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Abstract
Despite the potential of additive manufacturing and specifically of selective laser melting, several considerable barriers exist 
to widespread utilization, especially in specific industries that produce high-value components. Quality control and mechani-
cal characterization remain the most expensive challenge. The quality and mechanical properties of the manufactured parts 
are influenced by potential defects; the characteristics of these defects, such as size, shape, location, and distribution, have 
shown to play key roles in mechanical properties. This work proposes a methodology for providing the identification of 
powder bed anomalies and consequent part defects through a synchronized analysis of the powder layers via digital image 
processing. This method can be used to study the critical defects formation during the layerwise process, providing important 
information about their location without the use of expensive or destructive measurements.
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1 Introduction

Additive manufacturing (AM) plays an important role in 
direct manufacturing of parts characterized by complicated 
shapes. Metal AM is best suited for small to medium volume 
production of highly designed or specialized products [1]. 
It is well suited for complex parts that are designed to be 
lightweight through topology optimization, reducing part 
cycle time, cost, material waste, and energy consumption, 
all with added flexibility in the design of manufactured parts 
for the highest performance [2]. Among the various AM 
approaches, the Selective Laser Melting (SLM) process is 
one of the most used in the industry, which allows fabri-
cating complex geometries with high material efficiency. It 
has been successfully used by high-precision industries in 
various fields [3]. However, lack of quality assurance is a 
technological barrier to high-value applications where com-
ponent failure cannot be tolerated [4, 5] and the required 
quality cannot be achieved using only an open-loop process 
[6]. Therefore, to increase the understanding of the high 

complexity of physical phenomena and the mechanisms of 
defect formation during manufacturing, reliable defect detec-
tion and characterization are required [7, 8]. The SLM pro-
cess involves complex physical processes, such as absorption 
and transfer of laser energy, rapid melting, and solidifica-
tion of the material, microstructure development, flow in 
a molten bath, and material evaporation [9]. As a result of 
these variables, the process is characterized by defects such 
as porosities, incomplete melt holes, fractures, and impuri-
ties, among others [10]. These defects affect the mechanical 
and physical properties of a manufactured part and limit the 
applicability of SLM [11, 12]. Monitoring the powder bed 
anomalies and their propagation across layers plays a fun-
damental role in better understanding the final part defects 
signature. Most of the commonly used methods such as 
metrological approaches for surface characterization have 
proven to be unsuitable for determining important features 
such as undercuts and sub-surfaces pores; other methods 
need to be used to study the surface and volumetric defects 
typical of additively manufactured materials [12–15].
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1.1  In‑situ monitoring related work

In-situ monitoring of metal AM processes is a key issue 
to determine the quality and stability of the process dur-
ing the layer-wise production of the part. The quantities 
that can be measured via in-situ sensing can be referred 
to as “process signatures” and can represent the source 
of information to detect possible defects [16] and have 
become major research in literature [4, 17–20] for the AM 
community. These signatures on the final part can be cat-
egorized in two classes: first, observable signatures which 
can be indicated and measured during the process by using 
in-situ devices; second is derived signatures which can be 
determined through analytical models or simulation [21]. 
In-process monitoring technologies, specifically imaged-
base methods, have primarily focused on monitoring melt 
pool [22–25], plume and spatters signatures [18, 26–28]. 
However, the quality of parts produced by SLM is deter-
mined not only by the fusion bond between successive 
powder layers and hatches, but also by the integrity of the 
powder bed and the stability of the powder distribution 
[29]. Irregularities and discontinuities in the powder bed 
[30], unfavorably affect the physical interaction between 
the laser beam and the material, resulting in inconsistent 
processing and, in some cases, porosity [31]. Therefore, 
the signature of powder bed is one of the most important 
factors that play a great role in part quality and should be 
studied for a better understanding of the defects.

The granular nature of the powder bed and the shiny 
surface of the scanned areas are critical problems for 
image acquisition. Many studies [19, 32–35] paid efforts 
on developing optimum powder bed lighting and adequate 
imaging systems. In [36, 37] authors investigated the pos-
sibility to employ a thresholding technique for detecting 
superelevated edges automatically. In [38], the authors 
employed picture stacks taken under various brightness 
circumstances to extract features and analyze existing 
abnormalities. The categorization, however, was based 
on local knowledge, which may not be enough for clas-
sifying anomalies. In fact, it is not clear how anomalies 
on a single layer can affect the final part quality and inter-
actions between layers should be studied from a broader 
point of view.

In this study, a digital image processing (DIP) approach 
to investigate part quality produced by SLM has been pre-
sented, which relates powder bed anomalies to the final 
part quality. The DIP is a rapid and cost-effective tool for 
characterizing powder bed errors. The unique method used 
for this study is easy to use and, by processing thousands 
of images from the powder bed, it gives access to different 
types of anomalies across the entire powder bed. Informa-
tion about the size and location of the defects are provided 

to reduce the number of post-production non-destructive 
tests, which are expensive and not so accurate for large 
parts. The proposed method employs the machine built-in 
CCD camera without additional modification. The analysis 
detects anomalies directly related to the final part defects.

1.2  Powder bed defects

Defects on final parts can be observed even in the case that 
optimal process parameters, appropriate and verified scan-
ning and build-up strategies are set [39]. The source of these 
defects can be of several types. They can be caused by pro-
cess induced issues, e.g., the powder properties variability, 
leading to porosity, balling, cracking, oxide inclusions [40]. 
The part geometry and its alignment, the support structures 
and their location on the build plate can provide unfavorable 
fabrication conditions. Miscalibration or damaged equip-
ment, such as a worn blade, can create anomalies [31, 41]. 
Various studies investigated the types and classification of 
defects on common alloys [12, 18–20, 42]. Many of the criti-
cal defects, as well as the overall reliability and stability of 
the SLM build process, are directly related to the powder 
application process [43]. However, according to [28, 42], in 
most of the cases, the anomalies induced by the powder han-
dling and spreading system are not the real cause of defects, 
but the consequence of powder bed impurities such as spat-
ter [30], excessive edges [30, 41] protruding from the thin 
powder layer [44]. Consequently, the interaction between 
the recoater and these anomalies in the powder bed leads to 
discontinuities in the layer and severely affects the stability 
of the process [40]. In these conditions, uneven powder lay-
ers alter the physical interaction of the laser beam with the 
material, and lead to uneven processing and porosity (gas 
porosity or lack of fusion) [45]. Due to the motion of the 
recoating system, anomalies created in one area of the pow-
der layer may move along the recoating direction. Moreover, 
anomalies created in one layer can propagate through the 
next layer and create anomalies that spread across multiple 
layers and impact the quality of the final part.

2  Material and methods

The material used in this study is the AlSi10Mg. It is a 
critical raw material in SLM for its low density and parti-
cle’s shape. Low density limits the protecting gas velocity, 
therefore lowering the capability to clean the laser sputter-
ing. In the case of aluminum alloy creating spherical pow-
der particles is hard. A lack of sphericity may influence 
the powder spreading process and lead to more local bed 
defects. Laser melting critically depends on the ability of 
the powder spreading system for delivering a thin powder 
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layer, which is complicated since aluminum powders are 
light with poor flowability, particularly in the presence of 
moisture. These issues induce the formation of heaps when 
spreading the powder, which results in an uneven thickness 
of the powder layers [46].

In Fig. 1a the SEM characterization of the used powder 
is reported. Deviation from spherical shape and agglomer-
ations can be observed. The distribution is slightly irregu-
lar (Fig. 1b) with D50 parameter, which indicates the point 
of the distribution below which the 50% of the material 
is contained, at 28.9 µm. D10 and D90 are 12.2 µm and 
40.7 µm respectively, leading to a span of 89%.

An  EOSINT®M290 SLM machine was used to test 
the procedure. It is equipped with a 400 W Ytterbium 
fiber continuum laser with a beam spot size of 100 µm 
and a building platform of 250 × 250 × 325  mm3. Prior 
to starting the construction, the machine was calibrated 
according to the documented supplier procedure. Gas 
atomized AlSi10Mg powders provided by EOS GmbH 
were employed. Table 1 shows the composition of used 
powders.

The process parameters were established according 
to the EOS standard ones for this material: 370 W laser 
power, 30 µm layer thickness, 1300 mm/s scan speed, 
190 µm hatch distance, 200 °C building platform temper-
ature. The strategy used for scanning was the stripe type 
with a stripe length and a stripe length overlap of 7 mm 
and 0.02 mm, respectively. To guarantee a high final den-
sity and to reduce residual stresses the stripes were rotated 
by 67° with respect to the previous layer.

To prepare the necessary data for the procedure, the 
following steps were taken. Virtual models were created 
using standard solid modeling tools, such as SolidWorks, 
and incorporated into Wolfram Mathematica, using a 
mathematical formulation. Through EOS RPTools, STL 
files prepared through Materialize Magic were confirmed 
using laser path simulation. The final pre-processing step 

was provided in EOS PRINT, where the models and their 
supports were oriented and positioned with respect to the 
recoater and shielding gas.

The detachment from the building platform was pro-
vided by an automatic abrasive metallographic cutting. In 
order to avoid additional defects, particular care was paid 
to the selection of processing parameters: for the purpose, 
a SiC abrasive wheel 400 mm in diameter was employed at 
40 m/s cutting speed and 20 mm/min feed speed with the 
use of water emulsion lubricant. The proposed methodol-
ogy was demonstrated by defect detection via destructive 
and nondestructive traditional methods. Metallurgical cuts 
were provided by a manual Struers Labotom-5 equipment. 
Sections were grinded, polished, and etched with Weck’s 
reagent. The images were observed using a Leica DM 5000 
optical image microscope. SLMed parts were analyzed by 
means of morphological maps. A Mitutoyo Surftest SJ-412 
equipped with an additional micro-controlled axes wasem-
ployed. The stylus was 180 mm in length allowing 2.4 mm 
vertical height.

2.1  Image calibration and enhancement procedure

The  EOSINT®M290 is originally equipped with a CCD 
video camera 1280 pixels × 1024 pixels resolution (Fig. 2b). 
Since the F-theta lens, must be positioned orthogonally with 
respect to the platform leaving no space for the auxiliary 
vision system, (Fig. 2a), the optical path of the camera can-
not be orthogonal to the platform consequently images are 
distorted with both a perspective and radial deformations.

The video camera position angle, θ, is 13.8° which affects 
the possible direct measuring across the images. During the 
process, images of the powder bed are taken in two differ-
ent categories: the former, called “after recoating” (AR), is 
acquired after the recoater spread a fine layer of powder; the 
latter, namely the “after exposure” (AE), is achieved at the 
end of the laser processing.

Fig. 1  SEM photo of the used 
AlSi10Mg powder (a) and 
equivalent diameter particle and 
cumulative distributions (b)

Table 1  Chemical composition 
(wt%) of the AlSi10Mg 
powders

Si Fe Cu Mn Mg Ni Zn Pb Sn Ti Al

9–11  ≤ 0.55  ≤ 0.05  ≤ 0.45 0.20–0.45  ≤ 0.05  ≤ 0.10  ≤ 0.05  ≤ 0.05  ≤ 0.15 Bal
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As mentioned earlier, the image distortion makes it nec-
essary to perform a calibration. The pinhole model is the 
most frequent one which is based on the principle of collin-
earity, where each point in the object space is projected by 
a straight line through the projection center into the image 
plane. Equation (1) defines projection for pinhole model 
where u, v and x, y, z are the image and real coordinates, 
and M is the geometric transformation which consists of a 
translation and a rotation.

Although the pinhole model can express the projection 
relationship, the most common correction is for radial lens 
distortion, which is approximated by polynomial functions.

Equation (2) defines polynomial function where k1, k2 are 
the coefficients of radial distortion and ri the radial distance.

Unfortunately, because the centers of the lens curvatures 
are not exactly collinear, this is insufficient to compensate 
for distortion. The so-called decentering distortion is added 
to consider radial and tangential components as defined by 
Eq. (3):

where p1 and p2 are experimentally determined coefficients.
The combination of the pinhole model with the radial 

distortion correction can provide the entire set of parameters, 
effectively defining the transformation.

This problem is clearly nonlinear, and the Leven-
berg–Marquardt optimization method has been shown to 
provide fast convergence. However, incorrect initialization 
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may result in unsuccessful calibration. To find the com-
mencement and then proceed with the optimization method, 
a direct linear transformation is suggested.

The most common solution is to use known targets. A 
grid pattern was placed onto the platform and used for this 
purpose in this article. The same pattern is used to pro-
vide the machine's laser calibration procedure: it is a photo 
printed grid, and the known geometry was used to input 
many calibration points.

A design for the purpose code was developed in Wolfram 
Mathematica 12 platform. The code aimed at determining 
the linear transformation that yielded the initial rotation and 
translation coefficients. To find the general transformation, 
a Levenberg–Marquardt nonlinear fitting was used. The 
undeformed image was cropped to the building area, and 
local image enhancement was used to improve contrast and 
brightness. The entire routine was applied to all the jobs 
images and saved with appropriate naming that included the 
job, the layer position, and the type (AE or AR).

2.2  Digital image processing

Each AR image underwent two types of analysis. The first 
step is the 2D analysis, which is used to detect defects in 
the powder bed development process. The second approach 
allows for the identification of anomalies based on their vol-
ume for understanding their potential impact.

Because of the granular behavior of the powder bed, there 
is a lot of noise in the images. As a consequence, the analy-
sis is characterized by multistep data processing. To find 
the background, the image is filtered using a 3D Gaussian 
function [47]. Image subtraction is used to separate the fore-
ground from the background, and noise is greatly reduced. In 
this action, attention is paid to distinguishing between noise 
caused by the light scattering of a properly developed bed 
and minor flaws. The image is segmented using morphologi-
cal binarization, which uses hysteresis thresholding to con-
vert the multichannel image into an image where each pixel 
has a value of 0 or 1. The discovered region is superimposed 

Fig. 2  Schematic of the camera 
position (a) and frontal view of 
the real system (b)
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on the original to highlight the damaged area. This allows 
selecting an area that is enhanced and denoised by using a 
more computationally intensive method. The Perona–Malik 
[48, 49] filtering makes use of anisotropic diffusion which 
may preserve sharp edges and fine details. This method, 
which is commonly used in medical imaging, allows for the 
cleaning of the background and the creation of uniformity 
within the defect.

Although the 2D analysis can provide valuable informa-
tion on the powder bed, it does not consider the interactions 
between layers namely the propagation across surrounding 
layers. To overcome these limitations the anomalies are ana-
lyzed by means of their volume. A benefit of this approach 
is that small anomalies, i.e., entities one or a few layers thick 
revealed in 2D analysis, are not considered. For the purpose 
the data are structured in a multilevel array, the so-called 3D 
image format commonly used in computer tomography and 
other medical images.

The procedure is applied to AR images to have the pow-
der bed anomalies over the entire working volume, and to 
AE images to determine the scanned area. The last goal was 
obtained by removing anomalies lying inside and outside 
the part by using 3D erosion and 3D dilation operators. By 
multiplying AR and AE 3D images, i.e., each pixel is the 
product of the corresponding pixels in the input images, the 
AR anomalies outside the part are eliminated. The output is 

a 3D representation of AR anomalies inside the part. This 
information indicates where a real defect on the fabricated 
part can potentially occur.

3  Results and discussion

3.1  Calibration results

The calibration procedure enables the generation of unde-
formed images that can be directly measured by defects 
and their location in the object space. The photo of the 
original known grid pattern is shown in Fig. 3a. It was 
positioned on the platform, allowing for selecting 2601 
points. Direct linear fitting enabled was used to make the 
nonlinear fitting converge. To reduce computing time, the 
resulting interpolation was approximated. The warping 
matrix is defined by:

Figure 3b depicts a vector field plot representation of 
warping. the transformation is significantly nonlinear and 
asymmetric. The calibrated image, as shown in Fig. 3c, is 

(4)M =

⎛⎜⎜⎝

0.990181 −0.077353 0.086987

−0.008297 0.881207 −9.871239

−0.000012 −0.000173 1.

⎞⎟⎟⎠

Fig. 3  Original IM (a), trans-
formation displacement (b), 
calibrated IM (c) distribution 
of the deviation between cross 
center points (d)
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free of the previous perspective and radial distortions. The 
histogram describes the analysis of residuals, i.e., the dif-
ferences between known and measured positions (Fig. 3d). 
More than 90% of the points lie less than 0.34 mm away 
from the target. The image scale is 0.3125 mm/pixel.

3.2  Feature segmentation in 2D

A job consisting of several parts was considered for the 2D 
analysis. Figure 4 shows the outputs related to two layers. 
In Fig. 4a, the original image highlights a marked distor-
tion which may markedly affect the measurement of the 
potential location of the defects on the build plate. After 
the calibration, the outcoming image is reported in Fig. 4b. 
At this layer, two areas with major defects can be observed: 
vertical lines (zone 1 in Fig. 4b) could be due to recoater 
vibrations that typically occur when the blade strikes a previ-
ously scanned area lying just below the powder layer [43]. 
This is typically caused by a failed support structure or a 
bad building orientation in relation to the recoater [50]. It 
is demonstrated that powder layer quality is sensitive to the 
underlying substrate [51]; super-elevated edges can inter-
act with the recoater, resulting in vertical markings, namely 
the recoater hopping [52]. A possible cause of this vibra-
tion could be caused by other defects present in this layer, 

namely zone 2, where a large lack of recoating is detected. 
Figure 4c depicts the processing of an AR image. After the 
background removal, the morphological binarization, and 
the edge detection, the borders of these areas are easy to 
identify. The impact of detected anomalies can be expected 
on surface roughness, geometry inaccuracy, and metallurgi-
cal defects depending upon whether the effects occur over 
the surface of the part or inside it.

The second layer which requires attention is the 1114th, 
as shown in Fig. 4d. Also, in this case, a line and a big defect 
can be noticed. The horizontal one (zone 3 in Fig. 4e) typi-
cally occurs when a recoating mechanism is damaged [4] 
or severe wear of the blade edge occurs [53]. These stripes 
can be caused by the dragging of a relatively large contami-
nant (zone 4 in Fig. 4e) across the powder bed, e.g., support 
structures torn by the blade [54]. These defects are correctly 
detected (Fig. 4f).

3.3  Defect propagation across layers

Anomalies formed in one layer could propagate through 
the next layer and cause different types of defects including 
microstructure, surface defects and geometry deformation. 
When considering a single layer, an anomaly can disappear 
after one or a few layers if the recoater can cover it. In this 

Fig. 4  Powder bed defect detection, a job 1 original image, b cali-
brated image with defects, recoater vibration (zone 1), part elevation 
(zone 2), c highlighted defects via DIP, d job 2 original image, e cali-

brated image with defects, particle dragging (zone3), support destruc-
tion (zone 4), f defect detection via DIP
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case, the defect caused by the anomaly is limited or negli-
gible. Conversely, if the recoater is not able to recover the 
powder bed error, the anomaly can spread across many lay-
ers and lead to serious defects on final part. In Fig. 5a two 
examples of this phenomenon are shown in the shown layer 
(1094th), there are many areas characterized by small anom-
alies. Zones 1 and 2 are apparently of the same type. The 
former is completely absorbed by the recoater in the next 
layer, and it totally disappears at layer 1098th. Conversely, 
the latter is increasing its intensity and at the same layer it is 
so strong that a vibration is induced (Fig. 5b). Also, it can be 
assumed that the big anomalies and the vibrations feed one 
another up to this layer. At the layer 1099 shown in Fig. 5c, 
the vibrations ceased, but the defect is too big to be covered 
by the spreading system. Here another type of propagation 
occurs: many holes are now generated in the recoater direc-
tion (Fig. 5d), and after 7 layers, some elements are dragged 
for 180 mm (Fig. 5e). The situation is not recovered and 
becomes catastrophic at layer 1188th as shown in Fig. 5f. 
This propagation plays an important role in the final part, 
but it is difficult to evaluate the magnitude across layers only 
by 2D analysis. As mentioned in Sect. 2.2 the anomalies 
on a single layer are not directly related to the actual defect 
that will appear on the fabricated part. However, the uneven 

powder bed, affects the interaction between the laser and 
the powder bed leading to internal or external defects. Thus, 
an integrated 3D analysis where the layers are merged into 
a unique structure is necessary. This way, the powder bed 
anomalies of the surrounding layers are aggregated, allow-
ing easy identification of potential defects. At the same time, 
the small entities present in the powder bed are naturally 
eliminated if they are not a part of a propagated anomaly.

Fig. 5  Defect propagation and detection across subsequent layers on 
powder bed, anomalies detection on powder bed (a) vibration defects 
induced due to zone 2 anomaly (b), big lack of powder on the pow-

der bed (c), generation of more holes in recoater direction (d) dragged 
elements on powder bed (e), spread anomalies on powder bed (f)

Fig. 6  Surface defects on Enneper surface printed via SLM
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3.4  3D analysis for surface defects detection

A particular geometry was selected to prove the capabil-
ity of the method. It is a 3D representation of the well-
known Enneper’s minimal surface, namely a surface with 
zero mean curvature according to the Enneper Weierstass 
parametrization [55]. After providing a thickening of the 
surface in accordance with [56], the STL shown in Fig. 6 
was generated.

Several components were fabricated in the same job to 
consider conditions characterized by mutual interactions 
between different parts of the same platform, typical of 
industrial production. Through the 2D analysis, the lay-
ers were investigated, and anomalies in the selected parts 
were highlighted. The layer 240 is shown in Fig. 7a, where 
three Enneper parts can be noticed in the bottom of the plat-
form. A ROI is selected on AE images to focus on the first 
two Enneper parts and to reduce the computational time 
(Fig. 7b). It can be noticed that the platform is populated 
by many elements whose interactions can cause unpredict-
able effects on parts that are apparently well designed and 
positioned.

By rolling the various layers, the powder bed of the 
selected area is well recoated, as shown in Fig. 8a, where 
the Perona-Malik and Gaussian filter are applied. At layer 
386 (Fig. 8b), the second Enneper is affected by an anomaly 
which may cause a defect on the final part. At the next layer, 
shown in Fig. 8c, the previous flaw is recovered whilst a big-
ger void is now present on the first Enneper.

This second anomaly persists for several layers: after 
11 layers (Fig. 8d) are grown, after 21 layers (Fig. 8e) are 
reduced until layer 420 is completely absorbed by the recoat-
ing operation (Fig. 8f). This analysis highlights that these 

two anomalies are deeply different in volume. The height of 
the former is only one layer and can probably be neglected. 
The latter is characterized by a propagation across about 21 
layers, leading to an anomaly height of about 0.6 mm.

3D analysis is a straightforward way of detecting anoma-
lies inside the scanned area without manually understanding 
the propagation across layers. The previous Enneper parts 
were analyzed and compared. The filtered AR images were 
stacked into a 3D image, generating the result shown in 
Fig. 9a. The false colors highlight the different dimensions 
of the defects. This representation is interesting but confus-
ing because many defects are positioned outside the scanned 
area. By applying the procedure for AE images where the 
powder bed defects are removed by 3D morphological oper-
ations, the scanned volume is reported in Fig. 9b. Since the 
powder bed lacks affect the laser consolidation, it is well 
evident that at around layer 400, the intensity of the color 
is different. By intersecting both the previous results, a 3D 
image of only the anomalies in the scanned area is obtained 
(Fig. 9c). The areas in the part affected by the anomalies are 
visible, and they have an extension in the stratification direc-
tion of 0.6 mm. By simply looking at the manufactured part, 
it is difficult to notice any problem on the surface (Fig. 9d) 
but by analysing the surface by means of a profilometric 
measurement, a flaw is detected. In Fig. 9e the 3D map of 
the surface highlights a line parallel to the y axes, which 
is parallel to the platform. This bump has a variable eleva-
tion ranging between 150 and 250 µm and a width of about 
500 µm which is in accordance with the previous considera-
tions. Elsewhere the surface is characterized by the common 
SLM behavior with a maximum peak-to-valley height of 
about 150 µm [57].

Fig. 7  AR image of build plate (a), selection of the region of interest (ROI) area (b)
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The 3D analysis was applied to the second Enneper for 
comparison. The 3D image for the AR is heavily popu-
lated by anomalies: in Fig. 10a, many small defects can be 
noticed, and in the bottom part, linear aggregations reveal 
possible vibrations of the recoater. The latter anomalies lie 
outside the scanned area. In fact, intersecting with the 3D 
image of the AE, which shows a uniform colouring of the 
area (Fig. 10b), no particular defects are observed in the 
scanned area (Fig. 10c). By selecting the same measuring 
zone in this part (Fig. 10d), the result in Fig. 10e is obtained. 
It is well evident that no defect is present and only the usual 
SLM surface now characterizes the area [58, 59].

3.5  3D analysis for internal defects detection

Uneven powder layers can interfere with the physical inter-
action between the laser beam and the material, resulting in 
uneven processing such as laser absorption, heat transfer, 
and consolidation. This will lead to metallurgical defects 
such as different types of porosity that are really difficult 
to detect without prompting. In order to study the effect of 
powder bed anomalies on the porosity, the inclined par-
allelogram, positioned at the first column fourth row in 

Fig. 7b, was considered. It is relevant to notice that the com-
ponent exposure strategy was modified to improve the sur-
face quality: the adopted volumetric energy density caused 
local deformation of the scanned area, resulting in a lack 
of recoating, especially on the part contours (vertical and 
inclined and overhanging surfaces). Conversely, to the previ-
ous case, it is crucial to investigate the effect on the porosity 
caused by these issues above in the part under-skin. The AE 
3D image is shown in Fig. 11a. This geometry is character-
ized by different slopes: 45° and − 45° for inclined surfaces, 
90° for vertical walls; and 0° for horizontal faces. Over-
hanging surfaces, namely those at a − 45°, are supposed to 
have most of the defects as well as sharpened edges, which 
are subjected to residual stresses and deformations that may 
interact with the recoater. The powder bed around this com-
ponent is densely characterized by anomalies, as pointed 
out by the 3D analysis reported in Fig. 11b. The defects on 
the part are mainly positioned on edges and overhanging 
surfaces (Fig. 11a).

The metallographic analysis of the transversely cross-
sectioned samples is reported in Fig. 12.

By sectioning the upper part of the specimen near the 
corner, as indicated by the arrow in Fig. 12a, an irregularly 

Fig. 8  ROI images of powder bed without flaws (a, f), damages on the first Enneper (b), propagated anomalies across layers (c–e)
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shaped pore, attributable to a lack of fusion [60], was found. 
It is positioned in an area which was scanned by contour 
strategy, as evidenced by the track. Inside, the common crys-
talline structure [61] of internal hatching can be noticed. It 
can be assumed that this defect is caused by uneven process-
ing conditions which caused a porosity partially filled by 
powder which was not completely melted. Anomalies are 
suggested by analysis on the edge of the 45° surface. Taking 
the section at the height indicated by the arrow (Fig. 12b), 
a bigger lack of fusion is present at the interface between 
the contour and infill areas. Conversely, the analysis of the 
horizontal top surface of the specimen does not claim any 
defects. This is confirmed by the observation of the etched 
images. An example is shown in Fig. 12c where neither the 
contour nor the hatched ones are affected by defects. When 
moving to the opposite corner the analysis reveals the pres-
ence of many anomalies in the powder bed. The metallo-
graphic cut proved that in this area some big defects are 
present: the one shown in Fig. 12d has a length of 180 µm. 
The overhanging surface, namely − 45°, is mainly affected 
by anomalies in the bed. The cut at the indicated height 
validated the 3D analysis: Fig. 12e shows a big oblong void 
150 µm in equivalent diameter.

4  Conclusion

Monitoring powder bed images obtained throughout the 
build process can offer precise information on the root of 
tiny to large flaws, allowing for a full analysis of defect dis-
tribution across the part. This information can subsequently 
be employed to enhance process parameters, design modi-
fications, and possibly support structure, predict part func-
tionality, and provide information about damaged tools like 
recoater blades.

The DIP technique presented in this work evaluates a 
large number of images collected during the process after 
recoating and after exposure by directly using the machine 
built-in camera. No modification of the system is thus 
required but a careful calibration was necessary to avoid 
radial and perspective distortion. The calibration accuracy 
resulting from the proposed procedure was of the same 
order as the pixel dimension. The developed methodology 
is divided in a 2D and 3D analyses: the former aims to auto-
matically highlight the anomalies and the former considers 
the defects between layers which highly affect the generation 
of the final part defects. The selected examples demonstrated 
the ability of the methodology to automatically find anoma-
lies in 2D, providing information about their source such as 
the recoater vibration and particle dragging. The use of the 

Fig. 9  3D images of the damaged Enneper, 3D images AR (a), 3D image AE (b), multiplication AR & AE (c), printed part (d), 3D map of high-
lighted zone (e)
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Perona–Malik filter allowed for the elimination of powder 
bed noise without losing anomaly edge quality. The results 
demonstrated the need to consider how the anomalies propa-
gate across layers leading to negligible or consistent part 
defects. The 3D analysis can be directed to a single or more 
parts by selecting a specific ROI. This allows to generate 
an aggregated structure, namely a 3D image, that is easy to 
read with a reduced computing time. Some components were 

analyzed by traditional characterization systems and destruc-
tive methods to prove the capability of the methodology. 
3D analysis carried out on two identical parts demonstrated 
that the method can predict the presence of surface flaws 
which that are hard to identify, whilst it can assure fault-
less surfaces where no anomalies are indicated. Moreover, 
internal defects are well recognized, and the suggested loca-
tions demonstrate the real presence of voids, whose shape 

Fig. 10  3D image of the defect free Enneper,3D images AR (a), 3D images AE (b), multiplication AR & AE (c), printed part (d), 3D map of 
highlighted zone (e)

Fig. 11  3D Specimen (a), powder bed (b), and anomalies on part (c) 3D image
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suggests processing problems in the spreading and/or in the 
consolidation.

The presented method gives a great opportunity to pre-
dict the occurrence of defects in a fast and easy way with-
out restrictions. Further developments will concern the 
development of a trained system able to relate the shape 
and dimension of the anomalies to the final defect.
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