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Abstract

The goal of this thesis is to bridge the gap between univariate and multivariate quan-
tiles by extending the study of univariate quantile regression and its generalizations
to multivariate responses. The statistical analysis focuses on a multivariate frame-
work where we consider vector-valued quantile functions associated with multivariate
distributions, providing inferential procedures and establishing the asymptotic prop-
erties of the proposed estimators. We illustrate their applicability in a wide variety
of scientific settings, including time series, longitudinal and clustered data. The
dissertation is divided into four chapters, each of them focusing on various aspects of
multivariate analysis and different data types and structures. The methodologies we
propose are supported by theoretical results and illustrated using simulation studies
and real-world data.
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xix

Introduction and Overview

Since the seminal work of Koenker & Bassett (1978), quantile regression has become
a widely used technique in many empirical applications. This method allows us to
model the whole conditional distribution of a response variable in terms of a set of
covariates, offering a more detailed picture of the relationship between the dependent
and explanatory variables compared to traditional mean regression. Univariate
quantile regression methods are now well established in the statistical literature,
either in the frequentist or Bayesian settings, and have been extended to different
data structures, including, among others, cross-sectional, time series, multilevel
data, survival analysis and high-dimensional data; see, e.g., Yu & Moyeed (2001),
Kozumi & Kobayashi (2011), Koenker (2005), Lum et al. (2012), Davino et al. (2013),
Bernardi et al. (2015), Marino & Farcomeni (2015), Koenker et al. (2017), Furno &
Vistocco (2018), Taylor (2019), Maruotti et al. (2021) and the references therein.

Several generalizations related to the notion of quantiles have also been introduced
over the years. One extension is provided by the expectile regression (Newey &
Powell 1987), which can be thought of as a “quantile-like” generalization of the
classical mean regression. A second important extension is represented by the M-
quantile regression of Breckling & Chambers (1988). This method extends the ideas
of M-estimation of Huber (1964) based on asymmetric influence functions, combining
the robustness and efficiency properties of quantiles and expectiles in a common
framework. M-quantile regression models have attracted much research interest
and have received increasing attention in both the parametric and non-parametric
framework; see, for instance, Chambers & Tzavidis (2006), Tzavidis et al. (2008),
Pratesi et al. (2009), Alfò et al. (2017), Bianchi et al. (2018), Alfò et al. (2021).

When multivariate response variables are concerned, the existing literature
on quantile methods is less extensive since there is no “natural” ordering in a
p-dimensional space, p > 1 (Serfling 2002, Chakraborty 2003, Hallin et al. 2010,
Kong & Mizera 2012, Paindaveine & Šiman 2012, Koenker et al. 2017, Chavas 2018,
Petrella & Raponi 2019). As a consequence, univariate quantile, M-quantile, and
neither expectile regression models do straightforwardly extend to higher dimensions.
Nevertheless, in most situations of practical interest, the purpose of the matter being
investigated lies in describing the distribution of a multivariate response variable.
In these cases, a multivariate approach is more appropriate than a univariate one
because it takes into account dependence among responses. An extension to the
multidimensional setting of these concepts is thus extremely desirable and sought
after by researchers and data analysts.

Motivated by the necessity to provide useful tools for characterizing multivariate
distributions, the goal of this thesis is to bridge the gap between univariate and
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multivariate quantiles by extending the study of univariate quantile regression and
its generalizations to multivariate responses. The statistical analysis focuses on a
multivariate framework where we consider vector-valued quantile functions associated
with multivariate distributions, providing both descriptive and inferential procedures.

When analyzing real-world data, observations are often interconnected with
each other across time, space, or other dimensions, like groups, and their analysis
demands specific analysis tools. In this context, the research interest may focus not
only on investigating the association among responses, but also on accounting for the
specific dependence structure embedded in the data. Dependency of observations
arises in a wide variety of scientific settings, including time series, longitudinal and
clustered data (Diggle et al. 2002, Bergsma et al. 2009, Goldstein 2011, Zucchini
et al. 2016, Hamilton 2020). Particularly, in time series where data points are
recorded over time, modeling the temporal dependence and serial correlation across
observations are a crucial aspect of the analysis. On the other hand, when dealing
with longitudinal data, because measurements recorded on the same individuals are
likely correlated, the potential association between dependent observations should be
taken into account. Either ignoring these factors or relying on untenable modeling
assumptions may produce biased and inconsistent parameter estimates, which in turn
leads to wrong interpretations and conclusions of the phenomenon under study. In
this dissertation, we thus extend univariate quantile methods for modeling the entire
conditional distribution of multivariate responses, accounting for the dependence
among the outcomes and incorporating all characteristics of such complex data
structures.

There are, however, numerous applications where features of the conditional
distribution are not objects of direct interest, meanwhile, practitioners wish to
determine the effects of relevant predictors on the unconditional distribution of the
response. Indeed, an important branch of the literature focuses on the estimation
of the unconditional distribution of the dependent variable, spanning from social
programs evaluation to the identification of distributional effects for particular
drug treatments. When the unconditional distribution is the ultimate research
objective, using the univariate conditional quantile regression of Koenker & Bassett
(1978) would yield misleading inferences (Firpo et al. 2009, Borah & Basu 2013,
Frölich & Melly 2013). In the literature, several proposals have been introduced to
estimate these unconditional quantile effects; see Gosling et al. (2000), Machado
& Mata (2005), Melly (2005), Firpo et al. (2009). Those studies, however, focus
on the univariate regression framework. When the problem under investigation
involves multivariate dependent variables, extending such univariate procedures to
multivariate techniques is a challenging task, given that there is no natural ordering
for multivariate observations. This clearly represents an important gap to be filled
in the literature on unconditional effects estimation, highlighting the need for new
statistical tools and techniques to treat this problem. In this thesis, we contribute
to the current literature extending the univariate unconditional approach of Firpo
et al. (2009) to a more general multivariate setting. More specifically, we propose a
unified unconditional regression approach that encompasses multivariate quantiles,
M-quantiles and expectiles, which allows us to evaluate the impact of changes in the
distribution of each explanatory variable across the entire unconditional distribution
of the responses.
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The dissertation is divided into four chapters, each of them focusing on vari-
ous aspects of multivariate analysis and different data types and structures. The
methodologies we propose are supported by theoretical results and illustrated using
simulation studies and real-world data.

In Chapter 1, we introduce a Quantile Mixed Hidden Markov Model for joint
estimation of multiple quantiles in multivariate longitudinal data. The approach is
based on the Multivariate Asymmetric Laplace (MAL) distribution, which allows
to simultaneously model the quantiles of the univariate conditional distributions
of a multivariate response in a linear regression framework, accounting for possible
correlation between the outcomes. Unobserved heterogeneity sources and serial
dependence due to repeated measures are modeled through the introduction of
individual-specific, time-constant random coefficients and time-varying parameters
evolving over time with a Markovian structure, respectively. The inferential procedure
is carried out through a suitable Expectation-Maximization algorithm without
parametric assumptions on the random effects distribution and closed form M-step
update expressions are derived for all model parameters. The validity of the approach
is analyzed both by a simulation study and through the empirical analysis of the
UK Millennium Cohort Study data. The content of this chapter is based upon a
joint work with Prof. Petrella L. and Prof. Tzavidis N., which has been recently
published in Merlo et al. (2022).

Chapter 2 generalizes the MAL quantile regression approach considered in
Chapter 1 to a time-varying setting for the analysis of multivariate financial time
series. Specifically, extending the univariate work of Taylor (2019), we propose a
multiple linear quantile regression for jointly predicting tail risk measures, namely
Value at Risk (VaR) and Expected Shortfall (ES). The proposed methodology
permits simultaneous modelling of multiple conditional quantiles of a multivariate
response variable and accounts for the dependence structure among financial assets.
By exploiting the properties of the MAL distribution, we propose a new portfolio
optimization method that minimizes portfolio risk and controls for well-known
characteristics of financial data. We evaluate the advantages of the proposed
approach on both simulated and real data, using weekly returns on three major
stock market indices. We show that our method outperforms other existing models
and provides more accurate risk measure forecasts than univariate methods. The
methods and findings of this analysis are contained and published in Merlo, Petrella
& Raponi (2021).

In Chapter 3, we develop an M-quantile regression model for the analysis of
multiple dependent outcomes by introducing the notion of directional M-quantiles
for multivariate responses. In order to incorporate the correlation structure of the
data into the estimation framework, we propose a robust marginal M-quantile model
extending the well-known generalized estimating equations approach to the case of
regression M-quantiles with the Huber’s loss function. We discuss the estimation
of the model and derive the asymptotic properties of estimators. In addition, we
introduce the idea of M-quantile contours that can be used to describe the dependence
between the response variables and to investigate the effect of covariates on the
location, spread and shape of the distribution of the responses. To examine their
variability, we build confidence envelopes via nonparametric bootstrap. The validity
of the proposed methodology is explored both by means of simulation studies and
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through an application to educational data. The considered modeling framework is
the result of a collaborative work with Prof. Petrella L., Prof. Tzavidis N. and Prof.
Salvati N., and it is currently under revision in a high-quality journal.

Finally, in Chapter 4 we build a unified regression approach to model uncon-
ditional quantiles, M-quantiles and expectiles of multivariate dependent variables
exploiting the multidimensional Huber’s function. To assess the impact of changes
in the covariates across the entire unconditional distribution of the responses, we
extend the work of Firpo et al. (2009) by running a mean regression of the recentered
influence function on the explanatory variables. We discuss the estimation procedure
and establish the asymptotic properties of the derived estimators. A data-driven
procedure is also presented to select the optimal tuning constant of the Huber’s
function. The validity of the proposed methodology is explored with simulation
studies and through an application using the Survey of Household Income and
Wealth 2016 conducted by the Bank of Italy. The content of this chapter was written
together with Prof. Petrella L., Prof. Tzavidis N. and Prof. Salvati N., and it has
been submitted to an international journal for publication.
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Chapter 1

Quantile Mixed Hidden Markov
Models for multivariate
longitudinal data

1.1 Introduction

Ever since quantile regression was first introduced in the seminal work of Koenker &
Bassett (1978), it has attracted researches’ and practitioners’ attention. It provides
a way to model the conditional quantiles of a response variable with respect to a
set of covariates in order to have a more complete picture of the entire conditional
distribution compared to the classical mean regression. In a univariate quantile
regression framework, both the classical and Bayesian inferential approaches have
been proposed in the literature to estimate the model parameters. In the frequentist
setting, the inferential approach used to estimate the parameters relies on the
minimization of the asymmetric loss function (see Koenker & Bassett 1978) while,
in the Bayesian setting, and in a likelihood inferential approach, the Asymmetric
Laplace (AL) distribution has been introduced as a likelihood inferential tool. The
two approaches are well-justified by the relationship between the quantile loss function
and the AL density. Indeed, Yu & Moyeed (2001) showed that the minimization
of the quantile loss function is equivalent, in terms of parameter estimates, to the
maximization of the likelihood associated with the AL density. Therefore, the AL
distribution may offer a convenient approach to make inference in a quantile regression
analysis. Quantile regression methods have become widely used in literature because
they are suitable in those situations where skewness, fat-tails, outliers, truncation,
censoring and heteroscedasticity arise. They have been implemented in a wide range
of different fields, both in a frequentist paradigm and in a Bayesian setting, spanning
from medicine (see Cole & Green 1992, Royston & Altman 1994, Reich et al. 2011
and Waldmann 2018), financial and economic research (see Bassett & Chen 2002,
Kozumi & Kobayashi 2011, Bernardi et al. 2015, Petrella et al. 2018, Laporta et al.
2018, Tian et al. 2018, Bernardi, Bottone & Petrella 2018 and Petrella & Raponi
2019), and environmental modeling (Hendricks & Koenker 1992, Pandey & Nguyen
1999 and Reich et al. 2011). For a detailed review and list of references, Koenker
(2005) and Koenker et al. (2017) provide an overview of the most used quantile
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regression techniques in a classical setting. In longitudinal studies, quantile methods
with random effects have been positively considered in order to account for the
dependence between serial observations on the same subject (see Koenker 2004,
Geraci & Bottai 2006, Farcomeni 2012, Luo et al. 2012, Marino & Farcomeni 2015,
Alfò et al. 2017, Marino et al. 2018, Kulkarni et al. 2019, Merlo, Maruotti & Petrella
2021 and Alfò et al. 2021).

When multivariate response variables are concerned, the existing literature on
quantile regression is less extensive due to the fact that there is not a unique
definition of quantile for a multivariate random variable since there is no “natural”
ordering in a p-dimensional space, for p > 1. As a consequence, the univariate
quantile regression method does not straightforwardly extend to higher dimensions.
Nevertheless, in most situations of practical interest, the purpose of the matter being
investigated lies in describing the distribution of a multivariate response variable.
In these cases, a multivariate approach is more appropriate than a univariate one
because it takes into account dependence among marginals. An extension to the
multidimensional setting of the definition of quantile above is thus desirable. For
this reason, the search for a satisfactory notion of multivariate quantile has led to
a flourishing literature on this topic despite its definition is still a debatable issue
(see Chakraborty 2003, Hallin et al. 2010, Kong & Mizera 2012, Koenker et al. 2017,
Stolfi et al. 2018, Chavas 2018, Charlier et al. 2020 and the references therein for
relevant studies).

Recently, Petrella & Raponi (2019) generalized the AL distribution inferential
approach of the univariate quantile regression to a multivariate framework by using
the Multivariate Asymmetric Laplace (MAL) distribution defined in Kotz et al.
(2012). By using the MAL distribution as a likelihood based inferential tool, the
authors sidestep the problem of defining the quantiles of a multivariate distribution,
and instead implement joint estimation for the univariate quantiles of the conditional
distribution of a multivariate response variable given covariates, accounting for
possible correlation among the responses.

When dealing with longitudinal data, because measurements recorded on the
same individuals are likely correlated, the potential association between dependent
observations should be taken into account in order to provide correct inferences.
In such cases, random effect models have been advocated to accommodate for
time-constant, within-subject correlation and between subject heterogeneity (see
Liu & Bottai 2009 and Geraci & Bottai 2014): time-constant individual-specific
random coefficients are added in the regression model to capture this unobserved
heterogeneity. However, when the assumption that heterogeneity is constant over
time does not hold, adopting such model specification may lead to biased parameter
estimates (see Bartolucci & Farcomeni 2009). To account for serial heterogeneity,
Farcomeni (2012) suggested the use of Hidden Markov Models (HMM). In such
a context, a latent homogeneous Markov chain is defined in order to capture the
temporal evolution of unobserved heterogeneity and state-dependent parameters
are introduced to account for response variability due to time-varying omitted
covariates. The application of HMMs is well justified by their versatility and
mathematical tractability in longitudinal studies where the evolution of a latent
individual characteristic is of interest (see Cappé et al. 2006, Maruotti 2011, Maruotti
& Rocci 2012 and Zucchini et al. 2016).
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In real data applications, unobserved heterogeneity may both evolve and/or
stay constant over time. In addition, the available covariates may not be able to
capture all the individual heterogeneity sources. In this case, a set of random effects
should be included in the model specification to capture such unobserved differences
between individuals (Maruotti & Rocci 2012). In order to handle such a complex data
structure, it is possible to consider the well-known Mixed Hidden Markov Models
(MHMMs, see Altman 2007). The MHMM, obtained by combining the features of
hidden Markov and Mixed Effects Models, encompasses Generalized Linear Mixed
Models and HMMs as it accommodates time-constant and time-varying sources of
random variation jointly. In the application of quantile regression to longitudinal
data, Marino et al. (2018) introduced a Mixed Hidden Markov quantile regression
model for longitudinal continuous responses, extending the Linear Quantile Mixed
Model of Geraci & Bottai (2014) and the Linear Quantile Hidden Markov Model of
Farcomeni (2012). These proposals are, however, designed for univariate dependent
variables and consequently, they neglect the dependence structure between multiple
outcomes of interest measured over each unit.

The purpose of this article is to extend the work of Petrella & Raponi (2019) by
introducing a Mixed Hidden Markov Model to the longitudinal data setting. We
develop a Quantile Mixed Hidden Markov Model (QMHMM) to jointly estimate
the quantiles of the univariate conditional distributions of a multivariate response,
accounting for the dependence structure between the outcomes. In particular,
time-constant unobserved heterogeneity is described via individual-specific random
coefficients while temporal effects are captured through state-specific parameters
that evolve over time depending on a hidden Markov chain. In order to prevent
inconsistent parameter estimates due to misspecification of the random effects
distribution, we adopt the Non-Parametric Maximum Likelihood (NPML) approach
of Lindsay et al. (1983) where the distribution is left unspecified and approximated by
a multivariate discrete finite mixture distribution estimated from the data. Within
this scheme, our modeling framework reduces to a multivariate finite mixture of
HMM quantile regressions. We propose to estimate the model parameters through
Maximum Likelihood (ML) by using the MAL distribution as working likelihood in
a regression framework. Specifically, as in Petrella & Raponi (2019) we consider a
reparameterization of the MAL distribution, subject to some specific constraints,
which allows us to estimate the regression coefficients via ML. In particular, we
build an Expectation-Maximization (EM) algorithm which exploits the Gaussian
location-scale mixture representation of the MAL distribution where both the hidden
Markov chain and the random effects parameters are treated as missing data. From
a computational perspective, we provide an efficient version of the EM algorithm
with M-step updates in closed form for all model parameters.

Using simulation experiments we assess the validity of our approach by considering
different data generating processes. Moreover, we apply our methodology to real data
by analysing the Millennium Cohort Study (MCS). The MCS is a longitudinal birth
cohort study following children born in the UK, providing multiple measures of the
cohort members’ physical, socio-emotional, cognitive and behavioural development
over time. We develop a QMHMM for children’s emotional and behavioral disorders
as a function of demographic and socio-economics risk factors taking into account both
the potential dependence between children’s disorders, the time-constant and time-
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varying unobserved heterogeneity. The proposed approach for modeling conditional
quantiles simultaneously, can offer a considerably insight to child psychologists on
the effect of selected risk factors on children’s behavioural problems.

The rest of the paper is organized as follows. In Section 1.2, we introduce the
proposed QMHMM regression framework. Section 1.3 illustrates the EM-based ML
approach to estimate model parameters together with M-step updates in closed
form. In Section 1.4 we present the simulation results while Section 1.5 discusses
the empirical application. Section 1.6 summarizes our conclusions. All the proofs
are provided in Appendix.

1.2 Methodology

Let Yit = (Y (1)
it , . . . , Y

(p)
it ) be a continuous p-variate response variable vector and

Xit = (X(1)
it , . . . , X

(k)
it ) be a k-dimensional vector of explanatory variables for subject

i = 1, . . . , N and time occasion t = 1, . . . , Ti. Let τ = (τ1, . . . , τp) denote p quantile
indexes with τj ∈ (0, 1), for j = 1, . . . , p. In particular, the p quantile indexes do not
need to be the same for all of the elements of Yit. Further, let Sit(τ ), i = 1, . . . , N ,
t = 1, . . . , Ti be a homogeneous, first-order, aperiodic and irreducible hidden Markov
chain defined over a discrete states space S = {1, . . . ,M} with initial and transition
probabilities denoted by q = (q1, . . . , qM ) and Q = {qjk} over S × S common to all
subjects, respectively. Finally, let bi(τ ) be a time-constant, subject-specific, random
effects matrix having distribution fb(· | Xit, τ ) with support B, where E(bi(τ )) = 0
is used for parameter identifiability. We assume that the τj-th quantile of each of
the j-th components of Yit can be modeled as a function of explanatory variables.
Let β(τ ) = (β1(τ ), . . . ,βp(τ )) be the k × p matrix of unknown quantile regression
coefficients. Then, the QMHMM is defined as follows:

Yit = Xitβ(τ ) + Zitbi(τ ) + WitαSit(τ ) + εit(τ ) (1.1)

where Zit is a subset of Xit, Wit is a further subset of Xit whose effects are assumed
to vary over time, εit(τ ) denotes a p-dimensional vector of error terms with univariate
component-wise quantiles (at fixed levels τ1, . . . , τp, respectively) equal to zero and
where the coefficients matrix αSit(τ ) evolves over time according to the hidden
Markov chain, Sit(τ ), and takes one of the values in the set {α1(τ ), . . . ,αM (τ )}. In
particular, the parameters bi(τ ), i = 1, . . . , N , and {α1(τ ), . . . ,αM (τ )} are designed
to account for within-individual dependence by considering unobserved time-constant
and time-varying sources of unobserved heterogeneity, respectively.

Our objective is to provide joint estimation of the p quantiles of the univariate
conditional distributions of Yit taking into account for potential correlation among
the dependent variables. The QMHMM framework is based on the following central
assumptions, which are standard in mixed effects models. The random effects
bi(τ ) are independent of the hidden Markov chain, Sit(τ ), as they are meant to
capture different unobserved characteristics, and furthermore, it is assumed that
the covariates Xit are uncorrelated with bi(τ ), that is fb(· | Xit, τ ) = fb(· | τ ).
Regarding the longitudinal responses, they must satisfy the contemporary dependence
and conditional independence conditions. The former states that for the i-th subject
at time t, the distribution of Yit, given the state variables (Si1(τ ), ..., SiTi(τ )) and the



1.2 Methodology 5

time-constant individual-specific random effects bi(τ ), depends only on the current
state Sit(τ ); the latter entails that the responses (Yi1, ...,YiTi) are conditionally
independent, given the hidden state occupied at time t by Sit(τ ) and the individual-
specific random coefficients bi(τ ). These assumptions imply that the following
equality holds:

fY(yit | yi1:t−1,xi1:t−1, si1:t,bi, τ ) = fY(yit | xit, sit,bi, τ ) (1.2)

where yi1:t−1 and xi1:t−1 represent the history of the responses and the observed
covariates for the i-th subject up to time t−1, respectively, and si1:t is the individual
sequence of states up to time t.

Generalizing the approach of Petrella & Raponi (2019), for the model in (1.1) we
consider the MAL distribution,MAL(µ,Dξ̃,DΣD), (see Kotz et al. 2012) having
density function:

fY(yit | xit, sit,bi, τ ) =
2 exp

{
(yit − µit)′D−1Σ−1ξ̃

}
(2π)p/2|DΣD|1/2

(
m̃it

2 + d̃

)ν/2
Kν

(√
(2 + d̃)m̃it

)
,

(1.3)
where the location parameter µit is defined by the Mixed Hidden Markov Model:

µit = µ(sit,bi, τ ) = Xitβ(τ ) + Zitbi(τ ) + Witαsit(τ ), (1.4)

Dξ̃ is the skew parameter with D = diag[d1, . . . , dp], dj > 0 and ξ̃ = [ξ̃1, . . . , ξ̃p]′

having generic element ξ̃j = 1−2τj
τj(1−τj) , j = 1, . . . , p. Σ is a p × p positive definite

matrix such that Σ = ΛΨΛ, with Ψ being an unstructured correlation matrix of
dimension p and Λ = diag[σ1, . . . , σp], with σ2

j = 2
τj(1−τj) , j = 1, . . . , p. Moreover,

m̃it = (yit − µit)′(DΣD)−1(yit − µit), d̃ = ξ̃′Σ−1ξ̃, and Kν(·) denotes the modified
Bessel function of the third kind with index parameter ν = (2− p)/2.

One of the key benefits of the MAL distribution is that, using (1.1) and (1.3),
and following Kotz et al. (2012), Y ∼ MAL(µ,Dξ̃,DΣD) can be written as a
location-scale mixture, having the following representation:

Y = µ+ Dξ̃C̃ +
√
C̃DΣ1/2Z (1.5)

where Z ∼ Np(0p, Ip) denotes a p-variate standard Normal distribution and C̃ ∼
Exp(1) has a standard exponential distribution, with Z being independent of C̃. In
particular, the constraints imposed on ξ̃ and Λ represent necessary conditions for
model identifiability for any fixed quantile level τ1, . . . , τp and guarantee that µ(j)

it is
the τj-th conditional quantile function of Y (j)

it given Sit(τ ) and bi, for j = 1, . . . , p.
This allows researchers to jointly study the occurrence of extreme values of several
dependent variables, by considering either low or high quantile levels for all outcomes
or to focus on different quantile levels when the interpretation of the responses runs
in opposite directions. That is, high values of some variables are associated with
at-risk situations while high values of the others correspond to low-risk situations,
making it reasonable to set different quantile levels, τ1, . . . , τp, for each marginal
Y

(j)
it , j = 1, . . . , p.
As shown in Petrella & Raponi (2019), using this approach we are able to

conduct inference on the quantiles of the univariate conditional distributions of Yit
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simultaneously, taking into account the possible correlation between the outcomes.
For a given quantile level τ , following Kotz et al. (2012) and by simple calculations
it is possible to show that the covariance matrix of Y can be written as:

S = D(ξ̃ξ̃′ + ΛΨΛ)D, (1.6)

where the off-diagonal elements of S provide an indirect measure of association
between the outcomes.

Two remarks are also noteworthy regarding the methodology introduced above.
First, our model can be thought of as an extension to multivariate longitudinal
data of: (i) the Linear Quantile Hidden Markov Model by Farcomeni (2012) when
Wit = 1 and bi(τ ) = 0 for all i = 1, . . . , N and t = 1, . . . , Ti; (ii) the Linear Quantile
Mixed Model (LQMM) proposed in Geraci & Bottai (2014) when there is only one
state of the hidden Markov chain, i.e. M = 1. Also, our proposal reduces to the
linear quantile mixed hidden Markov model of Marino et al. (2018) in the case
of a single response variable when p = 1. Second, the proposed approach differs
substantially from the ones by Kulkarni et al. (2019) and Alfò et al. (2021). In
the former, the authors consider univariate quantile regression models where the
dependence across time and responses is captured by time-constant outcome-specific
normally distributed random coefficients. In the latter, the proposed method targets
a different set of location parameters, i.e. the M-quantiles (Breckling & Chambers
1988) of the distribution of the dependent variables, which are more difficult to
interpret than quantiles. The authors then define univariate M-quantile regression
models with outcome-specific random effects, where dependence between outcomes
for each unit is introduced by assuming correlated, subject-specific random effects
in the univariate models.

Estimation of model parameters can be pursued using a ML approach. To ease
the notation, unless specified otherwise, hereinafter we omit the quantile levels vector
τ , yet all model parameters are allowed to depend on the p quantile indexes. Thus,
let us denote by Φτ = (β,D,Ψ,α1, . . . ,αM ,q,Q) the set of model parameters.
Given the modeling assumptions introduced so far, the observed data likelihood is
defined by:

L(Φτ ) =
N∏
i=1

∫
B

{∑
STi

[
Ti∏
t=1

fY(yit | xit, sit,bi)
]
qsi1

Ti∏
t=2

qsit−1sit

}
fb(bi)dbi. (1.7)

The maximization of the likelihood in (1.7) generally may prove to be excessively
cumbersome because it involves a multidimensional integral over the random co-
efficients distribution fb(·) and a summation over MTi terms for each unit. In
addition, the choice of an appropriate distribution for the random effects is not
straightforward. Ideally fb(·) should be data driven and resistant to misspecification
(Marino & Farcomeni 2015), otherwise an incorrect distributional assumption for
the random effects has unfavorable influence on statistical inferences (see Agresti
et al. 2004, Maruotti 2011 and Neuhaus et al. 2013). In the next section, we discuss
how we specify the random effects distribution and how we may avoid evaluating
the integral in (1.7) for ML estimation.
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1.2.1 Specification of the random coefficients distribution

In the literature, typically the Gaussian distribution is a convenient choice for fb(·)
from a computational point of view. In this case, we may approximate the integral
in (1.7) using Gaussian quadrature or adaptive Gaussian quadrature schemes (see
Rabe-Hesketh et al. 2005, Pinheiro & Chao 2006 and Crowther et al. 2014). A
disadvantage of such approaches lies in the required computational effort, which is
exponentially increasing with the number of the random parameters. For this reason,
potential alternatives proposed the use of simulation methods such as Monte Carlo
and simulated ML approaches (McCulloch 1997). However, for samples of finite size
and short individual sequences, these methods may not provide a good approximation
of the true mixing distribution (Alfò et al. 2017). As a robust alternative to the
Gaussian choice, the multivariate Symmetric Laplace or multivariate Student t
distributions have been considered by Geraci & Bottai (2014) and Farcomeni &
Viviani (2015). However, a parametric assumption on the distribution of the random
coefficients could be rather restrictive and misspecification of the mixing distribution
can lead to biased parameter estimates (see Alfò & Maruotti 2010). Following Marino
et al. (2018), in this work we exploit the approach based on the Non-Parametric
Maximum Likelihood (NPML) estimation of Laird (1978) and extend it to the
multivariate context. In particular, we do not parametrically specify fb(·) but we
approximate it by using a discrete distribution defined on G < N multivariate
locations, bg(τ ), with associated probabilities defined by:

πg(τ ) = Pr(bi(τ ) = bg(τ )), (1.8)

with πg ≥ 0, ∀ g = 1, . . . , G and
∑G
g=1 πg = 1. More concisely, we can write:

bi(τ ) ∼
G∑
g=1

πg(τ )δbg(τ ), (1.9)

where δθ is a one-point distribution putting a unit mass at θ. With this approach,
the parametric problem is thus converted to a semiparametric one, where bg(τ ) and
πg(τ ) define the discrete probability distribution of the random effects defined on
G distinct support points. In this context, time-constant unobserved heterogeneity
in the data is represented by a finite mixture with unknown proportions πg(τ ) and
locations bg(τ ) common to all subjects in the g-th group. Since locations and
masses are completely free to vary over the corresponding support, this is a flexible
method that can readily accommodate a wide range of shapes, including fat-tailed
and asymmetric distributions, and it is more robust against deviations from model
assumptions (for a detailed survey about this method see also Aitkin & Alfó 1998,
Alfò & Aitkin 2000, Aitkin & Alfò 2003, Alfò et al. 2017, 2021 and Merlo, Maruotti
& Petrella 2021).
In this setting, the observed data likelihood in (1.7) reduces to:

L(Φτ ) =
N∏
i=1

G∑
g=1

{∑
STi

[
Ti∏
t=1

fY(yit | xit, sit,bg)
]
qsi1

Ti∏
t=2

qsit−1sit

}
πg, (1.10)

where Φτ = (β,D,Ψ,b1, . . . ,bG, π1, . . . , πG,α1, . . . ,αM ,q,Q) denotes the vector
of model parameters and fY(yit | xit, sit,bg) represents the response distribution
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of unit i being in the state sit at time t and belonging to the g-th component of
the finite mixture, which is assumed to follow the MAL as in (1.3) with location
parameter given by:

µit = µ(sit,bg, τ ) = Xitβ(τ ) + Zitbg(τ ) + Witαsit(τ ). (1.11)

By looking at the likelihood in (1.10), one can see that it resembles the likelihood of
a finite mixture of HMM models with G homogeneous sub-populations where the
presence of latent time-constant heterogeneity is described by discrete multivariate
random effects. From the estimation perspective, locations bg and corresponding
probabilities πg are unknown parameters which need to be estimated along with
other model parameters. The number of mixture components G is unknown, and
it is usually treated as fixed and estimated via penalized likelihood criteria (see
e.g. Böhning 1999). Furthermore, as an important by-product, the computational
complexity of the likelihood evaluation in (1.10) is of linear order with respect to G,
which greatly facilitates the implementation of EM-type algorithm, as is described
in the following section.

1.3 Maximum Likelihood estimation and inference

As mentioned in the previous sections, the MAL density represents a convenient
tool to jointly model the univariate quantiles of the conditional distribution of a
multivariate response variable in a quantile regression framework. In this section we
introduce a ML approach to estimate and make inference on model parameters and
build a suitable EM algorithm (Dempster et al. 1977). We will show that the M-step
update of all model parameters can be easily obtained in closed form, hence reducing
the computational burden of the algorithm compared to direct maximization of
the likelihood in (1.10). Specifically, we derive the EM algorithm by exploiting the
Gaussian location-scale mixture representation in (1.5) of the MAL distribution
under the constraints on ξ̃ and Λ.

1.3.1 The EM algorithm

The EM algorithm alternates between an expectation (E) step, which defines the
expectation of the complete log-likelihood evaluated at the current parameters
estimates, and a maximization (M) step, which computes parameter estimates
by maximizing the expected complete log-likelihood obtained in the E-step. The
complete log-likelihood, the expected complete log-likelihood function and the
optimal parameter estimators are given below in the following propositions.

Given the representation in (1.10), let us denote by wig the indicator variable
that is equal to 1 if the i-th unit belongs to the g-th component of the finite mixture,
and 0 otherwise. Similarly, let uitj be equal to 1 if unit i is in state j at time t and
0 otherwise; let vitjk be equal to 1 if unit i is in state j at time t− 1 and in state
k at time t, and 0 otherwise. Finally, we denote by zitjg the indicator of the i-th
individual being in state j at time t and coming from the g-th component of the
mixture. The complete data log-likelihood is presented in the following proposition.
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Proposition 1. For any fixed τ = (τ1, . . . , τp), G mixture components and M
hidden states, the complete data log-likelihood function is proportional to:

`c(Φτ ) ∝
N∑
i=1

{
G∑
g=1

wig log πg +
M∑
j=1

ui1j log qj +
Ti∑
t=2

M∑
j=1

M∑
k=1

vitjk log qjk

− 1
2Ti log | DΣD | +

Ti∑
t=1

M∑
j=1

G∑
g=1

zitjg(Yit − µit)′D−1Σ−1ξ̃

− 1
2

Ti∑
t=1

M∑
j=1

G∑
g=1

zitjg
1

C̃itjg
(Yit − µit)′(DΣD)−1(Yit − µit)

− 1
2 ξ̃
′Σ−1ξ̃

Ti∑
t=1

M∑
j=1

G∑
g=1

zitjgC̃itjg

}
,

(1.12)

where C̃itjg is a latent variable that follows an exponential distribution with parameter
1.

In the E-step of the algorithm, the presence of the unobserved indicator variables
wig, uitj , vitjk and zitjg is handled by taking their conditional expectation given the
observed data and the current parameter estimates. Calculation of such quantities
may be addressed via an adaptation of the forward and backward variables; see Welch
(2003). Similarly, the conditional expectations of 1

C̃itjg
and C̃itjg are considered.

For the implementation of the algorithm, forward and backward variables are
defined for the longitudinal measures. We define the probability of observing the
partial sequence ending up in state j at time t, given the g-th component, as:

ait(j, g) = f(yi1:t, Sit = j | bg) and ai1(j, g) = qjf(yi1 | Si1 = j,bg).
(1.13)

The quantity ait(j, g) can be rewritten using the following recurrence relationship:

ait(j, g) =
M∑
h=1

ait−1(h, g)qhjf(yit | Sit = j,bg). (1.14)

Backward variables are defined as the probability of the longitudinal sequence from
time t + 1 to the last available observation Ti, conditional on being in state j at
time t, given the g-th component:

bit(j, g) = f(yit+1:Ti | Sit = j,bg) and biTi(j, g) = 1. (1.15)

Accordingly, the backward variable bit(j, g) can be rewritten as:

bit(j, g) =
M∑
k=1

bit+1(k, g)qjkf(yit+1 | Sit+1 = k,bg). (1.16)
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Finally, the expected values of wig, uitj , vitjk and zitjg can be computed as:

ŵig =
πg
∑M
j=1 aiTi(j, g)∑G

g=1 πg
∑M
j=1 aiTi(j, g)

,

ẑitjg = ait(j, g)bit(j, g)πg∑G
g=1

∑M
j=1 ait(j, g)bit(j, g)πg

,

ûitj =
G∑
g=1

ẑitjg,

v̂itjk =
∑G
g=1 ait−1(j, g)qjkf(yit | Sit = k,bg)bit(k, g)πg∑G

g=1
∑M
j=1

∑M
k=1 ait−1(j, g)qjkf(yit | Sit = k,bg)bit(k, g)πg

.

(1.17)

By substituting the corresponding posterior expectations in (1.17) into the complete
data likelihood in (1.12), the expected complete data log-likelihood function is
provided in the following proposition.

Proposition 2. For any fixed τ = (τ1, . . . , τp), G mixture components and M
hidden states, the expected complete data log-likelihood function is proportional to:

O(Φτ ) ∝
N∑
i=1

{
G∑
g=1

ŵig log πg +
M∑
j=1

ûi1j log qj +
Ti∑
t=2

M∑
j=1

M∑
k=1

v̂itjk log qjk

− 1
2Ti log | DΣD | +

Ti∑
t=1

M∑
j=1

G∑
g=1

ẑitjg(Yit − µit)′D−1Σ−1ξ̃

− 1
2

Ti∑
t=1

M∑
j=1

G∑
g=1

ẑitjg ˆ̃zitjg(Yit − µit)′(DΣD)−1(Yit − µit)

− 1
2 ξ̃
′Σ−1ξ̃

Ti∑
t=1

M∑
j=1

G∑
g=1

ẑitjg ˆ̃citjg

}
,

(1.18)

where

ˆ̃citjg =
(
m̃itjg

2 + d̃

) 1
2
Kν+1

(√
(2 + d̃)m̃itjg

)
Kν

(√
(2 + d̃)m̃itjg

) , ˆ̃zitjg =
(

2 + d̃

m̃itjg

) 1
2 Kν+1

(√
(2 + d̃)m̃itjg

)
Kν

(√
(2 + d̃)m̃itjg

) − 2ν
m̃itjg

,

(1.19)
with

m̃itjg = (yit − µit)′(DΣD)−1(yit − µit), d̃ = ξ̃′Σ−1ξ̃. (1.20)

Therefore, the EM algorithm can be implemented as follows:

E-step: At r-th iteration of the algorithm, let Φ̂(r−1)
τ denote the current pa-

rameter estimates. Then, conditionally on the observed data and Φ̂(r−1)
τ , calcu-

late the conditional expectations in (1.17) and (1.19). We denote such quantities
ŵ

(r)
ig , ẑ

(r)
itjg, û

(r)
itj , v̂

(r)
itjk, and ˆ̃c(r)

itjg, ˆ̃z
(r)
itjg.

M-step: Use ŵ(r)
ig , ẑ

(r)
itjg, û

(r)
itj , v̂

(r)
itjk, and ˆ̃c(r)

itjg, ˆ̃z
(r)
itjg to maximize O(Φτ | Φ̂(r−1)

τ )
with respect to Φτ , and obtain the update parameter estimates. Based on the intro-
duced modeling assumptions, the maximization can be partitioned into orthogonal
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subproblems, i.e. the maximization with respect to the fixed, hidden Markov chain
and discrete mixing distribution parameters can be performed separately. The initial
probabilities qj , transition probabilities qjk and mixing proportions πg are estimated
by:

q̂
(r)
j =

∑N
i=1 û

(r)
i1j

N
, q̂

(r)
jk =

∑N
i=1

∑Ti
t=1 v̂

(r)
itjk∑N

i=1
∑Ti
t=1

∑M
k=1 v̂

(r)
itjk

, π̂(r)
g =

∑N
i=1 ŵ

(r)
ig

N
. (1.21)

If we let Sit = j, this implies that αsit = αj and the M-step updates of model
parameters β,bg,αj ,Σ and D, are given in the following proposition.

Proposition 3. The values of β,bg,αj ,Σ and D maximizing (1.18) are:

β̂
(r) = (

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ
(r)
itjg

ˆ̃z(r)
itjgX

′
itXit)−1(

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ
(r)
itjg

ˆ̃z(r)
itjgX

′
itỸit

−
N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

z
(r)
itjgX

′
itξ̃
′D(r−1)),

(1.22)

where Ỹit = Yit − Zitb̂(r−1)
g −Witα̂

(r−1)
j .

b̂(r)
g = (

N∑
i=1

Ti∑
t=1

M∑
j=1

ẑ
(r)
itjg

ˆ̃z(r)
itjgZ

′
itZit)−1(

N∑
i=1

Ti∑
t=1

M∑
j=1

ẑ
(r)
itjg

ˆ̃z(r)
itjgZ

′
itỸit −

N∑
i=1

Ti∑
t=1

M∑
j=1

z
(r)
itjgZ

′
itξ̃
′D(r−1)),

(1.23)

where Ỹit = Yit −Xitβ̂
(r) −Witα̂

(r−1)
j .

α̂
(r)
j = (

N∑
i=1

Ti∑
t=1

G∑
g=1

ẑ
(r)
itjg

ˆ̃z(r)
itjgW

′
itWit)−1(

N∑
i=1

Ti∑
t=1

G∑
g=1

ẑ
(r)
itjg

ˆ̃z(r)
itjgW

′
itỸit −

N∑
i=1

Ti∑
t=1

G∑
g=1

z
(r)
itjgW

′
itξ̃
′D(r−1)),

(1.24)

where Ỹit = Yit −Xitβ̂
(r) − Zitb̂(r)

g .

Σ̂(r) = 1∑N
i=1 Ti

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ
(r)
itjg

ˆ̃z(r)
itjgD̂

−1(r−1)(Yit − µ̂(r)
it )′(Yit − µ̂(r)

it )D̂−1(r−1)

+ 1∑N
i=1 Ti

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ
(r)
itjg

ˆ̃c(r)
itjg ξ̃ξ̃

′ − 2∑N
i=1 Ti

D̂−1(r−1)
N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ
(r)
itjg(Yit − µ̂(r)

it )′ξ̃′,

(1.25)

where µ̂(r)
it = Xitβ̂

(r) + Zitb̂(r)
g + Witα̂

(r)
j .

Finally, the elements dj , j = 1, . . . , p of the diagonal scale matrix D are estimated
by:

d̂
(r)
j = 1∑N

i=1 Ti

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
k=1

ẑ
(r)
itkgρτj (Y

(j)
it − µ̂

(j)
it

(r)), (1.26)



12 1. Quantile Mixed Hidden Markov Models

where ρτ (·) is the quantile check function of Koenker & Bassett (1978):

ρτ (u) = u(τ − 1(u < 0)) (1.27)

and µ̂(j)
it

(r) is the j-th element of the vector µ̂(r)
it .

The E- and M-steps are alternated until convergence, that is when | Φ̂(r)
τ −Φ̂(r−1)

τ |
is smaller than a predetermined threshold. In this paper, we set this convergence
criterion equal to 10−6.

Because both the number of components of the finite mixture and hidden states
of the Markov chain are unknown a-priori, we select the optimal value of G and M
using the BIC (Schwarz et al. 1978):

BIC(G,M) = −2`(Φτ ) + log(N)νf , (1.28)

where `(Φτ ) is the observed data log-likelihood in (1.10), N is the number of observed
individuals and νf denotes the number of free model parameters in Φτ . Following
Marino et al. (2018), to avoid convergence to local maxima and better explore the
parameter space, for fixed τ , G and M , we fit the QMHMM model using a multiple
random starts strategy with 50 different starting points and retain the solution
corresponding to the maximum likelihood value. We then repeat this procedure for
a grid of values of G and M , and select the best combination of the pair (G,M)
corresponding to the lowest BIC value. The validity of the proposed EM algorithm
and model selection procedure have been assessed using also a simulation exercise
(see Section 1.4).

Standard errors of model parameters are computed using a non-parametric block
bootstrap. That is, by re-sampling individuals with replacement and retaining
the corresponding sequence of measurements to preserve the within individual
dependence structure (see Geraci & Bottai 2014, Marino & Farcomeni 2015 and
Marino et al. 2018 for example). We refit the model to H bootstrap samples and
approximate the standard error of each model parameter with the square root of
the variance of the matrix:

Ĉov(Φ̂τ ) =

√√√√ 1
H − 1

H∑
h=1

(Φ̂(h)
τ − Φ̄τ )(Φ̂(h)

τ − Φ̄τ )′, (1.29)

where Φ̂(h)
τ is the set of parameter estimates for the h-th bootstrap sample and Φ̄τ

denotes the mean of the model parameters over bootstrap iterations. The standard
errors are given by the diagonal elements of Ĉov(Φ̂τ ).

1.4 Simulation study

In this section we conduct a simulation study to evaluate the finite sample properties
of the proposed method and show that the introduced methodology represents a
valid procedure to estimate the quantile regression coefficients. This simulation
exercise addresses the following questions. First, we consider different distributional
choices for the error term to study the performance of the model in the presence
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of non-Gaussian errors. Second, we evaluate the robustness of the non-parametric
approach to non-Gaussian distributions for the subject-specific, random coefficients.
Finally, we analyze the performance of penalized likelihood criteria in selecting the
optimal number of mixture components G and hidden states M .

We consider three sample sizes N = (100, 200, 300) and three longitudinal lengths
Ti = T = (5, 10, 15), i = 1, . . . , N , for a continuous response variable of dimension
p = 2 and two explanatory variables X(1)

it ∼ N (0, 1) and X
(2)
it ∼ Ber(0.5). The

observations are generated from a two state homogeneous Markov chain, i.e. M = 2,
using the following data generating process:

Yit = Xitβ + Zitbi + WitαSit + εit. (1.30)

Regarding the hidden Markov chain, the simulation scheme is similar to the one
adopted by Marino et al. (2018). The true values of the fixed, β, state dependent
parameters, α = (α1, . . . ,αM ), and the initial probabilities, q, and transition
probabilities, Q, are given by, respectively:

β =
(

2 −0.8
−1.4 3

)
, α =

(
5 −2
−5 2

)
, Q =

(
0.8 0.2
0.2 0.8

)
, q =

(
0.7 0.3

)
.

(1.31)
We consider a time-varying random intercept by setting Wit = 1 and a random
slope Zit = X

(1)
it . Hence, bi are time-constant random slopes that capture individual

departures from the marginal effect β. For each sample size, two different simulation
scenarios for the error distributions and for the random coefficients distributions are
considered:

(N − N ): bi represent i.i.d. draws from a standard bivariate Gaussian
with variance-covariance matrix, Ω =

( 1 0.25
0.25 1

)
and the error terms, εit, are

generated from a bivariate Normal random variable with zero mean vector and
variance-covariance matrix equal to Ω̃;

(T − T ): bi are sampled from a bivariate Student t with 3 degrees of freedom,
centered around zero and scale matrix Ω =

( 1 0.25
0.25 1

)
while, εit are generated

from a bivariate Student t distribution with 3 degrees of freedom, zero mean
and scale matrix Ω̃.

Each simulation scenario is repeated twice by generating the errors εit with low
(Ω̃ =

( 1 0.3
0.3 1

)
) and high (Ω̃ =

( 1 0.8
0.8 1

)
) correlation between the responses of unit

i at a given time t. Figure 1.1 shows the scatter plot matrices of the simulated
datasets for all scenarios considered with N = 200 and T = 10.

To fit the proposed model, we consider a varying number of mixture components
G = (2, . . . , 10) and retained the model with the lowest BIC value. We analyze
four different quantile levels: in the first case, we assume τ = (0.50.0.50); in the
second one, we set τ = (0.25, 0.25); in the third, we set τ = (0.75, 0.75) and finally
we consider a more extreme case τ = (0.25, 0.75). For each model, we carry out
B = 250 Monte Carlo replications and report the following indicators. The Average
Relative Bias (ARB) defined as:

ARB(θ̂τ ) = 1
B

B∑
b=1

(θ̂(b)
τ − θτ )
θτ

× 100, (1.32)
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Figure 1.1. Scatter plots of simulated datasets using ρ12 = 0.3 (first row) and ρ12 = 0.8
(second row) for the N −N (first column) and T − T (second column) scenarios with
N = 200 and T = 10. Red and black data points distinguish the two latent states.

where θ̂(b)
τ is the estimated parameter at quantile level τ for the b-th replication and

θτ is the corresponding “true” value of the parameter. Secondly, the Root Mean
Square Error (RMSE) of model parameters averaged across the B simulations:

RMSE(θ̂τ ) =

√√√√ 1
B

B∑
b=1

(θ̂(b)
τ − θτ )2. (1.33)

Tables 1.1, 1.2 and 1.3 report the results for the fixed parameters β and state-specific
coefficients α.

As can be noted, the proposed model under the Normal and the Student t
error distributions is able to recover the true fixed parameters and state-dependent
intercept values for both low (Panels A) and high (Panels B) degree of dependence.
Not surprisingly, the bias effect is quite small when we analyze the median levels
(see columns 1 and 5). As the quantile levels become more extreme (see columns
2-4 and 6-8), the ARB slightly increases but it still remains reasonably small.
Such differences are due to the reduced amount of information in the tails of the
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distribution. Moreover, we can see a slightly higher bias for the parameters β21 and
β22 associated to the binary covariate than those of the continuous covariate, which
can possibly be due to some aliasing between the effect of the binary covariate X(2)

it

and the state-dependent intercepts α. This situation might be exacerbated by the
degree of overlap among the latent states of the hidden Markov chain, as shown in
Figure 1.1. However, both the ARB and the RMSE tend to decrease with increasing
sample sizes and number of measurement occasions (see Table 1.3). Also, under the
scenario where bi ∼ T2(0,Ω) and εit ∼ T2(0, Ω̃), the heavier tails of the Student t
contribute to higher ARB and RMSE especially at the 25-th and 75-th percentiles.
Concerning the hidden process, it is worth noting that we observe sensible differences
in terms of efficiency for the state dependent parameters α. Given the true values of
Q and q, most of the units are in the first state of the latent Markov chain, sharing
the common intercept value α1. Hence, the intercept corresponding to the second
state α2 is estimated with lower precision due to lack of transitions from one state
to the other. However, when the number of repeated measurements increases, we
observe more frequent transitions towards the second state with the effect of reducing
the RMSE. Again, such difference is more evident in the tails of the distribution.
These findings are generally consistent with the ones in Marino et al. (2018).

To evaluate the performance of the model selection procedure described in Section
1.3, we considered the same simulation experiment with N = 200, T = 10, M = 2,
τ = (0.50, 0.50) and B = 100. Following Marino et al. (2018), for each of the
simulated datasets we fit the QMHMM for G = (2, . . . , 8) and M = (2, . . . , 4), and
select the optimal value of the pair (G,M) by using the AIC (Akaike 1998) and BIC
in (1.28). Because the time-constant random slopes bi in (1.30) are generated from
continuous distributions, we only report the distribution of absolute frequencies of
the hidden states M selected by the two penalized likelihood criteria. Table 1.4
summarizes the results.
As one can see, the BIC works well and outperform the AIC, with an average of
correctly identified number of hidden states of more than the 80% across all simulation
scenarios and levels of correlation. Furthermore, regardless of the distributional
assumptions on the random slopes or on the error terms, the BIC captures the serial
heterogeneity in the data in a more parsimonious manner compared to the AIC,
hence offering easier interpretation about unobserved heterogeneity. In concluding,
it is worth noting that the ability of both criteria in recovering the true number of
hidden states tends to improve as the correlation between the outcomes increases.
This is possibly due to the gain in efficiency of the proposed multivariate method
w.r.t. running univariate quantile regressions on each outcome separately. That
is, by estimating multiple conditional quantiles in one step and accounting for the
association between the elements of Yit, the methodology introduced allows to
borrow strength among the responses to improve inference and the precision of the
estimates (Petrella & Raponi 2019), producing the largest efficiency gains when the
variables are highly correlated.
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(N −N ) (T − T )

τ (0.50, 0.50) (0.25, 0.25) (0.75, 0.75) (0.25, 0.75) (0.50, 0.50) (0.25, 0.25) (0.75, 0.75) (0.25, 0.75)
Panel A: ρ12 = 0.3
β11 = 2 0.386 (0.114) 0.316 (0.110) 0.470 (0.116) 0.514 (0.116) −0.310 (0.168) −0.325 (0.175) −0.214 (0.174) −0.888 (0.189)
β12 = −0.8 0.716 (0.122) 1.317 (0.123) 0.912 (0.125) 0.843 (0.125) 0.951 (0.158) 0.313 (0.166) 0.871 (0.173) 0.670 (0.169)
β21 = −1.4 −0.281 (0.071) 0.942 (0.081) −2.603 (0.091) 0.221 (0.092) 0.546 (0.075) 2.137 (0.102) −1.752 (0.100) −0.961 (0.106)
β22 = 3 −0.019 (0.073) −0.652 (0.091) 0.838 (0.089) 0.331 (0.089) 0.044 (0.083) −1.354 (0.111) 1.163 (0.103) 0.366 (0.108)
α11 = 5 −0.028 (0.057) −0.252 (0.063) 0.017 (0.070) 1.352 (0.071) 0.033 (0.058) −0.201 (0.078) 0.535 (0.091) 1.265 (0.088)
α12 = −2 0.397 (0.052) 0.387 (0.069) 0.042 (0.062) 0.365 (0.068) −0.180 (0.068) 1.215 (0.082) −1.459 (0.093) 1.022 (0.093)
α21 = −5 −0.165 (0.074) −0.034 (0.082) −0.096 (0.080) −0.397 (0.087) 0.179 (0.081) 0.763 (0.113) 0.066 (0.097) −0.192 (0.100)
α22 = 2 −0.120 (0.075) −0.057 (0.083) 0.293 (0.084) −0.712 (0.090) 0.011 (0.078) −1.862 (0.108) 0.795 (0.095) 0.768 (0.100)

Panel B: ρ12 = 0.8
β11 = 2 0.281 (0.113) 0.178 (0.111) 0.294 (0.116) 0.390 (0.111) −0.339 (0.179) −0.668 (0.185) −0.655 (0.188) −0.697 (0.179)
β12 = −0.8 0.951 (0.126) 1.170 (0.127) 0.700 (0.128) 0.213 (0.123) 1.413 (0.165) 1.876 (0.180) 1.946 (0.173) 0.489 (0.168)
β21 = −1.4 −0.522 (0.073) 2.041 (0.087) −3.086 (0.091) −2.622 (0.101) 0.282 (0.075) 3.756 (0.108) −3.297 (0.113) −1.614 (0.107)
β22 = 3 0.175 (0.074) −1.205 (0.094) 1.502 (0.094) −0.424 (0.092) −0.106 (0.081) −2.019 (0.119) 1.717 (0.119) −0.532 (0.116)
α11 = 5 −0.054 (0.055) −0.438 (0.073) 0.168 (0.068) 3.139 (0.090) 0.012 (0.063) −0.695 (0.094) 0.813 (0.097) 1.917 (0.099)
α12 = −2 0.302 (0.052) 1.255 (0.078) −0.434 (0.067) 0.861 (0.082) 0.050 (0.068) 1.997 (0.093) −2.190 (0.099) −0.149 (0.103)
α21 = −5 −0.031 (0.071) 0.170 (0.083) −0.383 (0.077) −1.050 (0.105) 0.028 (0.086) 1.068 (0.121) −0.582 (0.118) 0.403 (0.106)
α22 = 2 −0.211 (0.076) −0.457 (0.081) 1.068 (0.081) −2.188 (0.096) 0.012 (0.082) −2.349 (0.115) 1.873 (0.112) 1.124 (0.106)

Table 1.1. ARB and RMSE (in brackets) for longitudinal and state-parameter estimates
with a sample size N = 100 and length of longitudinal sequences T = 5.

(N −N ) (T − T )

τ (0.50, 0.50) (0.25, 0.25) (0.75, 0.75) (0.25, 0.75) (0.50, 0.50) (0.25, 0.25) (0.75, 0.75) (0.25, 0.75)
Panel A: ρ12 = 0.3
β11 = 2 0.173 (0.077) 0.008 (0.075) −0.004 (0.075) −0.027 (0.076) 0.098 (0.118) −0.076 (0.120) −0.010 (0.120) 0.197 (0.115)
β12 = −0.8 −0.432 (0.076) −0.273 (0.076) 0.031 (0.076) −0.081 (0.078) −1.486 (0.107) −0.503 (0.109) −1.429 (0.106) −1.273 (0.111)
β21 = −1.4 −0.291 (0.042) 1.947 (0.056) −2.187 (0.055) 0.995 (0.054) −0.108 (0.044) 1.628 (0.060) −2.230 (0.066) −0.561 (0.060)
β22 = 3 0.066 (0.036) −1.013 (0.056) 1.052 (0.055) 0.676 (0.055) −0.098 (0.043) −1.165 (0.069) 1.280 (0.070) 0.438 (0.058)
α11 = 5 −0.096 (0.032) −0.197 (0.041) 0.241 (0.041) 0.589 (0.042) 0.030 (0.035) −0.278 (0.047) 0.551 (0.057) −0.034 (0.062)
α12 = −2 0.116 (0.032) 0.409 (0.041) −0.657 (0.039) 0.112 (0.046) 0.062 (0.036) 1.425 (0.059) −1.398 (0.063) 0.702 (0.064)
α21 = −5 −0.038 (0.037) 0.262 (0.052) −0.296 (0.047) −0.142 (0.052) 0.061 (0.039) 0.666 (0.067) −0.349 (0.058) 1.438 (0.060)
α22 = 2 −0.040 (0.038) −0.862 (0.047) 0.372 (0.042) −0.470 (0.047) −0.021 (0.038) −1.695 (0.067) 1.568 (0.070) 1.076 (0.069)

Panel B: ρ12 = 0.8
β11 = 2 0.040 (0.075) −0.028 (0.078) −0.028 (0.079) 0.024 (0.081) 0.280 (0.123) −0.113 (0.125) −0.055 (0.119) 0.113 (0.120)
β12 = −0.8 −0.117 (0.075) 0.151 (0.080) 0.156 (0.077) −0.062 (0.079) −1.511 (0.115) −0.685 (0.112) −0.718 (0.116) −0.963 (0.115)
β21 = −1.4 −0.385 (0.044) 3.246 (0.070) −3.284 (0.070) −1.472 (0.060) −0.048 (0.051) 4.132 (0.087) −4.411 (0.085) −1.962 (0.074)
β22 = 3 0.080 (0.045) −1.532 (0.072) 1.500 (0.070) −0.528 (0.053) −0.036 (0.051) −1.968 (0.088) 2.047 (0.089) −0.168 (0.066)
α11 = 5 −0.040 (0.035) −0.703 (0.058) 0.594 (0.052) 2.685 (0.068) 0.031 (0.037) −0.993 (0.075) 0.942 (0.077) −0.179 (0.069)
α12 = −2 0.159 (0.036) 1.878 (0.059) −1.637 (0.055) −2.424 (0.068) −0.006 (0.036) 2.839 (0.080) −2.511 (0.080) 0.190 (0.066)
α21 = −5 −0.028 (0.039) 0.666 (0.058) −0.702 (0.062) −1.048 (0.071) 0.054 (0.042) 1.031 (0.084) −0.950 (0.077) 2.647 (0.076)
α22 = 2 0.045 (0.037) −1.822 (0.057) 1.933 (0.061) 1.125 (0.069) −0.074 (0.044) −2.590 (0.084) 2.615 (0.081) 1.447 (0.089)

Table 1.2. ARB and RMSE (in brackets) for longitudinal and state-parameter estimates
with a sample size N = 200 and length of longitudinal sequences T = 10.

(N −N ) (T − T )

τ (0.50, 0.50) (0.25, 0.25) (0.75, 0.75) (0.25, 0.75) (0.50, 0.50) (0.25, 0.25) (0.75, 0.75) (0.25, 0.75)
Panel A: ρ12 = 0.3
β11 = 2 0.059 (0.061) 0.025 (0.063) 0.375 (0.064) 0.264 (0.062) −0.183 (0.099) −0.001 (0.099) −0.092 (0.098) 0.062 (0.097)
β12 = −0.8 −0.115 (0.063) −0.021 (0.062) 0.100 (0.064) 0.163 (0.063) −0.227 (0.091) −0.972 (0.093) −0.539 (0.092) −0.580 (0.087)
β21 = −1.4 −0.103 (0.034) 0.159 (0.048) −0.589 (0.053) 0.435 (0.048) −0.219 (0.037) 1.323 (0.061) −0.683 (0.060) −0.741 (0.048)
β22 = 3 0.100 (0.032) −0.305 (0.049) 0.058 (0.049) 0.297 (0.049) −0.050 (0.033) −1.299 (0.059) 1.302 (0.062) 0.501 (0.048)
α11 = 5 −0.049 (0.025) −0.336 (0.041) 0.447 (0.039) −0.065 (0.035) −0.048 (0.026) −0.596 (0.050) 0.700 (0.054) 1.155 (0.068)
α12 = −2 0.097 (0.023) 0.312 (0.039) −0.177 (0.038) −0.091 (0.033) 0.051 (0.026) 0.251 (0.062) −0.279 (0.058) 1.568 (0.050)
α21 = −5 −0.008 (0.027) 0.406 (0.041) −0.559 (0.045) 0.056 (0.034) −0.015 (0.029) 0.651 (0.055) −0.596 (0.051) −0.030 (0.045)
α22 = 2 −0.089 (0.028) −0.284 (0.042) 0.245 (0.041) 0.358 (0.031) 0.035 (0.031) −1.049 (0.057) 1.247 (0.065) 1.082 (0.049)

Panel B: ρ12 = 0.8
β11 = 2 0.083 (0.064) 0.146 (0.061) 0.114 (0.060) 0.133 (0.065) −0.122 (0.096) −0.192 (0.097) −0.193 (0.100) −0.043 (0.092)
β12 = −0.8 0.104 (0.065) 0.175 (0.064) 0.074 (0.064) −0.120 (0.063) −0.048 (0.092) −0.931 (0.093) −0.390 (0.091) −0.837 (0.088)
β21 = −1.4 −0.133 (0.037) 0.240 (0.060) −0.185 (0.060) −0.200 (0.044) −0.152 (0.038) 0.769 (0.075) −0.485 (0.080) −1.229 (0.056)
β22 = 3 0.090 (0.037) −0.128 (0.061) 0.397 (0.057) −0.404 (0.042) 0.013 (0.034) −1.534 (0.079) 1.519 (0.075) −0.166 (0.054)
α11 = 5 −0.028 (0.025) −0.013 (0.060) 0.960 (0.058) 0.238 (0.069) −0.085 (0.026) −1.453 (0.088) 1.414 (0.083) 1.676 (0.094)
α12 = −2 −0.020 (0.025) 0.301 (0.062) −0.539 (0.061) 0.940 (0.065) 0.259 (0.026) 0.786 (0.089) −0.681 (0.087) 0.660 (0.071)
α21 = −5 −0.006 (0.029) 0.459 (0.060) −0.552 (0.063) −0.335 (0.066) −0.038 (0.031) 1.328 (0.084) −0.496 (0.088) −0.356 (0.047)
α22 = 2 −0.019 (0.030) −0.219 (0.064) 0.627 (0.063) −0.527 (0.059) 0.185 (0.032) −1.051 (0.086) 1.025 (0.095) 0.572 (0.050)

Table 1.3. ARB and RMSE (in brackets) for longitudinal and state-parameter estimates
with a sample size N = 300 and length of longitudinal sequences T = 15.
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Correlation ρ12 = 0.3 ρ12 = 0.8

Scenario (N −N ) (T − T ) (N −N ) (T − T )

AIC BIC AIC BIC AIC BIC AIC BIC

# of hidden states M
2 20 67 79 92 33 68 92 96
3 34 22 19 8 36 25 6 4
4 46 11 2 0 31 7 2 0

Table 1.4. Absolute frequency distributions of the selected hidden states M via AIC and
BIC with a sample size N = 200 and length of longitudinal sequences T = 10, over
B = 100 Monte Carlo replications.

1.5 Application

In this section we present the application of the proposed methodology to the MCS
dataset. The main aim of this empirical analysis is to assess how selected risk factors
affect children’s emotional (internalizing) and behavioural (externalizing) problems
simultaneously, at different quantile levels of interest, and take into account the
potential tail dependence between internalizing and externalizing scores. Indeed, it
is possible that certain risk factors have a more pronounced effect at the top end
where children display a high, perhaps abnormal, level of development problems than
at the bottom end of the distribution of the internalizing and behavioural problems.
In this case, jointly modeling the quantiles of the conditional distribution of the
responses may be more appropriate than the conditional mean and can provide a
more complete picture of the determinants of children’s problems.

1.5.1 Data description

The MCS study (http://www.cls.ioe.ac.uk) is a longitudinal study that follows
the lives of around 19,000 young people born across UK in 2000-02. It is designed
to over-represent children from deprived backgrounds and aims at better addressing
the effects of social disadvantage on children’s outcomes. The information collected
includes child development, social stratification and family life providing important
evidence on how economic circumstances, parenting and relationships in the very
first stages of life can influence later health and development. This study is widely
regarded as the basis of the most reliable estimates of cognitive development problems
in young people and it has been deeply investigated in the fields of child psychology
and pedagogy; see, among others, the works of Griffiths et al. (2011), Goodman &
Goodman (2011), Tzavidis et al. (2016), Bell et al. (2019), Ahn et al. (2018) and Alfò
et al. (2021). In particular, Tzavidis et al. (2016) developed a univariate M-quantile
regression with time-constant random effects for emotional and behavioral disorders,
meanwhile Alfò et al. (2021) built a joint M-quantile model for both disorders,
allowing for potential endogeneity issues through an auxiliary regression approach.

One of the most widely and internationally used measure of child mental health
is provided by the Strengths and Difficulties Questionnaire (SDQ, see Goodman
1997 and Goodman & Goodman 2009). It represents a balanced coverage of children
and young people’s behaviours, emotions and relationships and it has been designed

http://www.cls.ioe.ac.uk
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to measure children’s emotional and behavioural problems in psychological research.
On one hand, internalizing behaviours are typified by inward symptoms such as
being withdrawn, fearful or anxious; on the other hand, externalizing behaviours are
outward and may be described as aggressive, non-compliant, impulsive or fidgety.
The SDQ score is the sum of the main caregiver’s responses to a series of items that
describe children’s internalizing and externalizing problems. This covers five different
domains: emotional symptoms, peer problems, conduct problems, hyperactivity,
and pro-social behavior. Each domain is measured by five items, for a total of 25
items. For each item, a score equal to 0 is given if the response is not true, 1 if it
is somewhat true and 2 if it is certainly true. The internalizing SDQ score is the
sum of the scores for responses to the five items in the domains of emotional and
peer problems while the externalizing SDQ score is the sum of responses to the five
conduct problems and hyperactivity items. Therefore, both SDQ scores range from
0 to 20 and were collected at ages 3, 5 and 7 years. In this context, the availability
of longitudinal data can shed light on the evolution of SDQ scores over time and on
how they are affected by risk factors and other family and child characteristics.

An extensive literature has examined and documented the effect of mother’s
characteristics (McMunn et al. 2012), neighbourhood context (Flouri & Sarmadi
2016) and family risk factors (see Tzavidis et al. 2016 and Wickham et al. 2017)
on MCS children’s trajectories of SDQ scores. Consequently, to analyse the effect
of demographic and socio-economic factors on children disorders, we include the
following set of predictors. ALE 11 measures the number, out of 11 events, of poten-
tially stressful life events experienced by the family between two consecutive sweeps.
The events, classified on the basis of the scale proposed by Tiet et al. (1998), are
family member died, negative change in financial situation, new step-parent, sibling
left home, child got seriously sick or injured, divorce or separation, family moved,
parent lost job, new natural sibling, new stepsibling and mother diagnosed with or
treated for depression. SED 4 measures the household’s socio-economic disadvantage
condition by combining information on overcrowding (more than 1.5 people per room
excluding the bathroom and kitchen), not owning a home, receipt of means-tested
income support and income poverty. Mother’s personal characteristics and distress
psychological indicators are included such as maternal education (no qualification
(baseline), university degree or General Certificate of Secondary Education (GCSE))
and maternal depression, Kessm, measured by the Kessler score. Furthermore,
child’s age in years, centered around the mean, age year scal, the quadratic effect
of child’s age, age2 year scal, ethnicity (non-white (baseline) or white) and gender
(female (baseline) or male) were included in the model. Finally, three explanatory
variables evaluate the area characteristics. Imdscore is a time varying variable
which measures neighbourhood deprivation by the index of multiple-deprivation
score. A design variable which allows for the stratification of the MCS sampling
design: the stratification variable of the MCS consists of three categories, namely
the advantaged stratum (baseline category), the ethnic stratum, Eng eth stratum,
and the disadvantaged stratum, Eng dis stratum. The considered covariates are the
same as in Tzavidis et al. (2016). For a more detailed description of the covariates
see also Tzavidis et al. (2016) and Alfò et al. (2021).

The data that we use in this paper are SDQ internalizing, SDQInt, and SDQ
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externalizing, SDQExt, scores recorded on children who were observed at all mea-
surement occasions, i.e. the considered sample consists of N = 5342 units and
Ti = T = 3, for all i = 1, . . . , N . As is customary in child psychology, SDQ scores
are treated as though they are continuous variables. Table 1.5 presents the main
descriptive statistics of continuous and categorical variables considered in the sample.
The average values of ALE 11, SED 4 and Kessm are 1.405, 0.555 and 2.597 but,
there are cases with much higher scores as demonstrated by their maximum values.
43% of children have mothers who hold a degree and 48% have mothers with GCSE
or other qualification. Around 50% of children are males and, in relation to ethnicity,
89% of members are white. The sample also includes 8.2% and 38% of families from
the ethnic and disadvantaged strata respectively. Furthermore, as expected, the
empirical correlation between SDQInt and SDQExt equals 0.369, confirming that
internalizing and externalizing problems are positively associated.

Variable Minimum 1-st quartile Median Mean† 3-rd quartile Maximum
SDQInt 0 1 2 2.493 4 19
SDQExt 0 2 5 5.144 7 20
ALE 11 0 1 1 1.405 2 7
SED 4 0 0 0 0.555 1 4
Kessm 0 0 2 2.597 4 24
Degree 43.429
GCSE 47.997
White 89.012
Male 50.337
IMD 1 3 6 5.619 8 10
Eth stratum 8.199
Dis stratum 38.132

Table 1.5. Summary statistics for the MCS data. † means for dummy variables are reported
in %.

As a preliminary step, we study the conditional distributions of SDQ scores
given a set of covariates by fitting two univariate linear mixed models separately.
In particular, we use a two-level random-intercepts model for SDQ outcomes with
random effects specified at the level of the child. The model includes the following
predictors, namely ALE11, Kessm, SED 4, Eng dis stratum, Eth dis stratum, child’s
age, gender and ethnicity. Figure 1.2 presents normal probability plots of level 1 and
level 2 residuals. These reveal the presence of potentially influential observations in
the data, indicate severe departures from the Gaussian assumption of the random-
intercepts model for both SDQ outcomes and show that data are severely skewed.
To further justify our approach, Figure 1.3 shows the individual trajectories of SDQ
scores for a random subset of children in the sample. The overall trend, as estimated
by a local polynomial regression, is shown in red along with the 95% confidence
bands highlighted in grey. Two things stand out. Firstly, while the general trend
is relatively constant over time, individual children may vary in that trajectory.
Secondly, for most children, temporal trajectories display rapid changes and highlight
a “U”-shaped curve for externalizing score measurement occasions. These indicate
that time-constant random effects may not be suitable to describe high individual-
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specific heterogeneity in the individual trajectories thus, their temporal evolution
could be better captured by introducing time-varying intercepts. For these reasons,
a QMHMM for SDQ scores seems to be appropriate and can offer useful information
for clinicians and educationalists.

Figure 1.2. Normal probability plots of level 1 (first column) and level 2 (second column)
residuals from a linear mixed model for SDQ internalizing (first row) and externalizing
(second row) problems.

1.5.2 Results for SDQ scores

In this section, we analyze internalizing and externalizing data on disorders of
children collected in the MCS dataset. We are interested in investigating the impact
of environmental, parental, and child factors across both the distributions of SDQ
scores. In order to account for all the data features described in the previous
section, we consider a bivariate QMHMM with state-dependent random intercepts
and constant random slopes specified for age to jointly model internalizing and
externalizing disorders. In this case, random slopes allow the correlation structure
to depend on age and may offer a more realistic structure for repeated measures
data with respect to random intercepts which imply a simpler, uniform exchangeable
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Figure 1.3. Individual trajectories for a random subsample of 30 children for SDQ
internalizing (left) and externalizing (right) problems.

correlation structure (Tzavidis et al. 2016). We fitted the proposed model at quantile
levels τ = (0.25, 0.25), τ = (0.50, 0.50) and τ = (0.75, 0.75). Considering the 75-th
percentile puts more emphasis on children with more severe problems generally
associated with higher levels of SDQ scores. Even if we used the same quantile level
for both SDQ scores, i.e., τ1 = τ2, our methodology allows researchers to focus on
different parts of the SDQ score distributions simultaneously by considering different
quantile levels for each of the two domains.

We estimated the QMHMM for a varying number of hidden states (M = 2, . . . , 7)
and mixture components (G = 2, . . . , 7) employing the multi-start strategy described
in Section 1.3, and then selected the optimal value of the pair (G,M) corresponding
to the lowest BIC value. To enhance model interpretability and produce meaningful
results, we retain only those solutions ensuring πg > 0.05 for g = 1, . . . , G and
qj > 0.05 for j = 1, . . . ,M .

In addition to the proposed model, we compare our methodology with two
well-known univariate alternatives for modeling longitudinal data: (i) the Linear
Random Effects Model (LREM) with both random intercepts and slopes specified
for age; (ii) the LQMM of Geraci & Bottai (2014) with both random intercepts
and slopes specified for age at quantile levels τ , 0.25, 0.50 and 0.75. Specifically,
the two models are estimated on SDQInt and SDQExt scores independently. The
reason why we consider the LREM is because it is a popular model for targeting the
conditional expectation of the response given the explanatory variables. Whilst it
produces efficient results when the normality assumptions hold, the LREM could
potentially miss out important information related to other parts of the distribution
of the outcome. In this case, the conditional mean may not offer the best summary;
by contrast, the LQMM allows for modeling the entire conditional distribution of
the outcome.

We start by commenting on the QMHMM results. Firstly, Table 1.6 reports the
BIC values for the fitted models at the investigated quantile levels. As one can see,
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the model selection procedure described in Section 1.3 leads to an increasing number
of mixture components G equal to 3, 5 and 5, and a decreasing number of hidden
states M equal to 5, 4 and 3 at quantile levels (0.25, 0.25), (0.50, 0.50) and (0.75,
0.75), respectively. The chosen values for G and M confirm the presence of constant
and serial latent heterogeneity in the data, and support the exploratory analysis of
individual SDQ trajectories in Figure 1.3.

M 2 3 4 5 6 7
Panel A: τ = (0.25, 0.25)

G
2 146503.0 145105.3 144408.3 144830.9 146901.8 147143.7
3 146563.8 145128.4 144211.1 143924.2 145989.6 -
4 146569.7 145025.1 144116.5 144646.4 146198.6 -
5 146505.6 145027.0 144149.8 - - -
6 146504.8 - - - - -
7 - - - - - -

Panel B: τ = (0.50, 0.50)
G
2 150189.7 148382.3 148139.2 147586.2 147751.5 148352.8
3 150077.1 148241.8 148168.0 147522.3 148353.3 149095.7
4 150144.2 148350.3 148066.7 147685.4 148619.4 149037.1
5 150276.3 148423.3 147215.9 147578.3 148390.6
6 150099.4 148072.9 147515.9 - - -
7 150149.6 148042.5 147883.2 - - -

Panel C: τ = (0.75, 0.75)
G
2 158438.8 155016.5 155035.3 156646.2 - -
3 158206.9 154993.0 155048.5 - - -
4 158470.3 154990.6 155870.4 - - -
5 158370.4 154919.3 155305.7 - - -
6 158386.2 156523.8 156528.4 - - -
7 158419.3 158532.2 - - - -

Table 1.6. BIC values for a varying number of mixture components G and hidden states
M . Bold font highlights the best values for the considered criterion (lower-is-better)
while “−” denotes that the solution has been discarded because some πg, g = 1, . . . , G
or qj , j = 1, . . . ,M are less than 0.05.

Tables 1.7 and 1.9 report point estimates of the parameters and standard errors
(in parentheses) based on B = 1000 bootstrap re-samples for the selected models at
the investigated quantile levels. Parameter estimates are displayed in boldface when
significant at the standard 5% level.

The second crucial finding is that the coefficient estimates vary with the quantile
level τ . In particular, increasing adverse life events, socio-economic disadvantage,
maternal depression and low maternal education are associated with higher SDQ
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scores. The effect of these covariates appears to be more pronounced when looking
at the upper tail compared with the lower tail of the distribution. Regarding income,
there is evidence that poorer children are more likely to suffer from both physical
and mental health problems (Currie 2009), hence the role of family income is likely
to be concentrated at low incomes (see Fitzsimons et al. 2017).

Moreover, maternal depression has a more pronounced effect at the top end where
children display critical levels of adjustment problems than at the bottom end of the
distribution (see Kiernan & Huerta 2008). These considerations suggest that low
socioeconomic status creates stress within the household, causing poor child health.
On the other hand, gender and neighborhood deprivation are significantly associated
with internalizing scores only up to the 25-th and 50-th percentiles, respectively;
meanwhile ethnicity and ethnic stratification variables do not appear to be associated
with the response at the investigated quantiles, except at the median level.

By looking at the fixed parameter estimates for the SDQExt, it is possible to
observe that, in contrast with internalizing scores, boys presents more externalizing
problems than girls (Flouri & Sarmadi 2016) and the effect is more exacerbated in the
right tail of the distribution. In general, girls are at lower risk of behavioral problems
than boys which experience an increased risk for conduct and hyperactivity problems
(Carona et al. 2014). Stressful life events, socio-economic disadvantage, maternal
depression and maternal education are all significantly associated with internalizing
scores. The effect of the included covariates is not uniform across quantiles but it
is more apparent as the quantile level increases. This highlights the importance
of considering a quantile regression approach revealing some possible underlying
truth that can not be detected by classical mean regression. Moreover, the impact of
such variables is more pronounced, across the distribution, on externalizing than on
internalizing scores. This is consistent with other studies on behaviour disorders in
child psychopathology claiming that poverty and material deprivation and education
are more strongly related with children’s externalizing problems compared with
internalizing problems (see Costello et al. 2003 and Dearing et al. 2006). Overall,
point estimates of regression coefficients are consistent with child development theory,
as well as with the results discussed in Tzavidis et al. (2016) and in Alfò et al. (2021).

In order to highlight the practical relevance of the proposed methodology, we
compare our findings with the parameter estimates of the univariate LREM and
LQMM reported in Table 1.8. At first, we observe that the LQMM results are
generally in line with our findings, except for τ = 0.25. However, in this case we
experienced slow convergence of the algorithm when fitting the model (see also
Tzavidis et al. 2016). Overall, we notice that the estimated parameters for the
SDQExt are greater than those for the SDQInt scores and the effect of the considered
covariates increases moving towards the right tail of the conditional distribution
of each outcome. Consistently with the QMHMM, mother’s education and family
environmental risk factors are important for predicting emotional and behavioural
disorders in early childhood. Further, males typically present higher SDQInt and
SDQExt problems than females whereas, contrary to the results obtained from the
QMHMM, lower SDQInt scores are generally associated with white children.
In addition to that, both the LQMM and LREM analyze children’s disorders by
fitting two univariate models separately and hence, they disregard the possible
association between the SDQ scores. In contrast, one of the main benefits of
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the proposed multivariate approach is the possibility to study the magnitude and
direction of the dependence structure between the responses at different quantile
levels of interest. Following Kotz et al. (2012), we can compute the correlation
between SDQ scores using (1.6) and understand whether their association structure
becomes stronger for children with more pronounced problems. In particular, the
estimated correlation coefficient, r12, reported in Table 1.7 gives a measure of
tail correlation and, consistently with the recent work of Alfò et al. (2021), it
indicates that internalizing and externalizing disorders are positively associated and
this association increases with the quantile level τ . Hence, children may present
a constellation of symptoms comprised of both disorders which is aggravated in
disadvantaged ones by the accumulation of risk factors. This finding is also in line
with the existence of positive covariation among psychiatric diagnoses (see Lilienfeld
2003, Liu 2004 and Cicchetti & Toth 2014).

We conclude the analysis by reporting selected diagnostics for the fitted QMHMM.
Table 1.9 summarizes the estimates for the initial and transition probabilities of the
hidden Markov chain. The transition matrices describe how, and how frequently,
children move from low to high level of disorders. For all examined quantiles, they
do not tend to move through states over time. At first, it is worth noting that the
estimated state-dependent intercepts α, consistently with the quantile regression
framework, tend to increase when moving from lower to upper quantiles resulting
in higher levels of children’s disorders. For τ = (0.25, 0.25) (Panel A), the initial
probability distribution defined on S is relatively uniformly distributed and the
probability of not moving from states 1 and 4 is also very high, i.e. q̂11 = 0.991
and q̂44 = 0.993, respectively. This implies that almost every child in the lower
tails of the outcomes distributions, starts and maintains low-level disorders over
time. If any transition is observed, units tend to move towards states 1 and 4 with
lower intercepts and a reduction in juvenile developmental disorders with temporary
jumps to moderate values of disorders. On the other hand, for τ = (0.50, 0.50)
(Panel B), by looking at the initial probabilities one can see that half of the units
(q̂3 = 0.415) starts the study with low values of emotional and behavioral disorders
and transitions between states are unlikely. When τ = (0.75, 0.75) (Panel C),
the majority of children starts with moderate values of developmental difficulties
(q̂1 + q̂2 > 0.80) and transitions to more severe disorders are more frequent.

It is also noteworthy that suitable constraints can be applied on the parameters
space of the model to ease the interpretation of results on the hidden process or
test hypotheses on the corresponding parameters. Specifically, these constraints
may be posed on the random intercepts or on the initial and transition probabilities
(Bartolucci et al. 2012). In these cases, the ML estimates of the parameters can be
obtained using the EM algorithm in Section 1.3, in which only the M-step has to be
modified according to the constraints of interest.

Finally, Figure 1.4 shows the estimated marginal cumulative density functions
of the discrete random slopes for both SDQ outcomes. In both plots, it is clear
that the estimated distribution functions depart substantially from the Gaussian
distribution, having pronounced asymmetries. Hence, the underlying assumption of
normally distributed random intercepts in the LQMM and LREM specifications is
inappropriate. In contrast, the discrete mixture performs is more flexible and is able
to accommodate possible departures from the Gaussianity assumption (Alfò et al.
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Figure 1.4. Estimated cumulative density function of the discrete random slopes for SDQ
internalizing (left) and externalizing (right) problems scores at the 0.25 (black), 0.50
(red) and 0.75 (blue) quantile levels.

2017).

τ -th quantile (0.25, 0.25) (0.50, 0.50) (0.75, 0.75)
[G = 3, M = 5] [G = 5, M = 4] [G = 5, M = 3]

Variable SDQInt SDQExt SDQInt SDQExt SDQInt SDQExt

Age year scal −0.053 (0.010) −0.289 (0.016) −0.051 (0.009) −0.440 (0.011) −0.040 (0.021) −0.450 (0.031)
Age2 year scal 0.045 (0.005) 0.193 (0.009) 0.077 (0.011) 0.208 (0.013) 0.104 (0.018) 0.287 (0.024)
ALE 11 0.022 (0.008) 0.036 (0.016) 0.086 (0.018) 0.113 (0.019) 0.116 (0.039) 0.205 (0.055)
SED 4 0.070 (0.023) 0.105 (0.045) 0.175 (0.030) 0.221 (0.030) 0.201 (0.051) 0.398 (0.076)
Kessm 0.090 (0.009) 0.143 (0.012) 0.167 (0.009) 0.189 (0.012) 0.208 (0.018) 0.299 (0.025)
Degree −0.350 (0.109) −0.894 (0.149) −0.526 (0.114) −1.482 (0.171) −0.703 (0.160) −1.267 (0.232)
GCSE −0.217 (0.110) −0.582 (0.150) −0.352 (0.113) −0.430 (0.166) −0.413 (0.149) −0.427 (0.213)
White −0.090 (0.061) −0.143 (0.097) −0.075 (0.149) 0.059 (0.160) −0.216 (0.203) 0.320 (0.303)
Male −0.062 (0.016) 0.793 (0.030) 0.027 (0.037) 0.950 (0.045) 0.082 (0.080) 0.944 (0.119)
IMD −0.022 (0.005) −0.036 (0.009) −0.025 (0.008) −0.027 (0.010) −0.027 (0.020) −0.045 (0.029)
Eng eth stratum −0.043 (0.159) −0.168 (0.174) 0.122 (0.193) 0.144 (0.220) 0.174 (0.241) −0.025 (0.374)
Eng dis stratum −0.003 (0.031) 0.003 (0.072) 0.085 (0.042) 0.106 (0.050) 0.156 (0.111) 0.337 (0.175)

α1 0.437 (0.001) 1.040 (0.114) 0.983 (0.013) 4.769 (0.049) 2.082 (0.016) 2.954 (0.054)
α2 3.930 (0.051) 4.140 (0.089) 2.480 (0.007) 8.329 (0.077) 2.735 (0.119) 7.769 (0.014)
α3 1.008 (0.005) 6.362 (0.000) 1.164 (0.016) 1.954 (0.044) 6.957 (0.091) 6.347 (0.201)
α4 1.523 (0.130) 1.281 (0.099) 4.829 (0.008) 4.670 (0.128)
α5 0.477 (0.043) 3.115 (0.013)

r12 0.356 (0.016) 0.211 (0.023) 0.602 (0.021)

`(Φτ ) -71665.9 -73333.3 -77223.6
νf 69 64 55
AIC 143470.0 146794.6 154557.2
BIC 143924.2 147215.9 154919.3

Table 1.7. Point estimates with standard errors in parentheses for different quantile levels.
Parameter estimates are displayed in boldface when significant at the standard 5% level.
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1 2 3 4 5
Panel A: τ = (0.25, 0.25)

q 0.201 (0.017) 0.111 (0.013) 0.269 (0.017) 0.165 (0.017) 0.254 (0.020)
1 0.991 (0.016) 0.000 (0.000) 0.000 (0.000) 0.009 (0.004) 0.000 (0.029)
2 0.000 (0.002) 0.883 (0.044) 0.007 (0.019) 0.110 (0.008) 0.000 (0.012)
3 0.000 (0.000) 0.089 (0.012) 0.723 (0.032) 0.000 (0.000) 0.187 (0.014)
4 0.003 (0.015) 0.004 (0.042) 0.000 (0.001) 0.993 (0.009) 0.000 (0.013)
5 0.096 (0.003) 0.016 (0.009) 0.027 (0.029) 0.029 (0.000) 0.832 (0.034)

Panel B: τ = (0.50, 0.50)

q 0.287 (0.019) 0.160 (0.016) 0.415 (0.018) 0.138 (0.014)
1 0.863 (0.036) 0.034 (0.034) 0.071 (0.007) 0.032 (0.024)
2 0.053 (0.017) 0.850 (0.038) 0.000 (0.000) 0.096 (0.013)
3 0.006 (0.031) 0.000 (0.000) 0.967 (0.013) 0.027 (0.034)
4 0.049 (0.015) 0.015 (0.024) 0.067 (0.011) 0.868 (0.036)

Panel C: τ = (0.75, 0.75)

q 0.541 (0.021) 0.293 (0.017) 0.165 (0.015)
1 0.942 (0.011) 0.006 (0.020) 0.052 (0.029)
2 0.072 (0.004) 0.825 (0.024) 0.103 (0.020)
3 0.185 (0.010) 0.109 (0.015) 0.707 (0.031)

Table 1.9. Initial probabilities, q, and transition probabilities, Q, estimates for different
quantiles.

1.6 Conclusions

Longitudinal data allows us to understand the evolution of a certain phenomenon
over time. In this context, it becomes of crucial importance to determine an
appropriate modeling framework to assess the effects of unobserved factors and
hidden heterogeneity which can be either time-invariant or time-varying; ignoring
these factors may induce bias and lead to invalid conclusions. Moreover, the literature
on this topic which is traditionally focused on the conditional mean, might not provide
a good summary of the response distribution. To account for the complex data
structure, this work generalizes the multivariate quantile approach of Petrella &
Raponi (2019) for the analysis of multivariate longitudinal data by combining the
features of quantile regression and MHMMs (Altman 2007). The proposed model
allows for the quantile-specific effects to be quantified and jointly modeling of several
outcomes. The model further allows for different sources of heterogeneity to be
distinguished, i.e. between individual heterogeneity and time heterogeneity are
modeled through the state-specific effects. In order to avoid possibly misleading
inferences caused by erroneous assumption on the random effects distribution, we



28 1. Quantile Mixed Hidden Markov Models

rely on the NPML estimation theory and we approximate this distribution by a
multivariate discrete latent variable.

As illustrated in the real data application, the proposed method models simulta-
neously the quantiles of children’s emotional and behavioral disorders as a function
of demographic and socio-economics risk factors. The results show that behavioral
and emotional difficulties are mainly affected by the family poverty conditions and
mother’s characteristics. Such effects are much stronger in the upper tail of the
response distribution, i.e. for those children experiencing more severe internalizing
and externalizing problems. In addition, the analysis reveals moderate levels of
codependency between internalizing and externalizing disorders, that cannot be
detected by univariate models.

The methodology can be further extended to allow for a non-homogeneous hidden
Markov process where transition probabilities are allowed to depend on covariates.
Finally, the hidden Markov chain implicitly assumes that the sojourn time, i.e.
the number of consecutive time points that the process spends in a given state, is
geometrically distributed. As a further generalization of this work, one may consider
a semi-Markov process which is designed to relax this condition by allowing the
sojourn time to be modeled by more flexible distributions.
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1.7 Appendix

Proof of Proposition 1
Under the constraints imposed on ξ̃ and Λ, the representation in (1.5) implies

that:
Y | C̃ = c̃ ∼ Np(µ+ Dξ̃c̃ , c̃DΣD), C̃ ∼ Exp(1). (1.34)

This implies that the joint density function of Y and C̃ is:

fY,C̃(y, c̃) =
exp

{
(y− µ)′D−1Σ−1ξ̃

}
(2π)p/2 | DΣD |1/2

(
c̃−p/2 exp

{
−1

2
m̃

c̃
− 1

2 c̃(d̃+ 2)
})

. (1.35)

Then, the complete log-likelihood function (up to additive constant terms) can be
written as follows:

log `c(Φτ | y,x, c̃, s,b) =
N∑
i=1

{
G∑
g=1

wig log πg +
M∑
j=1

ui1j log qj +
Ti∑
t=2

M∑
j=1

M∑
k=1

vitjk log qjk

+
Ti∑
t=1

M∑
j=1

G∑
g=1

zitjg log fY,C̃(yit, c̃it | xit, Sit = j,bg)
}
.

(1.36)

By substituting (1.35) in (1.36), we obtain:

`c(Φτ ) =
N∑
i=1

{
G∑
g=1

wig log πg +
M∑
j=1

ui1j log qj +
Ti∑
t=2

M∑
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M∑
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vitjk log qjk

− 1
2Ti log | DΣD | +
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zitjg(Yit − µit)′D−1Σ−1ξ̃
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zitjg
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C̃itjg
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Ti∑
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zitjgC̃itjg

}
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(1.37)

Proof of Proposition 2
The E-step of the EM algorithm considers the conditional expectation of the

complete log-likelihood function given the observed data and the current parameter
estimates Φ̂(r−1)

τ . The conditional expectations of wig, uitj , vitjk and zitjg can be
computed using standard arguments in the HMM literature as shown in (1.17).
To compute the conditional expectation of C̃ and C̃−1, in the E-step of the EM
algorithm, C̃ is treated as an additional latent variable and, hence, not observable.
Using the joint distribution of Y and C̃ derived in (1.35) and the MAL density of Y
given in (1.3), we have that:

fC̃(C̃ | Y = y) =
fC̃,Y(c̃,y)
fY(y) =

c̃−p/2
(

2+d̃
m̃

)ν/2
exp

{
− m̃

2c̃ −
c̃(2+d̃)

2

}
2Kν

(√
(2 + d̃)m̃

) , (1.38)
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which corresponds to a Generalized Inverse Gaussian (GIG) distribution with pa-
rameters ν, 2 + d̃, m̃i, i.e.1

fC̃(C̃ | Y = y) ∼ GIG
(
ν, d̃+ 2, m̃

)
. (1.39)

It follows that

E[C̃ | ·] =
(

ˆ̃m
2 + ˆ̃d

) 1
2 Kν+1

(√
(2 + ˆ̃d) ˆ̃m

)
Kν

(√
(2 + ˆ̃d) ˆ̃m

) (1.40)

and

E[C̃−1 | ·] =

2 + ˆ̃d
ˆ̃m

 1
2 Kν+1

(√
(2 + ˆ̃d) ˆ̃m

)
Kν

(√
(2 + ˆ̃d) ˆ̃m

) − 2ν
ˆ̃m
. (1.41)

Denoting the two conditional expectations in (1.40) and (1.41) by ˆ̃c and ˆ̃z respectively,
concludes the proof.

Proof of Proposition 3
Imposing the first order conditions on (1.18) with respect to each component

of the set Φτ , gives the parameter estimates in (1.21), (1.22) and (1.25). However,
there is not closed formula solution to update the elements of the scale matrix
D; hence, the M-step update requires using numerical optimization techniques to
maximize (1.18). A considerable disadvantage of this procedure is the necessary
high computational effort which could be very time-consuming. For this reason, we
utilize a simpler estimator for the scale parameters dj , j = 1, . . . , p which follows
directly from the fact that all marginals of the MAL distribution are univariate AL
distributions (see Yu & Zhang 2005 and Marino et al. 2018):

d̂j = 1∑N
i=1 Ti

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
k=1

ẑitkgρτj (Y
(j)
it − µ̂

(j)
it ). (1.42)

1The pdf of a GIG(p, a, b) distribution is defined as fGIG(x; p, a, b) = ( ab )p/2

2Kp(
√
ab)
xp−1e−

1
2 (ax+bx−1),

with a > 0, b > 0 and p ∈ R.
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Chapter 2

Forecasting VaR and ES using a
joint quantile regression and its
implications in portfolio
allocation

2.1 Introduction

The events of the ongoing credit crisis and past financial crises have emphasized the
necessity for appropriate risk measures. The use of quantitative risk measures has
become an essential management tool providing advice, analysis and support for
financial and asset management decisions to market participants and regulators. The
most widely used risk measure is Value at Risk (VaR). VaR measures the maximum
loss that a financial operator can incur over a defined time horizon and for a given
confidence level. Its clear meaning and computational ease made it very popular
among practitioners, so much so that it has widely infiltrated the banking regulatory
framework. However, VaR has a number of drawbacks (Artzner et al. 1997, 1999).
First, VaR does not account for tail risk; i.e., it does not warn us about the size of
the losses that occur with a probability lower than the predetermined confidence
level. Second, VaR is not a “coherent” risk measure (Artzner et al. 1999) since
it does not satisfy the sub-additivity property, and hence, it does not take into
consideration the benefits of diversification. As a result, investors and risk managers
are likely to construct positions with unintended weaknesses that result in greater
losses under conditions beyond the VaR level (Yamai & Yoshiba 2005). Market
participants could solve such problems by adopting the Expected Shortfall (ES) risk
measure, which is defined as the conditional expectation of exceedances beyond VaR
(see Acerbi & Tasche 2002 and Rockafellar & Uryasev 2000). Unlike VaR, ES is a
coherent risk measure and provides more information on the shape and the heaviness
of the tails of the loss distribution. Therefore, ES has gained increasing attention
from risk managers, banking regulators and investors as an alternative measure of
risk, complementing the VaR measure.

However, despite its interesting properties, and in contrast with VaR, little work
exists on modeling ES. This is in part because ES is not an “elicitable” measure, in
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the sense that there does not exist a loss function such that ES is the solution that
minimizes the expected loss. Several works have been proposed in the literature
to overcome the problem of elicitability (see, e.g., Engle & Manganelli 2004, Cai
& Wang 2008, Taylor 2008, Zhu & Galbraith 2011, Du & Escanciano 2017, Patton
et al. 2019 and Bu et al. 2019). Recently, using the results of Fissler & Ziegel (2016),
who show that ES is jointly elicitable with VaR, Taylor (2019) uses the Asymmetric
Laplace (AL) distribution to jointly estimate dynamic models for both VaR and ES.
In particular, Taylor (2019) shows that the negative of the log-likelihood associated
with the AL distribution belongs to the class of loss functions presented in Fissler &
Ziegel (2016), and hence it can be used to estimate and forecast the VaR and ES
measures in one step. In his paper, the joint estimation of VaR and ES is obtained
in a univariate quantile regression framework, exploiting the interesting result that
ES can be expressed in terms of the scale parameter of the AL density.

The literature mentioned above, however, has mainly focused on univariate
time series, which completely disregards the strong interrelation among assets in
financial markets. To capture the degree of tail interdependence between assets,
several quantile-based methods have also been proposed to estimate VaR, but they
do not specify a model for the ES component; see, for example, the relevant works
of Baur (2013), Bernardi et al. (2015), White et al. (2015), Kraus & Czado (2017)
and Bonaccolto et al. (2019).

In this paper, we extend the univariate approach of Taylor (2019) to a multivariate
framework, with the objective of obtaining joint estimates of both VaR and ES for
multiple financial assets simultaneously, accounting for their dependence structure.
To this end, we generalize the Multivariate Asymmetric Laplace (MAL) quantile
regression approach of Petrella & Raponi (2019) to a time-varying setting by allowing
the parameters of the MAL distribution to vary over time. For each asset, we model
the evolution of VaR and ES as functions of the location and scale parameters of
the distribution. In particular, for the VaR component, we adopt a Conditional
Autoregressive Value at Risk (CAViaR) specification (Engle & Manganelli 2004).

The advantages of our methodology are manifold. First, our approach is a joint
modeling framework where both the model parameters and the pair (VaR, ES) of
multiple returns are estimated simultaneously, generalizing the univariate results
of Bassett et al. (2004) and Taylor (2019). Second, our theory captures empirical
characteristics of financial data such as peakedness, skewness, and heavy tails (see
e.g., Kraus & Litzenberger 1976, Friend & Westerfield 1980 and Barone-Adesi 1985)
without relying on the limitation of normally distributed returns.

The inferential problem is solved by developing a suitable Expectation-Maximization
(EM) algorithm, which exploits the mixture representation of the MAL distribution
(see Petrella & Raponi 2019) properly generalized to the case of time-varying pa-
rameters. The finite sample properties of the proposed estimation method are also
evaluated using a simulation exercise, where we show the validity and the robustness
of our procedure under different data generating processes.

A further contribution of the paper concerns the evaluation of VaR and ES in
the context of portfolio optimization (see, e.g., Yiu 2004 and Alexander & Baptista
2008). In recent years, the MAL density has attracted wide attention in the literature
because of its flexibility in modeling financial data (Mittnik & Rachev 1991, Kotz et al.
2012 and Paolella 2015) and for its interesting properties, which can be exploited to
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derive optimal portfolio allocations (see Zhao et al. 2015 and Shi et al. 2018). In
the classic Mean-Variance (MV) methodology of Markowitz (1952), portfolio risk is
measured using the standard deviation of the portfolio. However, the MV approach
is reasonably applicable only in cases where either the returns follow a Gaussian
distribution or the investor utility function is quadratic. Given the empirical evidence
showing that market participants have a preference for positive skewness and they
are more concerned about the downside risk (see Arditti 1971 and Konno & Suzuki
1995, among others), the MAL distribution could represent a more effective tool for
selecting optimal portfolio allocations in the case of risk-averse agents. Therefore,
in this paper, we exploit the MAL properties to incorporate skewness directly into
the portfolio optimization method and to identify the optimal allocation weights.
We then compute the corresponding portfolio VaR and ES as a function of the
multivariate structure of the data. We prove that this result follows directly from
the fact that any linear combination of the MAL components is still AL distributed,
with location, skew and scale parameters that are functions of the MAL parameters
and the portfolio weights. Therefore, once we obtain the Maximum Likelihood (ML)
estimates of the MAL parameters from the proposed dynamic quantile regression
model, we fix a desired level of risk for any target portfolio and search for the optimal
allocation weights according to the adopted strategy.

Specifically, we consider the Skewness Mean-Variance (SMV) strategy of Zhao
et al. (2015), where the optimal allocation is obtained by minimizing the portfolio
variance, while controlling for the skewness of the asset returns. However, Zhao
et al. (2015) employed the method of moments to estimate the portfolio variance;
in contrast, we estimate the MAL parameters in a ML framework by using an EM
algorithm.

Empirically, we analyze the weekly returns of the FTSE 100, NIKKEI 225 and
Standard & Poor’s 500 (S&P 500) market indices from April 1985 to February 2021.
In a first out-of-sample exercise, we jointly estimate the VaR and ES of the three
stock market indices using the proposed dynamic joint quantile regression model,
hence taking into account the correlation among the three indices. To evaluate VaR
and ES forecasts and to show the main advantages of the proposed method, we use
different backtesting procedures, where we compare the out-of-sample VaR and ES
predictions with the ones obtained by applying the univariate method of Taylor
(2019). In particular, to perform a joint evaluation of VaR and ES, we follow Fissler
et al. (2015), Nolde et al. (2017), Patton et al. (2019) and Taylor (2019) and extend
their approach by introducing a new scoring function based on the MAL distribution.
We find that our multivariate method always provides more accurate VaR and ES
predictions than other well-known approaches, such as the Quantile AutoRegression
of Koenker & Xiao (2006) and the dynamic quantile regression of Taylor (2019).
Moreover, in line with Taylor (2019), our results show that the Asymmetric Slope
CAViaR specification of Engle & Manganelli (2004) yields the best VaR and ES
forecasts for all three indices at different quantile levels, confirming the existence of
relevant asymmetries in the impact of positive and negative returns.

In a second empirical analysis, we aggregate the stock market indices to form a
financial portfolio with a predetermined level of risk, and we estimate its optimal
allocation weights by implementing our new optimization procedure. We then
compute the out-of-sample portfolio’s VaR and ES and evaluate the predictions
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using the univariate backtesting procedures of Taylor (2019), Nolde et al. (2017) and
Patton et al. (2019). The empirical analysis reveals that our multivariate method
produces the lowest average losses compared to other existing strategies based on the
multivariate Normal and Student-t distributions, regardless of the scoring function
used. In addition, we find that the proposed methodology yields the highest Sharpe
Ratio overall as well as the least concentrated portfolio allocations.

The rest of this paper is organized as follows. In Section 2.2, we introduce the
dynamic multiple quantile regression and propose a joint model for VaR and ES. We
then illustrate the EM-based ML approach for the simultaneous estimation of VaR
and ES. Section 2.3 develops the portfolio allocation problem. Section 2.4 introduces
a new scoring function for the joint evaluation of VaR and ES forecasts. In Section
2.5 we discuss the main empirical results, while Section 2.6 concludes the paper. All
the proofs are provided in Appendix A and the simulation study is presented in
Appendix B.

2.2 Multivariate framework

In this paper, we generalize the univariate regression approach of Taylor (2019).
Specifically, by extending the MAL density of Petrella & Raponi (2019) – allowing
the location and scale parameters of the MAL distribution to vary over time – we
estimate the pair of VaR and ES associated with each asset using a joint quantile
regression framework. In this way, we are able to calculate the time-varying VaR
and ES simultaneously for all marginal response variables, accounting for possible
correlation among the considered assets. For the VaR components, we assume a
CAViaR specification (see Engle & Manganelli 2004). Parameter estimation is carried
out using a suitable EM algorithm as in Petrella & Raponi (2019), properly extended
to deal with the time-varying setting. In this way, the estimated parameters account
for tail interdependence among multiple returns, and they convey this information
to the VaR and ES estimates.

We start by introducing the time-varying joint quantile regression model in
Section 2.2.1, where we consider a dynamic generalization of the MAL density
proposed in Petrella & Raponi (2019). We then show in Section 2.2.2 how the
resulting time-varying scale parameter of the MAL distribution can be used to model
the ES vector and derive a parsimonious approach for the simultaneous estimation
of VaR and ES in a multidimensional setting. The parameter estimation and the
EM algorithm are described in Section 2.2.3.

2.2.1 Dynamic joint quantile regression

Let Yt = [Yt1, ..., Ytp]′ be a p-variate response variable and denote by QYtj (τj |Ft−1)
the τj-quantile function of the j-th component of Yt conditional on the information
set Ft−1 available at time t− 1, for j = 1, ..., p and t = 1, ..., T . Then, for a given τj ,
we consider the following autoregressive dynamic:

QYtj (τj |Ft−1) = ωj + ηjQYt−1j (τj |Ft−2) + `(βj , Yt−1j), (2.1)

where ωj = ωj(τj), ηj = ηj(τj) and βj = βj(τj) = [β1j , ..., βKj ]′ are model param-
eters that depend on the chosen level τj and where we suppress the index τj for
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simplicity of notation. The dynamic specification in (2.1) is well-known in the litera-
ture as the CAViaR model of Engle & Manganelli (2004), which aims to compute the
τ -th level VaR by estimating the τ -th level quantile of the asset returns through a
conditional autoregressive structure. The function `(·) represents the so-called News
Impact Curve (NIC), originally introduced by Engle & Ng (1993). For each j-th
component, the NIC function essentially feeds back the last available observation
(Yt−1j) into the present value of the conditional quantile through the K×1 parameter
vector βj . Following the CAViaR literature, we will consider different specifications
for `(·) to model the marginal quantiles, which will be described in the next section.

Using matrix notation, the representation in (2.1) can be embedded in the
following multivariate linear regression model:

Yt = µt + εt, t = 1, ..., T (2.2)

where εt denotes a p× 1 vector of error terms, with each marginal quantile (at fixed
levels τ1, ..., τp) equal to zero, to ensure that µt = QYt(τ |Ft−1) at τ = [τ1, ..., τp].
As in Chapter 1, the p quantile indices, τ1, ..., τp, do not need to be the same for all
the components of Yt.

To estimate the regression model in (2.2), we consider a dynamic generalization
of the MAL distribution introduced in Petrella & Raponi (2019) and Kotz et al.
(2012); i.e., we consider the time-varying distribution MALp

(
µt,Dtξ̃, DtΣ̃Dt

)
, with

density function:

fYt(yt|µt,Dtξ̃,DtΣ̃Dt,Ft−1) =
2 exp

{
(yt − µt)′D−1

t Σ̃−1ξ̃
}

(2π)p/2|DtΣ̃Dt|1/2

(
m̃t

2 + d̃

)ν/2
Kν

(√
(2 + d̃)m̃t

)
.

(2.3)

In (2.3), µt represents the location parameter vector, Dtξ̃ ∈ Rp is the scale (or skew)
parameter, with Dt = diag[δt1, ..., δtp], δtj > 0 and ξ̃ = [ξ̃1, ..., ξ̃p]′, having generic
element ξ̃j = 1−2τj

τj(1−τj) . Σ̃ is a p × p positive definite matrix such that Σ̃ = Λ̃ΨΛ̃,
with Ψ having the structure of a correlation matrix1 and Λ̃ = diag[σ̃1, ..., σ̃p],
with σ̃2

j = 2
τj(1−τj) , j = 1, ..., p. Moreover, m̃t = (yt − µt)′(DtΣ̃Dt)−1(yt − µt),

d̃ = ξ̃′Σ̃−1ξ̃, and Kν(·) denotes the modified Bessel function of the third kind with
index parameter ν = (2− p)/2.

Notice that, as stressed in Petrella & Raponi (2019), the specification in (2.3)
should not be viewed as a parametric assumption in model (2.2) but rather as a
convenient tool to jointly estimate the marginal dynamic quantiles of a multivariate
response variable in a quantile regression framework. Moreover, as clarified in their
paper, the constraints ξ̃j = 1−2τj

τj(1−τj) and σ̃2
j = 2

τj(1−τj) must be imposed to guarantee
model identifiability (see Petrella & Raponi 2019, Proposition 2) and to ensure that
the dynamic quantile specification in (2.1) holds, i.e., that P(Ytj < µtj) = τj holds
for each j = 1, ..., p.

1In greater detail, Ψ represents the correlation matrix of the (latent) Gaussian process that
defines the mixture representation of the MAL distribution (see Equation (9) in Petrella & Raponi
2019). Moreover, by simple calculations, it is possible to show that the covariance matrix of Y
depends on Ψ through the following relationship: cov(Y) = D(ξ̃ξ̃′ + Λ̃ΨΛ̃)D. In other words, Ψ
represents a shifted and scaled version of the sample correlation matrix of Y through the vector ξ̃
and the matrix D, respectively.
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In addition, when these constraints are satisfied, each marginal component
of the MAL distribution in (2.3) follows a univariate AL distribution, that is,
Ytj ∼ AL(µtj , τj , δtj), where δtj represents the time-varying scale parameter of Ytj .
This allows us to exploit the result of Taylor (2019), who showed the link between
the scale parameter of the AL distribution and the ES risk measure in a univariate
framework. By extending these results, we provide new insights on how to estimate
the conditional VaR and ES jointly in a multidimensional setting, which accounts
for correlations between marginals. This is explained in detail in the next section.

2.2.2 Modeling VaR and ES jointly

Following Engle & Manganelli (2004), the CAViaR specification in (2.1) allows us to
derive the VaR of an asset at level τj by estimating the corresponding quantile at
the τj-th level, through a conditional autoregressive structure. In what follows, we
consider several CAViaR formulations, depending on the choice of the NIC function
`(·). We then extend the idea of Taylor (2019) to a multivariate setting in order to
model and estimate the ES component dynamically.

The CAViaR specifications that we consider are the following:

QYtj (τj |Ft−1) = ωj + ηjQYt−1j (τj |Ft−2) + β1j |Yt−1j |, Symmetric Absolute Value (SAV)
(2.4)

QYtj (τj |Ft−1) = ωj + ηjQYt−1j (τj |Ft−2) + β1jY
+
t−1j + β2jY

−
t−1j , Asymmetric Slope (AS)

(2.5)

QYtj (τj |Ft−1) =
(
ωj + ηjQ2

Yt−1j (τj |Ft−2) + β2jY
2
t−1j

)1/2
Indirect GARCH(1,1) (IG)

(2.6)

where ω = [ω1, ..., ωp]′,η = [η1, ..., ηp]′ and β = [β1, ...,βp]′, with βj = [β1j , β2j ]′,
are unknown parameters to be estimated, and where y+ = max(y, 0) and y− =
−min(y, 0), denote the positive and negative parts of y, respectively.

For the ES component, we exploit the interesting link provided in Bassett et al.
(2004), which relates univariate quantile regression to conditional ES through the
following relation:

EStj = E[Ytj ]−
E[(Ytj −QYtj )(τj − 1(Ytj<QYtj ))]

τj
(2.7)

where 1(·) is the indicator function. Following Taylor (2019), the expression in
(2.7) can be rearranged so that the conditional ES can be expressed in terms of the
conditional AL scale parameter δtj . Specifically, recalling that each marginal of the
MAL distribution has a univariate AL density with a conditional scale parameter
equal to δtj = E[(Ytj −QYtj )(τj − 1(Ytj<QYtj ))], (2.7) reduces to:

EStj = E[Ytj ]−
δtj
τj
, t = 1, ..., T, j = 1, ..., p (2.8)

implying that

δtj = τj (E[Ytj ]− EStj) , t = 1, ..., T, j = 1, ..., p (2.9)
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To ensure that each estimated ES does not cross the corresponding estimated quantile,
we model the ES in (2.9) as the product of the quantile and a constant factor (see,
e.g., Gourieroux et al. 2012 and Taylor 2019) as follows:

EStj = (1 + eγ0j )QYtj (τj), t = 1, ..., T, j = 1, ..., p, (2.10)

where γ0j is an unconstrained parameter to be estimated such that 1 + eγ0j is greater
than 1 and Yt is assumed to have zero mean. We collect the unknown parameters
in the vector γ0 = [γ01, ..., γ0p]′. As explained in Taylor (2019), this formulation
correctly describes the relationship between ES and VaR for different data generating
processes, such as a GARCH process with a Student-t distribution. Therefore, the
representation in (2.10) provides a simple and parsimonious approach to estimating
VaR and ES simultaneously in a dynamic framework.

In (2.10), however, only the quantile is dynamic, while the factor 1+eγ0j remains
constant over time. Therefore, to generalize this approach, we also consider the
alternative formulation for the ES presented in Taylor (2019), where the difference
between the ES and the VaR is modeled using an AutoRegressive (AR) specification
as follows:

EStj = QYtj (τj)− xtj , t = 1, ..., T, j = 1, ..., p, (2.11)
xtj = (γ1j + γ2j(QYt−1j (τj)− Yt−1j) + γ3jxt−1j)1(Ytj≤QYtj ) + xt−1j1(Ytj>QYtj ),

(2.12)

where we define the nonnegative parameter γ = [γ1, ...,γp]′, with γj = [γ1j , γ2j , γ3j ]′,
to ensure that the VaR and ES estimates do not cross.
In the next section, we show how to estimate the model parameters using a ML
approach based on a dynamic modification of the EM algorithm proposed by Petrella
& Raponi (2019).

2.2.3 Parameter estimation using the EM algorithm

Before describing the main steps of the EM algorithm, we introduce the notation
Qt = QYt(τ |Ft−1), Dt(γ) and Σ̃(Ψ) to clarify that the vector QYt(τ |Ft−1) and
the matrices Dt and Σ̃ depend on the unknown parameters ω,η,β,γ and Ψ. The
derivation of the EM algorithm is based on Proposition 3 of Petrella & Raponi
(2019), properly extended to deal with the autoregressive structure of the quantile
function Qt and the time dependency of the scale matrix Dt(γ).

Let Φ = {ω,η,β,γ,Ψ} denote the global set of parameters, and define Φ̂ =
{ω̂, η̂, β̂, γ̂, Ψ̂} as the corresponding set of parameter estimates. For a given vector
τ , the expected complete log-likelihood function (up to additive constants), given
the observed data Yt and the parameter estimates Φ̂, is:

E
[
lc(Φ|Yt, Φ̂)

]
= −1

2

T∑
t=1

log |Dt(γ)Σ̃(Ψ)Dt(γ)|+
T∑
t=1

(Yt −Qt)′Dt(γ)−1Σ̃(Ψ)−1ξ̃

(2.13)
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− 1
2

T∑
t=1

zt(Yt −Qt)′(Dt(γ)Σ̃(Ψ)Dt(γ))−1(Yt −Qt) (2.14)

− 1
2 ξ̃
′Σ̃(Ψ)−1ξ̃

T∑
t=1

ut, (2.15)

where

ut = E[C̃t|Yt, Φ̂] =
(

ˆ̃mt

2 + ˆ̃d

) 1
2 Kν+1

(√
(2 + ˆ̃d) ˆ̃mt

)
Kν

(√
(2 + ˆ̃d) ˆ̃mt

) (2.16)

zt = E[C̃−1
t |Yt, Φ̂] =

2 + ˆ̃d
ˆ̃mt

 1
2 Kν+1

(√
(2 + ˆ̃d) ˆ̃mt

)
Kν

(√
(2 + ˆ̃d) ˆ̃mt

) − 2ν
ˆ̃mt

, (2.17)

with

ˆ̃mt = (yt −Qt)′(Dt(γ̂)Σ̃(Ψ̂)Dt(γ̂))−1(yt −Qt), ˆ̃d = ξ̃′Σ̃(Ψ̂)−1
ξ̃, (2.18)

and where C̃t follows a standard exponential distribution.
For a given vector τ , the expected complete log-likelihood in (2.13)-(2.15) is then
maximized with respect to the parameter set Φ, yielding the M-step updates Φ̂.
Notice that, unlike Petrella & Raponi (2019), closed-form solutions for ω̂, η̂, β̂ and γ̂
do not exist, due to the autoregressive structure of the data and, therefore, numerical
optimization is required. Updated estimates of Σ̃(Ψ̂) can instead be derived using
the following expression:

Σ̃(Ψ̂) = 1
T

T∑
t=1

ztDt(γ̂)−1(Yt −Qt)(Yt −Qt)′Dt(γ̂)−1 (2.19)

+ 1
T

T∑
t=1

utξ̃ξ̃
′ − 2

T

T∑
t=1

Dt(γ̂)−1(Yt −Qt)ξ̃′. (2.20)

Therefore, the EM algorithm can be implemented as follows:
E-step: Set the iteration number h = 1. Fix the vector τ at the chosen quantile levels
τ1, ..., τp of interest, and initialize the parameter set Φ = {ω,η,β,γ,Ψ}. Then,
given Φ̂ = Φ̂(h) = {ω̂(h), η̂(h), β̂

(h)
, γ̂(h), Ψ̂(h)}, at each iteration h, calculate the

weights:

û
(h)
t =

(
ˆ̃m(h)
t

2 + ˆ̃d(h)

) 1
2 Kν+1

(√
(2 + ˆ̃d(h)) ˆ̃m(h)

t

)
Kν

(√
(2 + ˆ̃d(h)) ˆ̃m(h)

t

) (2.21)

ẑ
(h)
t =

2 + ˆ̃d(h)

ˆ̃m(h)
t

 1
2 Kν+1

(√
(2 + ˆ̃d(h)) ˆ̃m(h)

t

)
Kν

(√
(2 + ˆ̃d(h)) ˆ̃m(h)

t

) − 2ν
ˆ̃m(h)
t

(2.22)
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where

ˆ̃m(h)
t = (yt −Q(h)

t )′(Dt(γ̂(h))Σ̃(Ψ̂(h))Dt(γ̂(h)))−1(yt −Q(h)
t ), (2.23)

ˆ̃d(h) = ξ̃′Σ̃(Ψ̂(h))−1
ξ̃. (2.24)

M-step: Use the estimates û(h)
t and ẑ(h)

t to maximize E[lc(Φ|Φ̂(h))] with respect to
Φ, and obtain the updated set of parameter estimates Φ̂(h+1).

The optimization procedure is iterated until convergence, that is, when the
difference between the likelihood function evaluated at two consecutive iterations
is smaller than 10−5. We initialize the EM algorithm by providing the univariate
parameter estimates of Taylor (2019) for each asset, while the initial value for the
correlation matrix Ψ in (2.3) is calibrated using the empirical correlation matrix of
the data. We fit the univariate models following the estimation procedure in Engle &
Manganelli (2004) and Taylor (2019). In addition, we consider a strategy of multiple
random starts with 100 different starting points to better explore the parameter space,
and we retain the solution corresponding to the maximum likelihood value. This
strategy prevents convergence issues and prevents the algorithm from being trapped
in local maxima. From an algorithmic point of view, the EM method exploits the
Nelder-Mead and Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization routines
to obtain the updated estimates of β and γ, and it uses (2.19) to compute the
updated estimate of Σ̃. The computational analysis was conducted using the R
(version 4.0.2) software, where the functions to update β, γ and Σ̃ were coded with
efficient C++ object-oriented programming.
The validity and performance of the proposed EM algorithm were also assessed using
a simulation exercise (see Appendix B).

2.3 Portfolio construction

In this section, we approach the problem of portfolio allocation. Specifically, we
construct the Skewness Mean-Variance (SMV) portfolio of Zhao et al. (2015), taking
into account both the multivariate structure and the skewness of asset returns.
Following Stolfi et al. (2018) and Zhao et al. (2015), we exploit an interesting
property characterizing the MAL distribution in (2.3). We show that any linear
combination of its marginal components follows a univariate AL distribution whose
parameters are a function of the MAL parameters in (2.3). Note that while the
MAL density has thus far been regarded as a convenient tool for estimating the
marginal quantiles, in this section, the MAL distribution is used as a data-driven
assumption to describe the empirical characteristics of asset returns. As already
stated in the Introduction, this choice has been positively accepted in the recent
financial literature to detect the peakedness, fat-tails, and skewness of financial assets,
overcoming the possible deficiencies of standard approaches relying, for example, on
the Gaussian distribution assumption. We then evaluate the riskiness of the selected
portfolio by calculating its corresponding VaR and ES using the results of Section
2.2.2.
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2.3.1 Linear combinations of MAL components

Let us assume that Yt is a p-dimensional random variable describing the joint
dynamics of p variables at time t. Let us consider a linear combination (with weights
to be determined) of each component of Yt. Then, the following proposition holds.

Proposition 4. Let Yt ∼ MALp(µt,Dtξ̃,DtΣ̃Dt), with density function defined in
(2.3). Let bt = (bt1, ..., btp)′ ∈ Rp be a vector of weights such that bt 6= 0p, with 0p
denoting a p-vector of zeros. Define the random variable Y b

t =
∑p
j=1 btjYtj. Then,

Y b
t ∼ AL(µ?t , τ?t , δ?t ) (2.25)

where

µ?t = b′tµt,

τ?t = 1
2(1− b′tDtξ̃√

2(b′tDtΣ̃Dtbt) + (b′tDtξ̃)2
),

δ?t = (b′tDtΣ̃Dtbt)

2
√

2(b′tDtΣ̃Dtbt) + (b′tDtξ̃)2
.

(2.26)

Proposition 4 brings out two main considerations. First, the distribution of Y b
t

is still AL, which greatly facilitates the computation of the VaR and ES in our
context. Second, the parameters of Y b

t are expressed as a function of the multivariate
parameters µt,Dt and Σ̃ of the MAL distribution in (2.3). This allows us to take
into account the possible association among the marginal components of Yt when
choosing the allocation weights bt. In the next section, we exploit this property to
retrieve the distribution of returns of a financial portfolio, whose optimal weights
can be derived by solving a simple constrained optimization problem. Given the
resulting optimal portfolio weights, we can then use the results of Section 2.2.2 to
derive appropriate measures of the portfolio’s VaR and ES.

2.3.2 The portfolio optimization problem

Assume that Yt follows the distribution in (2.3). Given this specification, at each
time t, investors may be interested in deriving a portfolio Y b

t =
∑p
j=1 btjYtj by

investing a portion btj of their capital on the asset Ytj so that
∑p
j=1 btj = 1. Then,

in this setting, the result of Proposition 4 can be applied easily, yielding a portfolio
with location, skewness and scale parameters equal to, respectively, µ?t , τ?t and δ?t as
in (2.26).

Typically, in risk management applications, the skewness parameter is fixed
a priori by the researcher at a certain level (constant over time) τ?t = τ̃ , as it
essentially measures the overall riskiness of a financial product (a portfolio, in our
case). Therefore, once we estimate the time-varying MAL parameters from the
quantile regression model in (2.2), for a fixed level of risk τ̃ , the investor’s portfolio
decision is based on the solution of the selected portfolio strategy. As stated above,
to obtain the optimal portfolio allocation, we adopt the SMV strategy of Zhao et al.
(2015), which seeks to minimize the portfolio variance and at the same time control
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for the skewness of the asset returns. This approach can be seen as an extension
of the classical MV approach of Markowitz 1952 where typical empirical features
of financial data are incorporated into the optimization problem. According to
Proposition 4, the objective function of the considered optimization problem, i.e.,
the portfolio variance, is given by expression b′tDtΣ̃Dtbt. Then, for a given level of
risk τ̃ , the SMV portfolio solves the following constrained optimization problem:

arg min
bt∈Rp

b′tDtΣ̃Dtbt (2.27a)

s.t. τ?t = τ̃ , ∀t (2.27b)
b′t1p = 1 (2.27c)

where Σ̃ was introduced in (2.3) and accounts for the covariance matrix of the
returns, while bt denotes the portfolio’s weights at time t held by the investor over
the period [t, t+ 1).

From an empirical point of view, the constraint in (2.27b) implies that the
portfolio weights must be adjusted at each holding period to guarantee that the
VaR of the portfolio has a constant level τ̃ , namely, P(Y b

t < µ?t |Ft−1) = τ̃ . Once we
obtain the optimal portfolio weights for the period [t, t+ 1), we can compute the
conditional portfolio’s VaR and ES at level τ̃ by simply applying the result in (2.8)
to the univariate case. In addition, from a computational standpoint, optimizing
(2.27a) is computationally advantageous because b′tDtΣ̃Dtbt is a quadratic objective
function which can be solved more efficiently than using directly the scale parameter
of the portfolio distribution δ?t .
As explained above, since the parameters µ?t , τ?t and δ?t depend on the parameter
estimates of the MAL distribution, information on the dependence structure and
on the empirical characteristics embedded in the data is channeled through these
estimates into the portfolio’s VaR and ES forecasts. This motivates our approach
even further, since it can offer an operative and useful tool to help investors and asset
managers in deriving optimal portfolio allocations and, at the same time, monitoring
multiple VaR and ES jointly.

2.4 Assessment of VaR and ES forecasts

To assess the performance of VaR and ES predictions jointly, we introduce a new
backtesting procedure, based on the multivariate approach discussed in Section 2.2.

Backtesting techniques are based on quantitative tests that scrutinize model
performance in terms of accuracy and precision with respect to a defined criterion.
Existing approaches, however, rely on tests that analyze VaR and ES predictions
separately; i.e., they focus only on the individual evaluation of one risk measure
or the other. VaR evaluation is typically based on coverage tests, which measure
the percentage of times that the returns exceed the estimated VaR at a chosen
probability level τ (see, e.g., the unconditional coverage (LRuc) test of Kupiec 1995,
the conditional coverage (LRcc) test of Christoffersen 1998 and the Dynamic Quantile
(DQ) test of Engle & Manganelli 2004).

To evaluate ES forecasts, the backtesting analysis becomes more complicated
since ES is not an elicitable measure (Gneiting 2011) and therefore suitable scoring
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functions cannot be determined (Taylor 2019). The test of McNeil & Frey (2000)
is commonly used in this context, which is based on the discrepancy between the
observed return and the ES forecast for the periods in which the return exceeds
the VaR forecast. Another suitable option is the backtesting procedure of Du &
Escanciano (2017), which is based on the Unconditional ES (UES) and Conditional
ES (CES) tests.

However, since ES relies on observations exceeding the VaR, it is clear that
assessment of ES forecasts cannot be independent of the predicted VaR values.
This, together with the fact that ES is not elicitable, motivates the introduction
of a scoring function for jointly evaluating VaR and ES forecasts. Based on the
characterization of consistent scoring functions introduced by Fissler & Ziegel (2016)
and Nolde et al. (2017), several scoring rules have been proposed in the literature
for the univariate setting (see, e.g., Patton et al. 2019, Fissler et al. 2015 and Taylor
2019).

In what follows, we provide a new scoring rule that can be used in a multivariate
setting to jointly evaluate VaR and ES forecasts of multiple (and possibly correlated)
financial assets. To provide support for our proposal of estimating multiple VaR and
ES by maximizing the MAL likelihood, we define a new scoring function (SMAL)
using the negative of the MAL log score:

SMAL

(
Qt,ESt,yt; Σ̃, τ

)
=

1
2 log

(
|Σ̃|
)

+ log
(
|(τES′t) ◦ Ip|

)
− ν

2 log
(
m̃t

2 + d̃

)
+ (yt −Qt)′

(
(τES′t) ◦ Ip

)−1Σ̃−1ξ̃ − log
(
Kν

(√
(2 + d̃)m̃t

))(2.28)

where ◦ denotes the Hadamard product and Ip represents the identity matrix of
order p.

Notice that when p is equal to 1, the SMAL in (2.28) reduces to the AL log score
of Taylor (2019). When p > 1, the loss function SMAL allows us to (i) perform a
joint assessment of the pairs (VaR, ES) specific to each asset and, at the same time,
(ii) control for the existing correlation among returns.

2.5 Empirical study

In this section, we apply the methodology presented in Sections 2.2 and 2.3 to
real data in order to evaluate and compare the empirical implications with those
obtained by using a univariate framework. Specifically, we follow Taylor (2019)
and use the weekly returns of the FTSE 100, NIKKEI 225, and S&P 500 stock
market indices from April 26, 1985, to February 01, 2021. Using a rolling window
exercise, we estimate the one-week-ahead VaR and ES forecasts implied by the
CAViaR specifications described in Section 2.2.2, and we select the most desirable
model using the Diebold & Mariano (2002) test. In a second empirical exercise, we
aggregate the market indices to form a financial portfolio and determine its optimal
allocation weights by solving the optimization problem described in Section 2.3.2.
We finally compute and assess the resulting portfolio’s conditional VaR and ES for
the out-of-sample period, which consists of the last 368 observations of the sample.
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2.5.1 Data description

Our sample is collected from Bloomberg, and it consists of 1868 weekly returns
for each of the three stock indices. The main summary statistics are displayed in
Table 2.1 below, providing evidence of the well-known stylized facts on fat tails,
high kurtosis and serial and cross-sectional correlation that typically characterize
financial assets. Moreover, all series exhibit a negative skewness, the Jarque-Bera
test significantly rejects the normality assumption, the Ljung-Box test indicates the
presence of serial correlation and the Augmented Dickey-Fuller test supports the
hypothesis of the absence of unit roots. These results clearly motivate us to consider
a quantile regression approach as an investigative tool.

Index Mean Median SD Skewness Kurtosis J-B L-B ADF
FTSE 100 0.086 0.234 2.396 -1.456 14.717 17517.036 62.674 -19.729
NIKKEI 225 0.046 0.237 2.946 -0.748 6.421 3383.250 175.024 -19.159
S&P 500 0.163 0.320 2.338 -0.947 7.367 4503.301 403.851 -20.325
Correlation matrix

FTSE 100 NIKKEI 225 S&P 500
FTSE 100 1
NIKKEI 225 0.510 1
S&P 500 0.709 0.501 1

Table 2.1. Summary statistics of the weekly returns of the three indices for the entire
sample from April 26, 1985, to February 01, 2021. The test statistics are displayed in
boldface when the null hypothesis is rejected at the 1% significance level. J-B, L-B and
ADF denote the Jarque-Bera test, the Ljung-Box test on squared returns with 4 lags
and the Augmented Dickey-Fuller unit root test with 4 lags, respectively.

2.5.2 Out-of-sample VaR and ES forecasting

Using the approach introduced in Section 2.2, in this section, we derive a joint
estimation of VaR and ES for the three stock market indices described above.
Specifically, we estimate the out-of-sample series of VaR and ES by considering the
three different specifications in (2.4), (2.5) and (2.6), with both the multiplicative
factor in (2.10) and the AR formulation in (2.11)-(2.12) for the ES component.
Moreover, since we are concerned with the downside risk, we evaluate the out-of-
sample forecasts at three different probability levels, namely, τ = [0.1, 0.1, 0.1], τ =
[0.05, 0.05, 0.05] and τ = [0.01, 0.01, 0.01].

The first objective is to assess the performance of the CAViaR specifications using
the proposed multivariate framework. We start by evaluating the VaR forecasts
using the conventional LRuc, LRcc and DQ tests, while we perform the UES and
CES tests of Du & Escanciano (2017) to evaluate the ES predictions. The results
are shown in Table 2.2, where Panel A refers to the case of the ES vector modeled
as in (2.10) and Panel B refers to the AR specification in (2.11)-(2.12). Looking at
the VaR forecasts, in both panels, for all three indices and for all three quantile
levels, we find that the CAViaR-AS specification is always successfully backtested
at the 5% significance level. The results are less clear for the other two CAViaR
specifications. The same results are confirmed when evaluating the ES predictions,
as the CAViaR-AS specification again yields outstanding performances for all three
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indices and for all three quantile levels.
To jointly evaluate the VaR and ES forecasts associated with each stock market
index, in addition to the results of the coverage tests, Table 2.3 reports the values
of the loss functions SFZN of Nolde et al. (2017) and SFZ0 of Patton et al. (2019)
averaged over the out-of-sample period, where:

SFZN (Qt, ESt, yt) = (1(yt<Qt) − τ) Qt
2τ
√
−ESt

− 1
2
√
−ESt

(1(yt<Qt)
yt
τ
− ESt) +

√
−ESt

(2.29)

and

SFZ0(Qt, ESt, yt) = 1
τESt

1(yt<Qt)(yt −Qt) + Qt
ESt

+ log(−ESt)− 1. (2.30)

The losses in (2.29) and (2.30) belong to the class of scoring rules proposed in Nolde
et al. (2017) and Patton et al. (2019) and have the additional advantage of generating
loss differences (between competing forecasts) that are homogeneous of degree 1/2
and zero, respectively.
Overall, the results show that both the CAViaR-AS and CAViaR-IG dynamics are
associated with smaller losses compared to the CAViaR-SAV model, except for the
case of τ = [0.1, 0.1, 0.1]. This finding suggests that there are relevant asymmetries
and leptokurtosis in the behavior of the return series of the three indices, which
must be taken into due account to yield better out-of-sample forecasts. Moreover, in
line with Taylor (2019), we find evidence of a better forecasting performance when
using the constant multiplicative factor (1 + eγ0j ) to model the ES parameter (Panel
A) compared to the AR dynamics (Panel B).
Finally, to reinforce our analysis, we evaluate the forecasting performance of the
three competing CAViaR models using the scoring function in (2.28). Specifically, at
each time t, and for the specified level τ , we define by S(j)

MALt
(τ ) the scoring function

associated with model j, and we denote the difference between the scoring functions
of model i and model j by ∆(i,j)

MAL,t = S
(i)
MALt

(τ )−S(j)
MALt

(τ ), where i, j = 1, 2, 3. We
then test for the null hypothesis that E[∆(i,j)

MAL,t] = 0 against E[∆(i,j)
MAL,t] < 0 using

the Diebold & Mariano (2002) test for all the pairs of models i and j. If the null
hypothesis is rejected, then the forecasts delivered by model i are more accurate than
those of model j, and therefore model i is preferable to model j. The results of the
test, together with the corresponding p-values, are reported in Table 2.4. The table
clearly shows that the CAViaR-AS specification outperforms both the CAViaR-IG
and CAViaR-SAV models at all the three quantile levels and for both the adopted
ES formulations of constant multiplicative factor (Panel A) and AR dynamics (Panel
B). Therefore, to select the best performing model between the two CAViaR-AS
in Panels A and B, we again apply the Diebold & Mariano (2002) test to the two
competing CAViaR-AS specifications. The results are reported in Table 2.5, and
they suggest that the CAViaR-AS model with the ES specified as a constant multiple
of the VaR provides the most accurate predictions at all three quantile levels. This
is in line with Taylor (2019), who also found that the same specification not only
produces the smallest losses but also delivers the most accurate predictions compared
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with all the other competing CAViaR dynamics2. These results corroborate the fact
that accounting for asymmetries in the autoregressive process of a given quantile
improves the model’s forecasting ability (see, e.g., Engle & Manganelli 2004, Xiliang
& Xi 2009, Taylor 2005 and Laporta et al. 2018).

To show the advantages and the different implications of our approach, we
compare our results with those obtained by considering each asset separately, as
if we ignored their possible dependence structure. Specifically, the three CAViaR
models are estimated individually for each stock market index using the univariate
approach of Taylor (2019). To assess the performance of the three models and to
combine the individual forecasts of the three indices in a single value, we use the sum
of the three corresponding AL log scores (see Taylor 2019) as a consistent scoring
rule. That is, at each time t, and for each model j, we define the following scoring
function:

S
(j)
ALt

(τ ) =
3∑
p=1

S
(j)
ALp,t

(τp) (2.31)

where S(j)
ALp,t

(τp) denotes the AL log-score of Taylor (2019), corresponding to model
j and asset p:

S
(j)
ALp,t

(τp) = − log

τp − 1
ES

(j)
p,t

−
(
yp,t −Q(j)

p,t

)(
τp − 1(yp,t<Q(j)

p,t)

)
τpES

(j)
p,t

. (2.32)

As explained in Frongillo & Kash (2015), summing the three AL scoring functions
would produce a consistent scoring rule in this case, since each function S(j)

ALp,t
(τp)

elicits the pair (VaR, ES) for the corresponding p-th asset (see Fissler & Ziegel 2016
and Taylor 2019).
Then, as before, we define the difference between the scoring functions of model
i and model j by ∆(i,j)

AL,t = S
(i)
ALt

(τ ) − S(j)
ALt

(τ ) and apply the Diebold & Mariano
(2002) test to look for the best model in terms of forecasting accuracy. The results
are reported in Table 2.6 (Panels A and B). As shown in the table, the conclusion of
the test is now less clear and does not provide any significant evidence in favor of a
particular model. This is one of the primary advantages of our approach, as we are
able to identify a clear hierarchy among competing models.

A second question of interest concerns the “efficiency gain” of the multiple
approach compared to the univariate one. In this sense, we would like to test
whether taking into account the association structure among the market indices
would provide us with better predictions in terms of VaR and ES. To do this, we
use the backtesting procedure to identify the most “efficient” model, that is, the
model producing the best forecasts according to the Diebold & Mariano (2002) test.

2To further justify this choice, we also compare the CAViaR-AS model with the Quantile
AutoRegression of Koenker & Xiao (2006). Specifically, we estimate the regression model of Petrella
& Raponi (2019) using the lagged returns (at lag 1) of each asset as the covariates. Comparing
these two models would allow one to evaluate the potential contribution of assuming a CAViaR
specification in the quantile dynamics. According to the coverage tests and the scoring functions
defined in (2.29) and (2.30), we still find that the performance of the CAViaR-AS specifications is
better.
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To measure the efficiency gain, we analyze the difference, if any, in the predictive
accuracy between the forecast (VaR, ES) produced by our multivariate approach
and the univariate ones. Therefore, for a given CAViaR specification, we test for
the difference between the scores obtained with the scoring rule in (2.31) and those
obtained with (2.28). The null hypothesis is that, on average, the difference is
not statistically different from zero, i.e., that the two approaches have the same
forecasting performance. The alternative hypothesis is that the difference is smaller
than zero, i.e., that the multivariate approach delivers significantly better predictions
(smaller losses).

Table 2.7 shows the resulting test statistics and the corresponding p-values for
each of the possible pairs of competing models. Interestingly, for all the considered
risk levels and for all three CAViaR specifications, we are always able to reject the
null hypothesis at the 1% level, except for the comparison between the CAViaR-IG
and CAViaR-AS specifications at τ = [0.01, 0.01, 0.01] for which the null is rejected
at the 5% level, providing evidence of the efficiency gain of our proposed joint
approach3.

To offer a graphical intuition of supporting the results, Figure 2.1 shows the time
series of the difference between the scoring function in (2.31) that is consistent with
the univariate approach and the scoring function proposed in (2.28) over the whole
out-of-sample period and for the three considered CAViaR specifications, with the
ES modeled as a multiple of the VaR. The left graph in Figure 2.1 refers to the case
of τ = [0.1, 0.1, 0.1], the center graph displays the case of τ = [0.05, 0.05, 0.05], and
the right plot displays τ = [0.01, 0.01, 0.01]. The black line represents the difference
of the two scoring functions obtained by using the CAViaR-SAV specification in
(2.4), while the red and blue lines refer to the CAViaR-AS and CAViaR-IG dynamics,
respectively. The efficiency gain of the multivariate approach clearly emerges from
these pictures. Indeed, for all the considered risk levels, and regardless of the dynamic
specification of the quantiles, the difference between the two approaches is almost
always positive. This confirms the idea that the losses associated with the univariate
model can be very large if the dependence structure of the data is not accounted for.

In Figure 2.2, we display the series of out-of-sample forecasts of the VaR and ES
for each of the three stock indices, which are estimated by assuming the selected
CAViaR-AS specification in both the univariate and joint approaches. The VaR
predictions obtained with the univariate approach of Taylor (2019) are represented
by a dotted blue line, while the VaR estimates produced by our joint approach
are depicted by the solid red line. The estimated ES is represented by the dotted
green line (using the univariate approach) and the solid orange line (using the joint
approach). The left panels of Figure 2.2 refer to τ = [0.1, 0.1, 0.1], the center panels
refer to τ = [0.05, 0.05, 0.05] and the right ones refer to τ = [0.01, 0.01, 0.01]. The
gray dots denote the original return series of each stock index. In all the cases, the
estimates of VaR and ES produced by our joint approach lie below the corresponding
values obtained with the univariate setting, suggesting that our proposed method
can lead to more conservative results.

3As a further robustness check, we also considered the best CAViaR specification for each asset
and then applied the Diebold & Mariano (2002) test. The proposed joint method still appears to
be more efficient than the univariate method of Taylor (2019), so our findings are unchanged.
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Finally, to obtain a more intuitive representation of the relationship between the
estimated VaR and ES over time and across quantile levels, Figure 2.3 displays the
absolute difference between the out-of-sample VaR and ES forecasts for each of the
three stock indices. The plots in the first row are obtained by assuming the CAViaR-
AS specification with the ES modeled as in (2.10), while the plots in the second row
refer to the case of the CAViaR-AS specification with the ES following the dynamic
in (2.11)-(2.12) at the τ = [0.1, 0.1, 0.1] (left column), τ = [0.05, 0.05, 0.05] (center
column) and τ = [0.01, 0.01, 0.01] (right column) quantile levels. The blue, red and
orange lines refer to the FTSE 100, NIKKEI 225 and S&P 500 stock market indices,
respectively, while the gray bands correspond to the main recession periods and to
various economic and financial crises that have occurred since 2014. As one can
reasonably expect, the difference follows the overall market volatility. Indeed, we find
that the difference between the estimated risk measures is typically smaller in calm
periods and larger in periods of turbulent markets, with more pronounced upward
spikes when the AR dynamics for the ES are used. High volatility is also clearly
evident in correspondence and in the aftermath of major economic and financial
crises, such as, for example, the Chinese stock market crash at the start of 2016, the
Brexit in 2018 and the outbreak of the COVID-19 pandemic in 2020.

Based on these considerations, in the next section, we consider the CAViaR-AS
specification in (2.5) with the ES expressed in (2.10) to implement the portfolio
optimization procedure.

2.5.3 Out-of-sample portfolio VaR and ES forecasting

In this section, we use the three stock market indices FTSE 100, NIKKEI 225
and S&P 500 to build a SMV portfolio that delivers a certain fixed level of risk τ̃ .
The optimal allocation weights are determined by solving the optimization problem
described in Section 2.3.2 using the parameter estimates provided by the CAViaR-AS
specification in Section 2.5.2.

We evaluate the benefits of our approach by considering alternative strategies.
First, we use the estimation method of Zhao et al. (2015), where the covariance
matrix Σ̃ in (2.27a) is estimated using the sample variance and the sample mean
of the return series. We call this strategy Moment-SMV. Second, we evaluate the
classic MV of Markowitz (1952). In this case, we model the conditional covariance
of the asset returns using several well-known autoregressive dynamics, i.e., the
multivariate GARCH Dynamic Conditional Correlation model (Engle 2002) under
both the multivariate Normal (MV-G-DCC-N) and Student-t (MV-G-DCC-t) error
distributions and the asymmetric Dynamic Conditional Correlation model with
multivariate Normal (MV-G-aDCC-N) and Student-t (MV-G-aDCC-t) errors. More-
over, since the MV strategy can often be inadequate in controlling for asymmetric
risk-averse agents, we also consider the above strategies under the multivariate
skew Normal (SN) and multivariate skew Student-t (St) distributions of Bauwens &
Laurent (2005) as further competing strategies, which we denote by MV-G-DCC-SN,
MV-G-DCC-St, MV-G-aDCC-SN and MV-G-aDCC-St, respectively. Then, for each
model, we forecast the one-week-ahead conditional covariance matrix and plug it
into the portfolio optimization problem.

We jointly estimate the VaR and ES of the resulting portfolios and analyze their
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τ [0.1, 0.1, 0.1] [0.05, 0.05, 0.05] [0.01, 0.01, 0.01]

SFZ0 SFZN SFZ0 SFZN SFZ0 SFZN

Panel A: Multiplicative factor for the ES
SAV
FTSE 100 1.398 2.661 1.795 3.221 2.109 3.399
NIKKEI 225 1.545 3.091 2.051 3.666 2.231 3.678
S&P 500 1.368 2.552 1.753 3.126 1.907 3.215
AS
FTSE 100 1.371 2.578 1.750 2.833 1.954 3.254
NIKKEI 225 1.585 2.890 1.949 3.155 2.111 3.636
S&P 500 1.346 2.431 1.706 2.690 1.867 3.142
IG
FTSE 100 1.383 2.636 1.765 3.000 1.946 3.320
NIKKEI 225 1.539 3.025 2.023 3.387 2.196 3.689
S&P 500 1.357 2.535 1.715 2.943 1.897 3.257

Panel B: AR formulation for the ES
SAV
FTSE 100 1.414 2.878 2.116 2.362 4.866 5.740
NIKKEI 225 1.766 2.082 2.241 3.055 5.220 4.779
S&P 500 1.406 2.767 1.940 3.177 4.929 5.241
AS
FTSE 100 1.496 1.845 1.985 2.325 6.998 5.009
NIKKEI 225 1.714 2.059 2.315 3.731 7.233 4.120
S&P 500 1.478 2.756 2.048 2.944 6.929 4.934
IG
FTSE 100 1.411 1.849 2.112 2.800 3.201 5.025
NIKKEI 225 1.671 1.993 2.305 3.076 3.432 5.629
S&P 500 1.370 2.764 2.031 3.007 3.164 4.983

Table 2.3. Marginal out-of-sample VaR and ES forecast evaluation based on the average
losses using the scoring functions in (2.29) and (2.30) for the joint approach with the
multiplicative factor in (2.10) (Panel A) and the AR formulation in (2.11)-(2.12) (Panel
B) for the ES.
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τ [0.1, 0.1, 0.1] [0.05, 0.05, 0.05] [0.01, 0.01, 0.01]

AR formulation

CAViaR-AS CAViaR-AS CAViaR-AS

Multiplicative factor

CAViaR-AS -1.997 -6.273 -5.029
(0.023) (0.000) (0.000)

Table 2.5. Test statistics and p-values (in parentheses) of the Diebold & Mariano (2002)
pairwise test between the CAViaR-AS specifications using the joint approach with the
constant multiplicative factor in (2.10) and the AR formulation in (2.11)-(2.12) for the
ES component in predicting one-week-ahead returns. The null hypothesis is that the
two approaches have the same forecasting performance.

out-of-sample performance using the last 368 returns of the sample. The backtesting
results for the considered strategies are shown in Table 2.8, where we report the
AL log-score of Taylor (2019) together with the SFZN and SFZ0 loss functions in
(2.29) and (2.30) for the joint evaluation of the pair (VaR, ES). The results clearly
show that our approach stands out compared to the other strategies. Indeed, the
strategies based on the multivariate Normal and t- distributions and their skewed
counterparts produce highly volatile VaR forecasts and suffer from larger average
losses over the out-of-sample period. On the other hand, the SMV and Moment-SMV
models deliver better performance gains over the MV portfolios, with the SMV being
preferred at the three VaR levels, especially in the most extreme case of τ = 0.01.
This gain may be traced back to the higher efficiency in the estimation procedure
based on the ML approach proposed in Section 2.2.3. It is worth noting that these
conclusions remain valid even when we use the SFZ0 and SFZN scoring rules, which
do not directly depend on the AL likelihood function.

From a financial viewpoint, in Table 2.8, we also evaluate the risk-adjusted returns
of the competing portfolios, measured by the Sharpe Ratio (SR) and the Herfindahl-
Hirchman Index of weights concentration (HHI). We find that the SMV strategy
delivers the portfolio with the highest SR and the least concentrated portfolios at
both τ = 0.1 and τ = 0.05, with average HHIs of 0.558 and 0.557, respectively. On
the other hand, when τ = 0.01, the MV strategy seems to yield the portfolios with
the highest SRs, while the Mom-SMV strategy produces the lowest degree of weights
concentration.

A graphical representation of the SMV portfolio weights and their evolution over
time is provided in Figure 2.4. In each plot of the figure, the blue line denotes the
allocation weights assigned to the FTSE 100, the red line refers to the NIKKEI 225,
and the allocation weights of the S&P 500 are displayed in orange. The left panel
concerns τ = 0.1, the center one concerns τ = 0.05, and on the right-hand side,
we plot the results for τ = 0.01. The SMV strategy tends to invest mainly in the
FTSE 100 and the S&P 500, while it tends to hold only a small short position on
the NIKKEI 225. It is also interesting that the portfolio weights exhibit the highest
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volatility in periods of high uncertainty in the market, such as, for example at the
end of 2016 and during the ongoing COVID-19 pandemic. Finally, we evaluate the
evolution of the wealth generated by the portfolios at the three risk levels during the
out-of-sample period. Figure 2.5 highlights a positive trend for all quantile levels
τ = 0.1 (violet line), τ = 0.05 (green line) and τ = 0.01 (yellow line) from 2014 to
2015 and from 2016 until the outbreak of COVID-19 at the beginning of 2020.

2.6 Discussion and conclusions

This paper proposes a dynamic joint quantile regression model for estimating the
VaR and ES of multiple financial assets in one step, extending the univariate
framework of Taylor (2019). To implement the methodology, we suggest a likelihood-
based approach based on the MAL density proposed in Petrella & Raponi (2019),
generalized to the case of time-varying parameters. This offers a powerful tool to
model the dynamics of multiple VaR and ES jointly. Indeed, the location parameter
of the MAL density represents the vector of the VaRs, while the ES can be expressed
as a simple function of the density scale parameter.

We show that our approach can offer several important advantages, both the-
oretical and practical. First, it provides a significant gain in terms of estimation
efficiency, as it allows us to estimate multiple VaR and ES in just one step. Second, it
can significantly improve the forecast accuracy, since it accounts for the dependence
structure among financial assets, which cannot be detected by univariate methods.
These results are also confirmed empirically. Indeed, using three stock market indices
as in Taylor (2019), we estimate the pairs (VaR, ES) for each of the three assets
and evaluate the forecasts using a new scoring function based on the MAL density,
which allows us to account for the dependence structure among the considered
assets at each point in time. The forecasts of VaR and ES are compared with those
obtained by the univariate approach of Taylor (2019), i.e., by considering the three
stock market indices separately, as they are independent of each other. We find a
significant gain in terms of the forecasting accuracy using the proposed multivariate
framework, leading to more reliable risk measure estimates.

Following Zhao et al. (2015), we also exploit the properties of the time-varying
MAL distribution to derive a new portfolio optimization method, where the optimal
allocation weights are adjusted at each holding period to ensure that the portfolio
meets a predetermined level of risk. Empirically, we find that our optimization
method produces a portfolio with less concentrated allocation weights and a higher
Sharpe Ratio than other existing strategies.

Several extensions and generalizations could be analyzed, leaving space for future
research. Although we focused only on CAViaR models, one could consider other
VaR-based models in the quantile regression framework or specify different ES
dynamics where the factor (1 + eγtj ) varies over time according to an autoregressive
process for γtj . Another interesting research problem concerns the evaluation of
the portfolio performance when a larger set of indices is considered, which may
help us in providing an empirical ranking based on the VaR and ES forecasts. In
this case, a penalized approach, as used, for instance, by Petrella & Raponi (2019),
could be adopted to deal with the curse of dimensionality, improve estimation,
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Portfolio Mean SD SFZ0 SFZN SAL SR HHI
Panel A: τ = [0.1, 0.1, 0.1]
SMV -2.716 0.883 1.317 1.549 2.473 0.225 0.558
Mom-SMV -2.785 0.859 1.405 1.592 2.486 0.221 0.563
MV-G-DCC-N -2.519 1.175 1.399 1.621 2.516 0.192 0.680
MV-G-DCC-t -2.391 1.107 1.380 1.911 2.491 0.198 0.662
MV-G-aDCC-N -2.520 1.174 1.399 1.622 2.491 0.195 0.697
MV-G-aDCC-t -2.392 1.107 1.379 1.912 2.487 0.193 0.673
MV-G-DCC-SN -3.198 1.483 1.419 1.876 2.511 0.187 0.693
MV-G-DCC-St -3.582 1.674 1.448 2.216 2.544 0.197 0.676
MV-G-aDCC-SN -3.199 1.482 1.418 1.876 2.511 0.188 0.691
MV-G-aDCC-St -3.582 1.633 1.459 2.208 2.544 0.200 0.678
Panel B: τ = [0.05, 0.05, 0.05]
SMV -4.016 1.240 1.563 1.612 2.529 0.204 0.557
Mom-SMV -3.759 1.244 1.592 1.615 2.615 0.189 0.562
MV-G-DCC-N -3.232 1.508 1.696 1.624 2.735 0.192 0.680
MV-G-DCC-t -3.174 1.476 1.655 2.024 2.696 0.198 0.662
MV-G-aDCC-N -3.234 1.507 1.695 1.625 2.735 0.195 0.697
MV-G-aDCC-t -3.176 1.476 1.655 2.025 2.696 0.193 0.673
MV-G-DCC-SN -3.812 1.770 1.666 1.868 2.706 0.187 0.693
MV-G-DCC-St -4.429 2.082 1.668 2.336 2.711 0.197 0.676
MV-G-aDCC-SN -3.809 1.765 1.664 1.871 2.705 0.188 0.691
MV-G-aDCC-St -4.430 2.027 1.679 2.327 2.722 0.200 0.678
Panel C: τ = [0.01, 0.01, 0.01]
SMV -5.227 1.936 1.989 1.656 3.031 0.154 0.533
Mom-SMV -5.346 2.036 2.018 1.756 3.043 0.141 0.527
MV-G-DCC-N -4.570 2.132 2.523 2.201 3.524 0.192 0.680
MV-G-DCC-t -4.913 2.312 2.263 2.073 3.266 0.198 0.662
MV-G-aDCC-N -4.572 2.132 2.523 2.202 3.522 0.195 0.697
MV-G-aDCC-t -4.914 2.311 2.263 2.074 3.266 0.193 0.673
MV-G-DCC-SN -5.004 2.325 2.406 1.865 3.407 0.187 0.693
MV-G-DCC-St -6.405 3.054 2.125 2.534 3.129 0.197 0.676
MV-G-aDCC-SN -5.009 2.336 2.395 1.877 3.396 0.188 0.691
MV-G-aDCC-St -6.395 2.948 2.145 2.503 3.149 0.200 0.678

Table 2.8. Evaluation of the out-of-sample forecasts of the portfolios VaR and ES. Mean
and SD report the average and standard deviation of the portfolio VaR. SFZ0, SFZN and
SAL show the average losses using the scoring functions of Patton et al. (2019), Nolde
et al. (2017) and Taylor (2019) in (2.30), (2.29) and (2.32), respectively. SR and HHI
denote the portfolio Sharpe Ratio and the averaged Herfindahl-Hirschman Index.
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Figure 2.5. Compound returns over the out-of-sample period computed using the selected
CAViaR-AS model at τ = 0.1 (violet), τ = 0.05 (green) and τ = 0.01 (yellow). The gray
bands correspond to the recession dates and to various economic and financial crises
that occurred in 2014,03-2015,02; 2015,07-2016,09; 2018,01-2018,06; 2018,08-2019,03;
and 2020,02-2020,03.

achieve greater parsimony and conduct a variable selection procedure. Finally, other
portfolio strategies can be implemented, where the choice of the weights may be
motivated by other practical considerations or regulatory restrictions.
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2.7 Appendix A. Proof of Proposition 4

As stated in Petrella & Raponi (2019), the MALp(µ,Dξ̃,DΣ̃D) in (2.3) can be
written as a location-scale mixture, having the following representation:

Y = µ+ Dξ̃C̃ +
√
C̃DΣ̃1/2Z (2.33)

where ξ̃ = [ξ̃1, ..., ξ̃p]′, having generic element ξ̃j = 1−2τj
τj(1−τj) , j = 1, ..., p. Σ̃ is a p× p

positive definite matrix such that Σ̃ = Λ̃ΨΛ̃, with Ψ being a correlation matrix
and Λ̃ = diag[σ̃1, ..., σ̃p], with σ̃2

j = 2
τj(1−τj) , j = 1, ..., p. Finally, Z ∼ Np(0p, Ip)

denotes a p-variate standard Normal distribution and C̃ ∼ Exp(1) has a standard
Exponential distribution, with Z being independent of C̃. Notice that, under the
constraints imposed on ξ̃ and Λ̃, the representation in (2.33) implies that:

Y | C̃ = c̃ ∼ Np(µ+ Dξ̃c̃, c̃DΣ̃D). (2.34)

Let φY(t) denote the characteristic function of Y, with t ∈ Rp. Using the result in
(2.33), it follows that:

φY(t) = EC̃
[
EY [eit′Y | C̃ = c̃]

]
=
∫ ∞

0
EZ [eit′(µ+Dξ̃c̃+

√
c̃DΣ̃

1
2 Z) | C̃ = c̃]e−c̃dc̃.

(2.35)

Now, using the conditional distribution of Y given C̃ in (2.34), we have that:

EZ [eit′(µ+Dξ̃c̃+
√
c̃DΣ̃

1
2 Z) | C̃ = c̃] = eit

′µ+it′Dξ̃c̃− c̃2 t′DΣ̃Dt.

Substituting this result into (2.35) yields:

φY(t) = eit
′µ
∫ ∞

0
e−c̃(1+ 1

2 t′DΣ̃Dt−it′Dξ̃)dc̃. (2.36)

Finally, integrating over C̃, we obtain:

φY(t) = eit
′µ
(

1 + 1
2t′DΣ̃Dt− it′Dξ̃

)−1
. (2.37)

Now, let b = (b1, ..., bp)′ ∈ Rp be a p × 1 vector such that b 6= 0p and consider a
new random variable Y b =

∑p
j=1 bjYj = b′Y, having characteristic function φY b(z),

with z ∈ R. Notice that Y b is a linear transformation of the marginals Y1, . . . , Yp.
Therefore, the relation φY b(z) = φb′Y(z) = φY(bz) holds, since:

φY b(z) = eizb
′µ
(

1 + 1
2z

2b′DΣ̃Db− izb′Dξ̃
)−1

. (2.38)

The characteristic function in (2.38) resembles the characteristic function of
the AL univariate distribution discussed in Yu & Moyeed (2001) and Kozumi &
Kobayashi (2011) where µ?, τ?, δ? are the scale, skewness and scale parameters,
respectively. Therefore, the characteristic function of Y b in (2.38) can be rewritten
as the characteristic function of a univariate AL distribution with parameters:
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µ? = b′µ, τ? = 1
2

1− b′Dξ̃√
2(b′DΣ̃Db) + (b′Dξ̃)2

 , δ? = (b′DΣ̃Db)

2
√

2(b′DΣ̃Db) + (b′Dξ̃)2
.

(2.39)

In conclusion, we obtain that Y b ∼ AL(µ?, τ?, δ?) and P(Y b < µ?) = τ?.
Consequently, the parameter τ? controls the probability assigned to each side of
Y b and µ? is the corresponding quantile at level τ?. Notice that the denomina-
tor 2(b′DΣ̃Db) + (b′Dξ̃)2 in (2.39) is well defined on the positive real line since
(b′Dξ̃)2 ≥ 0 and 2(b′DΣ̃Db) > 0 because Σ̃ is a positive definite matrix. Further-
more, when τ = [0.5, ..., 0.5], we have that b′Dξ̃ = 0 and (2.39) simplifies to τ? = 0.5
and δ? =

√
b′DΣ̃Db

2
√

2 , which implies that the distribution of Y b is symmetric around
µ?.

2.8 Appendix B. Simulation study

In this appendix we conduct a simulation study to evaluate the finite sample
properties of the proposed method and its ability to jointly estimate the pair (VaR,
ES) for multiple correlated assets. This simulation exercise addresses the following
issues. First, we consider different distributional choices for the error term to
investigate the behavior of the model in the presence of non-Gaussian errors. Second,
we evaluate the bias and accuracy of the ML estimators when the interest of the
research is focused upon the lower tails of the distributions.

We consider a sample size of T = 1500 and set p = 3. The observations are
simulated using the following data generating process:

Yt = QYt(τ |Ft−1) + εt, t = 1, 2, ..., T, (2.40)

where QYt(τ |Ft−1) is generated according to the three different CAViaR speci-
fications described in (2.4)-(2.6). For the ES component, we adopted both the
multiplicative factor specification in (2.10) and the AR formulation in (2.11)-(2.12).
Following Petrella & Raponi (2019), two different simulation scenarios are considered
for the error terms εt in (2.40):

(i) multivariate Normal distribution (N3) with zero mean and variance-covariance
matrix equal to DtΣ̃Dt, that is εt ∼ N3(0,DtΣ̃Dt);

(ii) multivariate Student-t distribution (T3) with 5 degrees of freedom, scale pa-
rameter DtΣ̃Dt and non centrality parameter Dtξ̃, that is, εt ∼ T3(5,Dtξ̃,DtΣ̃Dt).

The true values of the CAViaR model and the ES dynamics are calibrated using the
real data in the empirical application. Specifically, we set

ω = [−0.20,−0.12,−0.24]′, η = [0.85, 0.70, 0.60]′,
β1 = [−0.10,−0.05,−0.20]′, β2 = [0.05, 0.10, 0.20]′
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and

γ0 = [−1.1,−1.5,−1.3]′, γ1 = [0.05, 0.10, 0.02]′,
γ2 = [0.12, 0.05, 0.20]′ and γ3 = [0.80, 0.70, 0.60]′.

For the CAViaR-IG dynamic, each element of the vector ω is considered in terms of
absolute value to guarantee that the autoregressive process in (2.6) is well-defined.

Finally, we set Ψ =

 1 0.3 0.7
0.3 1 0.5
0.7 0.5 1

.
Since we are interested in evaluating the downside risk, we analyze three differ-
ent quantile vectors, namely, τ = [0.1, 0.1, 0.1], τ = [0.05, 0.05, 0.05] and τ =
[0.01, 0.01, 0.01]. For each model, we carry out B = 250 Monte Carlo replications
and report the percentage relative bias (Bias%) and the Root Mean Square Error
(RMSE) averaged across the B simulations. Tables 2.9 and 2.10 report the results
for the parameters ω,η and β of the three CAViaR specifications. As can be noted,
our estimation method is able to recover the true CAViaR specifications under both
the N3 and T3 scenarios and for both the considered ES dynamics. Indeed, both
the Bias% and the RMSE remain reasonably small under all the different scenarios
even though, as expected, their values tend to increase slightly as the quantile level
becomes more extreme (due to the reduced information available at the tails of
the distribution) and when we consider a heavy-tailed distribution (T3 scenario).
To computationally evaluate the speed of convergence of the EM algorithm, in
the last row of each panel, we also report the median number of iterations and
CPU Time (in seconds) required by the implemented R code using an Intel Xeon
E5-2609 2.40GHz processor. The running times range from 9.613 seconds for the
simplest SAV specification with a constant multiplicative factor specified for the ES
component to 47.242 seconds for the most complex AS model with an autoregres-
sive ES component, confirming the practical feasibility of our optimization algorithm.
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Chapter 3

Marginal M-quantile regression
for multivariate dependent data

3.1 Introduction

Quantile regression has attracted considerable interest in many empirical studies since
its introduction in the seminal paper of Koenker & Bassett (1978). It provides a way
to model the conditional quantiles of a response as a function of explanatory variables
in order to have a more complete picture of the entire conditional distribution
compared to the classical mean regression. For this reason quantile regression
methods have become widely used in the literature especially in those situations
where skewness, heavy-tails, outliers, truncation, censoring and heteroscedasticity
arise. For a detailed review and list of references, Koenker (2005) and Koenker et al.
(2017) provide an overview of the most used quantile regression techniques.
In real data applications, observations are often correlated with each other across
time, space, or other dimensions, like groups, and their analysis requires specific
data analysis tools which have received considerable attention over the years (Diggle
et al. 2002, Molenberghs & Verbeke 2006, Fitzmaurice et al. 2012, Goldstein 2011).
In particular, dependency of observations can be often seen as a clustering effect
(Bergsma et al. 2009) which arises in a number of sampling designs, including
clustered, multilevel, spatial, and repeated measures (Heagerty et al. 2000, Bergsma
et al. 2009, Geraci & Bottai 2014). In this context, quantile methods for modeling
dependent-type data have been considered in a wide range of different applications
spanning from medicine (Smith et al. 2015, Farcomeni 2012, Alfò et al. 2017, Marino
et al. 2018, Merlo, Maruotti & Petrella 2021), social inequality (Heise & Kotsadam
2015), economics (Bassett & Chen 2002, Kozumi & Kobayashi 2011, Bernardi et al.
2015, Bernardi, Durante, Jaworski, Petrella & Salvadori 2018, Giovannetti et al. 2018,
Merlo, Petrella & Raponi 2021), environmental modeling (Hendricks & Koenker
1992, Pandey & Nguyen 1999, Reich et al. 2011) and education (Kelcey et al. 2019).
When the interest of the research is on the entire conditional distribution, in addition
to the classical quantile regression, a possible alternative approach is to consider
the M-quantile regression proposed by Breckling & Chambers (1988). This method
provides a “quantile-like” generalization of the mean regression based on influence
functions, combining in a common framework the robustness and efficiency properties
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of quantiles and expectiles (Newey & Powell 1987), respectively. In fact, M-quantiles
extend the ideas of M-estimation of Huber (1964) and Huber & Ronchetti (2009) by
introducing a class of asymmetric influence functions to model the entire conditional
distribution of the response given the covariates. Depending on the type of influence
function used, M-quantiles may reduce to standard quantiles or expectiles. Although
M-quantiles have a less intuitive interpretation than standard quantiles (Jones
1994), they offer additional substantial benefits. More precisely, they allow for
robust estimation in the presence of influential data and they can trade robustness
for efficiency. From a computational perspective M-quantile regression ensures
uniqueness of the Maximum Likelihood solutions, and it offers greater stability as a
wide range of continuous influence functions can be employed (see Tzavidis et al. 2016
and Bianchi et al. 2018). The most frequently used function is the popular Huber
loss (Huber 1964) which utilises a tuning constant that can adjust the robustness of
the estimator in the presence of outliers and it is, henceforth, assumed throughout
our paper.
In the literature, M-quantiles have been implemented in a broad range of disciplines
spanning from multilevel modeling (Tzavidis et al. 2016, Alfò et al. 2017), small area
estimation (Chambers & Tzavidis 2006, Chambers et al. 2014, Salvati et al. 2021),
poverty mapping (Tzavidis et al. 2008) and longitudinal studies (Alfò et al. 2017,
Borgoni et al. 2018, Alfò et al. 2021).
Most of those proposals are, however, designed for a univariate framework. When
the purpose of the matter being investigated lies in describing the distribution of a
multivariate response, since there does not exist a natural ordering in a p-dimensional
space, p > 1, the univariate notion of M-quantile does not straightforwardly extend
to higher dimensions. Originally, Breckling & Chambers (1988) addressed the
problem of defining a multivariate M-quantile by introducing a direction vector in
the Euclidean p-dimensional space to establish a suitable ordering procedure for
multivariate observations. The multivariate M-quantile along a specified direction
is then obtained by minimizing a multidimensional Huber loss function (Huber
& Ronchetti 2009). Subsequently, Kokic et al. (2002) generalized their definition
by introducing a class of multivariate M-quantiles based on weighted estimating
equations. More recently, Alfò et al. (2021) proposed an M-quantile regression for
multivariate longitudinal data where, however, they sidestep the problem of defining
a multivariate M-quantile. The authors consider, in fact, univariate M-quantile
regression models with specific random effects for each outcome and dependence
between outcomes is introduced by assuming that the random effects in the univariate
models are dependent.

In the present paper we approach the problem of M-quantile regression for
the analysis of multivariate dependent structured data. We rely on the notion of
directional quantile proposed by Kong & Mizera (2012) which consider the quantiles
of projections of random vectors onto unit norm directions. We extend their approach
to the M-quantile framework by using the Huber’s influence function in Huber (1964).
In this context, directional M-quantiles, obtained from the projection of the original
data onto the real line along a specified direction, inherit robustness properties of
standard univariate M-quantiles where the corresponding direction assigns a relative
weight to each marginal of the response involved in the regression problem. The
main advantage of the projection-based definition is that it allows for a solution to
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an easier problem than the multivariate one but, at the same time, it condenses
valuable information about the dependence embedded in multivariate data. The
validity of this directional approach is also proven by the continuously growing
literature on the subject (see Hallin et al. 2010, Paindaveine & Šiman 2011, Kong &
Mizera 2012, Geraci et al. 2020, Farcomeni et al. 2020 and Cascos & Ochoa 2021).

In order to estimate directional M-quantiles as function of the covariates while
capturing within cluster correlations, we develop a Marginal M-quantile (MMQ)
model. The marginal approach refers to a general class of statistical methods that
are used to model dependent data where observations within a cluster are correlated
with each other (Liang & Zeger 1986, Lindsey 1999, Heagerty et al. 2000, Diggle
et al. 2002, Goldstein 2011). When fitting marginal models, the interest focuses on
the relationship between the response and explanatory variables while, at the same
time, acknowledging dependencies in the data. A popular estimation procedure for
estimating the marginal model parameters is the Generalized Estimating Equations
(GEE) approach introduced by Liang & Zeger (1986) and Zeger & Liang (1986).
Because the true correlation structure is unknown, the GEE formulates a “working
covariance matrix” to capture the dependence between observations and incorporate
that structure into the model. This method provides consistent estimates of the
regression coefficients in the presence of misspecification of the postulated correlation
matrix (Zeger et al. 1988) and has been adapted to quantile regression by Fu & Wang
(2012) and Lu & Fan (2015). Related literature on the use of quantile regression
and marginal models includes Lipsitz et al. (1997), Yang et al. (2017), Zhao et al.
(2020) and Lin et al. (2020), for example.
In our paper we introduce a generalization of the GEE approach of Liang & Zeger
(1986) by using the Huber’s loss function. We define a new robust estimator based
on the Generalized M-quantile Estimating Equations (GMQEE) and establish its
asymptotic properties using the Bahadur representation (Bahadur 1966). The
proposed method is robust to influential observations in the data and improves
the estimation efficiency by taking into account the correlation between linear
combinations of the outcomes within each cluster.
Moreover, when theoretically all directions are investigated simultaneously, the
proposed directional M-quantiles generate centrality regions and contours which
allow us to assess the effect of covariates on the location, spread and shape of the
entire distribution of the responses. In this case, M-quantile contours are represented
by contour lines with constant quantile level dividing the responses in two groups. In
particular, the points that lie outside can be classified as jointly abnormal compared
to those that fall within the contour, conditional on the covariates. M-quantile
contours adapt to the shape of the distribution of interest and summarize the
information carried by directional M-quantiles describing the dependence between
the responses and specific features of multivariate data. To analyse their shapes
and study the sampling variability of the M-quantile estimator of the contours, we
explore the use of a bootstrap approach to build confidence envelopes.

Using simulations, we illustrate the finite sample performance and the improve-
ment in the estimation efficiency under the approach introduced compared to the
case where clustering is ignored, and study the behaviour of the proposed robust
estimator in the presence of outliers.
From an empirical standpoint, we exploit the proposed MMQ regression model to
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analyse the Tennessee’s Student/Teacher Achievement Ratio (STAR) experiment
(see Word et al. 1990 and Finn & Achilles 1990). Educational data often have
a natural dependency structure, namely pupils are nested within schools, which
induces correlation between students belonging to the same school. We develop a
MMQ regression to jointly model students’ mathematics and reading scores as a
function of classroom size and teacher’s experience in kindergarten. This model
might be of great interest since it allows us to investigate the potentially differential
impact of covariates on the joint distribution of the response variables.

The rest of the paper is organized as follows. In Section 3.2 we introduce the main
notation and briefly review the M-quantile regression model. Section 3.3 describes
the proposed methodology and Section 3.4 discusses the estimation procedure and
develops the asymptotic theory. Section 3.5 presents the simulation study and the
results. The application is presented in Section 3.6 and Section 3.7 presents some
concluding remarks.

3.2 Preliminaries on M-quantile regression

M-quantile regression is a “quantile-like” generalization of regression based on
influence functions. It extends the ideas of M-regression (Huber 1964) to model the
relationship between the dependent variable and its predictors at different parts
of the conditional distribution. In particular, this method provides a procedure
which can be varied smoothly so as to capture the effect of explanatory variables on
the response either in the center of the sample or in the tails by using continuous
influence functions (Breckling & Chambers 1988).

Formally, the M-quantile of order τ ∈ (0, 1) of a continuous scalar response Y
given the k-dimensional vector of covariates X = x, is defined as the solution θx(τ)
of the following estimating equation:∫

ψτ (y − θx(τ))dFY |X(y | x) = 0, (3.1)

where FY |X(· | x) is the conditional distribution function of Y , ψτ (u) =| τ − 1(u<0) |
ψ(u/στ ) with ψ(·) being the first derivative of a convex loss function ρ(·) and στ is
a suitable scale parameter.

In a regression framework, for a given τ and ψ(·), a linear M-quantile regression
model is defined as follows:

θx(τ) = x′β(τ), (3.2)

where β(τ) is the k-dimensional regression parameter vector.
In this work, the influence function ψ(·) in (3.1) is chosen to be the well-known

Huber influence function (Huber 1964):

ψ(u) = u1(|u|≤c) + c sign(u)1(|u|>c), (3.3)

where c denotes a tuning constant bounded away from zero. The function in (3.3)
down weights residuals exceeding the selected value of c and remains bounded to
ensure that θx(τ) will not be distorted by arbitrarily large observations. The use of



3.3 Marginal M-quantile model for multivariate dependent data 71

the Huber influence function is chosen for several reasons. The tuning constant c can
be used to trade robustness for efficiency with increasing robustness when c is chosen
to be positive and close to 0 and increasing efficiency when c is chosen to be large and
positive. If c→ 0, ψ(u) = sign(u), one obtains the quantile regression (Koenker &
Bassett 1978); on the other hand, if c→∞, ψ(u) = u, M-quantile regression reduces
to expectile regression (Newey & Powell 1987). Secondly, as described in Street
et al. (1988), the regression parameters β(τ) in (3.2) can be estimated by Iterative
Reweighted Least Squares (IRLS) or using the Newton-Raphson algorithm developed
in Bianchi et al. (2018). In contrast to algorithms used for fitting quantile regression
models, the use of a continuous monotone influence function, as it is the case for
the Huber function, guarantees convergence to a unique solution (Kokic et al. 1997).
Proofs of consistency, asymptotic normality and estimators of the variance of the
M-quantile regression coefficients are established in Bianchi & Salvati (2015). These
properties make the M-quantile regression versatile and computationally appealing.

When it comes to a multivariate adaption of univariate M-quantiles, the main
difficulty is that there does not exist a natural ordering in p dimensions, p > 1
(Breckling & Chambers 1988). The papers by Breckling & Chambers (1988) and
Kokic et al. (2002) addressed this problem by introducing a direction vector in
the Euclidean p-dimensional space to establish a suitable ordering procedure for
multivariate observations. In both the univariate and multivariate cases, the available
definitions of M-quantile assume independent observations and do not allow for the
analysis of dependent data. In the next section we will consider a different approach
to multivariate M-quantiles based on directional M-quantiles accounting for the
possible correlation between observations that belong to the same cluster.

3.3 Marginal M-quantile model for multivariate depen-
dent data

In this section we introduce a new definition of multivariate M-quantiles based on
directional M-quantiles by extending the idea of Kong & Mizera (2012). In order to
account for dependencies in the data, we develop a Marginal M-quantile (MMQ) re-
gression model for directional M-quantiles, which incorporates a correlation matrix to
handle within-cluster correlation. We then summarize the information contained in
directional M-quantiles by describing the dependence between the outcome variables,
and the location, shape and spread of the distribution of the responses conditional
on different values of the covariates.

Suppose we have data on an absolutely continuous p-variate response variable
Yij = (Y (1)

ij , . . . , Y
(p)
ij )′ with yij being the corresponding observed value and let

Xij = (X(1)
ij , . . . , X

(k)
ij ) be a k-dimensional vector of explanatory variables recorded

for the i-th unit in the j-th cluster of size nj , for j = 1, ..., d and i = 1, ..., nj
with n =

∑d
j=1 nj . Also, let u denote a unit norm direction vector ranging over

the (p − 1)-dimensional unit sphere Sp−1 = {z ∈ Rp : ||z|| = 1}. To simplify the
notation, we stack up the projected responses on u to the nj dimensional vector
Ỹj = (u′Y1j , . . . ,u′Ynjj)′, while Xj = (Xij , . . . ,Xnjj) is a nj × k matrix collecting
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the covariates for group j.

Definition 1. Let Y be a continuous p-dimensional random vector with absolutely
continuous distribution function and let ψ(·) denote the Huber influence function in
(3.3). For any τ ∈ (0, 1) and direction u ∈ Sp−1, the directional M-quantile of order
τ , in the direction u, θu(τ), is the τ -th M-quantile of the corresponding projection
of the distribution of Y.

The proposed directional M-quantile is real-valued and it corresponds to the
univariate τ -th M-quantile of the distribution of u′Y, where the direction u can be
interpreted as a weight vector for each marginal distribution of Y involved in the
regression problem. In addition, directional M-quantiles inherit the computational
advantages, robustness and efficiency properties of standard univariate M-quantiles
described in Section 3.2. Specifically, by varying the tuning constant c in (3.3),
directional M-quantiles reduce to directional quantiles of Kong & Mizera (2012) when
c→ 0 and reduce to directional expectiles for c large. Clearly, Definition 1 includes
the traditional notion of univariate M-quantile. For p = 1, indeed, S0 simply reduces
to two end-points, {−1, 1}, and θu(τ) to the classical univariate M-quantile. The
direction u is often selected depending on the empirical problem in order to produce
meaningful results (see Paindaveine & Šiman 2011, Kong & Mizera 2012, Geraci
et al. 2020 and Farcomeni et al. 2020). A further possibility is to use the principal
component of a Principal Component Analysis by maximizing the variance of the
projected data u′Y as discussed in Korhonen & Siljamäki (1998) and in Geraci et al.
(2020).

In the regression context, the proposed definition can be easily extended to
conditional distributions when covariates are available. For a given τ ∈ (0, 1) and
u ∈ Sp−1, the conditional directional M-quantile is defined as:

θu,x(τ) = x′ijβ(τ,u), i = 1, ..., nj and j = 1, ..., d, (3.4)

where xij is the covariates vector for the i-th subject in the j-th group and β(τ,u) is
the k-dimensional vector of regression coefficients. The linear model in (3.4) assumes
that β(τ,u) represents the effect of the covariates on the conditional τ -th directional
M-quantile of Yij given Xij = xij in the direction u.
The considered directional approach is a viable way to take into account not only the
dependence among variables, circumventing the problem of defining a multivariate
M-quantile, but also to get useful insights on the dependence of Y on the set of
covariates X, fully characterizing the conditional distribution of the response.

In the literature there have been numerous approaches proposed to account for
the dependence structure of the data (see for instance Liang & Zeger 1986, Heagerty
et al. 2000, Diggle et al. 2002, Goldstein 2011 and the references therein). One
possible solution is to consider the so called marginal modeling framework (see Liang
& Zeger 1986, Lindsey 1999, Heagerty et al. 2000, Bergsma et al. 2009) and estimate
the parameters using the GEE approach of Liang & Zeger (1986). To account for the
dependence structure which arises because of the clustered observations, we introduce
a suitable correlation matrix Cj(rj) of size nj indexed by the sj-dimensional vector rj
which fully characterizes the correlation between groups, j = 1, ..., d. This “working”
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correlation matrix Cj(rj) is able to capture within group dependence and enhance
the efficiency of the regression coefficients estimator (see also Liang & Zeger 1986,
Zeger & Liang 1986 and Zeger et al. 1988).

Following Sinha & Rao (2009) and Liang & Zeger (1986), for a given τ and
direction u, we define the estimator β̂MMQ(τ,u) as the solution of the following
Generalized M-quantile Estimating Equations (GMQEE):

U(β(τ,u)) =
d∑
j=1

Uj(β(τ,u)) =
d∑
j=1

X′jΣ−1
j (rj)V

1
2
j ψτ (zj) = 0, (3.5)

where zj = V−
1
2

j (Ỹj −Xjβ(τ,u)) denotes the nj-dimensional vector of standardized
residuals, Vj is the diagonal matrix of size nj which contains the scale parameter
σ2
τ for the residuals’ distribution Ỹj −Xjβ(τ,u), ψτ (·) is the influence function in

(3.3) and
Σj(rj) = V

1
2
j Cj(rj)V

1
2
j , (3.6)

is the “working” covariance matrix. Several remarks are noteworthy regarding the
methodology introduced above. First, when Cj(rj) = Inj , with Inj being the identity
matrix of size nj , (3.5) reduces to:

UI(β(τ,u)) =
d∑
j=1

X′jV
− 1

2
j ψτ (zj) = 0, (3.7)

where independence between clustered observations is assumed. In this case, we
denote β̂I(τ,u) the estimator of β(τ,u) as the solution of (3.7). Second, contrary to
the well known GEE estimator of Liang & Zeger (1986), using the Huber’s function
ensures that β̂MMQ(τ,u) behaves robustly against outliers for finite values of c.
Furthermore, by focusing on linear combinations of Y, inference on βMMQ(τ,u)
accounts for the possible correlation between the outcomes through the working
correlation structure in (3.6). Finally, it should also be pointed out that, when the p
directions forming the standard basis of Rp are considered, our methodology reduces
to p component-wise univariate MMQ regressions as a by-product. To the best of
our knowledge, this is the first time a marginal M-quantile regression model is being
introduced in the literature.

As stated in Liang & Zeger (1986) and Zeger et al. (1988), (3.5) gives consistent
estimates of the regression parameters and of their variances, and when the correlation
structure of the data is appropriately incorporated, it improves the efficiency of
parameter estimation relative to β̂I(τ,u) (Liang & Zeger 1986, Crowder 1995, Wang
& Carey 2003, 2004 and Hin & Wang 2009). We present the asymptotic properties
of the proposed estimator β̂MMQ(τ,u) in Section 3.4.1.

Several choices for Cj(rj) have been proposed in the related literature, such as
the exchangeable correlation structure [Cj(rj)]ik = r for all units i and k, i 6= k,
in the j-th group, or the AR1 structure [Cj(rj)]ik = r|i−k| where the correlation
decreases geometrically with separation as in autoregressive schemes; or the totally
unspecified structure [Cj(rj)]ik = rik, where [Cj(rj)]ik denotes the (i, k)-th element
of Cj(rj). Their specification and the parameters interpretation depend on the
application under investigation. For example, the exchangeable correlation structure
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occurs in clustered data while the AR1 structure can be a suitable choice to take
into account time dependence among repeated measurements in longitudinal data.

3.3.1 M-quantile regions and contours

In the previous sections we described the MMQ regression model when a fixed
direction in Sp−1 is considered. To provide a full description of the dependence of
the responses Y on the regressors X, we investigate how directional M-quantiles can
provide a summary when, theoretically, all directions over the (p− 1)-dimensional
unit sphere Sp−1 are investigated simultaneously, for fixed τ .

Let y denote the realization of the random vector Y. For a given τ ∈ (0, 1) and
u ∈ Sp−1, we first define the τ -th directional M-quantile regression hyperplane:

πu,x(τ) = {y ∈ Rp : u′y = θu,x(τ)}, (3.8)

where θu,x(τ) is defined in (3.4). For example, when p = 2, the hyperplanes in (3.8)
amount to lines which indicate how directional M-quantiles divide the data. Each
hyperplane πu,x(τ) characterizes a lower (open) and an upper (closed) M-quantile
regression halfspace H−u,x(τ) = {y ∈ Rp : u′y < θu,x(τ)} and H+

u,x(τ) = {y ∈ Rp :
u′y ≥ θu,x(τ)}, respectively. M-quantile centrality regions and contours of order
τ are obtained by taking the “upper envelope” of the τ -th directional M-quantile
hyperplanes in (3.8). If the distribution of Y is absolutely continuous, we may
restrict to τ ∈ (0, 1

2 ] and define the τ -th M-quantile region conditional on X = x,
Rx(τ) ⊂ Rp, as:

Rx(τ) =
⋂

u∈Sp−1

H+
u,x(τ). (3.9)

The region defined in (3.9) is convex, compact and bounded (Hallin et al. 2010,
Kong & Mizera 2012), and the corresponding conditional M-quantile contour of
order τ is defined as the boundary ∂Rx(τ) of Rx(τ). Such quantities are of crucial
interest as they are able to detect covariate-dependent features of the distribution
of the responses given X, while ensuring robustness to outlying data. Specifically,
for fixed τ , when the tuning constant of the Huber loss function c in (3.3) goes
to zero, M-quantile contours reduce to directional quantile envelopes illustrated in
Kong & Mizera (2012); on the other hand, when c→∞ our methodology allows us
to introduce the definition of expectile contours as a particular case. Meanwhile,
for a given c, the contours are nested as τ increases. As τ → 0, the M-quantile
contour of order τ approaches the convex hull of the sample data providing valuable
information about the extent of extremeness of the points.

3.4 Estimation and inference

In this section we provide the algorithm to compute an estimate of the robust esti-
mator β̂MMQ(τ,u) in (3.5), for fixed τ and u. Then, holding τ fixed, when u ranges
over a subset of Sp−1 we present the estimation procedure to obtain ∂Rx(τ) and
construct confidence envelopes. We conclude this section by deriving the asymptotic
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properties of β̂MMQ(τ,u).

In order to estimate β̂MMQ(τ,u) and the corresponding covariance matrix
Ω(β̂MMQ(τ,u)) we propose to use the iterative Newton-Raphson algorithm to solve
the GMQEE in (3.5). The elements rj of the correlation matrix Cj(rj), j = 1, ..., d
are obtained by exploiting the method of moments (see Liang & Zeger 1986, Fu &
Wang 2012, Marino & Farcomeni 2015, Lu & Fan 2015 and Barry et al. 2018). As
mentioned before, the choice of Cj(rj) depends on the empirical problem at hand.
If, for example, we assume an exchangeable structure, we have that the correlation
parameter rj = r can be computed by using the following formula:

r =
∑d
j=1

∑nj
i<i′ ψτ (zij)ψτ (zi′j)

φ(
∑d
j=1

1
2nj(nj − 1)− k)

Exchangeable, (3.10)

while, for the first-order autoregressive working strucutre, r can be estimated by:

r =
∑d
j=1

∑nj−1
i=1 ψτ (zij)ψτ (zi+1j)

φ(
∑d
j=1 nj(nj − 1)− k)

Autoregressive. (3.11)

Alternatively, when a completely general correlation matrix is considered, we have
the unstructured case, i.e.:

rii′ =
∑d
j=1 ψτ (zij)ψτ (zi′j)

φ(d− k) , i 6= i′ Unstructured, (3.12)

where φ = 1
n−k

∑d
j=1

∑nj
i=1 ψτ (zij)2. In what follows, we report all the steps of the

algorithm to estimate β̂MMQ(τ,u) and Ω(β̂MMQ(τ,u)).
At the end of the procedure, we compute the estimate π̂u,x(τ) and Ĥ+

u,x(τ) in
(3.8) and (3.9). Keeping τ fixed, we repeat the algorithm by varying the direction u
over a finite subset Sp−1

B ⊂ Sp−1 of all possible directions, B ∈ N. For each u ∈ Sp−1
B ,

the model is re-estimated and the corresponding π̂u,x(τ) and Ĥ+
u,x(τ) are recorded.

In this way, we obtain a sequence {Ĥ+
u,x(τ),u ∈ Sp−1

B } which allows us to compute
the estimate R̂x(τ) of Rx(τ) as:

R̂x(τ) =
⋂

u∈Sp−1
B

{Ĥ+
u,x(τ)}. (3.13)

We then estimate the contour ∂R̂x(τ) from (3.13).

To analyse the shape of ∂R̂x(τ) and provide a simple representation of its
variability, we construct confidence regions for ∂R̂x(τ). Following Molchanov (2005)
and Molchanov & Molinari (2018) let us denote by Haus(A,B) the Hausdorff distance
between two sets, say A and B. Our objective is to construct an asymptotically valid
confidence set, Cd,1−α, such that:

Pr(∂Rx(τ) ⊂ Cd,1−α) = 1− α, (3.14)
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Algorithm The GMQEE algorithm

1 Let β̂
(0)

(τ,u) = β̂I(τ,u) and Ω(β̂
(0)

(τ,u)) = 1
dIk denote the starting values for the

algorithm.

2 Given β̂
(b)

(τ,u) at the b-th iteration, set ε̂(b+1)
ij = ỹij − x′ijβ̂

(b)
(τ,u) and compute στ , zij

and φ as:

σ̂(b+1)
τ =

Med{| ε̂(b+1)
ij −Med{ε̂(b+1)

ij } |}
0.6745 ,

ẑ
(b+1)
ij =

ỹij − x′ijβ̂
(b)

(τ,u)
σ̂

(b+1)
τ

,

φ̂(b+1) = 1
n− k

d∑
j=1

nj∑
i=1

ψτ (ẑ(b+1)
ij )2,

with ỹij being the i-th element of the vector ỹj defined in Section 3.3.

3 Depending upon the choice of Cj(rj), update the correlation parameters r̂(b+1)
j using

ẑ
(b+1)
ij and φ̂(b+1).

4 Given r̂(b+1)
j , update β̂

(b)
(τ,u) and Ω(β̂

(b)
(τ,u)) by:

β̂
(b+1)

(τ,u) = β̂
(b)

(τ,u) +
[
− ∂U(β(τ,u))

∂β(τ,u)

]−1

β̂
(b)

(τ,u)

[
U(β(τ,u))

]
β̂

(b)
(τ,u)

,

Ω(β̂
(b+1)

(τ,u)) =
[
−∂U(β(τ,u))

∂β(τ,u)

]−1

β̂
(b)

(τ,u)

[
Cov(U(β(τ,u)))

]
β̂

(b)
(τ,u)

[
−∂U(β(τ,u))

∂β(τ,u)

]−1

β̂
(b)

(τ,u)

,

where
∂U(β(τ,u))
∂β(τ,u) = −

d∑
j=1

X′jΣ−1
j (rj)DjXj

and

Cov(U(β(τ,u))) =
d∑
j=1

X′jΣ−1
j (rj)V

1
2
j ψτ (zj)ψ′τ (zj)V

1
2
j Σ−1

j (rj)Xj ,

with Dj being the diagonal matrix with i-th element [D]ij = ∂ψτ (zij)
∂zij

.

5 Repeat 2-4, until convergence. In this work, convergence is achieved when the difference
between the estimated model parameters obtained from two successive iterations is less than
10−8.
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as d→∞. Let W = Haus(∂R̂x(τ), ∂Rx(τ)) and define:

w1−α = F−1
W (1− α). (3.15)

Then, it is easy to see that:

Pr(∂Rx(τ) ⊂ ∂R̂x(τ)⊕ w1−α) ≥ 1− α. (3.16)

To approximate the distribution of W following Chen et al. (2017) and Molchanov &
Molinari (2018), we adopt a nonparametric block bootstrap approach which preserves
the group dependencies. Let ((Y?

1,X?
1), ..., (Y?

d? ,X?
d?)) be a bootstrap sample and

let ∂R̂?x(τ) denote the corresponding estimate of the order-τ M-quantile regression
contour. We define W ? = Haus(∂R̂?x(τ), ∂R̂x(τ)) and define the bootstrap estimate
of w1−α as:

ŵ1−α = F−1
W ?(1− α). (3.17)

Then the bootstrap confidence set for ∂Rx(τ) is ∂R̂x(τ) ⊕ ŵ1−α. In particular,
this procedure allows us to construct asymptotically valid confidence envelopes
for ∂Rx(τ) (see Chen et al. 2017 and Molchanov & Molinari 2018) and identify
potential influential observations depending on whether they fall inside or outside
the estimated envelope.

3.4.1 Asymptotic properties

This section presents the asymptotic properties of the GMQEE estimator. First, we
derive the Bahadur-type (Bahadur 1966) representation, consistency and asymp-
totic normality of β̂MMQ(τ,u) for fixed τ and u. Subsequently, we establish the
asymptotic properties of the GMQEE estimator when several directions in Sp−1 are
considered simultaneously. Throughout this section, let Σj = Σj(rj), j = 1, ..., d.

Consider the following assumptions:

(i) The distribution of the random vector Y is absolutely continuous with respect
to the Lebesgue measure on Rp, with density that has connected support, and
admits finite first-order moments.

(ii) (Yj ,Xj), j = 1, ..., d is an i.i.d. sample from (Y,X).

(iii) The function ρ(·) related to (3.1) is continuous and strictly monotonic.

(iv) The function ψ(·) in (3.3) is bounded, non-decreasing and is twice differentiable
at β̂MMQ(τ,u), with the convention ψ(0) = 0.

(v) E[|| U(β(τ,u)) ||2] <∞,∀β(τ,u) ∈ Rk.

(vi) Let H denote the k × k matrix:

H = 1
d

d∑
j=1

X′jΣ−1
j E[Dj ]Xj , (3.18)

with H being positive definite.
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Theorem 1. Let assumptions (i)-(vi) hold. Then,

√
d(β̂MMQ(τ,u)− β(τ,u)) = 1√

d
H−1

d∑
j=1

Uj(β(τ,u)) + o(1) (3.19)

and
√
d(β̂MMQ(τ,u)− β(τ,u)) p→ N (0,H−1BH−1) as d→∞, (3.20)

with B being

B = 1
d

d∑
j=1

X′jΣ−1
j V

1
2
j E[ψτ (zj)ψ′τ (zj)]V

1
2
j Σ−1

j Xj . (3.21)

Proof. By assumptions (iii)-(iv), the Huber loss function ρ(·) with constant c bounded
away from zero is continuous, differentiable and convex, thus the estimating equation
U(β(τ,u)) in (3.5) is continuous in β(τ,u). Furthermore, H is positive definite by
assumption (v) (see Bianchi & Salvati 2015). Then, Theorem 4 of Niemiro et al. (1992)
applies which establishes the Bahadur representation in (3.19). Subsequently, (3.20)
follows from (3.19) by the multivariate Central Limit Theorem and the Slutsky’s
Theorem.

It is worth noting that assumptions (i)-(vi) are quite mild and standard in robust
estimation theory. For example, assumption (i) holds when Y is multivariate Gaus-
sian or multivariate Student t distribution with ν > 2 degrees of freedom; assumption
(iii) is a technical moment condition required for the asymptotic representation of
β(τ,u) while assumption (iv) is an identifiability condition. In assumption (iv)
instead, the existence and positive-definiteness ensure the invertibility of H needed
for the Bahadur representation.

In addition, to gain better estimation accuracy, we may estimate multiple MMQ
models at different directions simultaneously by incorporating the associations among
the considered directions. Hence, by proceeding as in the proof of Theorem 1 and
applying the multivariate Central Limit Theorem to the Bahadur representation
in (3.19), we derive the asymptotic distribution of the GMQEE estimator when
multiple directions are considered jointly, as shown in the following remark.

Remark 1. Let {u1, . . . ,uJ} ⊂ Sp−1, with J being a fixed positive integer. Suppose
assumptions (i)-(vi) hold, then the joint asymptotic distribution of

√
d
(
β̂MMQ(τ,u1)−

β(τ,u1), . . . , β̂MMQ(τ,uJ)− β(τ,uJ)
)
is Gaussian with zero mean and the asymp-

totic covariance matrix between
√
d(β̂MMQ(τ,ur)−β(τ,ur)) and

√
d(β̂MMQ(τ,us)−

β(τ,us)), where 1 ≤ r, s ≤ J , is given by:

H(ur)−1B(ur,us)H(us)−1, (3.22)

with

H(ur) = 1
d

d∑
j=1

X′jΣ−1
j (ur)E[Dj(ur)]Xj , (3.23)
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B(ur,us) = 1
d

d∑
j=1

X′jΣ−1
j (ur)V

1
2
j (ur)E[ψτ (zj(ur))ψ′τ (zj(us))]V

1
2
j (us)Σ−1

j (us)Xj

(3.24)
and where the i-th element of zj(ur) is zij(ur) = (u′ryij − x′ijβ(τ,ur))/στ,ur .

In order to use Theorem 1 to build confidence intervals and hypothesis tests for
β̂MMQ(τ,u), a consistent estimator of the asymptotic covariance matrix H−1BH−1

in (3.20) is needed. We estimate H and B using a generalization of the robust
estimator in White (1980) based on the well known sandwich approach, i.e.:

Ĥ = 1
d

d∑
j=1

X′jΣ̂−1
j D̂jXj , (3.25)

B̂ = 1
d

d∑
j=1

X′jΣ̂−1
j V

1
2
j ψτ (ẑj)ψ′τ (ẑj)V

1
2
j Σ̂−1

j Xj , (3.26)

with D̂j = ∂ψτ (ẑij)
∂zij

and Σ̂j = Σj(r̂j).
We now show that the covariance matrix estimator Ĥ−1B̂Ĥ−1 is consistent.

Theorem 2. Let assumptions (i)-(vi) hold. Then,

Ĥ−1B̂Ĥ−1 −H−1BH−1 p→ 0, (3.27)

where the notation is understood to indicate convergence of the matrices element by
element.

Proof. To prove consistency of Ĥ−1B̂Ĥ−1, it suffices to apply Theorem 5 in Bianchi
& Salvati (2015).

Finally, following Prentice & Zhao (1991) and Yan & Fine (2004), the robust
covariance estimator for the correlation parameter rj is:

Ω(r̂j) =
( d∑
j=1

K′jKj

)−1( d∑
j=1

K′jCov(ŝj)Kj

)( d∑
j=1

K′jKj

)−1
, (3.28)

where Kj = ∂αj/∂rj , αj and ŝj are the nj(nj − 1)/2 vectors of pairwise correlations
in Cj(rj) and of upper triangular elements of the matrix ψτ (ẑj)ψ′τ (ẑj) in vector
form, respectively.

3.4.2 Selection of working correlation structure

In the inferential procedure discussed above, the working correlation structure
C(r) is generally unknown a-priori. From an applied perspective, the choice of an
appropriate correlation matrix should be data driven and take into account the
structure of the data to achieve greater asymptotic efficiency, using either statistical
tools or the analyst’s prior knowledge. In the literature, C(r) is typically estimated
via selection model techniques, such as working correlation selection criteria (see
e.g., Pan 2001, Hin & Wang 2009, Chen & Lazar 2012, Gosho et al. 2014, Fu et al.
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2018). In this work, we select the optimal structure for C(r) using the Correlation
Information Criterion (CIC) of Hin & Wang (2009). More formally, for a given τ
and u, the CIC is defined as:

CIC(Ĉ) = Tr(ĤIΩ̂), (3.29)

where ĤI is the matrix in (3.25) evaluated at β̂MMQ(τ) under the working indepen-
dence model, Ω̂ is the variance-covariance of β̂MMQ(τ) estimated from (3.25) and
(3.26), and Tr(A) denotes the trace of a square matrix A. Following Pan (2001)
and Hin & Wang (2009), in order to estimate the optimal correlation structure, at
first we fit the proposed MMQ model using different candidate working correlation
structures (e.g., independence, exchangeable, autoregressive, unstructured) and then
select the best one corresponding to the lowest value of the criteria in (3.29).

The validity of the proposed estimation algorithm and correlation structure
selection procedure are assessed in the next section.

3.5 Simulation study

In this section we conduct a simulation study to evaluate the finite sample properties
of the proposed method. We address the following issues. First, we consider a
subset of directions in Sp−1 to study: (i) the efficiency of the MMQ model with
respect to the independence assumption case; (ii) its robustness to outlying values
and misspecification of the true correlation structure for different distributional
choices of the error term and degrees of dependence among clustered units; (iii)
the performance of the considered information criterion in selecting the optimal
correlation structure. Second, we provide a visual representation of the dependence
between the Y’s, and location and shape of M-quantile contours conditional on the
covariates under different data generating mechanisms.

The observations are generated from the following bivariate, p = 2, regression
model:

Yij = X′ijB + εij , i = 1, ..., nj and j = 1, ..., d, (3.30)

where nj = 7 for j = 1, ..., d with d = 120 and Xij = (1, X(1)
ij )′. The explanatory

variable is generated from a standard Normal distribution and B =
( 100 110

2 1
)
.

Following Cho (2016), two error distributions are considered for εj = (ε1j , ..., εnjj)′:

(N ): multivariate Normal distribution with mean 0, marginal variance 1 and
an exchangeable correlation structure with a correlation coefficient r;

(T ): multivariate Student t distribution with 3 degrees of freedom, non
centrality parameter equal to 0 and an exchangeable correlation structure with
a correlation coefficient r.

This enables us to set both the correlation coefficient within the observations in the
j-th group and the one between different response variables k = 1, ..., p over the
same i-th unit to be r, i.e. Cor(Yijk, Yi′jk) = Cor(Yijk, Yijk′) = r with i 6= i′ and
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k 6= k′. Similarly to Lu & Fan (2015), Fu & Wang (2012) and Lin et al. (2020), we
consider errors with low (r = 0.3) and high (r = 0.8) correlation. To investigate the
robustness of the proposed method to the presence of outliers, in the N -scenario
we contaminate the responses by using Yij + δijN2(0,Σ), where δij ∼ Ber(α),
with α = Pr(δij = 1), and where Σ is a p× p diagonal variance-covariance matrix
with marginal variances equal to 100 and 150. The proportion of contaminated
observations α is chosen to be 10%. Naturally, when α = 0 there is no contamination
and errors follow a Normal distribution, whereas the other settings correspond to
clear deviations from normality to more heavy-tailed distributions.

For each simulation configuration, we select three quantile levels τ = (0.1, 0.5, 0.9)
and three directions, namely u1 = (1, 0),u2 = (1

3 ,
2
3) and u3 = (0, 1), where the first

and last vectors points vertically in the Y (1) and Y (2) direction, respectively. For u1
and u3, our MMQ model reduces to two component-wise univariate regressions where
each marginal of Y is regressed onto the covariates X, while the second direction
weights equally Y (1) and Y (2). We first project Y onto each direction u and then
regress u′Y on the explanatory variables X using the MMQ model. For a given τ
and u, the true vector of the MMQ model parameters β(τ,u) = (β0(τ,u), β1(τ,u))
can be computed as β(τ,u) = Bu, where the intercept β0(τ,u) has been corrected
to ensure that the conditional τ -th M-quantile of u′Y is equal to X′β(τ,u). To
evaluate the impact of misspecifying the working correlation structure on inference,
we fit the MMQ model using the Exchangeable (E), Autoregressive of order one
(AR1) and Unstructured (U) correlation matrices, and compare the results with the
simplifying Independence (I) hypothesis which explicitly disregards the dependency
between clustered observations. The tuning constant c in (3.3) has been set to
1.345 which gives reasonably efficiency under normality and protects against outliers
(Huber & Ronchetti 2009).

We carry out H = 1000 Monte Carlo replications and we calculate the Average
Relative Bias (ARB) defined as:

ARB(θ̂τ ) = 1
H

H∑
h=1

(θ̂(h)
τ − θτ )
θτ

× 100, (3.31)

where θ̂(h)
τ is the estimated parameter at quantile level τ for the h-th replication and

θτ is the corresponding “true” value of the parameter. To evaluate the efficiency
of β̂MMQ(τ,u) w.r.t. β̂I(τ,u), we compute the Relative Efficiency (REF) measure
defined as:

REF(β̂(τ,u)) =
S2(β̂MMQ(τ,u))
S2(β̂I(τ,u))

, (3.32)

where S2(β̂(τ,u)) = 1
H

∑H
h=1(β̂(τ,u)(h)− β̄(τ,u))2 and β̄(τ,u) = 1

H

∑H
h=1 β̂(τ,u)(h).

The REF defined in (3.32) measures the efficiency gain of the estimates of β(τ,u)
using the proposed directional M-quantile regression method, β̂MMQ(τ,u), over
the independence assumption, β̂I(τ,u). When REF(β̂(τ,u)) is less than one, this
indicates that β̂MMQ(τ,u) is preferable. Tables 3.1-3.2 show the ARB and REF
measures of the proposed estimators β̂MMQ(τ,u) for each component of the pa-
rameter vector β(τ,u) under the considered working correlation structures. As can
be noted, when there are no outliers in the data, the proposed model under the



82 3. Marginal M-quantile regression

Gaussian and the Student t error distributions is able to recover the regression
coefficients for both low (Table 3.1) and high (Table 3.2) degree of dependence. Not
surprisingly, the bias effect is quite small when we analyze the median levels. As the
τ levels become more extreme, the ARB increases because of the reduced amount of
information in the tails of the distribution but it remains reasonably small. In the
presence of outliers, the proposed method still provides uniformly good results even
when the working correlation matrix is incorrectly specified, as large residuals are
down-weighted by the constant c of the Huber functions and do not produce much
larger biases. Furthermore, the estimator of the proposed model is more efficient
than the corresponding estimator from classical M-quantile regression under the
independence assumption. Examination of Table 3.1 shows that with a moderate
correlation (r = 0.3), the relative efficiencies of the regression estimators β̂MMQ(τ,u)
perform slightly better when the errors follow a multivariate Normal and Student
t distributions. When the correlation increases (r = 0.8), the proposed estimator
become much more efficient than the working independence estimator. This pattern
is consistent across all three examined quantile levels even under the misspecified
AR1 correlation structure, indicating the robustness of the proposed method. In
the case of contamination (α = 10%), our estimator still outperforms the naive one
β̂I(τ,u) with low and large r. This demonstrates that the β̂MMQ(τ,u) estimator
yields positive results in settings with clear departures from normality as the MMQ
model protects against outlying values and accounts for the specific dependence
structure embedded in the data. In addition, by focusing on linear combinations of
the responses (see Panels B in Tables 3.1-3.2), there is an even greater improvement
in the estimation efficiency compared to the independence assumption because the
working correlation matrix also accounts for the correlation between the outcomes
within each cluster. The results with α = 5% confirm these findings and are available
from the authors. To evaluate how the MMQ estimator is affected under a more
extreme level of contamination, we also consider α = 20% and report the results in
Table 3.3. As one can see, the effect of contamination is visible on both the ARB
and REF compared to those in Tables 3.1-3.2, however, the increase in the ARB is
only a small effect in relation to the increase in the proportion of contaminated data
points from α = 10% to 20%.

To assess the performance of the estimated variances as described in (3.20), we
report the Coverage Probability (CP) of nominal 95% confidence intervals for β0(τ,u)
and β1(τ,u) defined by the number of times the interval θτ ± 2

√
Var(θ̂τ ) contains

the “true” population parameter divided by the number of Monte Carlo replicates
H. The results presented in Tables 3.4 and 3.5 indicate that under the Gaussian,
contaminated Gaussian scheme with α = 10% and Student t scenarios, our variance
estimator leads to confidence intervals with coverage close to the theoretical value
of 0.95 for all τ levels. When α = 20%, the obtained CPs come close to the 0.95
nominal level even tough there is some degree of over- and under- coverage. This
should not surprise us given that in all simulation scenarios, the tuning constant c of
the Huber function has been set to 1.345, which gives 95% efficiency in the normal
case. However, when large values of α are used, the extent of contamination which
can be tolerated by the proposed model can be increased by selecting smaller values
of c to further reduce the effects of contamination on inference.
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

N N − 10% T

Panel A: u1

I β0 0.002 (1.000) −0.011 (1.000) −0.019 (1.000) 0.005 (1.000) −0.010 (1.000) 0.006 (1.000) −0.024 (1.000) −0.023 (1.000) −0.037 (1.000)
β1 −0.009 (1.000) 0.052 (1.000) −0.064 (1.000) −0.116 (1.000) −0.171 (1.000) −0.160 (1.000) −0.025 (1.000) −0.035 (1.000) −0.111 (1.000)

E β0 0.002 (0.985) −0.010 (1.013) −0.020 (1.002) 0.005 (1.004) −0.010 (0.981) 0.007 (0.997) −0.025 (1.002) −0.023 (1.002) −0.038 (0.982)
β1 0.000 (0.828) 0.099 (0.786) −0.090 (0.879) −0.138 (0.950) −0.064 (0.862) −0.110 (1.008) −0.124 (0.850) −0.060 (0.825) −0.049 (0.838)

AR1 β0 0.002 (0.984) −0.011 (1.019) −0.020 (0.999) 0.005 (1.001) −0.011 (0.978) 0.007 (0.999) −0.024 (1.011) −0.023 (1.018) −0.039 (0.995)
β1 −0.037 (0.946) 0.091 (0.940) −0.097 (0.972) −0.156 (0.981) −0.081 (0.968) −0.131 (1.014) −0.031 (1.003) −0.028 (0.958) −0.119 (1.002)

U β0 0.005 (1.027) −0.011 (1.045) −0.025 (1.057) −0.000 (1.067) −0.012 (1.017) 0.011 (1.051) −0.002 (1.019) −0.024 (1.009) −0.060 (0.948)
β1 0.004 (0.874) 0.063 (0.812) −0.087 (0.939) −0.135 (1.036) −0.113 (0.912) 0.020 (1.038) 0.048 (0.830) −0.070 (0.885) 0.061 (0.880)

Panel B: u2

I β0 0.006 (1.000) −0.007 (1.000) −0.018 (1.000) 0.008 (1.000) −0.005 (1.000) −0.005 (1.000) −0.013 (1.000) −0.018 (1.000) −0.038 (1.000)
β1 0.003 (1.000) 0.016 (1.000) −0.196 (1.000) −0.099 (1.000) −0.075 (1.000) −0.105 (1.000) −0.153 (1.000) −0.009 (1.000) −0.026 (1.000)

E β0 0.005 (1.009) −0.007 (1.023) −0.017 (1.036) 0.008 (0.994) −0.004 (0.991) −0.005 (1.006) −0.014 (1.007) −0.018 (0.988) −0.036 (1.013)
β1 0.040 (0.718) 0.017 (0.627) −0.060 (0.817) −0.107 (0.910) 0.044 (0.730) −0.073 (0.907) −0.147 (0.714) −0.007 (0.646) −0.095 (0.648)

AR1 β0 0.005 (1.014) −0.007 (1.036) −0.017 (1.044) 0.008 (0.993) −0.004 (1.002) −0.005 (1.005) −0.013 (1.028) −0.018 (1.010) −0.036 (1.033)
β1 0.043 (0.877) 0.017 (0.877) −0.095 (0.956) −0.102 (0.967) 0.028 (0.868) −0.111 (0.939) −0.003 (0.883) 0.037 (0.859) −0.130 (0.822)

U β0 0.011 (1.036) −0.007 (1.043) −0.022 (1.092) 0.003 (1.080) −0.005 (1.040) 0.002 (1.078) −0.004 (0.990) 0.004 (0.996) −0.017 (0.973)
β1 0.004 (0.812) 0.014 (0.712) −0.109 (0.910) −0.009 (1.014) 0.026 (0.777) −0.111 (1.034) −0.158 (0.717) −0.009 (0.674) −0.022 (0.648)

Panel C: u3

I β0 −0.000 (1.000) −0.002 (1.000) −0.011 (1.000) 0.002 (1.000) 0.003 (1.000) 0.006 (1.000) −0.012 (1.000) −0.017 (1.000) −0.040 (1.000)
β1 −0.115 (1.000) −0.183 (1.000) −0.199 (1.000) −0.200 (1.000) 0.101 (1.000) 0.148 (1.000) 0.067 (1.000) −0.076 (1.000) −0.154 (1.000)

E β0 −0.000 (1.005) −0.003 (1.027) −0.011 (1.015) 0.002 (0.990) 0.003 (1.006) 0.005 (0.969) −0.016 (1.018) −0.019 (1.000) −0.039 (1.026)
β1 −0.068 (0.852) −0.109 (0.825) −0.112 (0.935) −0.213 (0.986) 0.128 (0.885) 0.149 (0.961) −0.078 (0.750) −0.034 (0.775) −0.219 (0.761)

AR1 β0 0.000 (1.007) −0.002 (1.039) −0.011 (1.022) 0.002 (0.992) 0.003 (1.018) 0.005 (0.970) −0.016 (1.023) −0.019 (1.003) −0.040 (1.044)
β1 −0.070 (0.951) −0.096 (0.971) −0.175 (1.000) −0.227 (1.004) 0.111 (1.010) 0.135 (0.979) 0.047 (0.906) 0.023 (0.912) −0.186 (0.917)

U β0 0.005 (1.085) −0.003 (1.058) −0.015 (1.085) −0.001 (1.050) 0.002 (1.067) 0.008 (1.028) 0.004 (1.031) −0.017 (1.036) −0.060 (1.036)
β1 −0.167 (0.921) −0.124 (0.869) −0.092 (0.999) −0.208 (1.061) 0.181 (0.921) 0.199 (1.068) −0.062 (0.797) −0.097 (0.814) −0.132 (0.755)

Table 3.1. Values of ARB (in percentage) and REF (in brackets) of β0(τ,u) and β1(τ,u)
over 1000 Monte Carlo simulations under the three data generating scenarios with low
correlation (Cor(Yijk, Yi′jk) = Cor(Yijk, Yijk′) = 0.3).

In order to determine the performance of the correlation structure selection
procedure described in Section 3.4.2, we adopt the same simulation experiment and
consider the exchangeable and the AR1 structures with low (r = 0.3) and high
(r = 0.8) correlation for the error term εj = (ε1j , . . . , εnjj)′ related to (3.30). For
each of the H = 1000 simulated datasets and the scenarios considered, we fit the
MMQ model using three candidate working correlation structures (the I, E and AR1)
and then select the best one associated to the lowest CIC value in (3.29). Table
3.6 reports the number of times the criterion correctly identifies the true structure
that generated the data in all settings. As one can see, the CIC detects the correct
working correlation matrix especially at τ = 0.50, and the percentage of correct
selection rises when the intra-cluster correlation increases. As we move towards the
tails of the distribution of the responses (see τ = 0.1 and τ = 0.9), the performance
of the CIC slightly decreases, nonetheless, it is always able to select the correct
structure with a detection rate ranging between 42.3% and 90%.

Finally, to get a graphical representation of how M-quantile contours behave
empirically, we consider 50 equally spaced directions on the unit circle and plot
∂R̂x(τ) for τ = (0.05, 0.1, 0.25, 0.4) with c = 1.345. Figure 3.1 shows the estimated
contours under the four data generating processes with a correlation coefficient of
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

N N − 10% T

Panel A: u1

I β0 0.012 (1.000) −0.012 (1.000) −0.028 (1.000) 0.015 (1.000) −0.005 (1.000) 0.000 (1.000) −0.045 (1.000) −0.030 (1.000) −0.047 (1.000)
β1 −0.050 (1.000) −0.073 (1.000) −0.118 (1.000) −0.057 (1.000) −0.058 (1.000) −0.077 (1.000) −0.046 (1.000) −0.060 (1.000) 0.001 (1.000)

E β0 0.008 (0.998) −0.013 (0.989) −0.025 (1.007) 0.015 (1.003) −0.005 (1.006) −0.002 (0.985) −0.045 (1.032) −0.030 (0.992) −0.045 (0.986)
β1 −0.023 (0.347) −0.014 (0.271) −0.025 (0.382) 0.020 (0.857) −0.005 (0.508) 0.019 (0.894) −0.053 (0.344) −0.064 (0.301) 0.044 (0.340)

AR1 β0 0.009 (1.029) −0.013 (1.007) −0.026 (1.013) 0.016 (0.999) −0.005 (1.007) −0.002 (0.983) −0.044 (1.066) −0.031 (1.035) −0.047 (1.018)
β1 −0.033 (0.534) −0.012 (0.409) −0.041 (0.558) −0.028 (0.980) −0.037 (0.674) −0.044 (0.966) −0.030 (0.532) −0.053 (0.477) 0.007 (0.534)

U β0 0.014 (1.013) −0.013 (0.989) −0.032 (1.102) −0.010 (1.105) −0.006 (1.044) 0.024 (1.103) −0.030 (1.051) −0.031 (0.979) −0.057 (1.007)
β1 −0.026 (0.376) −0.024 (0.284) −0.022 (0.430) 0.077 (0.961) 0.004 (0.508) −0.011 (0.976) 0.010 (0.330) −0.071 (0.307) 0.072 (0.354)

Panel B: u2

I β0 0.014 (1.000) −0.010 (1.000) −0.027 (1.000) 0.019 (1.000) −0.006 (1.000) −0.018 (1.000) −0.034 (1.000) −0.027 (1.000) −0.052 (1.000)
β1 −0.064 (1.000) −0.105 (1.000) −0.116 (1.000) −0.076 (1.000) −0.099 (1.000) −0.096 (1.000) −0.083 (1.000) −0.067 (1.000) −0.053 (1.000)

E β0 0.012 (0.969) −0.011 (1.026) −0.023 (1.015) 0.020 (0.978) −0.005 (0.979) −0.017 (1.011) −0.038 (1.046) −0.028 (0.992) −0.046 (1.037)
β1 0.008 (0.213) −0.021 (0.166) −0.004 (0.249) 0.036 (0.813) 0.054 (0.422) −0.030 (0.817) −0.060 (0.199) −0.029 (0.167) −0.011 (0.197)

AR1 β0 0.013 (1.002) −0.010 (1.037) −0.024 (1.018) 0.021 (0.982) −0.005 (0.998) −0.017 (1.011) −0.037 (1.085) −0.029 (1.026) −0.047 (1.087)
β1 −0.043 (0.348) −0.020 (0.267) −0.016 (0.387) 0.002 (0.945) 0.008 (0.587) −0.111 (0.949) −0.024 (0.325) −0.014 (0.290) −0.082 (0.318)

U β0 0.015 (1.032) −0.012 (1.015) −0.026 (1.063) −0.015 (1.101) −0.005 (1.045) 0.020 (1.176) −0.028 (1.090) −0.027 (0.989) −0.054 (1.050)
β1 0.031 (0.233) −0.008 (0.178) −0.033 (0.275) 0.047 (0.914) 0.058 (0.429) 0.002 (0.935) −0.021 (0.198) −0.029 (0.174) −0.043 (0.199)

Panel C: u3

I β0 0.013 (1.000) −0.008 (1.000) −0.028 (1.000) 0.014 (1.000) −0.004 (1.000) −0.017 (1.000) −0.027 (1.000) −0.026 (1.000) −0.054 (1.000)
β1 −0.111 (1.000) −0.243 (1.000) −0.329 (1.000) −0.189 (1.000) −0.016 (1.000) −0.086 (1.000) −0.125 (1.000) 0.019 (1.000) −0.122 (1.000)

E β0 0.012 (0.999) −0.008 (1.005) −0.024 (1.034) 0.015 (0.977) −0.003 (1.005) −0.015 (0.997) −0.033 (1.047) −0.028 (0.993) −0.050 (1.008)
β1 0.008 (0.368) −0.062 (0.305) −0.022 (0.421) −0.109 (0.853) −0.015 (0.496) −0.036 (0.902) −0.064 (0.318) −0.006 (0.246) −0.170 (0.333)

AR1 β0 0.013 (1.018) −0.008 (1.035) −0.024 (1.059) 0.016 (0.978) −0.003 (1.039) −0.016 (1.004) −0.031 (1.084) −0.028 (1.016) −0.050 (1.045)
β1 −0.097 (0.546) −0.081 (0.473) 0.022 (0.606) −0.137 (0.977) −0.099 (0.683) −0.107 (1.051) −0.008 (0.486) 0.071 (0.404) −0.252 (0.527)

U β0 0.019 (1.037) −0.007 (1.018) −0.029 (1.066) −0.011 (1.063) −0.003 (1.056) 0.011 (1.114) −0.018 (1.065) −0.026 (0.998) −0.063 (1.050)
β1 −0.014 (0.413) −0.082 (0.315) −0.050 (0.478) −0.153 (0.999) −0.077 (0.481) −0.126 (1.010) −0.068 (0.348) 0.043 (0.279) −0.115 (0.320)

Table 3.2. Values of ARB (in percentage) and REF (in brackets) of β0(τ,u) and β1(τ,u)
over 1000 Monte Carlo simulations under the three data generating scenarios with high
correlation (Cor(Yijk, Yi′jk) = Cor(Yijk, Yijk′) = 0.8).

r = 0.3, conditional on the 0.05-th (violet), 0.5-th (orange) and 0.95-th (green)
empirical quantiles of X(1)

ij . In particular, one can see that ∂R̂x(τ) slowly ascend
upward along the data cloud, demonstrating the positive dependence with increasing
values of the covariate. The most obvious features of all plots are the fact that the
enclosed area is decreasing with increasing τ , thus the contours are neatly nested,
and their behaviour under different levels of contamination by outliers. These figures
also suggest that, as the contour lines approach the convex hull of the sample data
for small values of τ , they can be employed to detect possible outliers, corresponding
to extreme points falling outside the estimated boundary.

3.6 Application

In this section we apply the proposed methodology to the Tennessee’s Student/Teacher
Achievement Ratio (STAR) dataset (http://fmwww.bc.edu/ec-p/data). The STAR
experiment (see Word et al. 1990 and Finn & Achilles 1990) is a four-year longitu-
dinal class-size study funded by the Tennessee General Assembly and conducted
by the State Department of Education. Over 7,000 students in 79 schools were
randomly assigned into one of three interventions: small class (13 to 17 students per
teacher), regular class (22 to 25 students per teacher), and regular-with-aide class

http://fmwww.bc.edu/ec-p/data/stockwatson
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

u1 u2 u3

Panel A: r = 0.3

I β0 −0.078 (1.000) −0.056 (1.000) −0.004 (1.000) −0.084 (1.000) −0.047 (1.000) −0.016 (1.000) −0.086 (1.000) −0.021 (1.000) 0.073 (1.000)
β1 −0.099 (1.000) −0.029 (1.000) 0.070 (1.000) −0.155 (1.000) −0.107 (1.000) −0.109 (1.000) −0.134 (1.000) 0.137 (1.000) −0.142 (1.000)

E β0 −0.076 (0.978) −0.056 (1.000) −0.004 (0.997) −0.083 (0.997) −0.047 (1.006) −0.016 (1.002) −0.086 (0.999) −0.022 (0.988) 0.074 (1.012)
β1 −0.028 (0.982) −0.062 (0.909) −0.063 (1.006) −0.104 (0.976) −0.054 (0.843) −0.092 (0.981) 0.206 (1.015) 0.101 (0.913) −0.120 (0.996)

AR1 β0 −0.076 (0.978) −0.056 (0.992) −0.004 (0.996) −0.083 (0.999) −0.047 (1.011) −0.016 (1.003) −0.086 (0.996) −0.022 (0.995) 0.074 (1.017)
β1 −0.069 (0.988) −0.074 (0.964) −0.094 (1.009) −0.142 (0.976) −0.091 (0.959) −0.129 (0.976) −0.174 (1.014) 0.101 (0.984) −0.134 (0.998)

U β0 −0.084 (1.025) −0.056 (1.006) −0.004 (1.028) −0.089 (1.077) −0.047 (1.035) −0.014 (0.990) −0.088 (1.011) −0.022 (1.044) 0.081 (1.073)
β1 0.117 (1.012) −0.116 (0.943) 0.042 (1.023) −0.299 (1.046) 0.022 (0.876) −0.125 (1.005) 0.181 (1.068) 0.102 (1.031) −0.136 (1.079)

Panel B: r = 0.8

I β0 −0.105 (1.000) −0.048 (1.000) −0.024 (1.000) −0.091 (1.000) −0.057 (1.000) −0.060 (1.000) −0.080 (1.000) −0.041 (1.000) −0.024 (1.000)
β1 −0.218 (1.000) −0.090 (1.000) −0.098 (1.000) −0.166 (1.000) −0.044 (1.000) −0.057 (1.000) 0.199 (1.000) −0.164 (1.000) −0.200 (1.000)

E β0 −0.104 (0.990) −0.048 (1.001) −0.024 (0.991) −0.091 (0.997) −0.056 (0.977) −0.059 (1.000) −0.080 (0.997) −0.040 (0.992) −0.023 (1.003)
β1 −0.163 (0.994) −0.012 (0.694) 0.108 (1.001) −0.059 (0.992) −0.060 (0.603) −0.058 (0.989) 0.132 (1.006) −0.031 (0.645) −0.142 (0.996)

AR1 β0 −0.105 (0.991) −0.048 (0.996) −0.024 (0.988) −0.091 (0.997) −0.056 (0.988) −0.059 (1.003) −0.079 (0.996) −0.040 (1.016) −0.023 (1.007)
β1 −0.117 (1.003) −0.047 (0.826) −0.093 (1.006) −0.194 (1.006) −0.134 (0.764) −0.112 (0.998) 0.187 (1.013) −0.106 (0.779) −0.171 (1.006)

U β0 −0.127 (1.094) −0.048 (1.054) −0.012 (1.049) −0.108 (1.079) −0.056 (1.031) −0.042 (1.031) −0.093 (1.025) −0.040 (1.039) −0.007 (1.058)
β1 0.166 (1.075) −0.002 (0.689) −0.065 (1.056) −0.135 (1.079) −0.040 (0.637) −0.156 (1.082) −0.177 (1.111) −0.081 (0.714) −0.187 (1.116)

Table 3.3. Values of ARB (in percentage) and REF (in brackets) of β0(τ,u) and β1(τ,u)
for α = 20% of contamination over 1000 Monte Carlo simulations with low (Panel A)
and high (Panel B) correlation.

(22 to 25 students with a full-time teacher’s aide). Classroom teachers were also
randomly assigned to the classes they would teach. The interventions were initiated
as the students entered school in kindergarten and continued through third grade.
The outcome variables of interest are the scores of mathematics and reading tests
of the Stanford Achievement Test (SAT-9) which are representative of educational
attainment in young students.

Schooling systems present an obvious example of dependency between observa-
tions, with pupils clustered within schools, which the analysis needs to take into due
account in order to avoid misleading inferences. Previous studies examine mathe-
matics and reading test scores independently using univariate statistical methods
neglecting possible information about the relationship between the grades of the
two subjects. In addition, linear models focused on how educational attainment
is determined, on average, by various explanatory variables despite prior research
suggests that the magnitude and direction of relationships may differ across the
distribution of achievement gains (Haile & Nguyen 2008, Kelcey et al. 2019). For
example, small classes are likely to be beneficial to students at risk for school failure
than highly skilled pupils hence, the effect of class size on students’ performance
might be thought of as quantile-specific. Only recently, Guggisberg (2019) jointly
analyzed math and reading scores within a Bayesian framework for estimation of
directional quantiles.

The aim of this analysis is to investigate how the effect of classroom size and
teacher’s experience affect differently the achievement of proficient students (high
quantiles) and less proficient students (low quantiles). We considered the subset of
students in kindergarten for a sample size of n = 3743 divided in d = 79 schools, after
removing missing data and, as in Guggisberg (2019), omitting large classrooms that
had a teaching assistant. Since a pupil’s performance is likely to depend not only
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

N N − 10% T N − 20%

Panel A: u1

E β0 0.948 0.942 0.931 0.949 0.936 0.941 0.965 0.939 0.935 0.956 0.935 0.936
β1 0.941 0.957 0.933 0.960 0.938 0.957 0.942 0.957 0.950 0.970 0.933 0.957

AR1 β0 0.949 0.940 0.932 0.948 0.938 0.944 0.961 0.937 0.931 0.959 0.943 0.937
β1 0.948 0.961 0.943 0.957 0.941 0.956 0.956 0.945 0.949 0.968 0.940 0.954

U β0 0.933 0.937 0.919 0.942 0.930 0.935 0.938 0.935 0.921 0.955 0.943 0.938
β1 0.929 0.948 0.917 0.941 0.927 0.940 0.915 0.941 0.931 0.960 0.922 0.954

Panel B: u2

E β0 0.943 0.948 0.933 0.949 0.953 0.942 0.958 0.952 0.913 0.966 0.941 0.921
β1 0.945 0.948 0.939 0.961 0.942 0.949 0.954 0.964 0.961 0.971 0.939 0.958

AR1 β0 0.941 0.948 0.934 0.948 0.949 0.941 0.955 0.951 0.913 0.966 0.944 0.923
β1 0.940 0.948 0.941 0.960 0.950 0.943 0.953 0.963 0.959 0.968 0.955 0.962

U β0 0.933 0.948 0.905 0.938 0.947 0.944 0.936 0.944 0.937 0.955 0.940 0.925
β1 0.921 0.935 0.921 0.940 0.926 0.935 0.925 0.952 0.941 0.963 0.924 0.953

Panel C: u3

E β0 0.951 0.957 0.948 0.949 0.953 0.953 0.958 0.945 0.916 0.969 0.942 0.966
β1 0.949 0.945 0.951 0.960 0.952 0.947 0.949 0.964 0.957 0.958 0.938 0.964

AR1 β0 0.947 0.957 0.944 0.949 0.953 0.953 0.961 0.942 0.919 0.970 0.944 0.965
β1 0.956 0.956 0.951 0.953 0.950 0.945 0.957 0.958 0.957 0.959 0.937 0.965

U β0 0.934 0.955 0.928 0.946 0.948 0.948 0.930 0.941 0.933 0.965 0.952 0.957
β1 0.919 0.937 0.931 0.947 0.932 0.929 0.925 0.954 0.937 0.948 0.931 0.958

Table 3.4. CP of β0(τ,u) and β1(τ,u) over 1000 Monte Carlo simulations under the four
data generating scenarios with low correlation (Cor(Yijk, Yi′jk) = Cor(Yijk, Yijk′) = 0.3).

on its abilities, but also on the characteristics of the school, to handle dependence
between pupils within the same school and avoid convergence difficulties due to large
sized clusters, we assume a parsimonious parametrization of the correlation matrix,
namely an exchangeable correlation structure. Following established custom, the
tuning constant c in (3.3) has been set to 1.345 which gives reasonably efficiency
under normality and protects against outliers (Huber & Ronchetti 2009).

As a preliminary step, to support the choice of using a robust approach we
study the conditional distributions of mathematics and reading scores by fitting
separately two univariate Marginal Mean (MM) models under an exchangeable
correlation structure. The model includes the following two predictors, namely
classroom size and teacher’s experience. Figure 3.2 shows the normal probability
plot of the residuals for mathematics (left) and reading (right) test scores. These
reveal the presence of potentially influential observations in the data, indicate severe
departures from the Gaussian assumption for both outcomes and show that data are
severely skewed. For these reasons, a robust approach based on M-quantile seems to
be appropriate for these data.

Therefore, we estimate the MMQ model for mathematics and reading scores for
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

N N − 10% T N − 20%

Panel A: u1

E β0 0.946 0.948 0.935 0.935 0.953 0.932 0.960 0.945 0.918 0.958 0.956 0.976
β1 0.941 0.952 0.943 0.974 0.948 0.961 0.956 0.951 0.954 0.970 0.940 0.969

AR1 β0 0.944 0.954 0.933 0.932 0.955 0.930 0.963 0.940 0.920 0.956 0.952 0.977
β1 0.937 0.949 0.937 0.970 0.958 0.958 0.954 0.945 0.954 0.967 0.939 0.969

U β0 0.929 0.951 0.912 0.938 0.950 0.928 0.949 0.945 0.891 0.954 0.940 0.975
β1 0.909 0.936 0.910 0.964 0.935 0.950 0.908 0.936 0.915 0.958 0.946 0.964

Panel B: u2

E β0 0.946 0.951 0.926 0.937 0.953 0.933 0.954 0.943 0.920 0.950 0.937 0.928
β1 0.942 0.944 0.945 0.965 0.953 0.967 0.964 0.967 0.966 0.966 0.955 0.954

AR1 β0 0.945 0.953 0.922 0.938 0.952 0.935 0.949 0.943 0.912 0.948 0.954 0.929
β1 0.933 0.944 0.935 0.966 0.954 0.964 0.969 0.958 0.962 0.967 0.952 0.947

U β0 0.928 0.952 0.915 0.947 0.949 0.939 0.949 0.943 0.908 0.945 0.942 0.938
β1 0.927 0.935 0.924 0.965 0.941 0.953 0.905 0.944 0.913 0.952 0.945 0.944

Panel C: u3

E β0 0.941 0.954 0.918 0.936 0.952 0.935 0.959 0.951 0.918 0.959 0.953 0.964
β1 0.942 0.946 0.930 0.964 0.962 0.962 0.958 0.957 0.956 0.966 0.954 0.967

AR1 β0 0.947 0.952 0.927 0.938 0.951 0.934 0.954 0.944 0.911 0.959 0.952 0.966
β1 0.932 0.930 0.934 0.963 0.958 0.957 0.952 0.958 0.957 0.969 0.944 0.970

U β0 0.927 0.953 0.910 0.943 0.946 0.938 0.949 0.949 0.935 0.962 0.944 0.959
β1 0.916 0.932 0.919 0.950 0.949 0.945 0.929 0.943 0.916 0.949 0.947 0.955

Table 3.5. CP of β0(τ,u) and β1(τ,u) over 1000 Monte Carlo simulations under the four data
generating scenarios with high correlation (Cor(Yijk, Yi′jk) = Cor(Yijk, Yijk′) = 0.8).

True model r = 0.3 r = 0.8

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
N N − 10% T N N − 10% T

Panel A: u1

E 660 887 647 440 817 454 660 870 637 751 839 725 625 930 604 645 868 675
AR1 683 916 672 432 789 424 585 881 554 882 983 900 465 867 473 802 981 756

Panel B: u2

E 720 933 747 532 901 520 673 918 670 695 777 639 666 906 679 620 798 597
AR1 717 923 667 456 819 440 577 904 532 890 980 883 488 891 491 790 981 750

Panel C: u3

E 660 887 647 440 817 454 660 870 637 699 858 715 588 920 630 631 859 665
AR1 704 914 689 423 817 449 586 907 535 898 981 886 499 882 482 786 981 765

Table 3.6. Number of correctly identified working correlation structure using the CIC, over
1000 Monte Carlo simulations under the three data generating scenarios.

specific directions of interest. Then, we inspect τ -th M-quantile contours when a
subset of directions in Sp−1 is considered simultaneously and directions are aggregated
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Figure 3.1. From left to right and top to bottom, estimated M-quantile contours under the
N , N −10%, T and N −20% simulation scenarios at level τ = (0.05, 0.1, 0.25, 0.4) (from
the outside inwards), conditional on the 0.05-th (violet), 0.5-th (orange) and 0.95-th
(green) empirical quantiles of X(1)

ij .

together as shown in (3.13). Sections 3.6.1 and 3.6.2 report the results, respectively.

Figure 3.2. Normal probability plots residuals from a Marginal Mean model under an
exchangeable correlation structure for mathematics (left) and reading (right) scores.
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3.6.1 Fixed-u analysis

We fit the MMQ model for τ = (0.1, 0.25, 0.5, 0.75, 0.9) and select three different
directions, i.e., u1 = (1, 0), u2 = ( 1√

2 ,
1√
2) and u3 = (0, 1), using the same covariates

as above. In this context, the u = (u1, u2) directions, where u1 is the mathematics
score dimension and u2 is the reading score dimension, have a natural interpretation
and allow us to construct linear combinations of mathematics and reading scores
depending on how much importance the researcher wants to give to each subject. In
the educational context, a weighted average mark is relevant because it represents
multiple cognitive domains that has improved power compared with the most sensitive
single test items (see Israel et al. 2001 and Kolen et al. 2012). Thus, u1 and u3
reduce the multidimensional problem to two MMQ regressions on each component
of the bivariate response, allowing us to rank students on the basis of their scores
on achievement tests in mathematics and reading, respectively. On the other hand,
u2 is equivalent to choosing the arithmetic mean of the two scores. In this case, the
response variable is given by the average test score obtained by each student.

Since a pupil’s performance is likely to depend not only on its abilities, but also
on the characteristics of the school, to handle dependence between pupils nested
in the same school, we estimate the MMQ model using three candidate working
correlation structures (I, E and AR1), and then select the optimal one corresponding
to the lowest CIC value in (3.29).

Table 3.7 shows point estimates of the regression coefficients and of the correlation
parameter and the CIC values associated to the selected MMQ models at the
investigated quantile levels. Statistical significance of regression coefficients is
assessed by computing asymptotic standard errors as described in Section 3.4.1.
Because we can investigate both mathematics and reading scores among their
linear combinations, we compare the proposed MMQ model with existing univariate
approaches in the literature. For each direction u, relative to the standard GEE
approach we report the results of the MM model using the working correlation
structure selected by the CIC. In addition, we also consider the two-level M-quantile
Random Effects (MQRE) model of Tzavidis et al. (2016) and the Linear Quantile
Mixed Model (LQMM) of Geraci & Bottai (2014) with random intercepts, which
is equivalent to assuming an exchangeable correlation structure. These allow us
to evaluate the sensitivity of our methodology when random intercepts specified
at the school level are included to account for a two level hierarchical structure in
the data. Table 3.8 reports the estimated parameters of the MQRE model, as well
as the estimated Intraclass Correlation Coefficient (ICC), defined as the ratio of
the variance of the random intercepts to the total variance, which measures the
proportion of variance explained by clustering. Table 3.9 shows the estimates of the
regression coefficients and variance component (σ2

school) for the two-level LQMM.
Parameter estimates are displayed in boldface when significant at the 5% level.

We start by commenting on the MMQ results in Table 3.7. As one can see,
the CIC presented in Section 3.4.2 leads us to select the exchangeable correlation
structure over the independence and the AR1 structures. This result is consistent
with the data structure as the academic performance of pupils enrolled in the same
school will likely be influenced by the learning environment and characteristics of
the school.
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By looking at the parameter estimates, we firstly observe that the MM and MMQ
models produce comparable estimates at the center of the distribution (τ = 0.5)
however the MM regression model cannot be used to estimate the covariates’ effects
in the tails of the distribution. Secondly, consistently with the quantile regression
framework, the estimated intercepts increase when moving from lower to upper
quantiles. The results show that there is evidence of a negative association between
the increase in classroom size and school performance across the examined quantiles.
In particular, the size of the estimated effect is more pronounced at the upper tail of
the distribution of each score than at the lower tail. Therefore, our results indicate
that high-performing students are more affected than low-performing ones by a
larger number of students in the classroom. On the other hand, teacher’s experience
is positively associated with the responses from the lower quantiles up to the 75-th
percentile at the 10% significance level. Such effect is more evident for u1 and u2,
suggesting that teachers preparation possibly influences students’ cognitive abilities
and skills in various school subjects. As it is evident, the estimates of the MQRE
and the MMQ are similar among the three directions both in the center and in the
tails of the distributions of the responses. The major difference is in the magnitude
of the estimated regression coefficients with respect to the LQMM as the estimate
of the teacher’s experience effect is only statistically significant at the tails of the
conditional distribution of the outcome. Finally, by looking at the within-group
correlations, the estimated correlation parameters (r) of the MM and MMQ models
with τ = 0.5 are similar among the three directions. Similarly, the correlation
coefficient estimates of the MMQ and the ICC values of the MQRE models are very
close at the five investigated τ levels. The sign of the estimates indicates that pupils
in the same school are more alike than students in different schools, highlighting the
importance of clustering. It is also worth noticing that the intra-school correlation
shows an inverted U-shape effect as the quantile level increases, i.e., the correlation
between observations that belong to the same cluster is high at the center and low at
the tail of the distribution of the outcomes. Differences between schools, therefore,
seem to play a less prominent role in explaining mathematics and reading scores
below- and above-the-average students’ performance (Geraci & Bottai 2014).

u Variable MM MMQ

0.1 0.25 0.5 0.75 0.9

u1

Intercept 486.541 (3.915) 443.343 (3.086) 462.121 (3.370) 484.136 (3.921) 509.513 (4.732) 537.082 (6.078)
Class size −9.306 (2.805) −6.773 (2.505) −7.350 (2.425) −8.499 (2.716) −10.922 (3.392) −14.556 (4.442)
Teacher Experience 0.585 (0.280) 0.576 (0.207) 0.588 (0.237) 0.559 (0.280) 0.552 (0.338) 0.667 (0.483)
r 0.192 (0.028) 0.135 (0.035) 0.184 (0.040) 0.200 (0.034) 0.163 (0.026) 0.097 (0.020)
CIC 8.492 2.591 4.613 7.155 8.139 7.698

u2

Intercept 653.411 (4.236) 606.399 (3.179) 626.367 (3.598) 650.296 (4.348) 677.574 (5.433) 707.618 (6.785)
Class size −11.233 (3.023) −7.808 (2.875) −8.678 (2.660) −10.641 (2.933) −13.711 (3.696) −16.221 (4.731)
Teacher Experience 0.662 (0.305) 0.640 (0.244) 0.677 (0.257) 0.674 (0.307) 0.701 (0.391) 0.688 (0.547)
r 0.203 (0.028) 0.155 (0.041) 0.205 (0.043) 0.222 (0.034) 0.174 (0.025) 0.098 (0.019)
CIC 8.501 3.001 4.830 7.368 8.602 7.934

u3

Intercept 437.504 (2.516) 411.791 (1.541) 422.004 (1.806) 434.494 (2.454) 448.991 (3.489) 466.199 (4.693)
Class size −6.569 (1.735) −4.507 (1.467) −5.108 (1.442) −5.981 (1.651) −7.118 (2.244) −8.081 (3.081)
Teacher Experience 0.353 (0.186) 0.291 (0.135) 0.339 (0.139) 0.363 (0.185) 0.421 (0.272) 0.478 (0.363)
r 0.194 (0.026) 0.145 (0.036) 0.205 (0.038) 0.236 (0.036) 0.203 (0.043) 0.111 (0.034)
CIC 8.212 2.685 4.652 8.178 11.545 10.016

Table 3.7. MM and MMQ model parameter estimates at the investigated quantile levels.
Boldface denote statistical significance at the 5% level.
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u Variable MQRE

0.1 0.25 0.5 0.75 0.9

u1

Intercept 443.356 (3.087) 462.128 (3.371) 484.141 (3.925) 509.519 (4.738) 537.090 (6.084)
Class size −6.776 (2.507) −7.356 (2.427) −8.510 (2.719) −10.935 (3.396) −14.566 (4.445)
Teacher Experience 0.575 (0.207) 0.587 (0.238) 0.559 (0.281) 0.552 (0.339) 0.667 (0.484)
ICC 0.139 0.197 0.219 0.176 0.102

u2

Intercept 606.406 (3.180) 626.375 (3.600) 650.308 (4.352) 677.589 (5.437) 707.654 (6.795)
Class size −7.809 (2.876) −8.683 (2.661) −10.652 (2.935) −13.723 (3.697) −16.234 (4.735)
Teacher Experience 0.640 (0.244) 0.676 (0.257) 0.673 (0.307) 0.700 (0.392) 0.685 (0.549)
ICC 0.158 0.218 0.238 0.185 0.104

u3

Intercept 411.796 (1.542) 422.011 (1.808) 434.499 (2.456) 448.999 (3.486) 466.232 (4.702)
Class size −4.507 (1.468) −5.110 (1.442) −5.984 (1.651) −7.122 (2.241) −8.091 (3.082)
Teacher Experience 0.291 (0.135) 0.338 (0.139) 0.362 (0.185) 0.420 (0.271) 0.475 (0.364)
ICC 0.149 0.214 0.246 0.210 0.118

Table 3.8. MQRE model parameter estimates and ICC values at the investigated quantile
levels. Boldface denote statistical significance at the 5% level.

u Variable LQMM

0.1 0.25 0.5 0.75 0.9

u1

Intercept 455.487 (6.998) 476.333 (4.855) 484.779 (3.848) 492.306 (5.117) 501.977 (5.568)
Class size −10.799 (2.837) −9.739 (2.728) −8.500 (2.555) −6.847 (2.931) −7.416 (3.213)
Teacher Experience 0.066 (0.341) −0.000 (0.285) 0.594 (0.345) 1.081 (0.366) 1.215 (0.540)
σ2
school 23.989 18.661 17.135 20.025 29.015

u2

Intercept 589.880 (7.261) 640.025 (4.973) 651.089 (4.067) 677.652 (6.964) 687.842 (8.783)
Class size −6.204 (3.021) −10.089 (2.978) −10.114 (2.792) −12.199 (3.510) −11.411 (4.311)
Teacher Experience 0.791 (0.321) 0.296 (0.321) 0.572 (0.327) 0.886 (0.425) 0.984 (0.450)
σ2
school 16.763 20.810 20.484 25.208 37.518

u3

Intercept 420.779 (4.365) 431.182 (3.248) 432.613 (2.810) 442.018 (3.175) 455.566 (4.721)
Class size −6.854 (1.854) −6.865 (1.771) −6.338 (1.792) −5.072 (2.025) −4.573 (2.652)
Teacher Experience −0.000 (0.235) 0.237 (0.180) 0.215 (0.217) 0.482 (0.248) 0.692 (0.341)
σ2
school 14.834 11.526 12.451 13.452 20.529

Table 3.9. LQMM parameter estimates at the investigated quantile levels. Standard
errors are computed via block bootstrap using 500 resamples. Boldface denote statistical
significance at the 5% level.

3.6.2 Fixed-τ analysis

To provide a graphical representation of the effects of classroom size and teachers
experience at the tails of the distribution of test scores, we fit the MMQ model at
τ = (0.005, 0.1) for 100 equispaced directions and construct M-quantile regression
contours using (3.13). Figure 3.3 illustrates the estimated ∂R̂x(τ) conditional on
small (red curves) and large (blue curves) classes at the 0.01-th (top-left), 0.25-th
(top-right), 0.75-th (bottom-left) and 0.99-th (bottom-right) empirical quantiles of
teacher’s experience, which correspond to 0, 4, 13 and 27 years of experience. The
shaded areas represent 95% confidence envelopes obtained through the nonparametric
bootstrap method of Section 3.3.1 using 1000 re-samples. For comparison purposes,
we also consider the directional quantile contours of Kong & Mizera (2012) by fitting
the proposed MMQ model with c = 0.01 under the working independence correlation
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structure (see Figure 3.4).
There are several interesting findings. The contours for smaller τ capture the

effects of students who perform exceptionally well on mathematics and reading or
exceptionally poorly on mathematics and reading. Meanwhile, the contours for larger
τ capture the effects for students at the center of the distribution i.e. those who do not
stand out from their peers. The larger contours are affected by abnormal observations
while the smaller ones are less sensitive to outliers. The elongated and positively
oriented contours indicate that there is more variability in the mathematics scores
and confirm the existence of positive covariation between reading and mathematics
grades. It can also be easily seen that both M-contours and quantile contours shift
up and to the right as years of teaching experience increase which highlights the
centrality of teachers’ skills and attitudes in students’ achievement. Most importantly,
the results obtained suggest that both high-performing students and those who are
at risk of failure benefit from smaller classes, as this generates substantial gains in
the two subjects (Finn & Achilles 1999, Biddle & Berliner 2002, Guggisberg 2019) at
both τ = 0.005 and τ = 0.1 levels. Further, one observes that the quantile contours
in Figure 3.4 are closer to the convex hull of the sample data and the enclosed areas
are greater than those produced by the M-quantile contours. Finally, the presented
confidence regions give an insight into the estimation uncertainty, which is higher in
sparse regions of the data as the size of these envelopes is much larger at τ = 0.005
than τ = 0.1. Also, they are helpful to detect, possible, conditional outliers in the
multivariate space, identified as those points that fall outside the estimated fence
and are located far away from the bulk of the data.

3.7 Conclusions

In the univariate setting, M-quantiles (Breckling & Chambers 1988) allow to target
different parts of the distribution of the response given the covariates instead of just
the expected value of the conditional distribution of the outcome variable. The Huber
M-quantiles (Huber 1964) are very versatile because they can trade robustness for
efficiency in inference by selecting the tuning constant of the influence function and
they offer computational stability because they are based on a continuous influence
function (Tzavidis et al. 2016, Bianchi et al. 2018). Unfortunately, M-quantiles have
remained relegated to univariate problems due to the lack of a natural ordering in
a p-dimensional space, p > 1. Yet, an extension to higher dimensions could prove
to be very useful role in many fields of applied statistics when the problem being
studied involves the characterization of the distribution of a multivariate response.

In the present paper we generalize univariate M-quantile regression to the
multivariate setting for the analysis of dependent data. Extending the notion of
directional quantiles of Kong & Mizera (2012), we introduce directional M-quantiles
which are obtained as projections of the original data on a specified unit norm
direction. In order to take into consideration the possible within cluster correlation,
we develop an M-Quantile Marginal (MMQ) regression model (Liang & Zeger 1986,
Zeger & Liang 1986, Heagerty et al. 2000, Diggle et al. 2002). To estimate the model
parameters, we extend the well-known GEE approach of Liang & Zeger (1986) and
present the robust Generalized M-Quantile Estimating Equations (GMQEE). For
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Figure 3.3. Estimated M-quantile contours at τ = (0.005, 0.1) for small (red) and large
(blue) classes, conditional on the 0.01-th (top-left), 0.25-th (top-right), 0.75-th (bottom-
left) and 0.99-th (bottom-right) empirical quantiles of years of teaching experience. The
shaded surfaces represent 95% confidence envelopes for M-quantile contours obtained
using nonparametric bootstrap.

a fixed direction, we derive asymptotic properties for the proposed estimator and
establish consistency and asymptotic normality. When theoretically all directions are
considered simultaneously, the proposed directional approach allows to determine
M-quantile regions and contours for a given quantile level. We propose to use
M-quantile contour lines to investigate the effect of covariates on the location, spread
and shape of the distribution of the responses. To identify potential outliers and
provide a simple visual representation of the variability of the M-quantile contours
estimator, we construct confidence envelopes via nonparametric bootstrap. Using
real data, we apply the MMQ regression model to study the impact of class size
and teacher’s experience on the joint distribution of the mathematics and reading
scores. The obtained results from the fixed-u and fixed-τ analyses show that small
classroom and teacher’s experience help improve performance in both subjects.

The methodology can be further extended to take advantage of the longitudinal
structure of the STAR study and allow for school effects over time, or cross-classified
models to allow for the impact of local area. An interesting research problem
would involve the estimation of the proposed M-quantile contours in applications
to dependent data, where the contour lines also might vary with time. Lastly,
a conditional M-quantile model for robust clustering can be developed where M-
quantile contours can help us identify the existence of group structures within the
study population.
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Figure 3.4. Estimated quantile contours at τ = (0.005, 0.1) for small (red) and large (blue)
classes, conditional on the 0.01-th (top-left), 0.25-th (top-right), 0.75-th (bottom-left)
and 0.99-th (bottom-right) empirical quantiles of years of teaching experience.
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Chapter 4

Unified unconditional regression
for multivariate quantiles,
M-quantiles and expectiles

4.1 Introduction

When researchers wish to determine the effect of relevant predictors across the entire
distribution of the dependent variable of interest, Quantile Regression (QR), as
introduced by Koenker & Bassett (1978), plays a crucial role in providing a much
more complete statistical analysis compared to the classical mean regression. Indeed,
it allows to model conditional quantiles of a response as a function of explanatory
variables and it has been greatly exploited for the study of non-Gaussian, heavy-
tailed and highly skewed data. For a detailed survey and list of references of the
most used QR techniques, please refer to Koenker (2005) and Koenker et al. (2017).

However, if one is interested in how the whole unconditional distribution of the
outcome responds to changes in the covariates, QR methods would yield misleading
inferences (see Firpo et al. 2009, Borah & Basu 2013, Maclean et al. 2014, Killewald
& Bearak 2014). As explained by Frölich & Melly (2013) in a simple example
relating wages to years of education, the unconditional 90-th quantile refers to the
high wage workers, whereas the 90-th quantile conditional on education refers to the
high wage workers within each education class, who however may not necessarily
be high earners overall. Presuming a strong positive correlation between education
and wages, it may well be that the 90-th quantile among high school dropouts is
lower than, say, the median of all Ph.D. graduates. The interpretation of the 90-th
quantile is thus different for conditional and unconditional quantiles. From a policy
perspective, while the welfare of highly educated people with relatively low wages
catches little interest, the welfare of the poor, i.e., those located in the lower end of the
unconditional distribution of wages, attracts a lot of attention in the political debate.
There are, indeed, numerous applications of practical relevance where the ultimate
research objective is the unconditional distribution of the dependent variable, as in
the context of the earnings disparities between different groups of workers, the effect
of education on earnings, or the distributional impacts of a particular treatment in
a given population (Borah & Basu 2013, Frölich & Melly 2013, Huffman et al. 2017,
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Firpo et al. 2018). Therefore, a number of proposals has been introduced in the
literature to estimate these unconditional effects (Gosling et al. 2000, Machado &
Mata 2005, Melly 2005).

Motivated by this interest, Firpo et al. (2009) proposed the Unconditional
Quantile Regression (UQR) approach for modeling unconditional quantiles of a
dependent variable as a function of the explanatory variables. This method builds
upon the concept of Recentered Influence Function (RIF) which originates from
a widely used tool in robust statistics, namely the Influence Function (IF, see
Hampel 1974, Huber & Ronchetti 2009). In particular, the UQR of Firpo et al.
(2009) consists of regressing the RIF of the unconditional quantile of the outcome
variable on the explanatory variables using either Ordinary Least Squares (OLS),
logistic regression or the nonparametric regression of Newey (1994). Their approach
represents an important contribution on quantile regression methods and its validity
is also demonstrated by the growing scientific literature spanning from medicine
(Borah & Basu 2013), economics (Murakami & Seya 2019, Dong et al. 2020), social
inequalities (Rodriguez-Caro et al. 2016, Huffman et al. 2017) and agriculture (Mishra
et al. 2015, Bonanno et al. 2018).
These studies, however, focus on a univariate regression framework. When the
problem under investigation involves multivariate dependent variables, the method
of Firpo et al. (2009) cannot be easily extended to higher dimensions due to the non
existence of a natural ordering in a p-dimensional space, p > 1 (see Serfling 2002,
Kong & Mizera 2012, Koenker et al. 2017, Merlo et al. 2022).

With this paper, we contribute to the current literature extending the univariate
UQR approach of Firpo et al. (2009) to a more general multivariate setting. In
particular, we propose to employ the multidimensional Huber’s function defined
in Hampel et al. (2011) to build a unified unconditional regression approach that
encompasses multivariate quantiles, M-quantiles (Breckling & Chambers 1988) and
expectiles (Newey & Powell 1987).
In the statistical literature, the Huber’s function has been employed to define the M-
quantile for robust modeling of the entire distribution of univariate response variables,
extending the ideas of M-estimation of Huber (1964) and Huber & Ronchetti (2009).
This method provides a “quantile-like” generalization of the mean based on influence
functions that combines in a common framework the robustness and efficiency
properties of quantiles and expectiles, depending on the choice of the Huber’s tuning
constant. In the multivariate framework, the multidimensional Huber’s function
(Hampel et al. 2011) has been exploited by Breckling & Chambers (1988) to define
the multivariate M-quantile using a direction vector in the Euclidean p-dimensional
space in order to establish a suitable ordering procedure for multivariate observations.
Subsequently, Kokic et al. (2002) generalized their definition by introducing a class
of multivariate M-quantiles based on weighted estimating equations, which includes
multivariate quantiles and expectiles depending on the value of the tuning constant.

In our paper, we rely on the Kokic et al. (2002) approach using the multidimen-
sional Huber’s function to model unconditional quantiles, M-quantiles and expectiles
of multivariate response variables in a unified regression framework, by choosing the
tuning constant appropriately.
In order to analyze the impact of changes in the distribution of explanatory variables
on the entire unconditional distribution of the responses, following Firpo et al. (2009),
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we regress the RIF of the proposed model on the covariates, producing the Uncondi-
tional Quantile, M-Quantile and Expectile Partial Effect (UQPE, UMQPE, UEPE)
according to the selected value of the tuning constant. From the theoretical point of
view, we establish the asymptotic properties of the corresponding estimators using
the Bahadur representation (Bahadur 1966). Furthermore, we propose a data-driven
method based on cross-validation for selecting the optimal tuning constant that
accounts for possible outliers in the data.

Using simulation studies, we illustrate the finite sample properties of the pro-
posed methodology under different data generating processes. From an empirical
standpoint, we demonstrate the usefulness of this method through the analysis of
the Survey on Household Income and Wealth (SHIW) 2016 conducted by the Bank
of Italy. In particular, we fit the proposed model to evaluate the effect of economic
and socio-demographic characteristics of Italian households on the unconditional
distributions of family wealth and consumption, accounting both for the correlation
between the outcomes and influential observations in the sample. The proposed
multivariate approach allows us to consider consumption and wealth as part of a
collective framework and it can be of great interest to investigate whether the effect of
the covariates is more pronounced on low-quantiles (low-consumption and low-wealth
families) than on high-quantiles (high-level spending and wealthy households) of the
responses’ unconditional distribution.

The remainder of the paper is organized as follows. In Section 4.2, we revise the
RIF and its properties. Section 4.3 introduces the proposed unconditional regression
model for multivariate response variables and provides a detailed discussion of
the asymptotic properties of the introduced estimators. Section 4.4 discusses the
simulation study and the results. Finally, the empirical application is presented in
Section 4.5 while Section 4.6 concludes.

4.2 Notation and preliminary results

In this section, we present the main notation and concepts which we use throughout
the paper. Specifically, we review the notion of Recentered Influence Function
(RIF) which originates from the Influence Function (IF) of Hampel (1974) and the
Unconditional Partial Effect (UPE) introduced by Firpo et al. (2009) that leads us
to analyze the impact of changes in the covariates on the unconditional distribution
of the response variable.

Let Y denote a random variable belonging to an arbitrary sample space Y
with absolutely continuous distribution function FY and consider a vector-valued
functional ν(FY) where ν : Fν → Rp, such that Fν is the collection of all distributions
on Y for which ν is defined.

The IF allows to study the effect of an infinitesimal contamination in the
underlying distribution FY at a point y on the statistic ν(FY) we are interested
in. Let us consider ∆y the probability measure that puts mass 1 at the value y
and let FY,t∆y = (1− t)FY + t∆y represent the mixing distribution with t ∈ [0, 1].
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Following Hampel et al. (2011), the p-dimensional IF of ν(FY) is defined as:

IF (y; ν) = lim
t→0

ν(FY,t∆y)− ν(FY)
t

. (4.1)

Using the definition of IF in (4.1), Firpo et al. (2009) considered the RIF to analyze
the statistic ν(FY) after a perturbation of FY in the direction of ∆y. In particular,
the RIF is defined as the first two terms of the von Mises linear approximation
(Mises 1947) of the corresponding statistic ν(FY,t∆y) with t = 1, namely:

RIF (y; ν) = ν(FY) +
∫
IF (s; ν)d∆y(s) = ν(FY) + IF (y; ν). (4.2)

In the presence of a set of covariates X ∈ X , with X ⊂ Rk being the support of X,
Firpo et al. (2009) suggested the use of the RIF in (4.2) for analyzing the impact on
ν(FY) due to changes in the distribution of X. In particular, in order to incorporate
the effect of the explanatory variables, by the law of iterated expectations and the
fact that the IF in (4.1) integrates up to zero, it follows from (4.2) that:

ν(FY) =
∫
RIF (y; ν)dFY(y) =

∫
E[RIF (Y; ν) | X = x]dFX(x), (4.3)

where FX is the distribution function of X.
From (4.3) it can be seen that when one is interested in the impact of a change in the
covariates X on a specific distributional statistic ν(FY), the E[RIF (Y; ν) | X = x]
can be modeled as a function of X, which can be easily implemented using regression
methods for the conditional mean (see Firpo et al. 2009, 2018 and Rios-Avila 2020).
More formally, under the assumption that the conditional distribution of Y given X,
FY|X, is unaffected by changes in the law of X, the partial effects of a small location
shift in the distribution of X is given by:

α(ν) =
∫
dE[RIF (Y; ν) | X = x]

dx dFX(x), (4.4)

where dE[RIF (Y; ν) | X = x]/dx is understood to indicate the Jacobian matrix of
all its first-order partial derivatives with respect to [xj ]kj=1. Firpo et al. (2009) call
the quantity α(ν) in (4.4) as the Unconditional Partial Effect (UPE).
In the case of a dummy variable X ∈ {0, 1}, the UPE represents the effect of a small
increase in the probability that X = 1, namely:

α(ν) = E[RIF (Y; ν) | X = 1]− E[RIF (Y; ν) | X = 0]. (4.5)

As stated in Firpo et al. (2009), the approach based on the RIF is applicable to
a wide range of distributional statistics to capture how they are affected by changes
in the distribution of X. In the following section we exploit these properties for the
analysis of unconditional quantile, M-quantile and expectile regressions associated
to multivariate response variables.
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4.3 Methodology

In this section, we generalize the univariate approach of Firpo et al. (2009) by devel-
oping a unifying regression method to model unconditional quantiles, M-quantiles
and expectiles of vector-valued responses using the RIF approach illustrated in
Section 4.2. Firstly, we introduce the Huber’s multidimensional M-function for
estimating multivariate quantiles, M-quantiles and expectiles by varying the value
of the tuning constant in an appropriate way. Then, in order to assess the effect of
the covariates at different parts of the unconditional distribution of the dependent
variable, we introduce the Unconditional Quantile, M-Quantile and Expectile Partial
Effect (UQPE, UMQPE, UEPE) and establish the asymptotic properties of the
corresponding estimators.

The Huber’s function, in the univariate case, has been used by Breckling &
Chambers (1988) to define the M-quantile, extending the concept of M-estimation
of Huber (1964) to the quantile framework. Huber M-quantiles are a generalized
form of M-estimators that include in a single modeling approach, quantiles and
expectiles through a tuning constant to adjust the robustness of the estimator in
the presence of outliers. In higher dimensions, extending these univariate notions to
multivariate data is not a trivial task since there does not exist a natural ordering
in p dimensions, p > 1. Already in their proposal, Breckling & Chambers (1988)
considered the multivariate extension of Huber’s function to estimate M-quantiles
by considering a directional unit norm vector to set up a suitable ordering procedure
for multidimensional data. Further, Kokic et al. (2002) generalized their approach
by introducing a weighted estimating equation based on the multidimensional Hu-
ber’s influence function that encompasses multivariate quantiles, M-quantiles and
expectiles, depending on the value of the related tuning constant.
Here and in what follows, in order to present a unified unconditional regression
approach to model multivariate quantiles, M-quantiles and expectiles, we adopt the
approach of Kokic et al. (2002) based on the multidimensional Huber’s function.

Formally, the multidimensional Huber’s influence function in Hampel et al. (2011)
is defined as:

Ψ(r) =
{ r

c , ‖r‖ < c
r
‖r‖ , ‖r‖ ≥ c

, r ∈ Rp, (4.6)

where c ≥ 0 is the tuning constant that can be adjusted to trade robustness for
efficiency, with increasing robustness when it is chosen to be close to 0 and increasing
efficiency when it is chosen to be large. To show how one can use the Ψ(r) function
in (4.6) to estimate multivariate quantiles, M-quantiles and expectiles, we introduce
the following additional notation. Let Y = Rp, consider a continuous p-dimensional
random variable Y and let u denote a unit norm direction vector ranging over the
p-dimensional unit sphere Sp−1 = {z ∈ Rp : ||z|| = 1}, where || · || denotes the
Euclidean norm. Following Kokic et al. (2002), for a general value of c, we obtain
the τ -th multivariate M-quantile of Y in the direction of u, θτ,u, with τ ∈ (0, 1

2 ], by
satisfying the equation: ∫

ηδ(ϕ)Ψ(y− θτ,u)dFY(y) = 0, (4.7)
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where

ηδ(ϕ) =
{

(1− cosϕ)δζ + 2τ, ϕ ∈ (−π
2 ,

π
2 )

−(1− cosϕ)δζ + 2(1− τ), ϕ ∈ [−π,−π
2 ] ∪ [π2 , π],

is a weighting function with ζ = 1− 2τ , δ > 0 and ϕ being the angle between Y− θ
and u, so cosϕ = (Y−θ)′u

‖Y−θ‖ .
The function ηδ(ϕ) gives asymmetric weights to the residual Y− θ depending

both on its length and the angle it forms with u. Most importantly, the tuning
constant c determines where the weighted scheme based on ηδ(ϕ) defines multivariate
quantiles when c = 0 and yields multivariate expectiles as c → ∞, which could
be particularly fruitful when the use of outlier-robust estimation methods is not
justified but there is still interest in modeling the entire distribution of Y (Tzavidis
et al. 2010). Computationally, an estimate of θτ,u in (4.7) can be efficiently obtained
by using Iteratively Reweighted Least Squares (IRLS, Breckling et al. 2001). Clearly,
the multivariate M-quantile in (4.7) includes the traditional notion of univariate
M-quantile. Indeed, if p = 1 and u = 1, then (4.7) reduces to the estimating equation
of the univariate M-quantile, θτ , because cosϕ = sgn(Y − θτ ), which implies that
ηδ(ϕ) = 1− ζsgn(Y − θτ ).

A particular issue in this context may be the choice of the direction u, which is
often selected on the basis of the empirical problem at hand to produce meaningful
results (see Paindaveine & Šiman 2011, Kong & Mizera 2012, Geraci et al. 2020
and Farcomeni et al. 2020). One option is also to use the principal component of a
Principal Component Analysis by maximizing the variance of the projected data
u′Y as proposed in Korhonen & Siljamäki (1998) and Geraci et al. (2020), or to
consider the direction by minimizing a measure of skewness.

When the directional approach is adopted, considering theoretically all directions
in Sp−1 simultaneously yields multivariate M-quantiles centrality regions, which
allow us to provide a visual description of the location, spread, shape and dependence
between the responses distribution. These quantities are of crucial interest as they
are able to adapt to the underlying shape of the distribution of Y without being
constrained to particular shapes, such as convex bodies or ellipses (Breckling et al.
2001). Specifically, the τ -th M-quantile region, Rτ ⊂ Rp, is defined as the set whose
vertices are:

Rτ = {θτ,u
∣∣u ∈ Sp−1}. (4.8)

The region defined in (4.8) is a closed surface and the corresponding M-quantile
contour of order τ is defined as the boundary ∂Rτ of Rτ . For fixed τ , when c = 0 it
defines quantile contours and it generates expectile contours when c→∞. Mean-
while, for any c ≥ 0, the contours are nested as τ increases. As τ → 0, instead, the
τ -th M-quantile contour approaches the convex hull of the sample data providing
valuable information about the extent of extremality of points (see Serfling 2002 and
Kokic et al. 2002).

To build our model, it follows from (4.7) and Hampel et al. (2011) that the IF
for the unconditional multivariate M-quantile θτ,u is defined as:

IF (y;θτ,u) = M(θτ,u)−1ηδ(ϕ)Ψ(y− θτ,u) (4.9)
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with M(θτ,u) being the p× p matrix given by:

M(θτ,u) = −
∫
∇θτ,u

(
ηδ(ϕ)Ψ(y− θ)

)
dFY(y), (4.10)

where ∇θτ,u
(
·
)
is the p× p matrix of first order derivatives of ηδ(ϕ)Ψ(y−θ) in (4.7)

with respect to θ evaluated at θτ,u. Then, following the idea in (4.2), the RIF is
obtained from (4.9) by adding back the multivariate M-quantile θτ,u:

RIF (y;θτ,u) = θτ,u + IF (y;θτ,u). (4.11)

Two remarks are worth noticing. Firstly, (4.11) generalizes the RIF of the multivariate
quantile when c = 0, where the matrix of first order derivatives of Ψ(r) is equal to:

dΨ(r)
dr = 1

‖r‖

{
Ip −

rr′

‖r‖2
}
, (4.12)

with Ip being the identity matrix of dimension p, and it coincides with the RIF of
the multivariate expectile when c→∞, which implies dΨ(r)

dr ∝ Ip. Secondly, when
p = 1 and u = 1, (4.11) reduces to the univariate RIF of standard M-quantiles
which, in turn, includes the RIF of the quantile in Firpo et al. (2009) and the RIF
of the expectile for c arbitrarily large. Further, using this approach we are able to
investigate the correlation structure of multivariate responses at different values of τ .
More in detail, to study the association between multiple outcomes we analyze the
covariance matrix of the RIF in (4.11) which, by simple calculations, can be written
as:

∆(θτ,u) = E[IF (Y;θτ,u)IF (Y;θτ,u)′]. (4.13)

Given u, τ and c, the off-diagonal elements of ∆(θτ,u) provide a measure of tail
correlation between the components of Y.

In a regression framework where covariates X are available, from (4.11) we define
the unified unconditional regression model as follows:

E[RIF (Y;θτ,u) | X = x] = θτ,u + E[IF (Y;θτ,u) | X = x]. (4.14)

Our objective is to identify how changes in the distribution of X affect the multivariate
quantile, M-quantile and expectile of the unconditional distribution of Y. Following
(4.4), for a given level τ , direction u, and constant c ≥ 0, the Unconditional M-
Quantile Partial Effect (UMQPE), ατ,u, is formally defined as:

ατ,u =
∫
dE[RIF (Y;θτ,u) | X = x]

dx dFX(x)

= M(θτ,u)−1
∫
dE[ηδ(ϕ)Ψ(Y− θτ,u) | X = x]

dx dFX(x).
(4.15)

It is worth noting that the proposed approach has several appealing properties.
Firstly, the UMQPE in (4.15) is easy to compute as it does not depend on the den-
sity of Y which would entail the use of nonparametric density estimation procedures
(see Kokic et al. 2002 and Scott 2015). Secondly, this methodology allows us to
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directly control the robustness to outliers and estimation efficiency by means of the
tuning constant c. In particular, when c = 0 we have the UQPE and when c→∞
we have the UEPE.

Before concluding this section, it is relevant to compare the proposed uncondi-
tional regression model with the standard conditional regression approach. Suppose
that Y = h(X) + ε, where h : X → Rp is an unknown function with bounded first
partial derivatives and ε is a p-dimensional random error independent of X. For a
given τ , u and c ≥ 0, we denote the τ -th multivariate M-quantile of Y conditional
on X = x, θτ,u(x) = h(x), as the solution of the following estimating equation:∫

ηδ(ϕ)Ψ(y− θτ,u(x))dFY|X(y | x) = 0. (4.16)

Consequently, the effect of a small change in X on the conditional M-quantile of Y,
θτ,u(x), which we denote as Conditional M-Quantile Partial Effect (CMQPE), is
given by:

ατ,u(x) = dh(x)
dx . (4.17)

In order to clarify the interpretation of (4.15), following Firpo et al. (2009), we provide
a useful representation of the UMQPE in terms of the conditional distribution of Y
given X and show how it is related to the CMQPE in (4.17). Let Wτ,u : X → Rp×p
define the weighting matrix function:

Wτ,u(x) = M(θτ,u)−1E[∇θτ,u
(
ηδ(ϕ)Ψ(Y− θτ,u)

)
| X = x] (4.18)

and let sτ,u be the function sτ,u : X → (0, 1
2 ] which can be thought as a “matching”

function that maps each conditional multivariate M-quantile onto the unconditional
multivariate M-quantile of Y, i.e.:

sτ,u(x) = {τ̃ : θτ̃ ,u(x) = θτ,u}. (4.19)

The next Theorem establishes a link between the UMQPE and the CMQPE.

Theorem 3. Assume that Y = h(X) + ε where h(·) is an unknown function with
bounded first partial derivatives and ε is an error term independent of X. For a
given τ ∈ (0, 1

2 ], u ∈ Sp−1 and c ≥ 0, the UMQPE ατ,u can be written as:

ατ,u = E[Wτ,u(X)αsτ,u(X),u(X)], (4.20)

where the expectation is taken over the distribution of X.

Proof. See Proof of Theorem 3 in Appendix.

From Theorem 3 there follow several interesting considerations. Firstly, it formally
shows that, unlike conditional means which average up to the unconditional mean
thanks to the law of iterated expectations, conditional multivariate M-quantiles do
not average up to their unconditional counterparts. On the contrary, the UMQPE is
equal to a weighted average, over the distribution of the covariates, of the CMQPE at
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the sτ,u(X)-th conditional M-quantile level corresponding to the τ -th unconditional
M-quantile of Y in the direction u. Secondly, it generalizes the result in Firpo et al.
(2009) to the multivariate setting which also holds in the univariate case when p = 1
and u = 1. Furthermore, Theorem 3 is useful for interpreting the parameters of the
proposed regression method. For instance, in a linear model where h(X) = β′X, the
UMQPE and CMQPE are both equal to the matrix of regression coefficients β for
any choice of τ and u. More generally, the UMQPE and CMQPE will be different
depending on the structural form of h(·) and the distribution of X as described in
Theorem 3.

4.3.1 Estimation

In this section, we discuss the estimation of the UQPE, UMQPE and UEPE using the
RIF regression approach. Following Firpo et al. (2009), for a given τ , direction u and
c ≥ 0, we estimate the ατ,u in (4.15) via an OLS regression of the RIF (Y;θτ,u) as a
dependent variable onto the covariates X by using a two-step procedure. Specifically,
an estimate θ̂τ,u of θτ,u is obtained by solving (4.7) via IRLS, substitute θ̂τ,u in
(4.11) and then estimate ατ,u by regressing the RIF (Y; θ̂τ,u) on X. Let (Yi,Xi),
i = 1, . . . , n, denote a random sample of size n, the estimator of the UMQPE in
(4.15), α̂τ,u, is defined as follows:

α̂τ,u = Ω̂−1
X

1
n

n∑
i=1
{XiRIF

′(Yi; θ̂τ,u)}. (4.21)

where Ω̂X = 1
n

∑n
i=1 XiX′i. Similarly, the estimators of the UQPE and UEPE related

to (4.15) can be obtained following the same procedure by setting c = 0 and c large
enough such that ||Yi − θτ,u|| < c, ∀i = 1, . . . , n, respectively. In all other cases,
the UMQPE estimator in (4.21) depends on the unknown tuning constant c of the
Huber’s influence function.

The choice of an appropriate value for c is not straightforward. Ideally, it should
be data-driven and account for possible outliers in the data. In the literature on
univariate M-estimation, c can be either fixed a-priori or defined by the data analyst
to achieve a specified asymptotic efficiency under normality (Huber & Ronchetti
2009), maximize the asymptotic efficiency (Wang et al. 2007) or it can be estimated
in a likelihood framework as illustrated by Bianchi et al. (2018). In our multivariate
context, we propose to select the optimal value of c, denoted with c?, via K-fold cross-
validation which allows us to consider c as a data-driven parameter. In particular,
for fixed τ and u, we construct a uniform grid of values of c from cmin = 0.1 to
cmax = max

i=1,...,n
|| Yi ||. Then, for each value of c ∈ [cmin, . . . , cmax], we fit the

proposed model and determine the optimal value c?.

4.3.2 Asymptotic properties

This section presents the asymptotic properties of the estimator α̂τ,u in (4.21).
Specifically, we derive the Bahadur-type (Bahadur 1966) representation, consistency
and asymptotic normality for fixed τ , direction u and c. To prove the following
results, we follow Firpo et al. (2009) where they consider the IF and not its recentered
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version. Either using the IF or the RIF, all regression coefficients are the same, the
only exception being the intercept.

Consider the following assumptions:

(A1) The distribution of the random vector Y is absolutely continuous with respect
to the Lebesgue measure on Rp, with a density bounded on every compact
subset of Rp.

(A2) The observations (Yi,Xi), i = 1, . . . , n are an i.i.d. sample from (Y,X).

(A3) The function Ψ(·) in (4.6) is bounded, non-decreasing in each argument and
possesses bounded derivatives up to the second order with the convention
Ψ(0) = 0.

(A4) E[|| ηδ(ϕ)Ψ(Y− θ) ||2] <∞,∀θ ∈ Rp.

(A5) The p× p matrix M(θτ,u) in (4.10) is positive definite.

(A6) Ω̂X is nonsingular almost surely for n sufficiently large and converges to
ΩX = E[XX′].

It is worth noticing that assumptions A1-A6 are quite mild and are standard in
robust estimation theory. For instance, assumptions A1-A5 are needed for the
Bahadur (Bahadur 1966) representation and ensure the invertibility of M(θτ,u).

In order to present the asymptotic properties α̂τ,u, we first need to establish the
Bahadur-type representation for θ̂τ,u and its limiting distribution.

Theorem 4. Let assumptions A1-A5 hold. Then, for any τ ∈ (0, 1
2 ] and u ∈ Sp−1,

the following asymptotic linear representation holds:

√
n(θ̂τ,u − θτ,u) = M(θτ,u)−1 1√

n

n∑
i=1

ηδ(ϕi)Ψ(Yi − θτ,u) + op(1) (4.22)

and
√
n(θ̂τ,u − θτ,u) p→ N (0,M(θτ,u)−1D(θτ,u)M(θτ,u)−1) as n→∞, (4.23)

where D(θτ,u) defines a p× p matrix:

D(θτ,u) = E[η2
δ (ϕ)Ψ(Y− θτ,u)Ψ′(Y− θτ,u)]. (4.24)

Proof. See Proof of Theorem 4 in Appendix.

To prove consistency and asymptotic normality of α̂τ,u, we exploit Theorem 4
and define the k × p matrix of OLS regression coefficients of IF (Y;θτ,u) on X:

β̂(θτ,u) = Ω̂−1
X

1
n

n∑
i=1

Xi IF
′(Yi;θτ,u) (4.25)
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whose population counterpart is:

β(θτ,u) = Ω−1
X E[X IF ′(Y;θτ,u)]. (4.26)

Also, let us denote for i = 1, . . . , n,

γ?i (θτ,u) = vec
(
Ω−1

X Xiz′i(θτ,u)
)

and zi(θτ,u) = IF (Yi;θτ,u)− β′(θτ,u)Xi.

(4.27)
where the vec(·) operator converts a matrix into a column vector by stacking its
columns on top of one another. Finally, we define:

α̂?τ,u = vec(α̂τ,u) and α?τ,u = vec(ατ,u). (4.28)

Theorem 5. Let assumptions A1-A6 hold. Then, for any τ ∈ (0, 1
2 ] and u ∈ Sp−1,

the following asymptotic linear representation holds:

√
n(α̂?τ,u −α?τ,u) = 1√

n

n∑
i=1

Si(θτ,u) + op(1) (4.29)

and
√
n(α̂?τ,u −α?τ,u) p→ N

(
0,E

[
S(θτ,u)S′(θτ,u)

])
as n→∞, (4.30)

where Si(θτ,u) is a kp-dimensional vector:

Si(θτ,u) = ∇θτ,uβ?(θ)M(θτ,u)−1ηδ(ϕi)Ψ(Yi − θτ,u) + γ?i (θτ,u), (4.31)

and ∇θτ,uβ?(θ) is the derivative of β?(θ) with respect to θ evaluated at θτ,u.

Proof. See Proof of Theorem 5 in Appendix.

In order to use the previous Theorem to build confidence intervals and hypothesis
tests, in what follows we provide a consistent estimator of the asymptotic covariance
matrix of α̂?τ,u in (4.30). The analytical form of the asymptotic covariance matrix
suggests the following estimator:

V̂(θ̂τ,u) = 1
n

n∑
i=1

Ŝi(θ̂τ,u)Ŝ′i(θ̂τ,u) (4.32)

where Ŝi(θ̂τ,u) is the kp-dimensional vector:

Ŝi(θ̂τ,u) =
(
∇
θ̂τ,u
β̂
?(θ)M(θ̂τ,u)−1ηδ(ϕ̂i)Ψ(Yi − θ̂τ,u) + γ̂?i (θ̂τ,u)

)
(4.33)

and ∇
θ̂τ,u
β̂
?(θ) can be obtained via numerical differentiation.

The next Theorem proves consistency of V̂(θ̂τ,u).

Theorem 6. Let assumptions A1-A6 hold,

V̂(θ̂τ,u)− E
[
S(θτ,u)S′(θτ,u)

]
p→ 0, (4.34)

where the notation is understood to indicate convergence of the matrices element by
element.

Proof. See Proof of Theorem 6 in Appendix.
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4.4 Simulation study

In this section, we conduct a simulation study to evaluate the finite sample properties
of the proposed method, showing that it represents a valid procedure to estimate
the effect of the covariates on the quantiles, M-quantiles and expectiles of the uncon-
ditional distribution of multivariate responses. This simulation exercise addresses
the following issues. First, we consider different distributional choices for the error
term to study the performance of the model in the presence of non-Gaussian errors.
Second, we evaluate the efficiency of the introduced estimators using different values
of the tuning constant c of the multivariate Huber’s influence function in (4.6).
Finally, we assess the performance of the cross-validation procedure described in
Section 4.3.1 to select the optimal c.

We set p = 2, n = 1000 and consider two explanatory variables, i.e., X(1)
i ∼

N (0, 0.5) and X(2)
i ∼ N (0, 0.5). The observations are generated according to the

following bivariate regression model:

Yi = B′Xi + εi, (4.35)

where Xi = (1, X(1)
i , X

(2)
i )′ and B =

 2 5
−1.7 1.5

1 −0.8

. It is worth recalling that

under the data generating process in (4.35), it follows from Theorem 3 that the slope
parameters in B coincides with the UMQPE of X.
To address the first aim of this simulation study, following Dawber et al. (2020), the
error terms εi in (4.35) are sampled from three distributions, namely:

(N): a multivariate standard Normal distribution with zero mean and variance-
covariance matrix equal to Σ1 =

( 1 0.3
0.3 1

)
, that is εi ∼ N2(0,Σ1);

(CN): a contaminated multivariate Normal distribution εi ∼ (1−λ)N2(0,Σ1)+
λN2(0,Σ2), with λ = 5% and Σ2 =

( 100 85.732
85.732 150

)
, which corresponds to a

correlation between errors of 0.7;

(T): a multivariate Student-t distribution with 3 degrees of freedom and
variance-covariance matrix equal to Σ1, that is εi ∼ T2(3,Σ1).

To answer the second question, we compare the efficiency of the introduced estimators
using three values for the tuning constant in (4.6), i.e., c = 0, c = 1.5 and an
arbitrarily large value c = 100. In the first and third case our model reduces,
respectively, to the unconditional quantile regression and unconditional expectile
regression while the value c = 1.5 in between down-weights the influence of outlying
observations offering moderate protection against outliers. We select three τ levels,
τ = 0.10, τ = 0.25 and τ = 0.45, three directions in the unit circle, u1 = (1, 0),u2 =
( 1√

2 ,
1√
2) and u3 = (0, 1), and report the following indicators over H = 1000 Monte

Carlo replications. The Average Relative Bias (ARB) defined as:

ARB(θ̂τ ) = 1
H

H∑
h=1

(θ̂(h)
τ − θτ )
θτ

× 100, (4.36)
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where θ̂(h)
τ is the estimated parameter at level τ for the h-th replication and θτ is

the corresponding “true” value of the parameter. Secondly, the Root Mean Square
Error (RMSE) of model parameters averaged across the H simulations:

RMSE(θ̂τ ) =

√√√√ 1
H

H∑
h=1

(θ̂(h)
τ − θτ )2. (4.37)

Tables 4.1, 4.2 and 4.3 report the ARB (in percentage) and the RMSE (in brackets)
of the slope parameters B11 = −1.7, B12 = 1.5, B21 = 1 and B22 = −0.8, for the
three considered values of c.
Firstly, one can see that all models are able to recover the true parameter values for
all considered directions and values of the tuning constant c. Indeed, both the ARB
and the RMSE remain reasonably small at the center of the distribution (τ = 0.45),
but they tend to increase as the quantile level becomes more extreme (τ = 0.10)
when we consider contaminated or heavy-tailed distributions (CN and T scenarios).
Secondly, to evaluate the efficiency of the considered estimators, we compare the
RMSE for different tuning constants under the three scenarios for the error term.
It is possible to observe that with normal errors our approach achieves the highest
efficiency when c = 100 for all quantile levels. As expected, for normally distributed
data, resistance against outliers is not required and a large value for the tuning
constant is preferred. In contrast, for contaminated normal and Student-t errors, our
estimators are more efficient when a smaller tuning constant is selected, which reflect
the presence of potential influential observations that should be down-weighted
(Dawber et al. 2020). These findings are consistent across the considered three
directions and provide evidence that the proposed model offers great flexibility in
controlling for the presence of outlying values.
From a computational point of view, to evaluate the execution times of the estimation
procedure, we report the median CPU Time (in seconds) required by the implemented
R code using an Intel Xeon E5-2609 2.40GHz processor. As can be seen, the
fastest running times are associated to the unconditional expectile regression with a
minimum of 0.575 seconds, while the slowest ones are associated to the unconditional
quantile regression with a maximum of 0.981 seconds. These results reveal decent
computational performance, confirming the practical feasibility of our estimation
procedure.
Furthermore, we evaluate the proposed asymptotic standard errors of the UMQPE
estimators described in Section 4.3.2. We start by comparing the empirical Monte
Carlo standard errors, S(θ̂τ ) =

√
1
H

∑H
h=1(θ̂(h)

τ − θ̄τ )2 with θ̄τ = 1
H

∑H
h=1 θ̂

(h)
τ , and

the estimated standard errors, SA(θ̂τ ), based on expression (4.32) averaged over
H = 1000 replications. For all considered scenarios and values of c, the results
are reported in Tables 4.4, 4.5 and 4.6. Firstly, as expected, we can see that both
the empirical and asymptotic standard error estimates are larger when we are
modeling extreme (M-)quantiles (τ = 0.10) near the convex hull of the data than
of (M-)quantiles close to the center of the distribution (τ = 0.45). Secondly, it
can be observed that the asymptotic standard errors offer a good approximation
to the corresponding empirical ones. In some cases, however, we notice a slight
overestimation of the empirical standard errors when c = 0 and when τ = 0.1 and
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τ = 0.25, which can be ascribed to data sparsity in low density regions. In addition,
we examine the confidence interval coverage of the proposed estimators constructed
using (4.32). In Table 4.7 we report the Coverage Probability (CP) of nominal 95%
confidence intervals of the UMQPEs defined as the ratio between the number of
times the interval θτ ± 2

√
Var(θ̂τ ) contains the “true” population parameter and

the number of Monte Carlo replicates, H. One can observe that the estimated CPs
are generally accurate, although few values are slightly away from the nominal 95%
level when data are generated under the CN and T scenarios and at levels τ = 0.10
and τ = 0.25, due to the reduced amount of information as we approach the convex
hull of the sample. We expect that the results can potentially be improved by
either increasing the number of observations and/or the number of Monte Carlo
replications.

u Error τ B11 = −1.7 B12 = 1.5 B21 = 1 B22 = −0.8 CPU Time

u1

Gaussian
0.10 0.315 (0.303) 0.482 (0.239) 0.699 (0.199) 0.173 (0.156) 0.860
0.25 0.413 (0.205) −0.378 (0.182) 0.677 (0.141) −0.072 (0.127) 0.962
0.45 −0.104 (0.178) 0.498 (0.160) 0.033 (0.121) −0.083 (0.111) 0.929

Contamined
0.10 0.648 (0.289) 0.178 (0.249) 0.383 (0.206) 0.526 (0.166) 0.981
0.25 0.030 (0.217) −0.035 (0.209) 0.141 (0.148) −0.214 (0.136) 0.943
0.45 0.168 (0.178) 0.029 (0.164) 0.393 (0.125) −0.042 (0.114) 0.909

Student-t
0.10 −0.603 (0.324) 0.493 (0.259) −0.865 (0.221) 0.477 (0.171) 0.941
0.25 −0.712 (0.216) −0.712 (0.214) 0.361 (0.151) 0.613 (0.141) 0.906
0.45 0.273 (0.199) −0.290 (0.176) 0.052 (0.137) −0.360 (0.122) 0.880

u2

Gaussian
0.10 −0.036 (0.251) −0.696 (0.237) 0.009 (0.163) −0.947 (0.160) 0.951
0.25 0.525 (0.203) 0.507 (0.184) 0.502 (0.139) 0.665 (0.129) 0.933
0.45 −0.033 (0.173) 0.335 (0.163) −0.137 (0.119) −0.023 (0.113) 0.906

Contamined
0.10 0.606 (0.252) 0.804 (0.239) 0.554 (0.172) 0.741 (0.161) 0.946
0.25 −0.092 (0.217) −0.711 (0.186) 0.090 (0.147) −0.821 (0.131) 0.918
0.45 0.081 (0.179) 0.123 (0.174) 0.253 (0.123) 0.105 (0.121) 0.892

Student-t
0.10 −0.067 (0.274) −0.648 (0.257) −0.664 (0.189) −0.075 (0.184) 0.919
0.25 0.092 (0.218) 0.507 (0.185) −0.181 (0.149) −0.490 (0.135) 0.885
0.45 −0.218 (0.197) −0.247 (0.174) −0.497 (0.137) 0.362 (0.122) 0.866

u3

Gaussian
0.10 0.239 (0.240) −0.467 (0.280) −0.118 (0.160) −0.547 (0.177) 0.974
0.25 0.566 (0.188) −0.094 (0.199) −0.316 (0.129) −0.160 (0.134) 0.953
0.45 0.173 (0.178) 0.127 (0.171) 0.000 (0.125) −0.213 (0.116) 0.921

Contamined
0.10 −0.090 (0.263) 0.938 (0.290) −0.170 (0.175) 0.680 (0.193) 0.963
0.25 −0.078 (0.218) 0.687 (0.191) −0.030 (0.141) −0.733 (0.136) 0.935
0.45 0.164 (0.191) 0.513 (0.166) 0.295 (0.128) 0.446 (0.118) 0.902

Student-t
0.10 0.219 (0.268) 0.265 (0.278) −0.349 (0.181) 0.596 (0.192) 0.924
0.25 −0.350 (0.205) −0.241 (0.203) −0.171 (0.141) −0.187 (0.141) 0.900
0.45 0.361 (0.176) −0.232 (0.181) −0.004 (0.126) −0.191 (0.126) 0.876

Table 4.1. Values of ARB (in percentage), RMSE (in brackets) and median CPU Time (in
seconds) required to fit the model over 1000 Monte Carlo simulations, under the three
data generating processes and using c = 0.

Finally, to evaluate the performance of the considered cross-validation procedure
to select c, we consider the same simulation experiment where we include only the
intercept with no covariates. The simulations are carried out on null models as the
effect of different tuning constant will be most prominent on the intercept coefficient
(Dawber et al. 2020). Specifically, we construct a uniform grid of 50 values for c
from 0.1 to 5 as described in Section 4.3.1. Then, for fixed u and τ , we use a K-fold
cross-validation to select the tuning constant. Table 4.8 reports the median value of
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u Error τ B11 = −1.7 B12 = 1.5 B21 = 1 B22 = −0.8 CPU Time

u1

Gaussian
0.10 0.234 (0.135) 0.350 (0.107) 0.289 (0.113) −0.354 (0.095) 0.716
0.25 0.014 (0.098) 0.152 (0.087) 0.024 (0.083) 0.039 (0.081) 0.751
0.45 −0.055 (0.084) −0.004 (0.077) −0.130 (0.074) −0.192 (0.073) 0.728

Contamined
0.10 0.122 (0.140) 0.105 (0.117) 0.218 (0.133) 0.384 (0.104) 0.781
0.25 0.109 (0.102) 0.133 (0.094) 0.276 (0.095) 0.391 (0.086) 0.743
0.45 0.068 (0.088) 0.228 (0.083) 0.257 (0.080) 0.393 (0.079) 0.719

Student-t
0.10 −0.059 (0.160) 0.242 (0.127) −0.613 (0.140) 0.697 (0.112) 0.771
0.25 0.035 (0.114) 0.230 (0.099) −0.378 (0.101) −0.466 (0.092) 0.731
0.45 0.015 (0.096) 0.136 (0.087) −0.348 (0.089) 0.230 (0.083) 0.713

u2

Gaussian
0.10 −0.206 (0.108) 0.024 (0.100) −0.263 (0.091) 0.379 (0.094) 0.755
0.25 −0.106 (0.091) −0.012 (0.084) −0.159 (0.079) 0.042 (0.080) 0.729
0.45 −0.051 (0.084) −0.006 (0.077) −0.143 (0.073) −0.179 (0.074) 0.712

Contamined
0.10 0.264 (0.117) 0.439 (0.114) 0.284 (0.108) −0.444 (0.105) 0.754
0.25 0.156 (0.095) 0.315 (0.093) 0.256 (0.087) −0.397 (0.086) 0.723
0.45 0.070 (0.088) 0.237 (0.084) 0.247 (0.079) 0.368 (0.079) 0.709

Student-t
0.10 −0.094 (0.137) 0.259 (0.129) −0.814 (0.125) 0.817 (0.120) 0.760
0.25 −0.080 (0.107) 0.184 (0.097) −0.555 (0.098) 0.442 (0.093) 0.719
0.45 −0.010 (0.095) 0.121 (0.087) −0.385 (0.089) 0.220 (0.083) 0.705

u3

Gaussian
0.10 −0.016 (0.112) −0.066 (0.117) −0.116 (0.092) 0.511 (0.105) 0.772
0.25 −0.101 (0.093) −0.064 (0.089) −0.231 (0.079) 0.034 (0.083) 0.746
0.45 −0.047 (0.083) 0.003 (0.078) −0.160 (0.073) −0.168 (0.074) 0.722

Contamined
0.10 −0.006 (0.118) 0.504 (0.138) 0.025 (0.101) 0.193 (0.123) 0.768
0.25 0.035 (0.097) 0.399 (0.100) 0.135 (0.086) 0.331 (0.091) 0.738
0.45 0.064 (0.088) 0.253 (0.084) 0.238 (0.079) 0.361 (0.079) 0.714

Student-t
0.10 −0.089 (0.130) 0.424 (0.147) −0.561 (0.118) 0.852 (0.132) 0.763
0.25 −0.122 (0.108) 0.144 (0.103) −0.554 (0.098) −0.345 (0.096) 0.728
0.45 −0.037 (0.096) 0.092 (0.088) −0.428 (0.089) −0.178 (0.083) 0.712

Table 4.2. Values of ARB (in percentage), RMSE (in brackets) and median CPU Time (in
seconds) required to fit the model over 1000 Monte Carlo simulations, under the three
data generating processes and using c = 1.5.

c being selected, c̄?, and the Proportion of Huberised Residuals (PHR) over 1000
Monte Carlo replications, using K = 5 and K = 10 folds. The results show that
the considered approach reduces fewer observations as c increases and as τ is far
from 0.5, for all three distributions. As one can see, the selected tuning constant
down-weights influential observations in heavy-tailed distributions (see Panels B
and C) when estimating the center of the distribution and, on the other hand, the
PHR tends to be smaller when we are interested in extreme τ levels. Furthermore,
both the median value of the selected tuning constant and the PHR are very similar
when using K = 10 in place of K = 5 for all scenarios considered. This therefore
suggests that the considered procedure is appropriate for determining a suitable
tuning constant from the data.

4.5 Application

In this section, we consider data from the Survey on Household Income and Wealth
(SHIW) 2016 conducted by the Bank of Italy to show the relevance of our methodology.
We analyze the impact of economic and socio-demographic factors on households
wealth and consumption levels, accounting both for the presence of outliers and the
correlation structure between the two outcomes. We are interested in evaluating
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u Error τ B11 = −1.7 B12 = 1.5 B21 = 1 B22 = −0.8 CPU Time

u1

Gaussian
0.10 −0.046 (0.106) 0.018 (0.085) 0.112 (0.092) 0.122 (0.081) 0.612
0.25 −0.017 (0.077) −0.006 (0.070) 0.056 (0.071) 0.045 (0.070) 0.626
0.45 −0.012 (0.066) −0.045 (0.064) −0.025 (0.063) −0.029 (0.065) 0.598

Contamined
0.10 −0.453 (0.317) 0.802 (0.309) 0.204 (0.312) −0.564 (0.294) 0.656
0.25 −0.273 (0.195) 0.599 (0.222) 0.124 (0.193) −0.129 (0.212) 0.616
0.45 −0.177 (0.161) 0.466 (0.193) 0.114 (0.157) 0.082 (0.185) 0.589

Student-t
0.10 0.039 (0.191) 0.162 (0.148) −1.151 (0.189) 1.090 (0.144) 0.634
0.25 0.028 (0.130) 0.164 (0.119) −0.953 (0.130) 0.877 (0.118) 0.603
0.45 0.049 (0.108) 0.101 (0.108) −0.837 (0.110) 0.729 (0.108) 0.576

u2

Gaussian
0.10 −0.100 (0.086) −0.060 (0.080) −0.054 (0.077) 0.259 (0.080) 0.649
0.25 −0.044 (0.072) −0.071 (0.068) −0.020 (0.067) 0.087 (0.070) 0.622
0.45 −0.014 (0.066) −0.053 (0.063) −0.034 (0.063) −0.021 (0.065) 0.597

Contamined
0.10 −0.788 (0.419) 1.194 (0.508) 0.997 (0.401) −1.182 (0.484) 0.681
0.25 −0.336 (0.206) 0.787 (0.251) 0.308 (0.202) −0.350 (0.243) 0.621
0.45 −0.186 (0.161) 0.487 (0.194) 0.137 (0.157) 0.045 (0.186) 0.584

Student-t
0.10 −0.036 (0.172) 0.333 (0.174) −1.014 (0.172) 1.117 (0.167) 0.639
0.25 −0.020 (0.125) 0.208 (0.125) −0.950 (0.126) 0.810 (0.123) 0.604
0.45 0.035 (0.108) 0.105 (0.108) −0.855 (0.110) 0.705 (0.108) 0.575

u3

Gaussian
0.10 −0.053 (0.087) −0.156 (0.093) −0.070 (0.077) 0.247 (0.088) 0.651
0.25 −0.041 (0.073) −0.123 (0.071) −0.076 (0.067) 0.060 (0.072) 0.624
0.45 −0.012 (0.066) −0.062 (0.063) −0.046 (0.063) −0.025 (0.065) 0.594

Contamined
0.10 −0.704 (0.284) 1.026 (0.444) 0.531 (0.272) −0.977 (0.431) 0.664
0.25 −0.349 (0.189) 0.745 (0.246) 0.258 (0.183) −0.300 (0.239) 0.616
0.45 −0.181 (0.161) 0.481 (0.194) 0.144 (0.156) 0.051 (0.186) 0.583

Student-t
0.10 −0.067 (0.141) 0.458 (0.190) −1.159 (0.142) 0.832 (0.176) 0.633
0.25 −0.045 (0.118) 0.192 (0.130) −1.003 (0.119) 0.669 (0.125) 0.602
0.45 0.032 (0.107) 0.094 (0.108) −0.860 (0.109) 0.677 (0.108) 0.575

Table 4.3. Values of ARB (in percentage), RMSE (in brackets) and median CPU Time (in
seconds) required to fit the model over 1000 Monte Carlo simulations, under the three
data generating processes and using c = 100.

whether these effects are more pronounced on more disadvantaged families than on
richer ones. In this setting, the limitation of using a conditional (M-)quantile model
is that the effect of the covariates at different quantile levels may be masked by the
set of conditioning variables, i.e., the characteristics of the family. Once we have
conditioned on the explanatory variables, for instance, the 10-th (M-)quantile of
the unconditional distribution of the responses may potentially be very different
from the 10-th (M-)quantile of the conditional distribution, so the coefficients of
conditional (M-)quantile regression cannot be interpreted as unconditional effects.
On the other hand, by using our unconditional method, the UMQPE provides an
estimate of the impact of covariates across the entire population and not merely
among population subgroups, consisting of families who share the same values of
the included covariates. In what follows, we fit the proposed regression method at
different points of the unconditional distributions of family wealth and consumption,
and illustrate the difference between the conditional and unconditional approaches.

4.5.1 Data description

The SHIW (https://www.bancaditalia.it) is an annual survey conducted by the
Bank of Italy whose aims are to provide information on the economic and financial
behaviours of Italian households and collect reliable, comparable and representative

https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/distribuzione-microdati/index.html
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u Error τ S(B̂11) SA(B̂11) S(B̂12) SA(B̂12) S(B̂21) SA(B̂21) S(B̂22) SA(B̂22)
0.10 0.3034 0.3603 0.2386 0.2492 0.1992 0.2313 0.1556 0.1681

Gaussian 0.25 0.2049 0.2162 0.1818 0.1815 0.1407 0.1466 0.1267 0.1268
0.45 0.1780 0.1643 0.1597 0.1570 0.1208 0.1174 0.1108 0.1127
0.10 0.2881 0.3701 0.2495 0.2742 0.2061 0.2404 0.1663 0.1843

u1 Contamined 0.25 0.2171 0.2276 0.2088 0.2044 0.1476 0.1556 0.1356 0.1410
0.45 0.1777 0.1792 0.1645 0.1701 0.1245 0.1278 0.1139 0.1208
0.10 0.3242 0.4272 0.2588 0.3076 0.2212 0.2774 0.1707 0.2060

Student-t 0.25 0.2159 0.2288 0.2141 0.1962 0.1508 0.1605 0.1410 0.1406
0.45 0.1987 0.1813 0.1757 0.1755 0.1370 0.1317 0.1219 0.1269
0.10 0.2508 0.2941 0.2366 0.2841 0.1628 0.1910 0.1595 0.1844

Gaussian 0.25 0.2033 0.2052 0.1835 0.1947 0.1392 0.1404 0.1294 0.1335
0.45 0.1735 0.1750 0.1633 0.1620 0.1194 0.1223 0.1130 0.1141
0.10 0.2516 0.3269 0.2385 0.3202 0.1715 0.2120 0.1612 0.2104

u2 Contamined 0.25 0.2171 0.2156 0.1861 0.2089 0.1472 0.1485 0.1311 0.1442
0.45 0.1794 0.1753 0.1744 0.1668 0.1232 0.1253 0.1213 0.1197
0.10 0.2739 0.3384 0.2565 0.3321 0.1892 0.2279 0.1839 0.2225

Student-t 0.25 0.2185 0.2193 0.1841 0.2071 0.1491 0.1542 0.1342 0.1467
0.45 0.1967 0.1908 0.1736 0.1841 0.1371 0.1365 0.1225 0.1308
0.10 0.2405 0.2576 0.2798 0.3213 0.1604 0.1724 0.1771 0.2071

Gaussian 0.25 0.1883 0.2019 0.1993 0.2212 0.1294 0.1386 0.1344 0.1481
0.45 0.1778 0.1693 0.1706 0.1658 0.1246 0.1199 0.1161 0.1160
0.10 0.2634 0.2968 0.2901 0.3748 0.1749 0.1957 0.1927 0.2413

u3 Contamined 0.25 0.2181 0.2110 0.1906 0.2300 0.1410 0.1464 0.1360 0.1557
0.45 0.1909 0.1717 0.1662 0.1650 0.1278 0.1234 0.1182 0.1188
0.10 0.2682 0.2833 0.2776 0.3688 0.1807 0.1938 0.1925 0.2444

Student-t 0.25 0.2047 0.2185 0.2033 0.2397 0.1415 0.1539 0.1412 0.1639
0.45 0.1758 0.1893 0.1815 0.1852 0.1265 0.1351 0.1256 0.1310

Table 4.4. Empirical, S(·), and asymptotic, SA(·), standard error estimates of the UMQPEs
over 1000 Monte Carlo simulations, under the three data generating processes and using
c = 0.

data of the population resident in Italy. This survey is widely regarded as the basis of
the most reliable estimates for macroeconomics studies. The sample is drawn in two
stages, the primary and secondary sampling units are municipalities and households,
respectively. Before the primary units are selected, they are stratified by region and
population size. Data are collected mainly via an electronic questionnaire using the
Computer Assisted Personal Interviewing program while the remaining interviews
are conducted using the Paper And Pencil Personal Interviewing program.

In this work, following established custom we transform the dependent variables,
i.e., household consumption (LCON) and net wealth (LWEA) to natural logarithm.
In particular, LCON is defined as the sum of household’s expenditure on durables and
non-durable goods while net wealth is obtained as the algebraic sum of real assets,
financial assets and financial liabilities. The set of considered predictors includes the
log of net disposable income (LINC), defined as the sum of payroll income, pensions,
net transfers, net self-employment income and property income sources, and relevant
information on the household’s head such as age (Age) and age squared (Age2)
measured in years. Also, gender (male (baseline)), marital (married (baseline),
never married, separated, widowed), employment status (employee (baseline), self-
employed, not-employed) and educational level (no education (baseline), elementary,
middle, vocational, high school, university or higher) are included as dummy variables.



112 4. Unified unconditional regression

u Error τ S(B̂11) SA(B̂11) S(B̂12) SA(B̂12) S(B̂21) SA(B̂21) S(B̂22) SA(B̂22)
0.10 0.1354 0.1125 0.1068 0.0953 0.1127 0.1041 0.0954 0.0891

Gaussian 0.25 0.0981 0.0860 0.0872 0.0813 0.0834 0.0879 0.0807 0.0837
0.45 0.0843 0.0702 0.0772 0.0690 0.0736 0.0702 0.0735 0.0690
0.10 0.1396 0.1261 0.1175 0.1056 0.1333 0.1172 0.1036 0.0989

u1 Contamined 0.25 0.1020 0.0887 0.0937 0.0838 0.0947 0.0866 0.0860 0.0821
0.45 0.0879 0.0759 0.0834 0.0753 0.0799 0.0759 0.0787 0.0753
0.10 0.1598 0.1465 0.1273 0.1195 0.1398 0.1367 0.1123 0.1126

Student-t 0.25 0.1139 0.1002 0.0994 0.0934 0.1015 0.0981 0.0922 0.0917
0.45 0.0958 0.0853 0.0872 0.0835 0.0887 0.0853 0.0833 0.0835
0.10 0.1078 0.0982 0.0999 0.0983 0.0915 0.0904 0.0937 0.0897

Gaussian 0.25 0.0909 0.0780 0.0839 0.0770 0.0787 0.0760 0.0804 0.0748
0.45 0.0837 0.0701 0.0771 0.0691 0.0733 0.0701 0.0736 0.0690
0.10 0.1167 0.1113 0.1142 0.1125 0.1078 0.1032 0.1054 0.1039

u2 Contamined 0.25 0.0955 0.3202 0.0927 0.1597 0.0872 0.2294 0.0861 0.1414
0.45 0.0877 0.0758 0.0835 0.0753 0.0794 0.0758 0.0788 0.0753
0.10 0.1367 0.1321 0.1285 0.1327 0.1244 0.1239 0.1201 0.1235

Student-t 0.25 0.1071 0.0967 0.0974 0.0954 0.0983 0.0949 0.0931 0.0935
0.45 0.0953 0.0852 0.0873 0.0835 0.0886 0.0852 0.0835 0.0835
0.10 0.1116 0.0934 0.1168 0.1081 0.0924 0.0881 0.1045 0.0996

Gaussian 0.25 0.0930 0.0771 0.0886 0.0796 0.0793 0.0756 0.0829 0.0773
0.45 0.0834 0.0700 0.0776 0.0691 0.0734 0.0700 0.0738 0.0691
0.10 0.1184 0.2425 0.1377 0.2141 0.1010 0.1678 0.1231 0.1689

u3 Contamined 0.25 0.0968 0.0835 0.1000 0.0880 0.0857 0.0820 0.0910 0.0857
0.45 0.0882 0.0758 0.0841 0.0754 0.0794 0.0758 0.0793 0.0754
0.10 0.1304 0.1168 0.1469 0.1442 0.1184 0.1110 0.1322 0.1336

Student-t 0.25 0.1078 0.0940 0.1027 0.0985 0.0980 0.0926 0.0960 0.0960
0.45 0.0965 0.0851 0.0877 0.0836 0.0886 0.0851 0.0833 0.0836

Table 4.5. Empirical, S(·), and asymptotic, SA(·), standard error estimates of the UMQPEs
over 1000 Monte Carlo simulations, under the three data generating processes and using
c = 1.5.

Finally, a categorical variable is included to investigate the presence of regional
divergences in wealth and consumption levels depending on the region of residence
(north (baseline), centre, south and islands). Table 4.9 summarizes the descriptive
statistics of the included variables. The considered sample contains 7027 households.

As a preliminary step, we study the unconditional distributions of households
wealth and consumption. The histograms of LWEA and LCON unconditional
distributions in Figure 4.1 reveal that, while normality seems tenable for LCON,
there are potentially influential observations in the distribution of LWEA and
indicate a departure from the Gaussian assumption, having fat tails and pronounced
asymmetries. Furthermore, the empirical correlation between LCON and LWEA
equals to 0.477. As expected, consumption and wealth are positively correlated,
justifying the need for a multivariate approach that considers these two dimensions
together. Consequently, the presented unconditional regression model is appropriate
to account for outlying observations and investigate how the relationship between
responses and explanatory variables can vary across the unconditional distribution
of family wealth and consumption.
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u Error τ S(B̂11) SA(B̂11) S(B̂12) SA(B̂12) S(B̂21) SA(B̂21) S(B̂22) SA(B̂22)
0.10 0.1057 0.0941 0.0846 0.0845 0.0923 0.0886 0.0808 0.0787

Gaussian 0.25 0.0774 0.0716 0.0703 0.0697 0.0711 0.0702 0.0705 0.0681
0.45 0.0658 0.0635 0.0636 0.0634 0.0629 0.0635 0.0650 0.0634
0.10 0.3169 0.3421 0.3092 0.3096 0.3118 0.3135 0.2939 0.2954

u1 Contamined 0.25 0.1953 0.1932 0.2218 0.2145 0.1930 0.1893 0.2119 0.2113
0.45 0.1610 0.1549 0.1928 0.1838 0.1568 0.1550 0.1848 0.1839
0.10 0.1914 0.1846 0.1478 0.1536 0.1887 0.1763 0.1441 0.1464

Student-t 0.25 0.1300 0.1263 0.1192 0.1206 0.1294 0.1246 0.1183 0.1189
0.45 0.1082 0.1080 0.1076 0.1082 0.1095 0.1080 0.1081 0.1082
0.10 0.0860 0.0858 0.0796 0.0874 0.0772 0.0793 0.0804 0.0798

Gaussian 0.25 0.0724 0.0697 0.0681 0.0700 0.0672 0.0680 0.0704 0.0680
0.45 0.0657 0.0634 0.0634 0.0634 0.0627 0.0634 0.0651 0.0634
0.10 0.4190 0.4041 0.5079 0.4772 0.4010 0.3932 0.4843 0.4677

u2 Contamined 0.25 0.2062 0.1995 0.2510 0.2380 0.2020 0.1982 0.2429 0.2368
0.45 0.1614 0.1551 0.1938 0.1846 0.1570 0.1552 0.1861 0.1847
0.10 0.1725 0.1739 0.1739 0.1773 0.1719 0.1672 0.1670 0.1695

Student-t 0.25 0.1253 0.1242 0.1252 0.1252 0.1256 0.1228 0.1226 0.1236
0.45 0.1079 0.1080 0.1080 0.1083 0.1093 0.1080 0.1082 0.1084
0.10 0.0868 0.0824 0.0927 0.0930 0.0772 0.0774 0.0881 0.0865

Gaussian 0.25 0.0734 0.0692 0.0712 0.0714 0.0671 0.0678 0.0716 0.0696
0.45 0.0658 0.0634 0.0634 0.0635 0.0626 0.0634 0.0650 0.0635
0.10 0.2840 0.2788 0.4438 0.4472 0.2722 0.2683 0.4310 0.4256

u3 Contamined 0.25 0.1893 0.1834 0.2458 0.2358 0.1827 0.1810 0.2386 0.2331
0.45 0.1611 0.1547 0.1937 0.1845 0.1563 0.1547 0.1861 0.1846
0.10 0.1415 0.1484 0.1896 0.1864 0.1420 0.1423 0.1761 0.1771

Student-t 0.25 0.1177 0.1193 0.1296 0.1270 0.1183 0.1178 0.1248 0.1252
0.45 0.1073 0.1078 0.1083 0.1083 0.1088 0.1079 0.1082 0.1084

Table 4.6. Empirical, S(·), and asymptotic, SA(·), standard error estimates of the UMQPEs
over 1000 Monte Carlo simulations, under the three data generating processes and using
c = 100.

4.5.2 Modeling household wealth and consumption

We analyze the SHIW 2016 data to jointly model households’ log-wealth, LWEA, and
log-consumption, LCON, as a function of the predictors in Table 4.9. As explained
in Section 4.3, a meaningful direction u shall be determined for ordering multivariate
observations. Specifically, in economics and finance, there has been by now a long
tradition of studies investigating the relationship between consumption and wealth
(see Campbell & Mankiw 1989, Deaton et al. 1992 and Campbell 1993 for exam-
ple). In this literature, a central object is the wealth-consumption ratio (Li 2005,
Lustig et al. 2013). In our specific application where Y = (Y(1), Y(2))′ denote the
multivariate random vector collecting households’ log-wealth and log-consumption,
it is immediate to see that Z = log

( Y
u1

(1)

Y
−u2

(2)

)
is the log wealth-consumption ratio if

u = (1,−1)′. Following the definition in (4.7), we can justify this choice from a
practical point of view as each residual, Y− θτ,u, is assigned a weight depending
on the ratio between wealth and consumption. In order to explicitly account for
the existing link between wealth and consumption in the choice of u, we use this
direction throughout the rest of the section. We fit the proposed approach at levels
τ = 0.10, τ = 0.50 and τ = 0.90, which can estimated by simply noting that for
τ ∈ (0, 1

2 ], θ1−τ,u = θτ,−u (see Kokic et al. 2002).
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u Error τ = 0.10 τ = 0.25 τ = 0.45

B11 B12 B21 B22 B11 B12 B21 B22 B11 B12 B21 B22
Panel A: c = 0

u1

Gaussian 0.93 0.91 0.95 0.94 0.92 0.92 0.94 0.95 0.92 0.95 0.94 0.96
Contamined 0.94 0.92 0.95 0.94 0.92 0.92 0.95 0.96 0.92 0.92 0.94 0.96
Student-t 0.94 0.91 0.97 0.96 0.93 0.94 0.96 0.96 0.91 0.94 0.95 0.96

u2

Gaussian 0.94 0.94 0.96 0.96 0.93 0.93 0.95 0.95 0.91 0.95 0.95 0.95
Contamined 0.93 0.93 0.96 0.96 0.93 0.93 0.95 0.96 0.91 0.91 0.94 0.96
Student-t 0.96 0.96 0.97 0.97 0.93 0.94 0.95 0.96 0.93 0.94 0.96 0.96

u3

Gaussian 0.93 0.93 0.95 0.96 0.91 0.93 0.94 0.95 0.95 0.91 0.94 0.95
Contamined 0.92 0.93 0.96 0.97 0.92 0.93 0.96 0.95 0.90 0.93 0.95 0.95
Student-t 0.94 0.95 0.96 0.97 0.91 0.94 0.95 0.96 0.93 0.94 0.95 0.96

Panel B: c = 1.5

u1

Gaussian 0.91 0.93 0.93 0.94 0.90 0.93 0.94 0.94 0.95 0.93 0.95 0.94
Contamined 0.93 0.93 0.92 0.94 0.93 0.94 0.94 0.94 0.92 0.93 0.94 0.95
Student-t 0.93 0.94 0.95 0.96 0.92 0.95 0.95 0.96 0.92 0.95 0.94 0.95

u2

Gaussian 0.93 0.95 0.96 0.95 0.90 0.93 0.96 0.94 0.95 0.93 0.95 0.94
Contamined 0.94 0.95 0.94 0.96 0.92 0.93 0.95 0.96 0.92 0.93 0.94 0.95
Student-t 0.95 0.96 0.96 0.96 0.93 0.95 0.94 0.96 0.92 0.94 0.94 0.95

u3

Gaussian 0.90 0.94 0.95 0.94 0.91 0.92 0.96 0.94 0.95 0.93 0.95 0.94
Contamined 0.92 0.93 0.94 0.95 0.92 0.92 0.94 0.94 0.91 0.92 0.94 0.95
Student-t 0.92 0.95 0.94 0.95 0.91 0.95 0.94 0.95 0.92 0.94 0.94 0.95

Panel C: c = 100

u1

Gaussian 0.93 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.94 0.96 0.95 0.95
Contamined 0.97 0.95 0.97 0.95 0.96 0.95 0.96 0.95 0.94 0.95 0.96 0.95
Student-t 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95

u2

Gaussian 0.95 0.97 0.97 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.96 0.95
Contamined 0.98 0.96 0.97 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95
Student-t 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.95

u3

Gaussian 0.94 0.96 0.96 0.95 0.94 0.96 0.96 0.95 0.94 0.96 0.96 0.95
Contamined 0.96 0.96 0.96 0.97 0.95 0.95 0.96 0.96 0.95 0.95 0.96 0.95
Student-t 0.97 0.96 0.96 0.95 0.96 0.96 0.96 0.95 0.95 0.95 0.96 0.95

Table 4.7. CP of the UMQPEs over 1000 Monte Carlo simulations, under the three data
generating processes and three values of c.

The estimation of the optimal tuning constant c? is obtained using a 5-fold cross-
validation1 over a sequence of 200 possible values as described in Section 4.3.1.
The results are reported in Table 4.10 (c = c?) where we compare the proposed
unconditional regression with the standard conditional regression approach. To
display the sampling variation, asymptotic standard errors obtained using the results
in Section 4.3.2 are presented in parentheses. Parameter estimates are displayed in
boldface when significant at the standard 5% level.
The main findings can be summarised as follows. The selected values of c are 0.492,
7.050 and 9.889 at level 0.10, 0.50 and 0.90, respectively. This implies that the
estimates are close to the quantile case at τ = 0.10 as more than 90% of residuals
are down-weighted (Huberised) meanwhile, at τ = 0.50 and τ = 0.90 correspond to

1As a robustness check, we have also considered a cross-validation with K = 10 folds. Doing so,
leads to comparable results at the investigated levels τ , making our findings unchanged.
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K = 5 K = 10

τ = 0.10 τ = 0.25 τ = 0.45 τ = 0.10 τ = 0.25 τ = 0.45

c̄? PHR c̄? PHR c̄? PHR c̄? PHR c̄? PHR c̄? PHR
Panel A: Gaussian
u1 4.583 0.000 4.270 0.000 3.332 0.005 4.583 0.000 4.270 0.000 3.332 0.006
u2 4.791 0.000 4.479 0.000 3.540 0.003 4.791 0.000 4.479 0.000 3.540 0.003
u3 4.583 0.000 4.270 0.000 3.436 0.004 4.583 0.000 4.270 0.000 3.332 0.005

Panel B: Contamined
u1 0.934 0.137 1.038 0.095 0.830 0.150 0.934 0.137 1.038 0.095 0.830 0.148
u2 0.934 0.186 0.934 0.113 0.830 0.156 0.934 0.186 0.934 0.114 0.830 0.163
u3 0.830 0.155 0.934 0.125 0.726 0.202 0.830 0.156 0.830 0.127 0.726 0.209

Panel C: Student-t
u1 1.247 0.331 1.143 0.323 0.830 0.459 1.247 0.332 1.143 0.323 0.830 0.459
u2 1.247 0.337 1.143 0.313 0.934 0.405 1.247 0.337 1.143 0.313 0.934 0.415
u3 1.247 0.333 1.143 0.328 0.830 0.436 1.247 0.332 1.143 0.325 0.830 0.460
Table 4.8. Median selected tuning constant c̄? and PHR, under the three data generating

processes and three directions.

expectile estimation as almost no observations are Huberised. The estimated values
for c reflect the negatively skewed distribution of wealth and support the exploratory
analysis in Figure 4.1.
Because the selected values of c lead towards expectile estimation, especially above
τ = 0.50, we also consider the case c = 0 (see Table 4.11) which allows us to estimate
the impact of the covariates on the unconditional quantiles of the responses. Com-
paring Tables 4.10 and 4.11, slight differences in terms of estimation can be found.
This is attributable to the choice of c as the two models allow to target different
population parameters by selecting different values for the tuning constant of the
Huber function. The above points demonstrate the flexibility of the methodology
proposed to extend the classical OLS regression for assessing the effect of covariates,
not only at the center, but also at different parts of the unconditional distribution
of interest.
Nevertheless, there are still similar results between Tables 4.10 and 4.11. Point
estimates generally increase in magnitude when moving outward from the bulk of
the data. Income elasticity is always positively associated with both wealth and
consumption for all investigated τ levels. One can see that there are small differences
in consumption expenditure among males and females. Moreover, education, marital
and employment status are important determinants of family’s consumption and
wealth levels, with an increasing trend as τ → 0. There also appears to be significant
regional disparities across the distributions of the responses as southern regions and
islands generally have lower levels of wealth and consumption. It is important to
note that the effect of education, marital status and LINC between the conditional
and unconditional models is very different, especially at c = 0. As shown in Theorem
3, this corresponds to the case where large differences exist between the UMQPE
and the CMQPE. This may be due to the fact that the matching, sτ,u(X), and
weighting, Wτ,u(X), functions vary across the values of X, which means that the
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Figure 4.1. Histograms of LWEA (left) and LCON (right) unconditional distributions. The
red curves denote the Gaussian densities with mean and standard deviation respectively
given by the empirical mean and standard deviation of each outcome.

conditional effects do not average up to their respective unconditional effects. By
contrast, the conditional and unconditional models provide similar estimates for age
and employment status, for example, suggesting that both functions are relatively
constant for all values of X, and that the conditional and unconditional distributions
might be similar in this case.
As a means of further comparison, we analyze the log-levels of wealth and con-
sumption with the UQR of Firpo et al. (2009) by fitting two univariate models
independently. Table 4.12 reports the corresponding parameter estimates and stan-
dard errors at the examined τ levels. We can observe that the results are generally
in line with our findings. However, some differences can be identified due to the
selected direction u and the fact that the univariate UQR completely disregards
the dependence between wealth and consumption. By contrast, the proposed model
allows to study the direction and magnitude of such correlation at different levels
τ . In particular, using (4.13) we represent in Tables 4.10 and 4.11 the estimated
correlation coefficient, r12, which indicates that consumption and wealth are strongly
correlated with each other and this association slightly decreases for households at
the upper end of the responses distribution. At τ = 0.10, the estimated coefficients
(0.664 and 0.749) suggest that low-consumption households are highly likely to be
accompanied by low wealth. From the median to the 90-th percentile instead, the
estimates decrease but emphasise that high net worth families tend to report high
spending patterns.
We conclude the analysis by providing a graphical representation of the quantile
and expectile regions described in Section 4.3 and by evaluating their sensitivity to
different choices of c. Formally, we consider 100 equispaced directions in the unit
circle to construct unconditional quantile (c = 0) and expectile (c = 100) contours
using (4.8) at τ = (0.01, 0.25, 0.40) (see Figure 4.2). In the left column, we report
quantile (top) and expectile (bottom) contour cuts at the empirical quantile of LINC
at level 0.10 (red), 0.50 (blue) and 0.90 (orange). In the right column, meanwhile,
we report quantile (top) and expectile (bottom) contour cuts at three education
levels (no education (red), high school (blue) and university or higher (orange)).
All plots adapt to the unconditional distribution of the outcomes reasonably well,
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Variable Min 25-th Mean† Median 75-th Max
LWEA 2.303 10.953 11.377 11.939 12.520 15.955
LCON 7.378 9.561 9.915 9.903 10.261 12.234
LINC 0.684 9.775 10.148 10.160 10.594 13.203
Age 16 51 62.258 63 75 101
Sex 38.110
Marital status

married 52.099
never married 18.045
separated 8.638
widowed 21.218

Education level
no education 3.202
elementary school 22.414
middle school 27.878
vocational school 7.969
high school 25.943
university or higher 12.594

Employment status
employee 36.559
self-employed 8.866
not-employed 54.575

Geographical area
north 43.418
centre 22.129
south and islands 34.453

Table 4.9. Descriptive statistics of the outcome variables and covariates. † Means for
dummy variables are reported in %.

however, they differ in location, shape and size. The contours for smaller τ capture
the effects for the most extreme families i.e., disadvantaged and wealthy families. By
contrast, those associated to larger τ capture the effects of more central households.
The former are affected by abnormal observations while the latter are less sensitive
to outliers and present a smoother surface. One also observes that the contours
shift up and to the right for increasing values of LINC, demonstrating the positive
dependence with increasing values of the covariate. Moving on to the right-hand side,
the plotted contours provide an estimate of returns to schooling on the distribution
of wealth and consumption. The different locations and forms of the curves shown in
Figure 4.2 indicate that increasing the educational level generates a positive wealth
effect and contributes to lifting consumption, and such education premium is even
larger for university attainment. These considerations highlight that the proposed
contours play an important role in data visualization analysis and are able to detect
covariate-dependent features of the responses, while ensuring robustness to outlying
data.
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UNCONDITIONAL REGRESSION CONDITIONAL REGRESSION

τ 0.10 0.50 0.90 0.10 0.50 0.90

Variable W C W C W C W C W C W C
Intercept −31.954 2.907 −5.858 5.427 −0.084 5.931 −16.512 3.376 −6.215 5.280 −1.341 6.136

(2.758) (0.270) (0.391) (0.095) (0.258) (0.114) (0.582) (0.118) (0.389) (0.093) (0.293) (0.114)
LINC 3.007 0.612 1.300 0.431 0.935 0.390 2.161 0.641 1.337 0.446 1.006 0.363

(0.203) (0.021) (0.032) (0.008) (0.021) (0.009) (0.048) (0.010) (0.032) (0.008) (0.024) (0.009)
Sex 0.066 −0.011 0.010 −0.025 −0.008 −0.031 0.004 −0.022 0.014 −0.024 0.020 −0.026

(0.140) (0.019) (0.044) (0.011) (0.029) (0.013) (0.066) (0.013) (0.044) (0.011) (0.033) (0.013)
Age 0.297 0.019 0.082 0.001 0.044 −0.001 0.101 0.000 0.081 0.001 0.057 −0.001

(0.032) (0.004) (0.008) (0.002) (0.005) (0.002) (0.012) (0.002) (0.008) (0.002) (0.006) (0.002)
Age2 −0.002 −0.000 −0.001 −0.000 −0.000 −0.000 −0.001 −0.000 −0.001 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Marital status
never married 0.276 −0.170 0.089 −0.155 0.019 −0.167 0.322 −0.080 0.101 −0.151 0.041 −0.171

(0.180) (0.025) (0.056) (0.014) (0.037) (0.016) (0.084) (0.017) (0.056) (0.013) (0.042) (0.016)
separated −1.134 −0.194 −0.318 −0.111 −0.170 −0.099 −0.342 −0.033 −0.300 −0.103 −0.208 −0.115

(0.237) (0.032) (0.071) (0.017) (0.046) (0.021) (0.106) (0.021) (0.071) (0.017) (0.054) (0.021)
widowed 0.067 −0.105 0.048 −0.107 −0.017 −0.126 0.250 −0.048 0.061 −0.102 −0.008 −0.116

(0.197) (0.027) (0.062) (0.015) (0.040) (0.018) (0.093) (0.019) (0.062) (0.015) (0.047) (0.018)
Education level
elementary school 0.374 0.197 0.300 0.086 0.333 0.014 0.434 0.078 0.297 0.085 0.362 0.084

(0.349) (0.049) (0.111) (0.027) (0.072) (0.032) (0.165) (0.033) (0.110) (0.026) (0.083) (0.032)
middle school 0.839 0.328 0.544 0.187 0.540 0.111 0.671 0.185 0.536 0.184 0.567 0.167

(0.367) (0.051) (0.116) (0.028) (0.076) (0.034) (0.174) (0.035) (0.116) (0.028) (0.087) (0.034)
vocational school 0.762 0.288 0.602 0.203 0.626 0.152 0.783 0.152 0.592 0.199 0.598 0.211

(0.409) (0.057) (0.130) (0.031) (0.085) (0.038) (0.194) (0.039) (0.129) (0.031) (0.098) (0.038)
high school 1.722 0.440 0.917 0.276 0.817 0.210 0.928 0.221 0.899 0.269 0.879 0.260

(0.379) (0.052) (0.119) (0.029) (0.078) (0.034) (0.178) (0.036) (0.119) (0.028) (0.090) (0.035)
university 1.347 0.445 0.969 0.364 0.961 0.338 0.811 0.257 0.937 0.351 0.963 0.349

(0.401) (0.056) (0.127) (0.031) (0.083) (0.037) (0.190) (0.038) (0.127) (0.030) (0.096) (0.037)
Employment status
self-employed 1.915 0.102 0.946 0.032 0.789 0.039 0.864 0.005 0.942 0.031 0.830 −0.013

(0.253) (0.033) (0.068) (0.017) (0.045) (0.020) (0.102) (0.021) (0.068) (0.016) (0.051) (0.020)
not-employed 1.763 0.160 0.667 0.042 0.502 0.042 0.690 0.050 0.669 0.043 0.596 0.030

(0.213) (0.028) (0.060) (0.014) (0.039) (0.017) (0.089) (0.018) (0.059) (0.014) (0.045) (0.017)
Geographical area
centre 0.663 0.078 0.210 0.023 0.112 0.010 0.286 0.029 0.213 0.024 0.145 0.004

(0.154) (0.021) (0.047) (0.011) (0.031) (0.014) (0.071) (0.014) (0.047) (0.011) (0.036) (0.014)
south and islands 0.845 −0.020 0.190 −0.104 0.044 −0.144 0.348 −0.051 0.202 −0.099 0.127 −0.143

(0.153) (0.021) (0.044) (0.011) (0.028) (0.013) (0.065) (0.013) (0.043) (0.010) (0.033) (0.013)

r12 0.664 0.476 0.416

Table 4.10. Unconditional and conditional regression coefficient estimates at the inves-
tigated τ levels and direction u = (1,−1)′, using the optimal tuning constant c = c?.
Parameter estimates are displayed in boldface when significant at the standard 5% level.

4.6 Conclusions

Extending the univariate work of Firpo et al. (2009), this paper proposes a unified
approach to model the entire unconditional distribution of a multivariate response
variable in a regression setting. We make several contributions to the literature.
First, by employing the multidimensional Huber’s function in Hampel et al. (2011)
we are able to build a comprehensive modeling framework to estimate multivariate
unconditional quantiles, M-quantiles and expectiles, choosing the tuning constant in
an appropriate manner. Second, in contrast to univariate methods, our multivariate
model accounts for the, potentially asymmetric, association structure between the
outcome variables. Third, the proposed methodology is easy to implement through
an OLS regression of the RIF on the explanatory variables. From a theoretical
standpoint, we show that the introduced estimators are consistent, asymptotically
normal and can be written as a weighted average of conditional effects. In addition,
we propose a data-driven procedure based on cross-validation to select the optimal
tuning constant for estimating the UMQPE. Finally, we contribute to the empirical
literature by analyzing log-levels of wealth and consumption of Italian households
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UNCONDITIONAL REGRESSION CONDITIONAL REGRESSION

τ 0.10 0.50 0.90 0.10 0.50 0.90

Variable W C W C W C W C W C W C
Intercept −22.249 1.612 2.842 5.848 4.832 6.033 −16.625 3.342 −5.114 3.825 1.335 4.477

(7.463) (0.821) (0.255) (0.132) (0.262) (0.163) (0.524) (0.133) (0.263) (0.094) (0.212) (0.128)
LINC 2.336 0.705 0.678 0.384 0.596 0.372 2.165 0.647 1.276 0.597 0.891 0.522

(0.534) (0.060) (0.021) (0.011) (0.021) (0.013) (0.043) (0.011) (0.021) (0.008) (0.017) (0.010)
Sex 0.040 −0.011 −0.010 −0.042 −0.034 −0.032 0.009 −0.005 −0.019 −0.019 0.003 −0.012

(0.108) (0.023) (0.027) (0.015) (0.028) (0.018) (0.059) (0.015) (0.030) (0.011) (0.024) (0.015)
Age 0.228 0.028 0.040 0.006 0.021 0.003 0.100 −0.000 0.088 −0.002 0.030 0.000

(0.055) (0.007) (0.005) (0.003) (0.005) (0.003) (0.011) (0.003) (0.005) (0.002) (0.004) (0.003)
Age2 −0.002 −0.000 −0.000 −0.000 −0.000 −0.000 −0.001 −0.000 −0.001 0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Marital status
never married 0.191 −0.165 −0.052 −0.182 −0.064 −0.186 0.323 −0.080 0.172 −0.116 0.035 −0.135

(0.146) (0.031) (0.035) (0.019) (0.035) (0.023) (0.076) (0.019) (0.038) (0.014) (0.031) (0.018)
separated −0.873 −0.232 −0.183 −0.126 −0.095 −0.119 −0.370 −0.046 −0.113 −0.038 −0.038 −0.070

(0.271) (0.042) (0.044) (0.024) (0.045) (0.029) (0.096) (0.024) (0.048) (0.017) (0.039) (0.023)
widowed 0.042 −0.108 −0.107 −0.161 −0.130 −0.169 0.233 −0.068 0.190 −0.057 0.019 −0.090

(0.154) (0.032) (0.038) (0.021) (0.039) (0.025) (0.083) (0.021) (0.042) (0.015) (0.034) (0.020)
Education level
elementary school 0.274 0.209 0.349 0.007 0.228 −0.077 0.512 0.062 0.322 0.068 0.363 0.048

(0.271) (0.057) (0.069) (0.038) (0.069) (0.045) (0.148) (0.038) (0.074) (0.027) (0.060) (0.036)
middle school 0.641 0.352 0.543 0.155 0.426 0.035 0.758 0.175 0.343 0.137 0.471 0.110

(0.299) (0.061) (0.074) (0.040) (0.073) (0.048) (0.156) (0.040) (0.078) (0.028) (0.063) (0.038)
vocational school 0.578 0.309 0.632 0.201 0.587 0.120 0.873 0.145 0.427 0.153 0.509 0.158

(0.326) (0.068) (0.081) (0.044) (0.082) (0.053) (0.174) (0.044) (0.087) (0.031) (0.070) (0.043)
high school 1.335 0.496 0.822 0.281 0.670 0.166 1.006 0.213 0.564 0.189 0.655 0.173

(0.384) (0.066) (0.075) (0.041) (0.075) (0.049) (0.160) (0.041) (0.080) (0.029) (0.065) (0.039)
university 1.051 0.486 0.847 0.315 0.843 0.277 0.897 0.238 0.575 0.225 0.737 0.213

(0.353) (0.067) (0.079) (0.043) (0.080) (0.052) (0.171) (0.043) (0.085) (0.031) (0.069) (0.042)
Employment status
self-employed 1.452 0.159 0.495 0.001 0.621 0.059 0.861 0.008 0.610 0.018 0.625 −0.010

(0.373) (0.053) (0.042) (0.023) (0.045) (0.028) (0.092) (0.023) (0.046) (0.017) (0.037) (0.022)
not-employed 1.355 0.219 0.425 0.036 0.378 0.055 0.687 0.054 0.321 0.025 0.434 0.058

(0.336) (0.044) (0.037) (0.020) (0.038) (0.024) (0.080) (0.020) (0.040) (0.014) (0.032) (0.020)
Geographical area
centre 0.505 0.096 0.120 0.034 0.074 0.039 0.291 0.017 0.154 0.021 0.056 −0.004

(0.156) (0.028) (0.029) (0.016) (0.030) (0.019) (0.064) (0.016) (0.032) (0.011) (0.026) (0.016)
south and islands 0.633 0.004 −0.035 −0.137 −0.111 −0.172 0.351 −0.053 0.186 −0.049 0.048 −0.087

(0.189) (0.030) (0.027) (0.015) (0.027) (0.018) (0.059) (0.015) (0.029) (0.011) (0.024) (0.014)

r12 0.749 0.546 0.499

Table 4.11. Unconditional and conditional regression coefficient estimates at the investi-
gated τ levels and direction u = (1,−1)′, using c = 0. Parameter estimates are displayed
in boldface when significant at the standard 5% level.

collected in the SHIW 2016 data.
This approach can be further extended to a time-varying setting. Specifically,

one can exploit the panel dimension of the SHIW and build a panel dataset to
model the unconditional distribution of macroeconomic variables as a function of
socio-economic and demographic household characteristics over time.

Lastly, the proposed methodology can be further generalized to multivariate
longitudinal or clustered observations. Particularly, in order to account for the
within-cluster dependence and between subject heterogeneity, we may consider
the proposed unconditional regression approach with random effects to model the
conditional expectation of the RIF in (4.14) to provide correct inferences. In this case,
our object of interest is to identify how changes in the distribution of the explanatory
variables affect the unconditional distribution of the multivariate response, given
some random group-effects capturing this unobserved heterogeneity. Hence, by
proceeding as in Section 4.2 and from (4.15), one might estimate the conditional
expectation of the RIF given the covariates and the random effects using mixed
effect models targeting the conditional mean of the response. The estimation of the
model parameters can be obtained by ML or Restricted ML methods with either a
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τ 0.10 0.50 0.90

Variable W C W C W C
Intercept −25.146 4.856 3.054 5.582 5.183 6.218

(2.370) (0.159) (0.195) (0.100) (0.269) (0.165)
LINC 2.575 0.440 0.668 0.401 0.655 0.426

(0.179) (0.015) (0.014) (0.009) (0.022) (0.017)
Sex −0.003 −0.026 −0.025 −0.049 −0.049 0.002

(0.021) (0.006) (0.003) (0.002) (0.005) (0.003)
Age 0.154 −0.018 0.036 0.007 0.017 0.008

(0.014) (0.001) (0.001) (0.000) (0.001) (0.001)
Age2 −0.001 0.000 −0.000 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Marital status
never married 0.582 −0.137 −0.057 −0.163 −0.065 −0.208

(0.038) (0.007) (0.006) (0.005) (0.006) (0.008)
separated −0.476 −0.063 −0.164 −0.095 −0.030 −0.148

(0.047) (0.008) (0.006) (0.003) (0.009) (0.007)
widowed 0.577 −0.083 −0.100 −0.121 −0.036 −0.072

(0.047) (0.005) (0.005) (0.005) (0.009) (0.008)
Education level
elementary school −0.191 0.448 0.356 0.055 0.019 −0.166

(0.060) (0.041) (0.014) (0.007) (0.004) (0.007)
middle school 0.188 0.600 0.577 0.175 0.214 −0.124

(0.062) (0.052) (0.016) (0.006) (0.013) (0.007)
vocational school 0.401 0.581 0.650 0.224 0.273 −0.131

(0.041) (0.054) (0.014) (0.010) (0.012) (0.009)
high school 0.876 0.594 0.863 0.299 0.454 0.004

(0.064) (0.054) (0.022) (0.008) (0.025) (0.006)
university 0.659 0.535 0.878 0.329 1.028 0.334

(0.068) (0.051) (0.018) (0.008) (0.034) (0.014)
Employment status
self-employed 1.479 −0.060 0.490 0.011 0.948 0.143

(0.119) (0.008) (0.010) (0.001) (0.040) (0.007)
not-employed 0.929 0.052 0.404 0.035 0.407 0.088

(0.075) (0.004) (0.009) (0.004) (0.015) (0.006)
Geographical area
centre 0.446 0.046 0.115 0.046 −0.083 −0.040

(0.045) (0.002) (0.004) (0.003) (0.008) (0.003)
south and islands 0.660 −0.076 −0.066 −0.104 −0.126 −0.115

(0.062) (0.006) (0.010) (0.003) (0.006) (0.004)
Table 4.12. Univariate URQ coefficient estimates at the investigated τ levels. Standard

errors are computed via nonparametric bootstrap using 1000 resamples and parameter
estimates are displayed in boldface when significant at the standard 5% level.

parametric specification of the random effects distribution or, similarly to Chapter
1, a nonparametric specification based on NPML (Laird 1978) to further robustify
the UMQPE to model misspecification.
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Figure 4.2. Unconditional contours at τ = (0.01, 0.25, 0.40) (from the outside inwards).
In the left column, quantile (top) and expectile (bottom) contour cuts at the empirical
quantile of LINC at level 0.10 (red), 0.50 (blue) and 0.90 (orange). In the right column,
quantile (top) and expectile (bottom) contour cuts at three education levels: no education
(red), high school (blue) and university or higher (orange).
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4.7 Appendix

Proof of Theorem 3

Proof. For fixed level τ and direction u, from (4.15) it follows that:

ατ,u =
∫

d

dx

(
E[M(θτ,u)−1ηδ(ϕ)Ψ(Y− θτ,u) | X = x]

)
dFX(x), (4.38)

with Y = h(X)+ε. Taking the derivative with respect to x and under the assumption
of independence between ε and X we obtain:

ατ,u =
∫

E[M(θτ,u)−1∇θτ,u
(
ηδ(ϕ)Ψ(Y− θτ,u)

)
| X = x]∂h(x)

∂x dFX(x). (4.39)

We denote with Wτ,u(X) the conditional expectation in (4.39). Now, let θτ̃ ,u(x)
denote the multivariate M-quantile of the conditional distribution of Y given X = x,
at level τ̃ , with τ̃ ∈ (0, 1

2 ] in the direction u. Then, by the independence assumption
between ε and X,

ατ̃ ,u(x) = ∂h(X)
∂x . (4.40)

Finally, by letting sτ (x) = {τ̃ : θτ̃ ,u(x) = θτ,u}, we conclude that:

ατ,u = E[Wτ,u(X)αsτ (X),u(X)]. (4.41)

Proof of Theorem 4

Proof. By assumptions (A1)-(A5), the expectation defining M(θτ,u) exist finitely for
p ≥ 2 and M(θτ,u) is positive definite. Moreover, assumptions (A1)-(A5) guarantee
that Ψ(·) possesses bounded derivatives up to the second order. Then, Theorem 4 of
Niemiro et al. (1992) applies. Finally, the asymptotic normality of the multivariate
M-quantile follows from the Slutsky’s Theorem and the multivariate Central Limit
Theorem, which completes the proof.

Proof of Theorem 5

Proof. We express the difference α̂?τ,u−α?τ,u in the following manner and study each
term of the sum separately:

α̂?τ,u −α?τ,u (4.42)

= β̂
?(θ̂τ,u)− β̂?(θτ,u) (4.43)

+ β̂?(θτ,u)− β?(θτ,u) (4.44)
+ β?(θτ,u)−α?τ,u. (4.45)

Consider the term (4.43). An expression for the first term β̂
?(θ̂τ,u)− β̂?(θτ,u), is

derived in the following expression using a first-order Taylor expansion:

β̂
?(θ̂τ,u)− β̂?(θτ,u) = ∇θτ,uβ?(θ)(θ̂τ,u − θτ,u) +Op(|| θ̂τ,u − θτ,u ||2) +R, (4.46)



4.7 Appendix 123

where R = (∇θτ,uβ̂
?(θ)−∇θτ,uβ?(θ))(θ̂τ,u − θτ,u). By Theorem 4, the multivariate

M-quantile estimator θ̂τ,u is
√
n-consistent, hence Op(|| θ̂τ,u− θτ,u ||2) = Op( 1

n) and
R = Op( 1

n).
Now we turn our attention to the second term (4.44), β̂?(θτ,u) − β?(θτ,u),

and consider the following linear asymptotic representation of the OLS estimator
β̂
?(θτ,u):

β̂
?(θτ,u)− β?(θτ,u) = 1

n

n∑
i=1
γ?i (θτ,u) + op(

1√
n

). (4.47)

Finally, we consider the bias term (4.45), β?(θτ,u)−α?τ,u. Under the condition
that E[z | X] = 0, we have that E[IF (Y;θτ,u)] | X] = β′(θτ,u)X. Then, from (4.15)
it follows that dE[IF (Y;θτ,u)|X=x]

dx = β(θτ,u), hence β(θτ,u) = ατ,u.

A combination of previous results yields:

β̂
?(θ̂τ,u)− β?(θτ,u) = 1

n

n∑
i=1

Si + op(
1√
n

), (4.48)

where Si = ∇θτ,uβ?(θ)M(θτ,u)−1ηδ(ϕi)Ψ(Yi − θτ,u) + γ?i (θτ,u).
Finally, asymptotic normality of

√
n(α̂?τ,u − α?τ,u) follows from the Slutsky’s

Theorem and the multivariate Central Limit Theorem.

Proof of Theorem 6

Proof. By assumptions (A1)-(A6) and Theorems 4 and 5, it follows that θ̂τ,u
p→ θτ,u

and β̂?(θ̂τ,u) p→ β?(θτ,u). Subsequently, from the continuous mapping theorem we
have that 1

n

∑n
i=1 Ŝi(θ̂τ,u)Ŝ′i(θ̂τ,u) p→ E

[
S(θτ,u)S′(θτ,u)

]
.
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