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Chlamydia trachomatis is an obligate, intracellular bacterium responsible for a range of
diseases of public health importance, sinceC. trachomatis infection is often asymptomatic
and, hence, untreated, leading to chronic complications, including prostatitis, infertility,
and reactive arthritis. The ample spectrum of diseases caused by C. trachomatis infection
is reflected in its ability to infect and multiply within a wide range of different cell types.
Cervical epithelial cells, to date, have been the most studied cellular infection model,
highlighting the peculiar features of the host-cell inflammatory and immune responses to
the infection. Herein, we provide the up-to-date evidence on the interaction between
C. trachomatis and human prostate epithelial, Sertoli and synovial cells.
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INTRODUCTION

Chlamydia trachomatis, obligate, intracellular bacterium responsible for a range of diseases of public
health importance, is the leading cause of sexually transmitted bacterial infection worldwide, with
estimates of more than 130 million new cases each year (Rowley et al., 2019). In women, the most
common clinical manifestations are cervicitis and urethritis, whereas in men these are urethritis and
epididymitis, although in the majority of cases C. trachomatis genital infection is asymptomatic and,
hence, untreated, leading to chronic complications, including prostatitis, infertility, and reactive
arthritis (ReA) (O’Connell and Ferone, 2016; Di Pietro et al., 2019).

Prostatitis, one of the most common urologic problems for men younger than 50 years, and risk
factor for infertility (Khan et al., 2017), has a prevalence of approximately 8% to 16%, and around
5% to 10% of all cases have a bacterial origin, with C. trachomatis involved in up to 27% of all
bacterial infections of the prostate (Ostaszewska et al., 1998; Badalyan et al., 2003; Krieger et al.,
2008; Ouzounova-Raykova et al., 2010; Trinchieri et al., 2021). Nevertheless, chronic bacterial
prostatitis is frequently underestimated because urinary tract infections often remain
undocumented and thus neglected (Ouzounova-Raykova et al., 2010). Male infertility also remains
a neglected area in sexual and reproductive health although it has a significant impact on public
health worldwide, since approximately 15-20% of reproductive age couples are infertile in industrialized
countries, and, in 30% of all cases, fertility problems are solely due to the male partner, with around
15% of idiopathic cases attributed to infectious causes (Henkel et al., 2021; Thoma et al., 2021). Similarly,
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ReA is a frequently misdiagnosed condition, due to difficulties in
relating past infections with compromised joint functions. It is
estimated that approximately 4–8% of patients will develop ReA one
to six weeks after a urogenital C. trachomatis infection, and in 30%
of all cases, ReA persists for years, leading, eventually, to joint
deformities and ankylosis (Zeidler and Hudson, 2016; Di Pietro
et al., 2019; Henkel et al., 2021).

The ample spectrum of diseases caused by C. trachomatis
infection is reflected in its ability to infect and multiply within a
wide range of different cell types, such as cervical epithelial cells,
peripheral blood mononuclear cells (Dolat and Valdivia, 2019;
Lausen et al., 2019). The typical model of chlamydial intracellular
development has been mostly investigated in human cervical
epithelial cells (HeLa) and murine fibroblasts (McCoy), for
which C. trachomatis possesses the highest tropism (Belland
et al., 2003; Guseva et al., 2007; Vromman et al., 2014; Petyaev
et al., 2017; Sessa et al., 2017a; Filardo et al., 2019a; Liang and
Mahony, 2019; Jøraholmen et al., 2020). C. trachomatis
developmental cycle occurs entirely within a cell-derived
membrane bound vesicle termed inclusion, where Chlamydiae
alternate between the elementary body (EB), the extracellular
and infectious form, and the reticulate body (RB), the
metabolically active form, responsible for intracellular
replication (AbdelRahman and Belland, 2005). The first stage
of chlamydial developmental cycle consists in EBs adhesion to
host cell membrane receptors, like glycosaminoglycans (Conant
and Stephens, 2007). Then, chlamydial EBs enter the host cell by
endocytosis, via a two-step process involving a reversible
interaction mediated by heparin-sulphate proteoglycans
followed by irreversible binding to host receptors (Conant and
Stephens, 2007). Soon after attachment to the host cell, EBs are
internalized and confined to the inclusion, where they
differentiate to RBs; within 24 hours post-infection (h.p.i.),
chlamydial RBs replicate by binary fission (Bastidas et al.,
2013). As inclusion expands, approximately 24-48 h.p.i., the
majority of RBs begin to transition back to EBs in an
asynchronous process (AbdelRahman and Belland, 2005). At
the end of the developmental cycle, at about 48 h.p.i., the EBs are
finally released from the host by cell lysis or extrusion (Yang
et al., 2015; Zuck et al., 2016). Thereafter, a multitude of
infectious EBs spread and infect neighboring cells, perpetuating
the infectious process.

To date, the human cervical epithelial cell has been the most
studied cellular infection model, focusing on chlamydial growth
and on the peculiar features of the host-cell inflammatory and
immune responses to the infection (Lad et al., 2005; Sessa et al.,
2017b; Tang et al., 2021). Following chlamydial infection, the
host cell response typically begins with the activation of a
complex network of immune receptors (TLR2 and TR4) and
their respective downstream signaling pathways (myeloid
differentiation primary response 88, MyD88, and nuclear factor
kappa-light-chain-enhancer of activated B cells, NFkB)
(O’Connell et al., 2006; Sellami et al., 2014). This results in the
induction of proinflammatory cytokines, involved in either the
elimination of C. trachomatis or tissue damage related to chronic
inflammatory state, including interleukin (IL)-1a, IL-6, IL-8 and
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interferon (IFN)-g (O’Connell et al., 2006; Rey-Ladino et al.,
2014; Sellami et al., 2014). IFN-g, in particular, has been
identified as a major player in the clearance and protection
against C. trachomatis infection, by modulating a plethora of
host cell signalling pathways, like the activation of NF-kB and the
inflammasome network (Rothfuchs et al., 2004; Webster
et al., 2017).

Overall, the pathogenic mechanisms underlying C.
trachomatis-mediated chronic complications have received the
most research attention in women, whereas chlamydial survival
strategies as well as the host defense pathways, involved in the
onset and development of prostatitis, male infertility, and
reactive arthritis, are now beginning to emerge. Therefore,
herein we provide the up-to-date evidence on the interaction
between C. trachomatis and human prostate epithelial, Sertoli
and synovial cells.
C. TRACHOMATIS INFECTION MODELS IN
PROSTATITIS, MALE INFERTILITY AND
REACTIVE ARTHRITIS

Human Prostate Epithelial Cells
The first evidence to demonstrate C. trachomatis growth within
primary human prostate epithelial cells came from Greenberg et
al, in 1985 (Greenberg et al., 1985). Since then, few studies on
chlamydial interaction with prostate epithelial cells were
performed, describing both the ability of C. trachomatis to
replicate in these cells and the specific host-cell inflammatory
and immune pathways in response to the infection. Specifically, a
study investigating the inflammatory profile of C. trachomatis
infection in humane prostate epithelial cells (PNT2) and urethral
epithelial cells (THUEC), demonstrated that prostate epithelial
cells produced larger quantities of IL-6 and IL-8 than urethral
epithelial cells, suggesting the increased levels of these cytokines
as possible markers for C. trachomatis infection of the prostate
(Al-Mously and Eley, 2007).

At a later time, a potential link between the inflammatory
damage and C. trachomatis infection of the prostate was suggested,
since a strong pro-inflammatory response, characterized by NFkB
activation and TLR2/TLR4 upregulation, was observed, leading
to increased inflammatory cytokine expression, like IL-6, IL-8,
IL-1b and tumor necrosis factor (TNF)a (Sellami et al., 2014).
Lastly, a recent study has described the efficient propagation of
C. trachomatis in a malignant prostate epithelial cell line
(CWR-R1) (proportion of infected cells 28.1%) accompanied
by enhanced transcription of IL-6 and fibroblast growth factor
(FGF)-2 genes, encoding two important pro-inflammatory
cytokines involved in the progression of prostate cancer
(Petyaev et al., 2019).

Human Sertoli Cells
In recent years, a study employing a murine model has
postulated the direct infection of the seminiferous tubule
epithelium, formed by Sertoli cells, as an interesting
January 2022 | Volume 12 | Article 840802
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pathophysiological mechanism for C. trachomatis-mediated
male infertility, leading to compromised spermatogenesis with
reduced sperm count, motility and altered morphology of mature
spermatozoa (Bryan et al., 2021).

On this basis, we have investigated, for the first time, the
interaction between C. trachomatis and human primary Sertoli
cells in vitro, demonstrating a distinct growth profile of C.
trachomatis, with a very long eclipse period (after 36 h.p.i.),
the appearance of infectious EBs beyond 48 h.p.i., the persistence
of inclusions up to 96 h.p.i. and a low infection efficiency (Filardo
et al., 2019b). This greatly differed from the chlamydial growth
cycle as typically seen in cervical epithelial cells, where the
transition of RBs to EBs happen after 22 h.p.i. and the release
of infectious EBs from host cells is usually observed 36 to 48 h.p.i.
(Guseva et al., 2007; Vromman et al., 2014; Skilton et al., 2018).
Of great pathological importance, the development of C.
trachomatis inclusions has also been demonstrated to visibly
damage the host cell cytoskeleton, as shown by the
reorganization of Vimentin-based intermediate filaments and
a-tubulin microtubules in thick fibres surrounding chlamydial
inclusions (Filardo et al., 2019b). This, in turn, might alter the
integrity of the blood-testis barrier, a structural compartment of
the seminiferous tubules essential for germ cell development and
maturation, impairing the spermatogenesis and contributing to
male infertility (Mruk and Cheng, 2015). On this regard, the
evidence that human spermatozoa were unaffected by
biomolecules produced by chlamydial infected Sertoli cells,
suggests that C. trachomatis is more likely to influence the
early stages leading to the development of mature spermatozoa.

In addition to structural damage, C. trachomatis was also
demonstrated to modulate the immune response in human
Sertoli cells, characterized by the activation of TLR3 alongside
the down-modulation of downstream signaling pathways,
namely NFkB and interferon regulatory factor (IRF)3 (Di
Pietro et al., 2020a). Consequently, IFNs type-I and type-II, IL-
1a and IL-6 were not produced, suggesting that C. trachomatis
could evade the host immune-mediated killing, surviving in the
cells and damaging the testicular tissue.

Human Synovial Cells
The interaction between C. trachomatis and human synovial cells
was investigated in 1998 by Rödel et al., showing, for the first
time, the ability of C. trachomatis to infect fibroblast-like cells
derived from biopsies of the synovial membrane (Rödel et al.,
1998a). Then, C. trachomatis infection of synovial cells was also
demonstrated to elicit the production of several pro-
inflammatory cytokines, such as IL-6 and IFN-b (Rödel
et al., 1998b).

Since then, few studies have further researched this
interaction, detailing some cellular mechanisms underlying the
synovial cell immune response to chlamydial infection. In
particular, increased production of IRF1 and interferon-
stimulated gene factor (ISGF)-3g was observed in synovial cells
infected with C. trachomatis, leading to the production of IFNb
as well as to the upregulation of Human Leukocyte Antigen
(HLA)-1 gene expression (Rödel et al., 1999).
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In recent years, the unique morphology, and the peculiar
growth cycle of chlamydial inclusions in a primary human
synovial cell have been described, and differed significantly
from those in cervical epithelial cells. In particular, C.
trachomatis was characterized by heterogeneous shape and size
of inclusions and by a delayed developmental cycle, with late
appearing infectious EBs (after 36 h.p.i.), as well as by a lower
infection efficiency (Filardo et al., 2021).

The investigation of synovial cell immune response toward
C. trachomatis evidenced a distinct profile characterized by the
activation of TLR3 and TLR2 as well as of downstream signaling
molecules, like ISG56 and Guanylate Binding Protein (GBP)1,
interferon-inducible proteins involved in the cell-autonomous
immunity against intracellular bacteria (MacMicking, 2012; Di
Pietro et al., 2020b; Honkala et al., 2020). Nevertheless, the
synovial cell response to C. trachomatis seemed ineffective in
controlling the infection, suggesting its potential evasion of
synovial cell inflammatory pathways (Filardo et al., 2021).
Indeed, the increased expression of caspase-1 gene, in
Chlamydia infected synovial cells, did not induce a parallel
increase in the production of IL-6 as well as IL-1b and IL-18.
A further interesting evidence is the observation that caspase
activation played an important role in the intracellular growth of
C. trachomatis in synovial cells, as demonstrated by decreased
chlamydial replication after caspase inhibition (Filardo
et al., 2021).

Differently, synovial cells were demonstrated to be able to
control chlamydial infection when exposed to IFNg, a well-
known pro-inflammatory cytokine involved in the clearance of
C. trachomatis genital infection. In particular, IFNg was
demonstrated to inhibit chlamydial growth decreasing caspase-
1 gene expression while, at the same time, inducing TLR2 and
ISG56 gene expression and IL1b, IL-18 and IL-6 production,
suggesting the key role of IFNg for the modulation of
inflammatory and immune responses of synovial cells toward
C. trachomatis (Di Pietro et al., 2020b).
DISCUSSION

Research to elucidate how C. trachomatis interact with specific
cells of the prostate, male genital tract and joints is fundamental
to understand how these interactions influence disease outcomes.
To date, the available data provide insights regarding C.
trachomatis growth within human prostate epithelial, Sertoli
and synovial cells, and the related host-cell response
pathways (Figure 1).

Human prostate epithelial cells showed a similar progression
of chlamydial intracellular developmental cycle as that observed
in cervical epithelial cells, alongside a comparable infection
efficiency (Petyaev et al., 2019). By contrast, in Sertoli and
synovial cells, the duration of the different C. trachomatis
developmental stages, as well as the number of infectious EBs
released from host cells, greatly differed as compared to those
observed in cervical epithelial cells, routinely used for chlamydial
research (Filardo et al., 2019b). The late appearances of infectious
January 2022 | Volume 12 | Article 840802
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EBs toward the end of the developmental cycle suggests the
presence of hostile cellular environment that may partially
hinder chlamydial intracellular growth in these cells. In
addition, the lower infection efficiency of C. trachomatis,
previously described, in human Sertoli and synovial cells as
compared to prostate epithelial cells, highlights that the
prostate is particularly susceptible to C. trachomatis infection
and, hence, could represent a trojan horse for the subsequent
dissemination in the host, including the epididymis/testis or
the joint.

Important differences were also observed in the immune and
inflammatory host cell responses to C. trachomatis infection,
with the activation of different molecular sensors, downstream
signalling pathways and inflammatory signatures. Indeed,
human prostate cells recognition of C. trachomatis by TLR2/
TLR4 induced a pro-inflammatory state, highlighted by
increased levels of IL-1b, IL-6, IL-8 and TNFa (Sellami et al.,
2014; Petyaev et al., 2019). By contrast, TLR3-mediated sensing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
of chlamydial infection in human Sertoli cells did not elicit the
activation of the related pathways, namely NFkB and IRF3, as
well as the subsequent cytokine production. These results hint
that in human prostate epithelial cells inflammation may play a
key role in the pathogenesis of C. trachomatis-mediated tissue
damage and prostate cancer progression. Instead, in Sertoli cells,
C. trachomatis might induce direct cell-damage, as evidenced by
the alteration of host-cell cytoskeleton, and, at the same time,
remain within the cell for a long time, leading to a chronic
infection. Indeed, in Sertoli cells, C. trachomatis appears to
modulate the innate immune response, evading, hence, the
host immune-mediate killing (Di Pietro et al., 2020a).

A further evasion strategy from host-cell defence pathways
was also described in human synovial cells, as shown by C.
trachomatis hijack of caspase-1 mediated inflammasome
network, inhibiting the production of IL-6 as well as Il-1b and
IL-18, involved in pyroptosis, a cellular defence mechanism
against infectious agents (Man et al., 2017; Filardo et al., 2021).
FIGURE 1 | Schematic representation of the immune and inflammatory pathways elicited by C. trachomatis infection of human prostate epithelial, Sertoli and
synovial cells.
January 2022 | Volume 12 | Article 840802
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Surprisingly, earlier reports demonstrated the induction of a pro-
inflammatory state in human synovial cells infected by C.
trachomatis, evidenced by increased IL-6 levels (Rödel et al.,
1998b; Rödel et al., 1999), whereas our recent studies evidenced a
significant increase in pro-inflammatory cytokine levels
following the exposure to IFNg (Di Pietro et al., 2020b). These
discordant results may be dependent on several factors, like, for
example, the C. trachomatis serovar, since early reports used C.
trachomatis serovar E, whereas the serovar D was investigated in
recent studies (Rödel et al., 1998b; Filardo et al., 2021). The
serotype D and E have also been used in studies involving Sertoli
and prostate epithelial cells (Greenberg et al., 1985; Al-Mously
and Eley, 2007; Filardo et al., 2019b; Di Pietro et al., 2020a); the
lymphogranuloma venereum serovar L2 was used in prostate
malignant cells (Sellami et al., 2014; Petyaev et al., 2019).

Overall, the path ahead is still long, and, in the future, more
complex approaches with 3D cell cultures and organoids will be
helpful for shedding light on the etiopathogenesis of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
C. trachomatis-mediated prostatitis, male infertility, and
reactive arthritis, since many cell signalling pathways, that
might have been elicited in response to chlamydial infection,
are still unexplored.
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