemical-physical properties. Engineered amorphous silica nanoparticles (SiO2NPs) are among
the most widespread nanomaterials (NMs) in the world. Such nanomaterials are two case studies
of the research project ‘NanoKey’ that integrated the exposure assessment through personal
measurements and sampling in the workplace, as described in the present work (part I), with
the biomonitoring of exposed workers (reported in part II). Measurement campaigns were con-
ducted according to OECD and WHO harmonized approach in two production sites. The set of
instruments included real-time devices for high-resolution measurements at the nanoscale and
time-integrated samplers for the off-line gravimetric analysis and chemical and morphological
(SEM-EDS) characterization of exposure in order to identify the contribution of production com-
pared to the background. Values of particle number concentration (PNC) and lung deposited
surface area (LDSA) within the FLG production resulted higher than the background far field
(FF), even if they are always similar to the near field (NF) ones: the average diameter (Davg) dur-
ing the production was higher than the NF background but always lower than the FF values.
SEM-EDS analysis highlighted the presence of structures comparable to those produced. During
the SiO2NPs production, the PBZ values showed PNC and LDSA levels higher than the back-
ground, with a decrease in the Davg probably due to NPs emission. SEM-EDS confirms the pres-
ence of rare silica nanoparticles. Since the exposure to airborne NMs cannot be excluded in
both production sites, a prevention-through-design approach to mitigate the potential risk for
workers has been recommended.
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Introduction

In recent years nanotechnology showed a rapid
development in a wide range of sectors, thanks to
the new properties that hallowed multidisciplinary
relevance to the materials at the nanoscale.
Innovative chemical and physical properties of nano-
materials (NMs), such as graphene (Novoselov et al.
2004), are useful to improve the performance of pris-
tine materials in which they are added (Li et al.
2019). Amorphous silica nanoparticles (SiO2 NPs) are
widespread used in different sectors, from medicine
and pharmaceutics (Jeelani et al. 2020) to the con-
struction industry (Pacheco-Torgal et al. 2019).

In parallel with the production and use of differ-
ent NMs, researchers focused their interest in the

potential impact for workers involved in industrial
and small-scale research and development (R&D)
processes. Several scientific studies highlighted that
NMs can be more hazardous than the same materi-
als in the bulk form (Oberdorster, Oberdorster, and
Oberdorster 2005) also due to the large effective
surface area per mass unit (Hubbs et al. 2013).

Scientific studies regarding in vitro and in vivo
toxicity assessment of carbon-based NMs, such as
Single or Multi Walled Carbon Nanotubes, demon-
strate that they cause germ cell mutagenicity, spe-
cific organ toxicity, eye damage and carcinogenicity
after repeated exposure (Shvedova et al. 2016). At
present, many R&D facilities started the production
of graphene, few-layers graphene (FLG), graphene
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oxide, reduced graphene oxide and graphene nano-
platelets (Fadeel et al. 2018). The nanoscale size
and the 2-D dimensionality, represent key parame-
ters for risk analysis of exposure to such graphene-
based NMsQ1 (Schinwald et al. 2012).

Toxicological effects are also associated to SiO2

NPs exposure in the workplace: such nanoscale
materials generally exhibit acute toxic effects
in vitro and in vivo. The data on chronic effects of
exposure are rather conflicting with the acute
effects and are still not enough to draw firm con-
clusions. Moreover, effects on human health remain
unclear due to the lack of realistic exposure and
epidemiological data (Murugadoss et al. 2017). A
recent review on epidemiological findings on work-
ers exposed to synthetic SiO2 NPs, concluded that
the mechanisms of toxicity are the generation of
reactive oxygen species and oxidative injury, con-
firmed also by animal models; pathological altera-
tions occurred in workers exposed not wearing
personal protective equipment (Schulte et al. 2019).

As long as specific occupational exposure limits
(OELs) for NMs will be not applicable in workplaces,
the World Health Organization (WHO 2017) pro-
posed to follow a stepwise approach for measure-
ment of exposure by inhalation: first, an assessment
of the potential for exposure; second, conducting a
basic exposure assessment and third, conducting a
comprehensive exposure assessment according to
the guidelines proposed by the Organization for
Economic Cooperation and Development (OECD
2015, 2017).

Although the emission potential parameters
alone do not predict the worker exposure potential
(Bergamaschi et al. 2015), the integration of expos-
ure measurements and sampling with the bio-moni-
toring of involved workers may represent an added
value for a comprehensive occupational exposure
characterization (Schulte et al. 2018).

In this framework a research project has been
developed by the Italian Workers’ Compensation
Authority (INAIL) with the aim to assess the occupa-
tional exposure to different types of NMs, integrat-
ing personal and workplace measurements/
sampling and biomonitoring of exposed workers.
The present study (part I) is focused on the results
of the measurements and sampling of airborne FLG
and SiO2 NPs produced in two different facilities in
order to characterize the workers’ exposure by

inhalation. In the Part II (Ursini et al. 2020) the
results of biomonitoring of workers involved in
both production processes will be reported.

Materials and methods

Nanomaterials and production processes

The case studies have been identified in two pro-
duction laboratories of NMs with different proper-
ties and dimensionalities:

� 2-D FLG powders are produced in the Facility A,
according to the patented protocol of exfoliation
of layered materials by Wet-Jet Milling techni-
ques developed by Del Rio Castillo et al. (2016).
The final products are in the form of flakes with
crystalline nature and lateral dimensions of
100–1000 nm, which can be further functional-
ized with nitrogen or oxygen atoms.

� 0-D SiO2 NPs are produced in the Facility B, by
synthesis in liquid phase and following washing
and drying processes to obtain powders in three
different average sizes (25, 50 and 100 nm) and
two surface charges (positive and negative)
(Malvindi et al. 2012, 2014). During the process
monitored in the extensive campaign SiO2 NPs
of average 50 nm size were produced.

Standard process phases of both case studies are
summarized in the Table 1; detailed information on
materials have been collected by an information
data sheet already developed in a previous study
(Boccuni et al. 2018), filled in by the manufacturing
laboratory for each case study and reported in
Supplementary Table S1.

Measurement and sampling approach

The exposure by inhalation has been assessed
through measurements and samplings according to
the harmonized tiered approach defined by OECD
(2015) and recommended by WHO (2017). For both
case studies information about processes, operating
procedures, workplaces and safety equipment have
been reported in Supplementary Table S1.

Preliminary measurements and sampling have
been realized during specific walkthrough sessions
organized in both facilities in which materials were
produced. Laboratory simulations using trial
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samples of final materials allowed us to check the
sampling strategies and the instruments’ responses.

An extensive campaign has been conducted for
each case study to monitor all production phases
and background levels.

Two approaches for background characterization
were used in our study:

� Far-Field (FF) background: measured in the same
facility in a location where no NMs are produced,
far from the workstations and not influenced by
the process. FF background was collected simul-
taneously with the measurements conducted
during the production inside the laboratories.

� Near-Field (NF) approach: background is meas-
ured before the production started, inside each
laboratory within a range of 1.5 m from the
workstations.

Furthermore we measured the worker’s personal
exposure in the personal breathing zone (PBZ), i.e.
within a 0.3m radius of worker’s nose and mouth,
before (PBZ background) and during the activities.
In the same way, we measured the workplace
exposure in the NF location, representing the pos-
ition of another worker not directly involved in the
process phase.

Particle number concentration (PNC) significant
values have been calculated based on OECD (2015)

methodology as the average background plus three
times the related standard deviation. They represent
the values beyond which NMs emission by produc-
tion may be supposed (Brouwer et al. 2016).

The set of instruments involved in both extensive
sampling campaigns was composed by:

� Condensation Particle Counter (CPC mod. 3007,
TSI Inc., Shoreview, MN, USA) to measure in real-
time the PNC (part/cm3) from 10 to 1,000nm,
with 1 s time resolution (1Hz) and accuracy
±20% (total flow 0.7 L/min; detection limits 1 to
100,000 part/cm3).

� DiSCmini (DM mod. TESTO SE & Co. KGaA,
Germany), handheld instrument for the measure-
ment of personal PNC in the range 10–700nm,
average diameter (Davg) of diffusion charging
and Lung Deposited Surface Area (LDSA) in the
range 10–300nm, based on the model published
by the International Commission on Radiological
Protection (ICRP 1994), with a lower 1 s time
resolution. Three different DMs have been used
for parallel measurements.

� Fast Mobility Particle Sizer (FMPS mod. 3091, TSI
Inc., Shoreview, MN, USA) to measure real-time
particle size distribution (PSD, dN/dlogDp) and
simultaneously measure total PNC (part/cm3),
in the size interval 5.6–560 nm, with 1 s time
resolution.
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Table 1. Case studies processes and phases description.
FLG process phases (state of NMs) Description

A.1. Wet Jet Mill (liquid) The mixture of graphite layered crystals dispersed in N-methyl-2-pirrolidone (NMP) is
subsequently passed through the 300, 200, 150 and 100 micron nozzle to product 10 L of
graphene-based ink at a concentration of 10 g/L. Time averaged duration 8 h.

A.2. Rotovapor (liquid) Evaporation of graphene-based ink dispersed in NMP (8 L per cycle). Washing with Acetone or
Propan-2-ol and re-dispersion in Dimethyl Sulfoxide (DMSO) to obtain the ink at 30 g/L
concentration in DMSO. Time averaged duration 8 hours.

A.3. Freeze Drying (powder) The graphene-based ink in DMSO is firstly frozen and then dried (vacuum sealed) to obtain, at
the best, 100 g of graphene-based powder per cycle. Time averaged duration 50 h.

A.4. Storage and Cleaning (powder) At the end of the phase A.3 the freeze dryers are opened and the Petri dishes (freeze dryer
containers) are put under the recirculation hood for the storage. Workers handle about 90 g
of FLG during in this step. Time averaged duration 3 hours. During the defrosting process,
the freeze dryers are washed with Propan-2-ol or Acetone up to a maximum of 1 L per each
freeze dryer. Time averaged duration 15min.
During the phase the air-conditioning system inside the laboratory is turned off, leaving on
the local extraction hoods.

SiO2 NPs process phases
B.1. Synthesis (liquid) 10ml of reagents and solvents in solution are mixed in a stirrer.

Time averaged duration 24 h.
B.2. Washing (liquid) The solution is washed in a spin-drier using ethanol (10mL) and water. Time averaged

duration 1 h.
B.3. Drying (powder) In this phase the concentration of NPs in water solution is measured and then the materials are

converted in powder form inside a dryer. At the end the dryer is open in order to extract the
products. During the activities the equipment are cleaned using compressed air. Time
averaged duration 24 h.

B.4. Weighting, dilution and storage (powder) Weighting of powders, using a laboratory scale, and storage. Workers handle about 20mg of
SiO2 NPs during in this step. If requested the NPs are also diluted in water solution and
stored in this form. Time averaged duration 1 h 30min.
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� Nanoparticle Surface Area Monitor (NSAM mod.
3550, TSI Inc., Shoreview, MN, USA) to measure
the running average LDSA (mm2/cm3) of particles
from 10 nm to 1,000 nm, with 1 s time resolution,
corresponding to the alveolar pulmonary frac-
tion, based on the ICRP (1994) model.

� Electrical Low Pressure Impactor (ELPIþmod.
Dekati Ltd, Finland) to measure real-time total
PNC and PSD in the size range 6–10,000 nm
(1Hz sampling rate) and to collect on plates size
classified particles for off-line analysis. Sampling
supports are in aluminum (Al) with 25mm size.

� Photoelectric Aerosol Sensor (PAS2000, EcoChem
Analytics, League City, TX USA) to measure poly-
cyclic aromatic hydrocarbons (PAHs) surface-
adsorbed on carbon aerosol with aerodynamic
diameter from 10 nm to 1,500 nm, with a
response time of 10 s in the measuring interval
3–1,000 ng/m3.

� Personal samplers (mod. Sioutas, SKC Inc., Eighty
Four, PA, USA) equipped with a pump (9 L/min
flow) to collect particles from 250 nm to
2500 nm (in five stages: > 2500 (to 10,000),
1,000–2,500, 500–1,000, 250–500 and <250 nm).
Sioutas are equipped with Al filters (25mm) on
four stages and polytetrafluoroethylene (PTFE)
filters (37mm) on the backup stage (<250 nm).
Four different Sioutas devices have been
involved for parallel sampling, two collecting
materials for morphological analysis and two for
gravimetric analysis.

Off-line analysis of sampled materials has been
conducted for a comprehensive characterization of
the exposure scenarios:

� Gravimetric analysis has been performed by
weighting filters sampled by Sioutas before the
sampling and after (average on three weighting
operations) by an analytic scale (mod. xs105,
resolution ¼ 0.01 mg): mass differences repre-
sented to the total airborne particle matter, in
the instrumental size ranges.

� Morphological and elemental analyses have
been performed on materials collected by
Sioutas and ELPIþ to find the presence of the
produced NMs in the workplace air and their
shapes in the samples, using a High-Resolution
Field Emission Scanning Electron Microscope

(HR-SEM) Ultra Plus (ZEISS) equipped with an
Energy Dispersive X-ray Spectroscopy (EDS,
Oxford Instruments INCA).

� Chemical analysis on cartridge for collection of
volatile organic compounds (VOCs) and airborne
solvents has been performed in the FLG case,
through Gas-Chromatography Mass Spectrometer
(GC-MS mod. Agilent Technologies 5975 C-
inert MSD).

� VOCs cartridge mod. Anasorb CSC (SKC Inc., 863
Valley View Road, Eighty Four PA 15330 USA)
sorbent tube, coconut charcoal, 6 x 70mm size,
2 sections, 50/100mg sorbent, 20/40 mesh, with
GS ends and FFW separators, fits Type A tube
cover, pk/5.

Detailed information about the whole set of
instruments used in this study are also reported
elsewhere (Ferrante et al. 2019).

Data processing and statistical analysis included
real-time values of PNC (both personal and work-
place) comparison with significant values in order to
identify the process phases with potential emission.
PBZ measurements of PNC, Davg and LDSA are com-
pared to the simultaneous NF and FF values with
the aim to highlight workers’ personal exposure.

PSD (dN/dlogDp) of airborne nanoscale materials
has been measured in the background and during
the production. Measured values were normalized
with respect to the total concentration obtained in
the whole sampling period to identify the specific
contribution (%) of each size. PSD values obtained
from FMPS and ELPIþhave been used also to cal-
culate Davg corresponding value according to
Equation (1):

DavgðtÞ ¼

X

i

Ni � di
X

i

Ni

(1)

where Ni is the PNC related to the ith diameter di,
with i ranging from 5.6 to 560 nm (into the 32 dif-
ferent channels of FMPS) or from 6 to 10,000 nm
(into the 14 different channels of ELPIþ)
(Ramachandran & Cooper 2011).

In the SiO2 NPs case the PSD obtained from
ELPIþ has been used to calculate corresponding
LDSA values according to Kuuluvainen et al. (2016),
who observed a linear correlation between LDSA
measured by NSAM and a function of the ELPI total
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current. In the present study such correlation has
been calculated in the workplace conditions,
obtaining a calibration factor of 40 mm2/cm3pA (R2

¼ 0.97).
PAHs concentration was monitored by PAS2000

in order to identify environmental pollutants in the
workplace air. In addition in the FLG case, PAHs sig-
nal may be useful for the identification of elemental
carbon (Bukowiecki et al. 2002) during the carbon-
based materials production, as already described by
Evans et al. (2010).

VOCs samplings were conducted according to
the procedures for measurements of chemical
agents in the workplace established by the
European standard EN 482:2012 (CEN 2012).

Measurement campaigns setting up

FLG production process is developed in a laboratory
of area about 43.5m2 (Length ¼ 7.5m Width ¼
5.8m and Height ¼ 3.2m) located at the fist under-
ground floor in the Facility A (Figure 1(a)), equipped
with mechanical ventilation (6 air change per hour)
for air conditioning and a dedicated system includ-
ing local extraction hoods connected to the aspir-
ation line of exhaust fumes. Personal protective

equipment (PPE) include suits, coats, nitrile gloves,
cold resistant gloves, arm sleeves, glasses, masks
and ear protection headphones (Supplementary
Table S1). The access from the hallway to the
laboratory is allowed by a pre-chamber (area about
20m2) connected to the same air conditioning sys-
tem of the laboratory.

SiO2 NPs are produced in a laboratory of area
about 42.1m2 (Length ¼ 6.8m Width ¼ 6.2m and
Height ¼ 3.1m) located at the ground floor of the
Facility B (Figure 1(b)) equipped with mechanical
ventilation (6 air change per hour) for air condition-
ing and windows for natural ventilation, in which
also other types of NMs productions were made.
PPE include coats, nitrile gloves, glasses
(Supplementary Table S1). The access to the labora-
tory is inside the building, from the hallway.

Instrument locations in facilities A and B are also
reported in Figure 1. In both cases workers worn
personal devices (DM and Sioutas) with the probes
placed in the PBZ and during the activities they
move to the different workstations to perform each
phase. The sample probes of other instruments
(FMPS, NSAM, ELPIþ, PAS2000, Sioutas and VOCs
cartridge) were placed inside the laboratory (‘NF’
position). For the FLG case we placed DM, VOCs
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485Figure 1. Instruments locations and sampling points in Facility A – FLG laboratory (a) and Facility B – SiO2 NPs laboratory (b).
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cartridge and two Sioutas also in the pre-chamber
(‘FF1’ position). In both cases we placed further
instruments in the hallway (‘FF’ position), outside
the laboratory near the access: VOCs cartridge and
DM for FLG case; VOCs cartridge, ELPIþ and two
Sioutas for SiO2 NPs case.

Time schedules of two extensive sampling cam-
paigns are reported in Table 2.

Workers involved in all production phases
included in the sampling campaigns were also
enrolled for the biomonitoring pilot study; subjects
non-occupationally exposed to nanomaterials, work-
ing in the administrative offices, were selected as
control group as reported in detail in the part II of
the study (Ursini et al. 2020).

Instruments comparison

At the beginning and at the end of each measure-
ment campaign instrument comparison sessions
have been conducted at the same sampling point
when no production activities were performed, in
order to define the correlations among the instru-
ments measuring the same parameter and to align
the obtained values (Asbach et al. 2012). Such oper-
ation allowed us to compare measurement
obtained by the devices placed in different

locations during the campaigns and to harmonize
the instruments’ response. In particular three DM
have been compared to the CPC signal and the
parameters of correlation lines (CPC¼aDMþ b) for
PNC have been obtained (Supplementary Tables
S3–S5 and Figures S1–S3). Furthermore comparisons
among three DM have been conducted to set
instrument’s diffusion (ID) and filter (IF) stage current
signals according to Fierz et al. (2011) equations
and to calculate Davg and LDSA corrections
(Supplementary Tables S4–S6 and Figures S2–S4).

Q2As reference instrument, the DM that better correl-
ate to CPC values has been chosen. In the following
text, the values corrected after the instrument com-
parison analysis will be identified by an asterisk.

Results

FLG case study

Real time measurements comparison between back-
ground and production
In Table 3 are summarized average values and
standard deviations of background and process
phases for all sampling positions: laboratory (NF),
personal (PBZ), pre-chamber (FF1) and hallway (FF).
Background line reports the measurements
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Table 2. Time schedules of measurement campaigns conducted for both case studies.
Day/hours FLG process phase Day/hours SiO2 NPs process phase

Day 1 Day 1
6:00PM–6:13PM Instruments set up 6:21PM–12:00PM Instruments set up
6:16PM–6:21PM A.3 freeze dryinga (start) Day 2
Day 2 8:52AM–9:25AM Instruments comparison #1
9:20AM–9:40AM Instruments comparison #1 9:45AM–10:06AM Backgroundb

10:00AM–10:12AM Backgroundb 10:06AM–10:24PM B.1 Synthesis #1
10:12AM–5:35PM A.2 Rotovapor 10:40AM–12:28AM B.1 Synthesis #1
Day 3 7:40PM B.3 Drying #1 (start)
10:05AM–5:50PM A.1 Wet Jet Mill Day 3
Day 4 10:02AM–2:00PM B.2 Washing
3.50PM–3:55PMM A.3 Freeze Drying (stop) 10:40AM–11:00AM B.3 Drying #1 (stopþ dryer opening)
3:55PM–5:39PM A.4 Storage and Cleaning 11:05AM B.3 Drying #2 (start)
Day 5 2:25PM–2:38PM B.4 Weighting Dilution and Storage #1
9:24AM–9:51AM Instruments comparison #2 3:00PM–3:20PM B.3 Drying #2 (stopþ dryer opening)

4:05PM B.3 – Drying #3 (start)
Day 4
9:50AM–9:56AM B.3 Drying #3 (stopþ dryer opening)
10:04AM–12:44PM B.1 Synthesis #3
11:57AM–12:00PM B.4 Weighting Dilution and Storage #2
12:47PM–12:50PM B.4 Weighting Dilution and Storage #3
1:11PM–3:45PM B.3 Drying #4
4:19PM–4:22PM B.4 Weighting Dilution and Storage #4
5:48PM B.3 Drying #5 (start)
Day 5
9:08AM–9:25AM Instruments comparison #2
10:01AM–10:04AM B.3 Drying #5 (stopþ dryer opening)

aPhase A.3 runs during others activities for 50 hours until Day 4.
bBefore the production activities.
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conducted at the same locations, before the work-
ing activities. Missing values due to instrument fail-
ures are reported as not available (n.a.) in the table.
Davg values of ELPIþ are calculated in the size range
10–300 nm. Phase A.3 Freeze drying is conducted in
parallel to the other phases A.1 Wet Jet Mill and
A.2 Rotovapor, then the related values are not
reported in the table.

FF significant PNC value is 1,768 part/cm3; FF1
and NF significant values are respectively 9,032 and
9,057 part/cm3. NF background shows similar condi-
tions to the FF1 also for of Davg (65.61 nm and
53.01 nm respectively) and LDSA (25.30 mm2/cm3

and 20.73 mm2/cm3); NF average values are slightly
higher than the PBZ ones probably due to the dif-
ferent position of sampling points and the different
instrument used. Otherwise background FF is com-
posed by few larger nano-objects with Davg of
96.90 nm and corresponding LDSA of 7.88 mm2/cm3.

Distribution parameters of PNC, Davg and LDSA
for each production phase and background NF are
represented by the boxplots in Figure 2. The
whiskers indicate the minimum (lowest line) and
the maximum (highest line) recorded value. The
line inside the box represents the median value: the
upper and the lower box-edges represent, respect-
ively, the 75th and the 25th percentile. In general,
by comparison of the median values, in the labora-
tory (NF) and in the pre-chamber (FF1), we note

some correspondence during all phases (albeit with
slightly greatest intensity within the laboratory)
confirming that the two internal rooms are subject
to the same emission sources, both environmental
and production related. Furthermore, the PNC PBZ
values are always lower or equal to the NF ones.

During Wet Jet Mill phase (which for production
needs was carried out in the day 3 after Rotovapor
phase by starting a new process) the PNC and Davg

values are respectively lower and higher than the
background NF values (Figure 2(a,b)) measured in
the day before. The FF parameters in day 3 show
the same trend, witnessing a generalized decrease
in particulate levels and larger average dimensions
compared to the day before, probably due to back-
ground environmental factors. During the
Rotovapor phase the median values of the PNC
measured in the three points (FF1, PBZ and NF) are
slightly lower than those of the background NF
albeit with greater variability and maximum values
that widely exceed significant levels, with the
laboratory values higher than the personal ones
(Figure 2(a)). Same variation happened for LDSA
(Figure 2(c)), while the corresponding Davg values
are slightly higher than those of the background NF
(Figure 2(b)). During Storage and Cleaning phase in
which the material is used in powder form,
although the average values of the PNC always
remain below the background NF values, there is a
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Table 3. FLG background and production phases average values and standard deviations of PNC, Davg and LDSA.

PNC (part/cm3)

NF
(CPC)

PBZ
(DM�)

FF1
(DM�)

FF
(DM�)

Average
Standard
deviation Average

Standard
deviation Average

Standard
deviation Average

Standard
deviation

Backgrounda 6,710 782 6,709 808 7,050 661 816 317
A.1 – Wet Jet Mill 2,885 511 2,185 560 n.a. n.a. 470 216
A.2 – Rotovapor 6,114 3,420 5,682 3,151 5,506 2,509 816 317
A.4 – Storage and Cleaning 2,780 1,281 2,159 1,242 2,212 1,129 541 186

NF
(ELPIþ)

PBZ
(DM�)

FF1
(DM)

FF
(DM�)

Davg (nm) Avg. St.Dev. Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

Backgrounda 65.61 3.92 54.80 2.74 53.01 2.30 96.90 13.53
A.1 – Wet Jet Mill 89.33 6.45 78.21 10.29 n.a. n.a. 125.15 17.65
A.2 – Rotovapor 70.62 11.30 55.55 8.28 56.65 9.45 96.90 13.53
A.4 – Storage and Cleaning 61.55 5.94 72.77 12.69 71.17 13.96 116.27 16.59

NF
(NSAM)

PBZ
(DM�)

FF1
(DM)

FF
(DM�)

LDSA (mm2/cm3) Avg. St.Dev. Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

Backgrounda 25.30 1.32 20.81 0.98 20.73 0.96 7.88 0.40
A.1 – Wet Jet Mill 13.80 1.49 11.93 0.99 n.a. n.a. 7.94 0.79
A.2 – Rotovapor 19.89 7.83 16.95 5.60 15.60 5.30 7.88 0.40
A.4 – Storage and Cleaning 10.55 3.16 9.92 2.42 12.00 3.28 7.76 0.36
aBefore the production activities.
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Figure 2. Box plots of PNC (a), Davg (b) and LDSA (c) measured in each sampling point before the activities (BKG,Q8 light blue),
phase A.1-Wet Jet Mill (WJM, yellow), phase A.2-Rotovapor (RV, orange) and phase A.4-Storage and Cleaning (SC, green) for FLG
case study.
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greater variability of the signal (Figure 2(a)). Inside
the laboratory the Davg is slightly lower than the
respective background NF while it stands on
median value as 72.54 nm in the worker’s PBZ
(Figure 2(b)) higher than the PBZ background
(54.88 nm). The LDSA is always lower than the back-
ground (Figure 2(c)).

The time series of the real-time parameters PNC,
Davg and LDSA are reported in Figure 3 for each
monitored phase of the FLG production process, in
order to highlight the behavior of the airborne
nanoparticles in the PBZ compared to the levels
found in the workplace (NF), taking advantage of
the potential of high resolution measurements
(1 Hz). During the Wet Jet Mill phase (Figure 3(a))
there is a generalized increase during the equip-
ment cleaning operations from 4:15 PM onwards
with a maximum peak detected in the PBZ of
21,000 part/cm3. In the Rotovapor phase
(Figure 3(b)), on the other hand, the PNC peaks
inside the laboratory also exceed 2–3 times the per-
sonal values. The trend of the PNC is in line with
the LDSA while the Davg is inverse: the increases in
PNC correspond to decreases in the Davg which

means that there is an introduction of small par-
ticles both in the laboratory and in the PBZ. During
the Storage and Cleaning phase (Figure 3(c)) the
trend of the PNC shows an increase when the oper-
ations start, followed by a decreasing trend associ-
ated to the lock of the internal air conditioning
system (similar behavior both in the laboratory and
in the PBZ). Furthermore, PNC peaks are detected
by the personal device but not by the workplace
monitor. There is a peak in LDSA (37 mm2/cm3) and
PNC (7,500 part/cm3), with a corresponding
decrease in Davg up to 40 nm, between 3:55PM and
4:00PM in correspondence to the opening of the
FLG container during the Storage and Cleaning
phase. There was recorded also a photoelectric
response by the PAS2000, as shown in the zoom of
Figure 3(c); this signal is probably due to the soot
present in the FLG container (see also PAH time ser-
ies in Supplemental materials).

Figure 4 reports the normalized PSD of airborne
nano-objects in the size range 6–600 nm measured
by the ELPIþ in the NF position during each phase
(Figure 4(a)) and by day (Figure 4(b)). The values
related to each channel size are reported in
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Figure 3. PNC, Davg and LDSA time series for FLG process: A.1 Wet Jet Mill day 3 (a); A.2 Rotovapor day 2 (b); A.4 Storage and
Cleaning day 4 (c).
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percentage with respect to the total concentration
obtained in the whole sampling period in order to
highlight the contribution provided by the single
particle size during the entire working phase.
During the Storage and Cleaning phase about 90%
of particles are in the size range 16–150 nm. PSD
shows a peak value in the size range 16–30nm with
up to 67% of particles having dimensions between
16 nm and 54 nm (Figure 4(a)). Such distribution
remains the same also in the following day morning
(day 5 in Figure 4(b)). Otherwise, in the previous

days corresponding to the other two phases (day 2
Rotovapor and day 3 Wet Jet Mill) the size distribu-
tion looks like moved in the left side, with the
majority of particles in the size range 6–30 nm.

Off-line analysis on airborne sampled materials
The mass concentrations of the particulate matter
in the background and in the worker’s PBZ (produc-
tion) collected by the Sioutas impactors are
reported in supplemental materials (Supplementary
Figure S8). The devices had a sampling time of
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Figure 4. Particle size distribution (%) of airborne NMs measured by ELPIþ inside the FLG laboratory and normalized for the
whole phase (a) and day (b).
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1990minutes (33.17 hours) each. Subtracting the
background value from the production one with
reference to the backup filter (BK), the concentra-
tion of particulate matter with aerodynamic diam-
eter <250nm (PM0.25) to which the worker can be
exposed in the operating conditions is up to
0.51 mg/m3. Total particulate matter collected during
the production inside the laboratory was 2.47mg/m3

(Supplementary Table S8).
Figure 5 shows the results of HR-SEM analysis: a

trial sample of FLG, which is presented in the form
of an aggregate with lateral dimensions in the
range of few microns and consisting of smaller
flakes is reported in Figure 5(a). The corresponding
EDS spectrum (Figure 5(b)) confirms the clear preva-
lence of the signal of the carbon atoms compared
to those of oxygen, as expected; aluminum (Al) sig-
nal comes from the Al substrate on which the FLG
trial sample was deposited.

HR-SEM images in Figure 5(c,d) refer to the filters
stages #8 (380–600 nm) and #10 (940–1,600 nm) of
ELPIþ, which sampled only during the Storage and
Cleaning phase in day 4; they highlight structured
layered material with clean and well-defined edges
with lateral size lower than 1 mm and similar to the
morphology of the trial materials. It should be
noted that these structures are placed on larger
structures that seem to have acted as carriers. The
fact that the structures in Figure 5(c,d) were not iso-
lated but mixed with other sampled material of
unknown origin, made the sample unstable so
much that it was not possible to acquire EDS spec-
tra having had to change the acquisition parame-
ters with respect to the shown HR image.

SiO2 NPs case study
Real time measurement comparison between
background and production. As for the previous
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Figure 5. High-resolution SEM images and EDS spectra of FLG trial sample (a, b) and airborne sampled materials in the workplace
(c, d).
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case study, we summarized in Table 4 the back-
ground and process phases average values and
standard deviations for all monitoring positions:
laboratory (NF), personal (PBZ) and hallway (FF). FF
PNC and LDSA values are calculated from ELPI
response in the size range 10–1000nm, while Davg

values are reported for the size range 10–300 nm in
order to obtain a better comparison among all the
instrument values. For B.3 phase (Drying) we report
here the values related to the dryer opening activ-
ities in which the worker extracts the SiO2 NPs in
powder form. PNC lowest values are measured
before the production in all the positions (back-
ground NF, PBZ and FF). During all phases of the
process the average values of the real-time FF
PNC measurements in the fraction considered
(10–1000nm) are higher than those NF; in the work-
er’s PBZ there is a higher value than the FF during
the Synthesis, Washing and Weighting Dilution and
Storage phases. However, the Davg of the particles
(10–300nm) is always lower within the laboratory
(with PBZ values lower than the NF ones during all
phases) compared to the FF. On the other hand,
LDSA (10–1000nm) is always higher FF than inside
the laboratory (both NF and PBZ).

Distribution parameters of PNC, Davg and LDSA
for each production phase and background NF are
represented by the boxplots in Figure 6. We noted
higher values of PNC during all the production
phases compared to the background (Figure 6(a))
with great variability of personal measurements.
PBZ Davg values are lower than the background
ones, with minimum values reaching 40 nm in the
Synthesis, Washing and Drying phases (Figure 6(b)).
The LDSA highest values measured by the DM in
the range 10–300 nm are related to the Weighting,
Dilution and Storage compared to the respective
background ones (Figure 6(c)).

Figure 7 reports the time series of SiO2 NPs pro-
duction process, showing that the PNC levels of
personal exposure (PBZ) are always higher than
those recorded in the laboratory (NF) in all phases
of the process (with the exception of a small part
of the synthesis in Figure 7(a)). Furthermore, per-
sonal values show greater variability. In particular,
during the dryer opening we highlight a concentra-
tion peak at 10:41AM higher than 12,000 part/cm3,
corresponding to a decrease in the average diam-
eter up to 40 nm (Figure 7(b)). LDSA time series
confirm at the same time the peak value of
17.68mm2/cm3 (Figure 7(c)).
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Table 4. Background and production phases average values and standard deviations of PNC, Davg and LDSA for SiO2 NPs
case study.

PNC
(part/cm3)

NF
(CPC)

PBZ
(DM�)

FF
(ELPIþ)

Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

Backgrounda 3,095 361 3,296 540 4,051 82
B.1 – Synthesis 4,280 597 4,693 579 4,638 220
B.2 – Washing 3,947 465 5,144 644 4,957 455
B.3 – Drying 4,571 193 5,312 592 5,563 141
B.4 – Weighting Dilution and Storage 3,745 289 4,532 308 4,451 128

NF
(FMPS)

PBZ
(DM�)

FF
(ELPIþ)

Davg (nm) Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

Background4 81.16 3.29 97.46 16.94 83.80 0.75
B.1 – Synthesis 77.07 2.63 74.96 6.38 81.37 2.45
B.2 – Washing 91.11 3.28 77.23 7.12 101.67 5.48
B.3 – Driyng 85.34 1.67 76.65 6.31 96.88 1.18
B.4 – Weighting Dilution and Storage 98.66 2.22 97.83 4.45 117.06 2.48

NF
(NSAM)

PBZ
(DM�)

FF
(ELPIþ)

LDSA (mm2/cm3) Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

Background4 17.30 0.86 10.19 0.63 18.23 0.42
B.1 – Synthesis 17.19 1.11 10.30 0.35 20.36 1.30
B.2 – Washing 25.36 1.19 14.33 0.94 30.84 1.68
B.3 – Drying 26.16 0.69 14.81 0.60 33.45 0.65
B.4 – Weighting Dilution and Storage 27.32 0.65 15.81 0.21 33.58 0.30
aBefore the production activities.
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Figure 6. Box plots of PNC (a), Davg (b) and LDSA (c) measured in each sampling point before the activities (BKG,Q9 light blue),
phase B.1-Synthesis (SYN, orange), phase B.2-Washing (WAS, yellow), phase B.3-Drying (DRY, blue) and phase B.4-Weighting
Dilution and Storage (WDS, green) for SiO2 NPs case study.
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Figure 8 reports the normalized PSD (in percent-
age) of airborne nano-objects in the size range
6–600 nm measured NF by FMPS (Figure 8(a)) and
FF by ELPIþ (Figure 8(b)) during each phase.
Production phases are characterized by a size distri-
bution with the majority of particles in the size
range 30–154 nm. The NF background before the
production show a size distribution moved in the
right side (Figure 8(a)). FF is always composed by
small nanoparticles (6–16 nm) for the great majority
of the size distribution (Figure 8(b)).

Off-line analysis on airborne sampled materials.
Mass concentrations of the particulate matter col-
lected by two Sioutas samplers in the background
and in the worker’s PBZ (production) are reported
in supplemental materials (Supplementary Figure
S9). The instruments had a total sampling time of
2123minutes (35.38 hours) in the production and
2101minutes (35.02 hours) in the background
respectively. Subtracting the background value from
the production, with reference to the backup filter
(BK), the concentration of PM0.25 to which the
worker can be exposed in the operating conditions
was up to 2.78mg/m3. Total particulate matter
related to the production was 3.25mg/m3

(Supplementary Table S9).
HR-SEM morphological analysis of the sampled

filters revealed rare silica particles similar in size and

shape to the produced SiO2 NPs. Figure 9(a) shows
HR-SEM images of the SiO2 NPs of the trial sample
forming a star-shaped aggregate and Figure 9(b)
shows the sampled filter collecting particles in the
range 250–500nm in which an aggregate, measur-
ing a few hundred nanometers in its main length, is
made up of spherical particles that have dimensions
comparable with those of the trial sample.

A magnified area of Figure 9(b) is reported in
panel c, in which two different areas have been
indicated by one or two asterisks to indicate the
EDS acquisition zones (Figure 9(d��,e�)). In the EDS
spectrum of Figure 9(e)� the signal contribution of
Si atoms is well evident; it is indeed completely
absent in the EDS background spectrum
(Figure 9(d)��), that highlights the shape and the
typical elemental composition in a region where
the EDS signal is only acquired from the Al sub-
strate and not from the particles.

Discussion

FLG case study

The real-time values measured at high resolution
(1 Hz) of PNC, Davg and LDSA showed an overall dif-
ferent exposure scenario inside the laboratory (NF)
and in the worker’s PBZ during all production
phases, compared to the FF values. The PNC levels
were on average 1–3 times higher than the
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significant FF value, but always lower than NF and
PBZ background levels (near to 9,000 part/cm3).
Furthermore the FF PNC values (in the range

10–1000nm) measured in parallel in the hallway in
all the days of production are almost constant
(around 800–1,000 part/cm3 with low standard
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deviation) and lower than the values recorded both
in the pre-chamber (FF1) and inside the laboratory
(NF and PBZ). LDSA showed the same trend. The
diffusion charging Davg of the particles during the
production remained always below the FF values.
Davg in the hallway is around 100 nm in day 2 of
activity (Background NF and Rotovapor) and grows
up to 120–130 nm in the following days (Wet Jet
Mill and Storage and Cleaning). Vice versa, both
inside the laboratory and in the pre-chamber, the
average values are always lower: around 60 nm in
the background NF and in the Rotovapor phase
and 70–75 nm during Wet Jet Mill and Storage and
Cleaning. This behavior is probably due on one
hand to the different volume, ventilation and
crowding conditions between the hallway (FF) and
the two internal rooms (NF, PBZ and FF1); on the
other hand it is related to the activities that take
place inside the laboratory to which the emission of
nano-particulate matter may be associated.

Therefore, taking as a reference FF value, all the
activities carried out during FLG production may be
at potential risk of NMs (but not necessarily of FLG)
emission. However, in order to make consideration
on the PNC values associated to the real exposure
scenario inside the laboratory, the NF background
may be the reference as significant value (9,057
part/cm3). This is the highest value of recorded
background then it could represent the worst case
exposure scenario. PNC levels are lower than such
significant values during the Wet Jet Mill and
Storage and Cleaning phases; on the contrary, they
far exceed the significant values during the
Rotovapor phase. The previous data, associated
with the general decrease in PNC on days 3 and 4,
confirm a change in the characteristics of the back-
ground particulate in these two days compared to
day 2. The same type of variation is present in the
pre-chamber (FF1) and inside the laboratory (NF
and PBZ) during the production phases. This
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Figure 9. High resolution SEM images of SiO2 NPs trial sample (a) and airborne sampled materials in the worker’s PBZ (b, c). EDS
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situation is also confirmed by PAHs time series
measured by PAS2000 as reported in
Supplementary Table S7 and Figures S5–S7. During
day 3 PAH concentration had an average value of
5.64 ng/cm3 (dev.st 3.94) while on day 4 the mean
value rises to 11.12 ng/cm3 showing high variability
during the day (dev.st. 10.61). This growth of PAHs
can be associated with an external contribution
(e.g. through the ventilation system), in fact the
average PAHs concentration on day 4 from 3:55 PM
(during Storage and Cleaning phase by the end of
the day) when the intake of air from the laboratory
air conditioning system was turned off, drops to
5.13 ng/cm3 (dev.st. 0.85).

During the Wet Jet Mill and Rotovapor phases,
the peaks of PNC and LDSA corresponding to the
simultaneous decrease in Davg, could be linked to
the use of solvents such as DMSO, NMP (and
others), in any case with values always below the
reference occupational exposure limits. During the
Wet Jet Mill phase (Figure 3(a)) there is a general-
ized increase during the equipment cleaning opera-
tions. These intensity variations are also connected
to the use of DMSO and NMP solvents during all
the process by the workers wearing the DM probe,
plus Isopropyl alcohol and acetone for cleaning the

beakers. This is confirmed, by VOCs analysis carried
out by GC-MS (Figure 10) that in the Wet Jet Mill
phase shows the presence of NMP (2.99E� 01 ppm)
in greater quantity than the DMSO (8.24E� 3 ppm).
The mass concentration (ppm) values of these sol-
vents are in any case below the occupational
exposure limit values available in the literature:
50 ppm for DMSO (ILO 2000) and 10 ppm for NMP
(ILO 2014) respectively. The extreme ease of aggre-
gation of the solvents with airborne particles would
have led to the formation of the so-called second-
ary organic aerosol, thus causing a corresponding
lowering of the PNC with an increase in the Davg

(Kim et al. 2015). Also in the Rotovapor phase, the
increases in PNC could be associated with the use
of solvents (in particular DMSO which replaces the
NMP during the Rotovapor washing) which are not
present in the background of the laboratory (NF), in
the pre-chamber (FF1) and in the hallway (FF).

The analysis of contribution of different particle
size to the total PSD (Figure 4) allowed us to com-
pare process phases and production days. The
phase at higher risk of potential exposure to NMs
resulted the Storage and Cleaning phase (day 4), in
which the material is handled in powder form, and
a change in the size distribution within the
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laboratory occurred: 90% of particles were in the
size range 16–150 nm, greater than in the previous
days when the majority of the particles were in a
lower size range. We highlighted the PAH signal
associated to the soot present in the FLG container
during its opening at the beginning of Storage and
Cleaning phase and we can assume that the emit-
ted particles included FLG, according also to the
findings reported by Yeganeh et al. (2008) for car-
bon-based NMs emission. Furthermore, HR-SEM EDS
analyses of the filters sampled during Storage and
Cleaning phase showed rare particles attributable in
size and shape to those produced, but often linked
to larger and visible structures in various overlap-
ping layers. Despite the morphology and the
dimensions of airborne materials refer to the mater-
ial as it is (Figure 5(a,b)), it would be appropriate to
deepen this characterization using analytical techni-
ques such as, for example, Raman spectroscopy or
the Selected Area Electron Diffraction (SAED) with
TEM, which are functional to put highlights the
characteristic parameters of the honeycomb lattice
structure of graphene (Tombolini et al. 2020).

SiO2 NPs case study

From the comparison between the background NF
significant values and average PNC values during
the productionQ3 (Table 5), the phases in which a pos-
sible emission of NPs has been highlighted are:
phase B.1 Synthesis and phase B.3 Drying (when
the freeze dryer is opened).

The real-time time series measurements (Figure
7) in the operator’s PBZ showed PNC and LDSA lev-
els higher than the laboratory sampling point dur-
ing all the production phases, with a decrease of
the Davg. In particular a PNC peak of about three
times the significant value is recorded in the Drying
phase when the freeze dryer is opened, associated
with a rapid decrease in Davg up to about 40 nm.
The decrease of average diameter of airborne par-
ticles corresponding to a simultaneous increase of
PNC, may refers to an emission of small nanopar-
ticles during this process phases. Davg personal val-
ues are closing to the size of the produced SiO2

NPs (50 nm) also during Synthesis and Washing
phases. The personal LDSA values recorded by the
DM are always lower than those measured by the
NSAM inside the laboratory although they maintain

the same trend; this is probably due to the different
position of two sampling probes but also to the dif-
ferent dimensional range of the two instruments,
which for NSAM includes also particles up
to 1000 nm.

The PSD analysis confirms the potential emission
during the production. All phases show a different
size distribution inside the laboratory compared
both to the background NF and to the background
FF measured in parallel in the hallway: here almost
all the particles were in the range 6–16 nm showing
a clear influence by external contributions (Figure
8(b)). During all the production phases inside the
laboratory the percentage of particles in this range
is lower; on the contrary particles from 30 to
154 nm, which include the typical size of produced
SiO2 NPs, were 2–3 times higher in the laboratory
than the FF values.

Finally, the morphological and elemental analysis
by HR-SEM EDS of the filters sampled in the work-
er’s PBZ (Figure 9) confirmed the presence of rare
SiO2 particles similar in size and shape to the pro-
duced NPs and their agglomerated structures.

In this case the mass concentration of PM0.25 in
the worker’s PBZ was up to 2.78mg/m3. This value
may be intended as the upper limit of the mass
of nanomaterials with aerodynamic diameter
<250 nm to which the worker is potentially
exposed during the production process. This value
corresponds to 85% of total particulate matter col-
lected during the SiO2 NPs production subtracted
by the background. It was higher than the FLG
case, in which the PM0.25 represents only 21% of
total particulate matter collected in the operating
conditions of the study.

Such experimental values are under the official
limit value for bulk silica materials calculated by
Murugadoss et al. (2017) and were recently corre-
lated with the doses tested in a 3-D in vitro plat-
form by Di Cristo et al. (2020). Such in vitro system
was developed to provide regulatory-oriented toxi-
cological data for risk classification of
nanomaterials.

Conclusions

In the present study, two exposure measurement
campaigns were conducted in different production
sites of FLG (facility A) and SiO2 NPs (facility B),
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according to the harmonized strategies by OECD
and WHO, based on tiered levels of investigation.
This approach integrates real-time devices and
time-integrated samplers for the following off-line
chemical and morphological analysis, in order to
identify the contribution of production compared to
the background and personal exposure compared
to the workplace. From the evidences of the con-
ducted study, the presence of airborne FLG pro-
duced in the facility A cannot be excluded,
although the analysis of the materials sampled in
workplace air and in the worker’s PBZ require fur-
ther insights necessary for the identification of the
typical honeycomb structure of graphene. On the
contrary, the presence of airborne SiO2 NPs during
production at the facility B seems to be confirmed
both by real-time data and chemical-morphological
analysis. The results of this study have been inte-
grated with the evidences of biomonitoring as
reported by Ursini et al. (2020) in the part II of the
same research. The biomonitoring pilot study used
sensitive biomarkers of cyto-genotoxicity and oxida-
tive DNA damage (Micronucleus Cytome assay on
buccal cells and Fpg-comet assay on blood), bio-
markers of oxidative stress on Exhaled Breath
Condensate and of inflammation (cytokine release)
on blood. The study, demonstrates that buccal
Micronucleus Cytome assay and Fpg-comet assay
are the most sensitive biomarkers of early, still rep-
arable, genotoxic and oxidative effects. In particular,
the Buccal Micronucleus Cytome assay showed an
increase, although not statistically significant, of
micronucleus (MN) frequency in respect with con-
trols for both groups of workers (FLG and SiO2

NPs). Moreover, taking into account the MN positive
subjects (with MN frequency higher than a cutoff
value), higher percentages of MN positive subjects
in both the worker groups in respect with controls
were found. Fpg-comet assay results showed the
highest direct DNA damage in the group of SiO2

NPs workers; finally the oxidative DNA damage in
terms of subjects positive (with oxidative DNA dam-
age higher than a cutoff value), was higher in FLG
workers either in respect to controls or in respect
to SiO2 NPs workers.

Under these conditions and until the assessments
toward the quantification of workers exposure will
be deepened, also in a comprehensive analysis inte-
grated with the evidences of the biomonitoring

study, it was useful to recommend some risk man-
agement measures, to be strengthen in both facili-
ties to mitigate the potential risk for the workers
involved in the processes. Such measures, within
the risk management hierarchy, should primarily
include the possibility to contain the phases at
higher risk through the implementation of struc-
tural and equipment interventions aimed at reduc-
ing the interface between the operator and the
handled materials (e.g. closed systems, glove boxes,
ventilated boxes). Furthermore it will be possible to
organize of the processes with a view to reducing
working times (e.g. implementation of specific pro-
cedures and shifts). Finally we recommend to
enforce the maintenance programs in order to
guarantee the efficiency of collective (e.g. aspiration
hoods) and personal (e.g. gloves, glasses, masks
and safety clothing) protective equipment: PPE
should be worn by the workers during their pres-
ence in the production laboratories in all the phases
in which the risk of contact with the material in
powder form may happen as from the evidences of
the present study.

In conclusion, based on the evidences of the pre-
sent study, the re-design of production processes
through a prevention-through-design approach,
may represent an added value that will integrate
the workers’ health and safety needs with the pro-
duction requirements, in the view to achieve more
responsible and sustainable technological innov-
ation processes.
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