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Abstract

Collaborative human–machine interaction will be progressively intensified in in-

dustrial applications. The aim of this article is to examine current approaches to

cobot safety by showing that these approaches can additionally benefit from

systems thinking methods. The first part of this article covers a narrative litera-

ture review on predominantly techno‐centric robot safety approaches, with a

strong focus on containing kinetic energy and ensuring separation with humans.

The second part introduces systems thinking methods to analyze a socio‐

technical perspective on cobot safety, including joint cognitive systems and

distributed cognition perspectives. This explorative research dimension is ex-

pected to overcome an overly narrow interpretation of safety issues, anticipating

the challenges ahead in ever more complex cobot applications. This article em-

braces a socio‐technical perspective to explore the potential of Joint Cognitive

Systems to manage risk and safety in cobot applications. Three systemic safety

analysis approaches are presented and tested with a demonstrator case study

concerning their feasibility for cobot applications: System‐Theoretic Accident

Model and Processes (STAMP); Functional Resonance Analysis Method (FRAM);

and Event Analysis of Systemic Teamwork (EAST). These methods each provide

interesting extensions to complement the traditional understanding of risk as

required by current and future industrial cobot implementations. The power of

systemic methods for safer and more efficient cobot operations lies in revealing

the distributed and emergent result from joint actions and overcoming the re-

ductionist view from individual failures or single agent responsibilities. The safe

operation of cobot applications can only be achieved through alignment of de-

sign, training, and operation of such applications.
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1 | INTRODUCTION

Collaborative robots perform tasks in collaboration with human

workers within the scope of an industrial setting (Gualtieri

et al., 2021). Different definitions of collaborative robots, also called

cobots, have been proposed from which many adopt the following

definition: any robot operating alongside humans without the pre-

sence of a fence is a collaborative robot (El Zaatari et al., 2019). Other

definitions do not consider the absence of a fence but define cobots in

terms of proximity or the intention to physically interact with humans

in a shared workspace (El Zaatari et al., 2019; Hentout et al., 2019).

Besides the element of increased proximity, there can also be an

element of increased robot autonomy (Hentout et al., 2019), although

the latter by itself does not define a collaborative robot.

It should additionally be noted that the collaborative robot as

such does not exist and it is actually the application that makes the

robot collaborative (Malik & Bilberg, 2019a). For the remainder of the

article, we will simply use the term cobots, when in reality we mean

“collaborative robot applications.”

1.1 | Growing complexity in collaborative
robot safety

There is an underrepresentation between cobot applications used in

present‐day industry versus a growing potential for cobot applications in

academic research (El Zaatari et al., 2019; Saenz et al., 2018). In today's

industry, collaborative robots are still used relatively independently of

their human colleagues (Malik & Bilberg, 2019b) despite ambitions for an

increased collaborative potential concerning this technology. Before co-

bots were introduced, traditional robots were regulated by several reg-

ulations in which separation between industrial robots and humans was

rigidly prescribed. This conflicts with the very nature of collaborative

workspaces. Unger et al. (2018) report that the uncertainty from safety

certification reduces the economic attractiveness of collaborative solu-

tions in comparison with traditional robots. Also, the lack of engineering

tools for safety analysis of cobot applications causes a relatively slow

uptake of this emerging technology (Saenz et al., 2018). Years after co-

bots were introduced, several normative standards have been updated in

an attempt to fill the standardization void concerning this new technol-

ogy. But several authors have reported that it is still unclear how to bridge

the requirements to meet hazard and risk analysis, as the normative

standards do not prescribe specific safety assessment methods

(Chemweno et al., 2020; Delang et al., 2017; Guiochet et al., 2017). The

challenge is twofold and lies in simultaneously assuring worker safety

while adapting to the complexity of increasingly versatile applications.

1.2 | Degree of collaboration in current industrial
applications

Collaborative robots still conservatively adhere to relatively fixed

actions and motions and often remain restricted to pre‐determined

positions on the work floor (IFR, 2018). Reasons for using colla-

borative robots in industrial settings are saving floor space by giving

up physical separation; allocating tasks to collaborative robots that

are either ergonomically or psychologically inconvenient for humans;

or for increasing accuracy, speed, and repeatability beyond human

capability (El Zaatari et al., 2019; Galin & Meshcheryakov, 2019). In

other words, currently, the ambition for versatile collaborations be-

tween robots and humans remains restricted to perform tasks where

cobots replace humans, rather than engaging in genuinely supportive

collaboration between them. Academic research is already concerned

with developing more mutually supportive collaborative applications,

highly suited for industrial tasks. Some examples (El Zaatari

et al., 2019) are tasks such as (i) co‐manipulation where a human

guides an object path while the cobot supports the weight of the

object; (ii) humans inserting bolts in a plate while a cobot tightens

these bolts from the opposite side of the plate; or (iii) assembly ac-

tions that are dynamically distributed between humans and cobots

according to workload and energy consumption. Such intensified

mutual support of tasks will require further advanced perception,

human awareness, or decision‐making capabilities (El Zaatari

et al., 2019). Safety is considered a main challenge in much of the

literature regarding cobot systems (Chemweno et al., 2020; Lasota

et al., 2017; Vicentini, 2020; Villani et al., 2018; Zacharaki

et al., 2020). Intensified mutual support with increased task versatility

applies to several EU projects, which display clear aspirations for

higher degrees of human‐machine collaboration for industrial appli-

cations in the near future (cf. Table 1).

Additionally, new forms of collaboration emerge, for example by

the combination of mobile bases with collaborative manipulation

robots (Hentout et al., 2019; Unger et al., 2018). These technologies

introduce for more versatility, which confronts designers with un-

derstanding the joint behavior of both technologies.

1.3 | Aims of the study

We reviewed available literature on cobot applications, showing the

limitedness of the degree of truly mutual cooperation between hu-

mans and robots. The latter are frequently relegated to sequential

tasks or substitution of tasks previously performed by humans

themselves. This also explains the limited scope of safety manage-

ment nowadays, which is restricted to a techno‐centric dimension,

inherently focused on physical dimensions such as speed, kinetic

energy, and physical separation.

It has been acknowledged that tasks involving both humans and

technical artifacts cannot be studied independently from the agents

involved (Trist & Bamforth, 1951). The notion of “socio‐technical

systems” indicates the symbiotic relationships between social and

technical counterparts. This perspective requires a systemic point of

view to ensure a joint understanding, exploration, and analysis

(Patriarca, Bergström, et al., 2018). A research dimension relying on

systems‐thinking implies a focus on interconnections between com-

ponents and causal links that are distant in space and time from
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actions under investigations. It is frequently sparked by research

concerns in relation to context, interactions, emergence, and multiple

perspectives (Engler Bridi et al., 2021; Wilson, 2014). Modern

adaptive systems thus demand systemic methods to overcome the

limitations imposed by linearity and reductionism inherent in tradi-

tional approaches to safety management (Hollnagel, 2018). Systems‐

thinking is currently dominant in many safety‐critical domains such as

space operations (C. W. Johnson & de Almeida, 2008), aviation

(Adriaensen et al., 2019), road (Newnam et al., 2017), rail transport

(Salmon & Read, 2019), and construction (Saurin, 2016).

The explorative research question of this article has a double

motivation. First of all, by the inherent features of cobot operations

recalling the fundamental aspects of socio‐technical systems, but also

by the successful contributions available in the literature from

systems‐thinking applied to safety management (Dekker, 2011),

Despite the widespread range of applications of systems thinking,

cobot safety is indeed still limitedly explored from a socio‐technical

systemic view (Jones et al., 2018). Nonetheless, systemic risk analysis

would ensure that the whole system is studied within which risks

occur, rather than focusing on work and task in separation, or on

individual agents.

In line with modern safety management, we then provide an

overview of the potential usage of systemic methods for cobot

safety management to extend the technocentric view toward the

inclusion of interactive socio‐technical and organizational contexts

from multiple perspectives. Based on evidence from the literature

on safety management for socio‐technical systems, we finally

suggest three systemic approaches, that is, the Systems Theoretic

Accident Model and Processes (STAMP) (Leveson, 2011b), the

Functional Resonance Analysis Method (FRAM) (Hollnagel, 2012)

Event Analysis of Systemic Teamwork (EAST) (Stanton et al., 2018),

subsequently applied to a real cobot, used as a staging area for

development. The aim of the article is two‐fold. First, we examine

the governing safety perspective encountered in literature on in-

dustrial cobot safety. Secondly, we introduce systems thinking

methods to analyze a socio‐technical perspective on cobot safety,

including joint cognitive systems and distributed cognition per-

spectives. This explorative research dimension is expected to

overcome an overly narrow interpretation of safety issues, antici-

pating the challenges ahead in ever more complex cobot applica-

tions. Here, we have used the notion of a joint cognitive system

(Hollnagel & Woods, 2005) to indicate the focus shift from the in-

teractions between humans and machines toward a proper human‐

machine symbiosis (Tzafestas, 2006). This shift in research focus is

characterized by goal orientation, control, and co‐agency. In this

sense, cognition needs to be studied not just as a situated or em-

bedded entity, but rather encompass how it is extended and dis-

tributed in the world (Blomberg, 2011).

The remainder of this article is organized as follows. Section 2

provides an explorative literature review about the substitution ap-

proaches of functional allocation (Section 2.1); the traditional techno‐

centric paradigm for cobots (Section 2.2), and the socio‐technical

view on cobots (Section 2.3). Section 3 will introduce STAMP, FRAM,

and EAST as three systemic safety analysis approaches that will

TABLE 1 EU projects with a concern for safety aspiration for higher degrees of human–machine collaboration

Project Summary

SHERLOCK Project “SHERLOCK project aims to introduce the latest safe robotic technologies including

high payload collaborative arms, exoskeletons and mobile manipulators in
diverse production environments, enhancing them with smart mechatronics and
AI based cognition”

COROMA project – Cognitively enhanced robot for flexible
manufacturing of metal and composite parts

“COROMA project proposes to develop a modular robotic system to perform
multiple manufacturing operations, including safe human‐robot collaboration,
automatic manufacturing scene understanding, increased autonomy with self‐
learning and knowledge sharing capability”

COLLABORATE Project “This project aims to equip robots with collaborative skills so that they can learn
from the human and become valuable assistants for assembly operations, in an
effective and safe manner”

ROSSINI—Robot Enhanced Sensing, Intelligence and
Actuation to Improve Job Quality in Manufacturing

“The project aims to develop a disruptive, inherently safe hardware‐software
platform for the design and deployment of human‐robot collaboration (HRC)
applications in manufacturing”

THOMAS Project “The project aims to create a dynamically reconfigurable shopfloor utilizing

autonomous, mobile dual arm workers. These workers are able to perceive their
environment and through reasoning, cooperate with each other and with other
production resources including human operators”

SHAREWORK – Effective and safe Human‐Robot
Collaboration

“Europe‐wide smart modular solution integrated by different software and
hardware modules to allow robots to physically interact with humans within a
collaborative production environment without the need for physical protection
barriers”

Source: Adapted from 7 European Projects on Human Robot Collaboration You Must Know (n.d.).
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subsequently be applied to a demonstration case study in Section 4,

including an overview of their potential for industrial cobots' safety.

Finally, a discussion and conclusion will be presented in

Sections 5 and 6.

2 | LITERATURE REVIEW

2.1 | The substitution approaches in functional
allocation

Functional allocation is an area in human factors safety to decide

whether a task in a work system will be apportioned to humans, to

automation, or both. The literature mainly provides two traditional

approaches to perform function allocation in automated systems. The

oldest method is known as the “Men‐are‐better‐at/Machines‐are‐

better‐at“ (MABA–MABA) classification scheme (Fitts, 1951), in-

troduced in 1951. It consists of allocating tasks to either humans or

machine agents simply by studying their respective strengths and

limitation, derived from a pre‐defined inventory of capabilities

(Table 2). Another traditional approach, which appeared much later in

1978, is the Levels of Automation (LoA) approach (Endsley, 1999;

Parasuraman et al., 2000; Roth et al., 2019). It introduces an objective

basis for making human‐automation allocation choices by assigning

recommended levels of automation to technologies.

Finally, it could be argued that there is a third approach, being a

body of literature that dismisses the MABA‐MABA and LoA ap-

proaches as oversimplifications of the problems space (de Winter &

Dodou, 2014; Dekker & Woods, 2002; Jordan, 1963; Roth

et al., 2019). The critics argue that in both approaches functional

allocation is treated as a simple act of substitution, whereas what is

needed is a transformation of the interdependencies between how

humans and autonomous technologies interact, additionally em-

bedded in changes of operational context. For industrial cobot ap-

plications, an agreed methodology for functional allocation is still

unavailable (Delang et al., 2017), or is often produced by ad hoc

decisions, rather than by fully‐informed, well‐defined strategies

(Lindström & Winroth, 2010).

2.1.1 | MABA‐MABA classification scheme

Named after its inventor Paul Fitts, the MABA‐MABA approach is

also known as the Fitts list (Fitts, 1951). There is great merit in the

Fitts list for being the first systematic attempt to map strengths and

weaknesses from humans versus machine capabilities (Table 2), even

if the critiques correctly observed that the comparison remained

static (deWinter & Dodou, 2014; Jordan, 1963). Empirical data about

human–machine interaction in aviation, robotics, and car driving has

confirmed many of Fitts's predictions (de Winter & Dodou, 2014).

But, the “who does what question” does not necessarily provide

a good answer to the challenges of “what needs to be done” (Roth

et al., 2019). The MABA MABA approach has been critiqued for its

risk of focusing on technologic capabilities and leaving the humans

with the “leftover tasks” (Norman, 2015; Roth et al., 2019), and for

preferring comparability of human and machine over a more goal‐

oriented human‐machine complementarity (Jordan, 1963). The key

principle in the MABA‐MABA classification is the simple act of re-

placing one agent for another, while what is needed is an under-

standing of interaction in terms of mutual task support and

distributed cognition. This is especially true for the next generation of

genuinely collaborative tasks. Despite many critiques (de Winter &

Dodou, 2014; Dekker & Woods, 2002; Jordan, 1963), the Fitts' list

remains the dominant approach (de Winter & Dodou, 2014;

T. B. Sheridan, 2000).

The MABA‐MABA approach is often tacitly assumed, but can be

recognized in the cobot literature: “sensitive tasks are carried out by

the human, while strenuous tasks are executed automatically by a

small payload robot” (Hägele et al., 2016). Other examples can be

found in (Hentout et al., 2019) reporting that human skills include:

“high availability,” “handling of complex parts and processes,”

“high task flexibility,” and so forth whereas machines are better at

TABLE 2 Fitts list or MABA‐MABA classification scheme

Humans appear to surpass present‐day machines in respect to the following:
Present‐day machines appear to surpass humans in respect to the
following:

1. Ability to detect small amount of visual or acoustic energy. 1. Ability to respond quickly to control signals, and to apply great
force smoothly and precisely.

2. Ability to perceive patterns of light or sound. 2. Ability to perform repetitive, routine tasks.

3. Ability to improvise and use flexible procedures. 3. Ability to store information briefly and then to erase it
completely.

4. Ability to store very large amounts of information for long periods and to
recall relevant facts at the appropriate time.

4. Ability to reason deductively, including computational ability.

5. Ability to reason inductively. 5. Ability to handle highly complex operations, i.e., to do many

different things at once.

6. Ability to exercise judgment.

Source: Adopted from Fitts (1951).
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“exact playback of paths,” “reliable performance of repetitive tasks,”

and so forth.

Ranz et al. (2017) adapted the focus concerning functional allo-

cation in industrial settings from mere task execution capability to-

ward efficiency indicators such as cost minimization of allocation,

suitability, availability, and operation time, and used algorithms that

produce capability indicators for tasks that are unique for either

humans or machines while leaving other tasks to be performed by

either humans or robots.

2.1.2 | Levels of automation

The earliest account of the LoA perspective can be found in a Naval

Research Report about tele‐controlled undersea operations for ves-

sels with robotic manipulation arms from 1978, written by Sheridan

and Verplank (1978). The LoA approach provides taxonomies to

specify cognitive aspects involved in automation (Roth et al., 2019)

on a continuum from nonautomated to fully automated systems

(Table 3).

Parasuraman et al. (2000) further refined the idea that entire

tasks can simply be substituted by breaking them down into four

types of activity (acquisition, analysis, decision, and action selection)

associated with the 10 levels of automation. The LoA approach has

been adapted as the typical allocation perspective in the design of

self‐driving cars and unmanned aerial systems (Roth et al., 2019; SAE

International, 2018), and has a significant impact on the design of

robots (M. Johnson et al., 2011). An important critique to the LoA is

that apart from labeling, it does not provide principles or guidelines

for the designers of autonomous human‐machine systems”

(M. Johnson et al., 2011; Norman, 2015).

Even though the original approach was designed for the cogni-

tive control of computerized systems, the LoA approach has mean-

while been adapted to manufacturing (Frohm et al., 2008; Lindström

& Winroth, 2010) by proposing a double LoA taxonomy for both

computerized and mechanized tasks. The mechanization perspective

ranges from no interference, over measuring, correcting, and finally

anticipating mechanical outcomes (Frohm et al., 2008). LoA can also

be reported as a minimum‐maximum range of tasks to be automated

(Lindström & Winroth, 2010), resulting in a flexible range of LoA that

reflects a potential area of automation for the manufacturer.

Guerin et al. (2019) applied an LoA‐inspired modeling tool for

Industry 4.0‐based assistance systems to the specific activity of order

picking, based on functional and cognitive constraints modeling. Al-

though applying some elements of an adapted LoA taxonomy, the

authors have taken into account several advances in functional ana-

lysis such as abstraction hierarchy, the importance of contextualiza-

tion, and task and organizational interaction as their unit of analysis.

Johnson et al. have proposed to replace an LoA analysis in

human‐machine design and robotics (M. Johnson et al., 2011, 2018)

with an analysis of interdependencies to build a theory of joint ac-

tivity. An interdependency analysis would logically be determined by

a functional understanding of the work system. We indeed propose a

potential way forward in this regard, through specific approaches

(STAMP, FRAM, and EAST) described in Section 3 to analyze inter-

dependencies between human, technical, and organizational func-

tions and controllers.

2.1.3 | Coactive design

Coactive design wishes to advance beyond the limitations of LOA

and expresses the view that the choice for automating system ele-

ments is anything but a binary choice (M. Johnson et al., 2011). It

departs from the idea that complete manual or automated control

does not apply to many systems. Coactive design is based on joint

activity theory and considers the effects of coordination, as an es-

sential trait of nearly all activities that involve more than one agent. It

reconsiders the question of allocating functions by transforming it

into the question of how to support agent interdependencies.

Whereas in LoA the human is primarily considered with respect to

the machine's actions, the fundamental principle of coactive design is

that interdependence must shape automation.

Coactive design proposes observability, predictability, and di-

rectability as the three most fundamental interdependence relations,

although others can be allowed into the analysis.

Observability is concerned with making system status visible, as

well as knowledge about other agents, tasks, and environment. Pre-

dictability requires that actions should be predictable enough for

others to rely on them concerning their own actions and directability

is interpreted as the ability of agents, human and technical alike, to

influence each other's behavior.

Coactive design departs from the idea that interdependence

must shape automation, thereby proposing to invert the relationship

TABLE 3 Levels of automation of decision and action selection

Level Automation

High 10. The computer decides everything, acts autonomously,
ignoring the human

9. Informs the human only, if it, the computer decides to

8. Informs the human only if asked, or

7. Executes automatically, then necessarily informs the
human, and

6. Allows the human a restricted time to veto before
automatic execution, or

5. Executes that suggestion of the human approves, or

4. Suggests one alternative

3. Narrows the selection down to a few, or

2. The computer offers a complete set of decision/action

alternatives, or

Low 1. The computer offers no assistance: humans must take all
decisions and actions

Source: Adapted from Parasuraman et al. (2000).
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between automation and interaction (M. Johnson et al., 2018). A

method used to achieve this is to make an interdependency analysis

by modeling the human, the machine (by algorithms, and interface

element), and the work (by dividing it into tasks and further in ca-

pacities) (M. Johnson et al., 2011). Each task capacity is then com-

pared against the human tasks or the automated alternative

elements, which are assessed for observability, predictability, and

directability. Because the task has been decomposed in multiple ca-

pacities, manual and automated elements can be combined into a

coordinated whole. The interdependency analysis informs the en-

gineering design as an approach that resists the substitution fallacy.

2.1.4 | Transformed work and interaction‐based
considerations

Automation produces qualitative shifts in work systems, which will

force people to adapt their previous practices in novel ways (Dekker

& Woods, 2002). The safety literature describes these substantial

effects of automation as “transformed work practice” (Bradshaw

et al., 2013). In human‐computer interaction Carroll and Long (1991)

defined this as the task‐artifact cycle. The latter captures the idea of a

cyclical relationship between tasks and artifacts, where new tasks

introduce new requirements for the design of artifacts. These in turn

result in unanticipated possibilities or pose new constraints on the

performance of the task. Both tasks and artifacts continuously co‐

evolve, rather than substitute previous tasks or artifacts. This moti-

vates our choice to study the emergent properties from humans and

machine agents as the unit of analysis, additionally embedded in

changes of operational context (Sections 3 and 4).

2.2 | Traditional techno‐centric approaches to
cobot safety

We have consulted a number of surveys (Galin &

Meshcheryakov, 2019; Guiochet et al., 2017; Lasota et al., 2017;

Malik & Bilberg, 2019b; Villani et al., 2018; Zacharaki et al., 2020) and

literature reviews (Hentout et al., 2019) about safety‐related aspects

of HRI to examine the focus of cobot related risks in the literature.

Some reviews had restricted scopes such as emerging research fields

in collaborative robotics (Gualtieri et al., 2021); cobot programming

(El Zaatari et al., 2019); applied terminology in collaborative

applications (Vicentini, 2020); risk and hazard assessment from the

ISO/TS 15066:2016 perspective (Chemweno et al., 2020); or safety

through compliant actuators (Grioli et al., 2015; Ham et al., 2009;

Vanderborght et al., 2013; Wolf et al., 2016).

In the literature reviews, there is a strong focus on hardware‐

related safeguards and generic collision avoidance strategies to pre-

vent unsafe human–robot interaction. Contrarily, hazards embedded

in the broader work system or hazards generated by added decisional

complexity receive little attention (Chemweno et al., 2020; Guiochet

et al., 2017). Psychological and societal impact have deserved some

attention (Galin & Meshcheryakov, 2019; Lasota et al., 2017;

Zacharaki et al., 2020), but mainly look at postimplementation influ-

ences on work quality. The prediction and cognitive aspects of hu-

man or cobot are almost exclusively used to the benefit of predicting

motion and avoiding collisions (Gualtieri et al., 2021; Hentout

et al., 2019; Lasota et al., 2017; Vicentini, 2020), while there is a lack

of attention in the literature on dependability, task design, context,

and environment. Chemweno et al. (2020), and Guiochet et al. (2017)

are notable exceptions. Most safety methods focus on the assess-

ment of collision risks often assumed to be known a priori by man-

ufacturers, integrators and users, (Chemweno et al., 2020). This

critique is acknowledged by the review data from Gualtieri et al.

(2021), which describes research coverage from emerging fields in

safety and ergonomics of industrial collaborative robot literature

between 2015 and 2018. The authors reveal a notable lack of con-

textual topics such as Product and Process Design and Case Studies,

whereas the strategies for Contact Avoidance and Contact Detection

and Mitigation are indeed confirmed to be the main categories of

interest in the literature by coverage of 40,3% and 23,9% respec-

tively (Gualtieri et al., 2021). Other reviews use different or merged

labels with equal meaning, but the categories of Contact Avoidance

and Contact Detection and Mitigation can be distilled as the greatest

common denominator in tentative taxonomies from varying cobot

reviews (El Zaatari et al., 2019; Gualtieri et al., 2021; Hentout

et al., 2019; Villani et al., 2018; Zacharaki et al., 2020).

Lasota et al. (2017) use different labels for Contact Avoidance,

Detection and Mitigation strategies, structured by gradually increased

anticipation to assure human–robot separation, that is (i) Control, (ii)

Motion Planning, (iii) Prediction, with Control further divided into Pre‐

and Post‐collision avoidance methods. Hentout et al. (2019) discuss

HRI in industrial collaborative robotics by applying both intrinsically

safe design and active strategies. We consequently propose Figure 1

to structure the current research focus in the collaborative safety

Pre-collision Post-collision Mo�on 
Planning Predic�onIntrinsically 

safe design

F IGURE 1 Collaborative robot application safety methods in order of progressively more complex safety behaviors, ordered from reactive to
pro‐active approaches
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literature, starting with reactive approaches to the far left gradually

increasing to increased system anticipation with progressively more

complex safety behaviors to the far right. More complex and antici-

pative safety behaviors come at the cost of increasingly complex

implementation (Lasota et al., 2017). Figure 1 is based on the gran-

ularity used by Lasota et al. (2017) and the comprehensiveness

available in Hentout et al. (2019).

Intrinsically safe design can be achieved by reducing the kinetic

energy of the moving parts, increasing energy‐absorbing properties of

protective layers, installing airbags and soft rounded covers around

potential contact surfaces, or limit the robot's velocity or maximum

system energy (ISO, 2016; Hentout et al., 2019). Some reviews ex-

clusively focus on inherently safe design through compliant actuators.

Such actuators provide varying stiffness, gear ratios, and damping

properties, reviewed in Ham et al. (2009) and Wolf et al. (2016).

Compliant actuators can also be actively controlled by software, ad-

ditionally reviewed by Grioli et al. (2015), Vanderborght et al. (2013).

Control methods (Lasota et al., 2017) (Figure 1) are reactive in

nature by providing either separation or energy reduction.

Pre‐collision (Lasota et al., 2017) works by quantitatively limiting

speed or energy, by monitoring robot‐operator separation distances,

or by guiding the robot away from the human as a result of increased

speed or reduced separation. A collision cannot always be avoided

and Post‐Collisionmethods have additionally been introduced (Galin &

Meshcheryakov, 2019; Hentout et al., 2019; Lasota et al., 2017;

Zacharaki et al., 2020).

Motion planning and Prediction (Lasota et al., 2017) (Figure 1) add

additional degrees of anticipation, changing from reactive to proac-

tive strategies. Whereas Motion Planning is based on constant up-

dates of current world states that put static constraints on robots'

movements, Prediction is about forecasting more dynamic situations

by integrating future tasks and motions of human agents. Prediction,

therefore, requires a mental image of the reciprocal agent's actions,

whereby most research has been devoted to human behavior pre-

diction (Hentout et al., 2019) and more efforts need to be devoted to

the effective communication of the robot's intent (Lasota

et al., 2017). In contrast to academic research projects, industrial

applications are mainly restricted to hardware features of intrinsically

safe design or the reactive control approaches at the left of Figure 1.

This difference in range between academic research and industrial

reality can be understood by the fact that currently most industrial

cobot applications consist of independent or sequential tasks

(IFR, 2018; Malik & Bilberg, 2019b) and rarely perform tasks where

human and machine simultaneously engage in true collaboration on a

single task.

For safety in industrial cobot applications, the nature of such

collaboration intent is usually taken as the a priori point of departure

(Vicentini, 2020) linked to safety requirements in normative stan-

dards. Several literature reviews (El Zaatari et al., 2019; Galin &

Meshcheryakov, 2019; Hentout et al., 2019; Villani et al., 2018) point

to taxonomies for the level of shared interaction that is automatically

linked to specific operation modes as described in ISO/TS

15066:2016, adapted from (Hentout et al., 2019):

• Coexistence in which humans and robots share the dynamic

workspace while operating on dissimilar tasks. This is generally

linked to collision avoidance strategies (Hentout et al., 2019), at

the left side of Figure 1. The majority of industrial tasks are to be

found in this category (IFR, 2018; Malik & Bilberg, 2019b).

• Cooperation in which humans and robots work on the same pur-

pose in the same workspace simultaneously. Cooperative tasks

require force‐feedback sensing and advanced collision Detection

and Avoidance sensing (Hentout et al., 2019).

• Collaboration in which humans and robots perform complex tasks

with intentional contact and physical collaboration. This requires

the measuring of forces and torques and the prediction of human

motion intentions, the latter inherently linked to Prediction at the

far right of Figure 1.

Industrial tasks are consequently linked to the safety require-

ments described as one of four possible operation modes described

in ISO 10218:2011 (2011) and ISO/TS 15066:2016 (2016):

• Speed and Separation Monitoring (SSM): Robot system and operator

can move simultaneously in the same collaborative workspace, as

long as safe distances relative to the robot systems are assured, in

line with Contact Avoidance strategies (Pre‐Collision, Motion Plan-

ning, Prediction), which are linked to the execution of coexistent

tasks.

• Power and Force limiting (PFL): In this mode concurrent use of the

workspace and even contact between operator and robot are al-

lowed and safety is provided by limiting power and force. In the

literature reviews, this is labeled as Contact Detection and Mitiga-

tion and is typically used in performing cooperative and colla-

borative tasks. PFL can be achieved by Intrinsically Safe Design and

by active Control (Post‐Collison).

• Hand Guiding: The robot is allowed to work in a noncollaborative

mode without the presence of an operator. After the robot has

achieved a safety‐rated monitored stop, the operator is allowed to

enter the workspace and control the robot through a hand‐guiding

device to lead the robot to a specific point of application. This is

linked to a limited set of cooperative and collaborative tasks suited

for hand guiding.

• Safety‐rated Monitored Stop: This feature is used to discontinue

robot motion in the collaborative workspace and the robot may

only operate if there is no operator in the workspace. This op-

erational mode is somewhat misleadingly listed as a collaborative

mode as it is a stopping & transition function between collabora-

tive and noncollaborative operation (Vicentini, 2020).

Vicentini (2020) end Aaltonen et al. (2018) have described that

the problem of providing taxonomies for a priori assumed colla-

boration as the basis for ISO‐related operational modes is twofold as

the labels used vary, are subject to overlap, and are differently de-

fined in the literature. See Vicentini (2020) for a comprehensive re-

view of mixed‐use of terminology in the cobot literature up to 2018.

Secondly, Vicentini raises that it should be methodologically avoided
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to base normative safety requirements on a nonnormative taxonomy.

What currently is missing in the academic literature are safety ana-

lysis methods that extend to answer such questions from a socio‐

technical perspective. In Sections 3 and 4 we propose three systemic

methods that provide nonreductionistic, nontaxonomic, and non-

normative analysis perspectives. To objectively assess and challenge

design choices of intentional or unintentional contact, methods

should also take into account unexpected behavior from degraded

systems and reverberations from cobot integration into the context

of a working system.

2.3 | Socio‐technical view on cobots

This section proposes to additionally understand the challenges of

collaborative robots through functional exchanges in work systems at

meso‐ and macro‐level. It brings the socio‐technical perspective in

line with the research perspective of Joint Cognitive Systems (JCS),

which takes coagency as the basic unit of analysis, in which human

and machine need to be considered together (Woods &

Hollnagel, 2006), as opposed to the classical perspective of under-

standing humans and technology in isolation, connected through in-

terfaces. The nature of collaborative work where both human and

machine engage in joint behavior through a shared mental image

motivates this study to take an agent‐neutral perspective in terms of

pure functional exchanges of task‐relevant information, made pos-

sible with the methods from Section 3.

The JCS paradigm belongs to the discipline of Cognitive System

Engineering (CSE), which is concerned with “the analysis and design

of factors, processes, and relationships that emerge at the intersec-

tions of people, technology and work” (Woods & Hollnagel, 2006).

CSE recognizes that mental models are not the only basis to under-

stand cognition (Cognition in the Mind) and thus, the understanding

of safe designs is not restricted to controlled experimental condi-

tions. CSE indeed studies actual features of a work domain more

closely to the test operating conditions in the field, embedded in

actual fields of practice (Hollnagel & Woods, 2005), also known as

Cognition in the Wild (Hutchins, 1995). In this view, the central role

of the human operator as the problem holder receives a different

emphasis, being that human–machine interaction deficiencies cannot

be understood as deficiencies in an absolute sense but are dependent

on the system characteristics “because of the way that they shape

practitioner cognition and collaboration in their field of activity”

(Woods et al., 2017, p. 152). Therefore, cognition is said to be “si-

tuated.” When applied to the example of collaborative robots, risk

cannot only be understood from the techno‐centric perspective of

mere energy containment in terms of managing speed, force, and

separation.

A JCS perspective further extends that situated interaction with

the world, which inevitably involves interactions with other agents

and dynamic contexts, and it forces the analysis to include a new

system where joint activity is distributed. Although cobots as an

applied technology only started to come out in 2008 (Hentout

et al., 2019), scholars from other domains have previously studied

human‐technical joint performance, embedded in purposeful

socio‐technical systems (Le Coze, 2013; Leveson, 2011b;

Rasmussen, 1997; Waterson et al., 2015). Much of JCS research has

been concerned with the identification of recurring patterns (Woods

& Hollnagel, 2006; Woods, 2002) in automation‐induced problems,

often in contrast with the putative benefits that designers proposed

before design implementation.

The literature draws from experience that machines not always

act as a team player (Bradshaw et al., 2013; Hollnagel &

Woods, 2005; Klein et al., 2004; Norros & Salo, 2009; Sarter &

Woods, 1997) by doing things that humans do not anticipate or

understand. Automation surprises occur when the actual system

behavior is not in line with the user's expectations (Hoffman &

Militello, 2008; Sarter & Woods, 1997; Sarter et al., 1997). Such

surprises generally emerge because of a divergence of mental models

and low system observability or feedback failures, especially when

managing dynamic and nonroutine operations (Hoffman &

Militello, 2008; Sarter & Woods, 1997). It has been demonstrated

that although high levels of automation enhance routine perfor-

mance, system failure performance is negatively affected by higher

automation levels (Onnasch et al., 2014). Managing systems under

nonroutine operations or demanding circumstances is a field of in-

quiry that has so far received little attention in the cobot literature,

requiring more research efforts (Guiochet et al., 2017).

Mutual prediction of both human and robot behavior will play an

increasingly important role in safe collaboration tasks and is a fre-

quently researched topic in academic research (Gualtieri et al., 2021;

Hentout et al., 2019; Lasota et al., 2017). Whereas prediction of

motion paths and imminent collision has received considerable at-

tention in the literature (see Section 2.2), such prediction additionally

depends on the operator's Mode error and mode awareness (Sarter &

Woods, 1997), which occurs when the operator misinterprets the

different meanings from automation functions resulting from multiple

device mode settings. Mode awareness has received little coverage in

cobot applications but was recently applied to cobot case studies by

Gopinath and Johansen (2019).

To the best of our knowledge, Chacón et al. (2020) and Jones

et al. (2018) have been the only authors so far to propose a JCS

perspective to design socio‐technical systems for collaborative

agents and CPS. Chacón et al. (2020) describe a human‐centered

architecture for cognitive advisor agents in the framework of a hu-

man cyber‐physical production system (H‐CCPS). The proposed H‐

CPPS includes a human dimension (operators including their situa-

tions based on their objectives and context), connected to a physical

dimension (resources connected to the production system through

sensors and actuators), and connected to a cybernetic dimension

(computing, network, and cloud infrastructures) (Chacón et al., 2020).

As the final decision always remains with the human operator, which

we previously defined as the problem holder principle, the design of

the system is aimed at adaptive control and supervision of automated

production system, including response to unexpected or novel si-

tuations. Chacón et al. (2020) additionally suggested the use of
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FRAM (as previously mentioned in Sections 3 and 4) to examine the

functioning of their H‐CPPS, which is one of the approaches dis-

cussed in Sections 3 and 4.

Essentially, demands for the management of automation create

the fundamental question for the socio‐technical safety analysis:

“What does it mean to be in control in a Joint Cognitive System?” and

“How is control distributed across such systems.” In light of the

previous JCS principles derived from the literature, this generates

sub‐questions that should take into account how control is em-

bedded in the situated cognition of the work system as a whole and

how control is affected by disruptions and nonroutine situations. In

the next section, we present three socio‐technical safety analysis

approaches that provide different ways to answer these research

questions.

3 | ABOUT SYSTEMIC SAFETY ANALYSIS

Literature about contemporary systems thinking inspired accident

causation approaches have described STAMP, FRAM and Accimap

as the most recurring analysis approaches, chosen by (Underwood

& Waterson, 2012) from a total of 13 systemic models. The result

was further confirmed in a review (Hulme et al., 2019) of 73 ar-

ticles between 1990 and 2018 about the application of systems

thinking accident analysis methods to the field of occupational

safety. Hulme et al. (2019) also mentioned the Human Factor

Analysis and Classification System (HFACS), which was not used in

this study as it is not considered to align with systems theory

(Salmon et al., 2020). We have disqualified Accimap, as it is a

retrospective method only and to a great extent its principles,

based on the ideas of a hierarchical control‐based model from its

originator Rasmussen, have been further encompassed by STAMP

(Leveson, 2011a).

From the retained methods STAMP and FRAM we added EAST

for the analysis of our demonstration case study on cobots, for its

particular focus on distributed cognition, an important challenge in

human‐robot interaction. STAMP, FRAM, and EAST have been pre-

viously identified as well‐equipped approaches for socio‐technical

safety analysis (Bjerga et al., 2016; Hovden et al., 2010; Hulme

et al., 2019; Salmon et al., 2017). The generic languages of the dif-

ferent approaches additionally permit to extend the techno‐centric

risk dimension toward socio‐technical considerations such as opera-

tional tasks, resources, tools, and processes. This enables a JCS

perspective of distributed cognition and situated cognition as ad-

vocated in Section 2.3.

STAMP, FRAM, and EAST are all systems thinking approaches,

which mark a change in perspective from decomposition by analytical

reduction to the analysis of the whole. They all describe safety as an

emergent property from the interaction of system components with

each other and their environment. FRAM elicits functional exchanges

in work systems, STAMP uses control action‐feedback loops, and

EAST uses several aggregated networks based on information

exchanges.

The systemic approaches have previously demonstrated their

usefulness in several other socio‐technical systems (e.g., evidence

available from recent literature on FRAM (Patriarca et al., 2020;

Salehi et al., 2021), or from several recent cases in various safety and

ergonomics domains applying STAMP and its associated techniques

(Li et al., 2019; Patriarca et al., 2019; Stanton et al., 2019), or EAST

(Stanton et al., 2018). FRAM and STAMP are in essence qualitative

safety analysis approaches, although in the case of FRAM some

quantitative extensions (Patriarca et al., 2017; Patriarca, Falegnami,

et al., 2018), including the application of Fuzzy Logic (Hirose &

Sawaragi, 2020; Slim & Nadeau, 2020), have been described. STAMP

has been extended with system dynamics (Bugalia et al., 2020;

Kontogiannis & Malakis, 2012) and model checking tools (Han

et al., 2019; Yang et al., 2019). EAST already has a quantitative ele-

ment built‐in to its framework in the form of network metrics.

STAMP (based on Leveson & Thomas, 2018; Leveson, 2011b) is

an accident causality model, in which a system is regarded as a dy-

namic process made up of interrelated components, kept in states of

safe equilibrium by control loops. Whereas in many traditional cau-

sation models the most basic element is an event, STAMP uses

constraints applied to different levels of control in a process model as

the basis for analysis (Leveson, 2011b).

A socio‐technical system is graphically depicted as a hierarchical

control structure (HCS) with controllers that cascade from highest to

lower levels of authority (Section 4.1). Controllers can be human or

technical and can be further divided into sub‐controllers. A team of

people can be divided into individual human agents whereas a

technical agent can be decomposed into subsystems such as pro-

cessing units, mobile platforms, robotic arms, end‐effectors, etc. Each

controller enforces controller constraints, by applying control actions

on the next lower level, whereas this lower level sends a feedback in

return, essentially informing the higher level if the controller con-

straint is satisfied. Control actions and feedback are assessed against

the context of the controllers' internal process models and safety

control problems can occur because of mismatches between the in-

ternal models of humans and technical controllers. These can lead to

the automation surprises described in Section 2.3.

An HCS exists out of a virtual unlimited series of control action‐

feedback loops, depending on the scope of the analysis, divided into

levels of authority control. These authority levels can extend further

than the operational level to include organizational, legislative, and

societal levels of control on safety. Examples of control that exceed

the engineering level can come in the form of regulations, proce-

dures, and safety requirements, whereas audits, reporting, and par-

liamentary hearings can act as higher‐order feedback mechanisms.

The hierarchical levels of authority and the systematic control‐

feedback loops present a way to answer the question of what it

means to be in control. The deconstruction into different controllers

and sub‐controllers interconnected by control loops makes it possible

to systematically plot the dependencies in answer to the question of

how control and cognition are distributed.

The HCS produced by the STAMP causation model serves as the

basis for both a retrospective accident analysis technique CAST
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(Causal Analysis based on Systems Theory) and a prospective hazard

analysis technique STPA (Systems‐Theoretic Process Analysis). While

the main goal of the STAMP causation model is to identify in-

adequate control scenarios, STPA aims to subsequently develop

systematic safety constraints to control unsafe scenarios in future

designs. The application of STPA is out of scope for the demon-

stration purposes of this article, but an is covered in relation to co-

bots in another publication (Adriaensen et al., 2021).

3.1 | FRAM

The FRAM (based on Hollnagel, 2012) provides a nonhierarchical and

descriptive model of a socio‐technical system. The model is con-

structed around functions. These represent any acts or activities,

simple or complex, that are performed to achieve a goal and are

depicted by a hexagon (Hollnagel, 2012) (Section 4.2). Each corner of

the hexagon represents one of the six fundamental aspect types (i.e.,

Input, Output, Requirements, Resources, Control, and Time). They

shall only be described when it seems necessary and there is enough

information to describe them (Hollnagel, 2012): (i) Input is what ac-

tivates a function; (ii) Output is its result; (iii) Precondition describes

the system condition that must be fulfilled before a function can be

carried out; (iv) Time describes functional aspects; (iv) Control su-

pervises or regulates the function, and; (vi) The resources aspect is

what is needed or consumed.

These aspects represent the links between functions and pro-

duce a systematic network representation of functional de-

pendencies (Figure 3, Section 4.2), which in FRAM are called

couplings. Whereas the aspect types are defined by the connection

to the next hexagon, they can also be attributed to various pheno-

types such as adequate and inadequate timing, precision, speed, and

force.

The potential for variability in the system is assessed by both

endogenous and exogenous couplings and their upstream or down-

stream reverberations relative to a specific function. This potential is

called performance variability. Unlike many traditional safety meth-

ods, performance variability is not per se regarded as negative but is a

necessary system property to achieve work in light of trade‐offs,

finite resources, and time constraints. The performance variability of

the model and its emergent behavior, as a result of upstream‐

downstream couplings, is called functional resonance. To manage

variability, positive resonance should be amplified, while negative

resonance should be dampened. This is for example achieved by in-

serting barriers, closing feedback loops, rearranging the order of

functions, assigning roles to other agents, creating redundancies, or

reorganizing the work system.

The methodological steps that are required in a FRAM analysis

are as follows: (i) identification of functions; (ii) identification of

variability; (iii) aggregation of variability; and (iv) assessing the con-

sequences of the analysis or the management of the system's per-

formance variability.

It is important to understand that the resulting FRAM model

depicts the potential couplings in a representation of work as nor-

mally performed and is not possible to determine whether a function

will always be performed in relation to other functions. Instead, an

instantiation of a FRAM model represents the actual couplings or

dependencies that have occurred or might occur under favorable or

unfavorable conditions in a particular scenario. The focus of the

FRAM is on the interplay of the dependencies. Therefore, the

question of what it means to be in control will depend in the first

place on how that control is distributed over the system.

3.2 | EAST

A comprehensive and recent overview of the different domain ap-

plications of EAST, with several methodological variations, can be

found in (Stanton et al., 2018). EAST considers the overall system as

the unit of analysis, by studying the interactions between humans

and between humans and artifacts within the system itself. EAST is

best described as a framework, as it combines several tools and

methods that are specific to EAST but derives its data from techni-

ques that exist independently of EAST.

At the core of the overall approach, EAST describes, analyses,

and integrates activity by a multiple network representation: task,

social, and information networks are first developed individually and

are subsequently evaluated in an integrated network of networks.

The original EAST framework (Stanton et al., 2018) adheres to a

preformatted methodological structure with (i) data collection

methods (Activity sampling/observation, Critical Decision Method; (ii)

data analysis methods (Hierarchical Task Analysis, Social Network

Analysis [SNA]), and; (iii) representational methods (Network dia-

grams, Comms Usage Diagram, Coordination Demands Analysis, and

Operation sequence diagram). A shortened form of EAST has been

proposed to derive task, social, and information networks directly

from the raw data (Stanton et al., 2018).

EAST outputs can be analyzed either qualitatively or quantita-

tively. The latter is achieved by applying network analysis metrics,

whereas the qualitative data can be derived from network re-

presentations and additional supporting representational diagrams as

described in step (iii) above. By assessing a distributed inter‐agent

representation of information and tasks, a JCS analysis is developed.

The outcome of the analysis typically consists of a graphical pre-

sentation of distinct information, task, and social networks. This is

followed by an integrated network combination of the individual

networks, and finally, an interpretation of the metrics analysis that

emerges from these networks. We refer to Table 4 for an overview of

network metrics that have previously been applied in EAST, and

which are based on SNA. Although the selection of metrics varies

between individual domain applications and cases, they typically in-

clude several metrics that express the centrality and connectedness

of nodes, and their relative distances to the other nodes in the net-

work (Stanton et al., 2018).
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Some scholars proposed an alternative approach to use EAST

without the application of metrics, by applying the so‐called “broken

link approach” (Holman et al., 2020; Hulme et al., 2021; Lane

et al., 2019; Stanton & Harvey, 2017; Stanton et al., 2019) The first

part of this approach still involves the modeling of task, social, and

information networks, but subsequently enables EAST networks to

be used for predictive risk assessment by examining the effects of

“alternative circuits,” “short circuits,” “long circuits,” and “no circuits”

(Stanton et al., 2018).

4 | EXEMPLAR CASE STUDY

We have based our demonstration case study on a real cobot ap-

plication consisting of an already existing manipulating arm and

gripper for heavy loads (David et al., 2014), newly mounted on an

AGV‐type mobile base. We created virtual data in an imaginary

scenario for the joint behavior of manipulation and mobility, based on

generic capabilities derived from a press release and an accom-

panying sample video. The case describes an existing demonstrator

model (BA Group Robotic Systems, 2017) with proven technologic

feasibility. With no access to performance results, functional data, or

work environment, we developed a scenario to provide a set of

credible but limited operating conditions in relation to technology

that aims at next‐generation industrial collaborative capabilities. The

focus was not on generating actual engineering recommendations,

but on the generic suitability of the proposed systems thinking

methods to extend the current techno‐centric safety perspective

with a socio‐technical safety analysis. The boundaries of the case

study have been chosen to ensure a pragmatical yet representative

research dimension relying on openly accessible resources available

online (demonstration videos and technical documents) for the de-

monstrative case study. Keep in mind that applying any of the sys-

temic methods proposed in this article to a real‐world case study

would need to include subject matter experts with different roles

such as designers, operators, and supervisors. In this limited de-

monstrative case study, the researchers' engineering background and

previous research experience with industrial applications sufficed to

provide plausible engineering solutions and socio‐technical

outcomes.

The selected case study involves a mobile platform, which can

move fully autonomously between tasks without operator inter-

ference (Figure 2, mode A). In collaboration with an operator, the

swing arm from the manipulator can be used as a hand guiding device

to grab and relocate heavy objects or workpiece extensions (Figure 2,

mode B), for example, a drill workpiece extension. The swingarm is

operated by a pair of handles, which simultaneously act as an en-

abling device when positive two‐hand contact is established. The

mobile platform can be used to transport objects or workpieces be-

tween locations. In the specific case of drilling, the mobile platform

follows the lateral movements of the operator to execute precision

drilling at repeated distances in a massive structure made out of

concrete (Figure 2, mode C).

Figure 3 sketches the logic of the cobot operation, while an ac-

companying showcase video can be consulted (BA Group Robotic

Systems, 2017).

We isolated a single scenario related to the cobot's drilling

function, taking into account that this function requires a coordina-

tion challenge between the operator, the cobot's manipulating arm,

and the mobile platform. Analyses of such systems applied to real‐

world examples would inevitably need to be extended to take into

account the effects of multiple cobots and operators in a single

TABLE 4 Description of Social Network Analysis metrics often used in EAST

Social Network Analysis metrics Description

Emission degree The number of ties emanating from each agent in the network

Reception degree The number of ties going to each agent in the network

Eccentricity The largest number of hops an agent has to make to get from one side of the network to another

Sociometric status Refers to the number of communications received and emitted by each agent, relative to the number of nodes in
the network

Agent centrality Calculated to determine the central or key agent(s) within the network. There are a number of different

centrality calculations that can be made. For example, agent centrality can be calculated using
Bavelas–Leavitt's index

Closeness The inverse of the sum of the shortest distances between each individual and every other person in the network.
It reflects the ability to access information through the “grapevine” of network members

Farness The index of centrality for each node in the network, computed as the sum of each node to all other nodes in the
network by the shortest path

Betweenness The presence of an agent between two other agents, which may be able to exert power through its role as an
information broker

Eigenvector Identifies those nodes connected to important nodes, which may provide a discreet intervention target

Source: Taken from Stanton et al. (2018).
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industrial setting, as well as the typical interconnectedness en-

countered in today's smart factories.

The mobile platform has three different mode behaviors, de-

pending on the task: (i) the mobile platform moves fully autonomous

between tasks without operator interference; (ii) the manipulating

arm is used to pick or release objects or workpiece extensions,

whereby the mobile platform is locked and does not move; and (iii)

the mobile platform follows the operator in the case of drilling holes.

In the latter case, the cobot drives parallel to a structure or object

from one hole to the next hole but does not drive or steer toward the

object. Otherwise, this would balance out the direction and forces of

the drill action, and additionally the cobot‐operator separation could

be violated. This is a serious hazard as the operator is positioned with

his/her back to the cobot holding the drill hanging on the swingarm,
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F IGURE 2 Sketch of the case study, with task‐dependent mobile platform behavior

F IGURE 3 STAMP control structure of Human–machine interface (hypothetical). STAMP, System‐Theoretic Accident Model and Processes
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reaching over the operator's head. In Table 5, we hypothesize the

following credible mode priority requirements that result in three

possible behaviors for the mobile platform.

4.1 | STAMP application

We first applied STAMP as an example to answer the questions of

how control is distributed and maintained in the demonstrated cobot

JCS system. We have generated two hierarchical control structures

(Figures 3 and 4) with the controllers and their control action‐

feedback loops at different granularities.

Figure 3 shows a high‐level diagram of the interface control

structure and Figure 4 zooms further in on the mobile platform

systems engineering. Hierarchical control structures contain different

elements. The boxes depict the controllers which are the systems or

subsystems that control the lower‐order controllers. This is per-

formed by control actions depicted by the arrows pointing down-

wards, whereas the loop is closed by the feedback information to the

controller by the arrow pointing upwards. Controllers at the same

level can communicate with each other outside of the control‐

feedback relationship, or even with controllers outside the HCS.

Examples are <task assignment> or <workpiece input (drill)>

(Figure 4) and are represented by horizontal arrows. The HCS can be

used to analyze how for example mode management is used from a

Joint Cognitive perspective, to verify how subsystems interact and

how they are initiated by control actions from the human controller,

which in the STAMP representation has the highest authority.

Following STAMP theory, inadequate control may result from

missing constraints, inadequate safety controls, missing lower‐level

commands, or inadequate feedback to enforce constraints

(Leveson, 2011b). Although a systematic and comprehensive ex-

amination of control requires to subsequently perform the steps

provided by STPA as a complement to a STAMP analysis, the HCS

developed here summarizes the system's architecture, which pro-

vides the basis for the examination of the control's dependencies.

The mode controller accepts multiple inputs (MC1, MC2, MC3)

(Table 5 and Figure 4) and one overriding safety controller (MC4). By

decreasing the granularity and looking at Figure 3, it can be learned

that the hand guiding device, which inherently triggers the enabling

device by positive contact from two hands simultaneously, is further

connected to other subsystems such as the swing arm and drill

workpiece, apart from being interconnected to the control module

that serves the mobile base via the enabling device (Figure 4). An

inadequate control where the operator tries to manipulate the cobot

with only one hand will not activate the enabling device (Figures 3

and 4) and create a fail‐safe condition. This fail‐safe state shall sub-

sequently not interfere with any other safe control constraint states.

This coordination is essentially what drives and supports a systems‐

thinking analysis by checking compatibility requirements for all sub-

systems under all scenarios. The dependency between operator input

and mode management is but one example of how control is dis-

tributed over the system and an answer to what it means to be in

control.

In this particular case, mode priority is initiated by a socio‐

technical context, because the drilling is one specific task in the or-

ganization of the work system. The mobile base navigation behavior

subsequently results from a particular combination of mode selector,

enabling device, and drill extension activity. It is essential that the

operator is aware of why the system behaves as it does, earlier de-

scribed as mode awareness.

See Adriaensen et al. (2021) for an STPA application of the

scenario presented in this article. Even without performing STPA the

HCS provides a means to verify several inadequate control and in-

adequate feedbacks. Similar systems thinking requirements and in-

teractions can be identified by extending the scope and adding

supplementary inquiries. <Task assignment> is, therefore, an example

of a contextual factor which is related to the situated cognition of a

work‐specific system, whereby drilling for example creates dust

which can affect the safety sensor(s), a condition which is not en-

countered in the cobot task modes A and B in Figure 3. Inadequate

sensor feedback will be overridden by the stop authority from

the safety controller. The inadequate feedback scenarios, whereby

the sensor becomes covered with drilling dust, will trigger the

overriding safety controller. With this example, we have provided a

STAMP view on one inadequate control and one inadequate

feedback, out of many other examples that can be investigated in a

full‐fledged analysis.

4.2 | FRAM application

The FRAM model was made with myFRAM (Patriarca et al., 2018), an

open add‐on for Microsoft Excel, from which the results were

TABLE 5 Hypothesized Mode Conditions (MC) to create different mobile platform behaviors

Mode condition Autonomous AGV navigation Locked AGV navigation Drill restricted AGV navigation

Collaboration mode (MC1) Off On On

Two‐hand contact enabling device
signal (MC2)

Absent Present Present

Drill extension armed/active (MC3) Off Off On

Safety controller (MC4) Stop authority (priority over other
conditions)

– Stop authority (priority over other
conditions)
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subsequently exported in the traditional hexagon‐based representa-

tion offered by the Functional Model Visualizer (FMV) (Hill &

Hollnagel, 2016).

As for STAMP, for the FRAM application, we have chosen the

same drilling function, because of its relevance for coordination

challenges between agents. The FRAM model displays an inter-

dependency analysis of functions, which can be read as functional

exchanges between agents, human and technical alike. The colors

assigned to the hexagons represent the different agents (see legend

in Figure 4). For this functional analysis, we used a JCS perspective

where the socio‐technical system is displayed as a number of func-

tional exchanges and whereby the traditional boundary between

medium and agent is abandoned in favor of accepting technical

systems as agents of their own (Adriaensen et al., 2019). A functional

analysis in this JCS sense accepts both physical changes and system

state configuration changes from subsystems and components as

functional tokens in a FRAM analysis. Agents and functional clusters

were assigned to each of the functions individually from a bottom‐up

perspective.

In the FRAM language functions are described by a verb, de-

picted in the hexagons, for example <Pick drill workpiece>, which

produce outputs, for example |Drill extension attached|, and can

subsequently be linked as aspects of one or more downstream

functions. The overwhelming number of aspect labels have not been

F IGURE 4 STAMP control structure of Mobile platform (hypothetical). STAMP, System‐Theoretic Accident Model and Processes
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displayed for readability of the model, even if the limited scope

produced a moderate 23 functions, already providing evidence on the

need for a systemic analysis to gather the complexity of joint socio‐

technical operations. For this case study, we have grouped the

functions in colored clusters (see legend Figure 4). These clusters

offer a functional representation that makes evident how the unit of

analysis cannot be disconnected between human and technical

agents, rather aiming at a perspective of aggregated functions that

together comprise a unique function. The green cluster, for example,

shows how mode management consists of a set of mixed human and

cobot functions from which the joint behavior or distributed cogni-

tion eventually will trigger the physical performance of the system.

The green cluster functions represent the elements for the mode

conditions of Table 5. The blue cluster represents human or cobot

commands that are necessary to instruct a subsystem to execute a

task, including physically hand guiding the cobot. The yellow cluster

consists of the physical outcomes (e.g., drilling, mobile platform na-

vigation) that result from command instructions, possibly altered by

mode changes, whereas the orange cluster bundles the sensor

functions. This cluster is the only one that consists of cobot func-

tions only.

In this FRAM model, the function <Operator provides hand

guiding movements> belongs to two clusters simultaneously as

physically guiding the swing arm (yellow) to a particular position in-

structs the mobile platform to follow the operator (blue), when par-

ticular aspect conditions are met. Physically hand guiding the cobot

per definition activates the enabling device through hand contact

<Sense enabling device> in the sensing cluster (orange).

Figure 6 presents the same system control propagation from

guiding the manipulator's arm with two hands, which we have already

explored through STAMP, but now in the form of downstream pro-

pagation. Even if both the STAMP and the FRAM approach usually

refrain from making models to represent the physical design, the

functional propagation perspective provides a complementary per-

spective to the HCS. We have highlighted the downstream aspects

from functions <Operator provides hand guiding movements> and

<Sense enabling device> in Figure 6 to show the aspects generated

by these two inherently related functions. They both originate from a

single physical operator action (hand contact) and reverberate to a

myriad of other functions throughout all clusters. The question of

what it means to be in control from a FRAM perspective results in a

plot of distributed control, represented as interdependencies in the

work system.

Different mode management conditions from Table 5 (not

highlighted in Figure 6) are depicted by difference in aspects that

arrive in <Activate autonomous AGV navigation>, <Activate drill

restricted AGV navigation>, and <De‐activate AGV navigation>

such as the pre‐condition |enabling device activated|, |enabling

device de‐activated|, |drill armed/activated|, |collaboration mode

on|, or |collaboration mode off|. These aspects are generally not

restricted to mode management but are interrelated to several

other functions that use these aspects as a resource, control, or

precondition.

Further examples of contextual negative functional resonance can

arise when for example an <Obstacle emerges (human or artifact)>

(Figure 5) as the consequence of a falling object or an object over-

looked in a previous work task. Alternatively, the previously mentioned

negative propagation of drill dust on the safety sensor (Section 4.1) can

be traced downstream of the <Sense obstacle> function. In terms of

functional propagation, the output of this function is connected to the

input <Lock AGV>, which is identical to the stop authority feature in

the HCS representation from the STAMP perspective. It is needless to

say that other socio‐technical system variabilities are contained in this

data and deserve to be explored in a full‐fledged analysis.

4.3 | EAST application

Even if EAST is best suited to analyze multiagent networks with the

simultaneous engagement of multiple human operators and cobots,

the EAST scenario used in this study stays restricted to the joint

behavior of an individual operator's inputs and a mobile platform with

an integrated manipulator (cf. 4.1 and 4.2) and drilling extension. This

restriction of scope enables the comparison of three systemic

methods through a similar restricted case study. The reader should

keep in mind that a full analysis of real‐world variables with multiple

agents will yield other results than represented in this article and

would even influence the centrality and distance measures that re-

sulted from this restricted case study. We also want to emphasize

that we applied this shortened data collection process for demon-

stration of the method only. A full‐fledged EAST analysis requires

researchers to corroborate between observational data and collec-

tion of information from subject matter experts, for example, by

applying the Critical Decision Method.

In practical terms, we generated the information, task, and social

network data with KUMU, an online network analysis tool with built‐

in SNA capabilities and versatile graphical network options

(KUMU, 2021). We started by building an information network,

which is represented by the circled network elements in the in-

tegrated network representation in Figure 7. We applied the JCS

approach by combining both human and technical agents in a non-

hierarchical perspective.

Each element produces an information token that is connected

to another element. Links between elements, also called nodes, can

be uni‐directional or bidirectional depending on the way information

is emitted to or received from neighboring elements. The two “sys-

tem behavior” functions in the middle of Figure 7 produce the ob-

servable behavior by the cobot navigation and the cobot manipulator.

Together they produce the salient cues for the human operator in

terms of expected or nonexpected system cobot movements in space

and time. Two other networks are superimposed on the information

network. First, the task network can be interpreted from the boxed

labels, which also correspond to the colors of the circled elements.

Information elements that belong to the same task are grouped to-

gether in clusters. The reason for the multicolor taxonomy for the

two elements that concern “system behavior” can be found in the
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fact that they emerge from multiple task clusters. Second, the social

network coding can be derived from the additional color‐coded ele-

ments attached to the information elements (cf. legend social net-

work in Figure 7). Some information elements involve multiple

agents. One example is where increased human‐cobot separation is

produced as the dynamic outcome of both the human agent's and the

cobot navigation's reactions to physical separation. Figure 8 presents

another perspective on coding by agents, being the graphical re-

presentation of which agents are conjointly involved in the execution

of a specific task.

Additionally, Figure 8 graphically represents some of the SNA

metrics produced by the task network. Ranking numbers and values

have been assigned to the tasks, with the information network links

taken into account for the calculation of the metrics. Table 6 pro-

duces the quantitative results. While a limited number of metrics are

graphically displayed by element size in Figure 8. Because of the

limited data involved in this restricted case study, care should be

taken in interpreting the absolute numbers in isolation. The ranking of

the metric values provides an easy way of comparing the element

scores relative to each other.

The list of SNA metrics is not comprehensive. We have instead

concentrated on those metrics that are useful in the context of this

case study to meet our demonstration purposes. First of all, we did

not include metrics that concern the whole network such as size,

density, or cohesion, as these metrics are calculated concerning the

total number of elements. They would therefore not produce

meaningful results in a restricted demonstration case study with a

limited scope. For similar reasons, an individual node metric like so-

ciometric status has not been included because it also relies on the

total number of nodes in the network. Eccentricity has not been

included because describing the largest number of hops an agent has

to make from one side of the network to the other side has little

meaning in networks where both human and technical agents are

involved, as both agent types are unevenly affected by eccentricity

Hexagon Color Agency
Red Cobot

Grey Operator

Black Work environment

Cluster Color Socio -Technical functions
Blue Command functions

Yellow Functions related to physical outcomes

Orange Sensor functions

Green Mode management

F IGURE 5 FRAM model from the functions related to drilling with mobile cobot support (hypothetical). FRAM, Functional Resonance
Analysis Method
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effects. Automated agents have no problem with using a higher

number of hops for automated logical links between sub‐controllers.

Compared to automated agents, human operators are more prone to

information loss when hopping many nodes. A filter could be applied

to compare separate eccentricity rankings for human and technical

agents in larger case studies in the future. The metrics in the next

paragraph are more relevant for our case study because they tell

something about the potential for failure propagation or the way of

element interrelatedness by varying centrality expressions.

Table 6 lists emission and reception (cf. 3.3) as the number of ties

departing and arriving in each agent in the network. Nodes with high

emission have the potential of a high‐risk propagation when a single

element fails (KUMU, 2021). This propagation remains valid for hu-

man agents, technical agents, or mixed agent types. In this case study,

“mode management” has the highest number of outgoing links in

terms of emission. “Mode management” drives many other functions

and will have an important role when applying a broken link approach

in predictive risk assessment. A high degree of emission does not

necessarily need to have a negative influence under normal operating

conditions when multiple outputs are anticipated but high emission

also indicates more possibilities for failure propagation. A scenario in

which the automation mode is incorrectly managed upstream will

indeed lead to a wrong automation mode output and undesirable

mission performance. In our scenario, the highest rank for reception

is assigned to the tasks related to the handling of the cobot manip-

ulator and the drilling task, from which many elements involve

handling from human operators. Other than technical components

that are often designed to handle multiple information and config-

uration inputs in real‐time, human operators might be overloaded by

multiple and synchronous inputs, and therefore the reception metric

can be used to indicate bottlenecks in a safety analysis. The tasks in

which human operators have the final authority like handling of the

cobot manipulating arm and the drilling function are the most con-

nected in terms of reception. Closeness, being the inverse of the sum

Hexagon Color Agency
Red Cobot

Grey Operator

Black Work environment

F IGURE 6 Downstream propagation of two inherently linked functions <Operator provides hand guiding movements> and <Sense enabling
device>
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of the shortest distances tells something about control of access to

information through the network and its members. It is an important

measure to tell how well an element is indirectly connected to others.

With “mode management” at the highest‐ranked position, this task

displays a critical role for being related to many other tasks, showing

similar undesirable “mode management” consequences as those ex-

plained for emission. Farness, not explicitly added in Table 6 is the

mathematical reciprocal of closeness (Bavelas, 1950).

Figure 8 graphically supports two different results from Table 6

applied to eigenvector and betweenness, selected as two metrics that

are less intuitive to interpret. Whereas eigenvector is an index

measure of the influence of a node in terms of being connected to

other well‐connected nodes (Falegnami et al., 2020), betweenness

(cf. 3.3) on the other hand provides a measure for the number of

times an element stands on the shortest path between two other

elements, which can also indicate a potential for failure

(KUMU, 2021). “System behavior” shows low centrality in terms of

betweenness but has a high eigenvector value. “Mode management”

in our case study shows the opposite result. The fact that “system

behavior” shows a high value on eigenvector can be explained by the

fact that the observable cobot behavior emerges as the product from

all tasks. Manipulator‐related tasks also score high because these too

F IGURE 7 EAST integrated information, task, and social network model. EAST, Event Analysis of Systemic Teamwork
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are connected to other well‐connected nodes. The “mode manage-

ment” task, which is a shared responsibility between the human op-

erator, the cobot navigation, and the cobot manipulator agent is

central in terms of betweenness because it is often involved in many

other short element paths. Correct or incorrect “mode management”

will indeed immediately affect all neighboring functions for both

navigation and the manipulator handling as a direct consequence of

system layout in which “mode management” plays a fundamental

role. Hence, the graphical support of differently sized elements in

terms of specific metric values helps to understand differences in

centrality value interpretations for a metric like, for example, eigen-

vector and betweenness.

The coding from the social agents in Figures 7 and 8 can be used

to support the JCS understanding of a socio‐technical system. Instead

of looking at traditional opposition of human and technical agents,

EAST's social agent coding allows one to interpret which agents are

jointly responsible for the production of specific tasks. Even sub‐

systems such as the cobot navigation and the cobot manipulator and

the effects they have on each other in the context of being related to

several tasks and other agents can be immediately derived from their

F IGURE 8 EAST task network model coded
by agents. EAST, Event Analysis of Systemic
Teamwork
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aggregation in the system's functions, ultimately providing a systems‐

thinking perspective. This case study only involves few external

agents that are further removed from the direct human‐robot inter-

action, like a work planner or an engineer. An increase in the com-

plexity of the distributed cognition or distributed situation awareness

architecture when subsequent external agents are added will emerge

from the graphical network representation and SNA metrics. Values

of SNA metrics can be related to the agents involved in specific tasks

or information elements, for which we provided some limited ex-

amples in the previous paragraph.

Through this case study, we have demonstrated the usefulness

for cobot safety by the analytical possibilities typically applied in

EAST. The analysis supports the credibility of EAST as a framework to

study distributed cognition networks concerning cobot applications.

5 | DISCUSSION

Each of the methods provided useful insights for the design, im-

plementation, and operation of safe and efficient cobot systems that

could not be derived from nonsystemic methods. Traditional safety

analysis methods pursue the search for component failures or failure

modes, but disregard that safety is also a positive capacity in terms of

how mission performance is really achieved. The methods which we

have used in this explorative study all put activities from human and

technical agents at the center of the analysis. In all three methods,

functional outputs are the concretized elements of the system. These

functional possibilities have a higher granularity than simple agent

exchanges connected through an interface and are not restricted by

the properties of a device. By avoiding a reductionist view on com-

ponent or mere agent interaction, systems can be made safer and

more efficient by enabling or constraining functional configurations.

In all three systemic safety methods, “mode management” for

example, was considered as an array of functions which was dis-

tributed throughout or connected to human and technical agents.

Each method highlighted the importance and centrality from mode

management for efficient system performance to emphasize but one

practical lesson from this case study. Systemic safety methods

thereby reveal that mode management does not even have to fail to

cause system malfunction, but can simply result from suboptimal

systems understanding. STAMP revealed how automation modes are

altered as the logic consequence from activation of the two hand‐

guiding device. The human operator is not even necessarily aware

that physically grabbing and directing the manipulator influences

mode management and subsequent navigation and manipulating

behavior.

The FRAM model similarly showed that this function, this time

described as <Operator provides hand guiding movements>, indeed

is shared by two functional clusters simultaneously. In the FRAM

model it is only two propagations away of resonating with every

other functional cluster in the model.

Equally, EAST revealed the same distributed connectivity in re-

lation to the mode management task, but additionally expressed the

centrality of mode management as a quantitative measure in several

SNA metrics. The power of all our methods for safer and more effi-

cient design and operation of cobot systems lies in revealing the

distributed and emergent result from joint actions. Without the ap-

plication of STAMP, FRAM or EAST, the exact distributed nature of

functional system performance would remain obscured to the ana-

lyst. Subsequently, automation mode effects in our highlighted ex-

ample should be made clearly detectable to operators by

unambiguous feedbacks, annunciator design and intuitive cobot be-

havior. Additionally, operators should be trained about the con-

sequences of their actions on automation modes. This observation

TABLE 6 SNA centrality metrics for the combined information‐task relationship effects on the task network

Rank Degree Centrality (value) Betweenness (value) Closeness (value)

#1 Mode management (10) Mode management (0.045) Mode management (0.157)

#2 Manipulator‐related tasks (9) Manipulator‐related tasks (0.028) Navigation (0.110)

#3 Drilling‐related tasks (9) Navigation (0.025) Manipulator‐related tasks (0.057)

#4 Safety separation (8) System behavior (0.017) Drilling‐related tasks (0.057)

#5 Navigation (7) Safety separation (0.015) Safety separation (0.052)

#6 System behavior (5) Drilling‐related tasks (0.012) System behavior (0.043)

Rank Eigenvector (value) Reception (value) Emission (value)

#1 System behavior (0.045) Manipulator‐related tasks (9) Mode management (5)

#2 Manipulator‐related tasks (0.028) Drilling‐related tasks (8) Manipulator‐related tasks (2)

#3 Drilling‐related tasks (0.236) Safety separation (7) Drilling‐related tasks (2)

#4 Safety separation (0.000) Mode management (7) Navigation (2)

#5 Mode management (0.000) Navigation (6) Safety separation (1)

#6 Navigation (0.000) System behavior (5) System behavior (1)
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reveals that the locus of understanding does not lie in the individual

actions, or components, but in the alignment of design, training and

operation of future cobot applications.

STAMP, FRAM, and EAST are rooted on quite different theore-

tical foundations, yet all relying on systems theory. They all have in

common that the unit of analysis has shifted toward understanding

the interactions between components, instead of simply focusing on

individual component failures. Ultimately, STAMP, FRAM, and EAST

aim to answer questions related to what it means to be in control, or

how cognition is distributed, through different analytical lenses. In

STAMP safety is considered a control problem, whereas in the FRAM,

safety is understood as the successful management of functional

resonance. EAST evaluates systems from a cognitive distribution

perspective, relying on both explicit and implicit information trans-

actions. Besides the theoretical underpinnings, the three approaches

provide different insights by different modeling representations.

STAMP lends itself to a safety control perspective by introducing

safety constraints and providing a causation understanding from an

HCS perspective. FRAM and EAST are ideally suited to describe the

distributed nature of socio‐technical control, with nuances between

the latter approaches. A single method does often not meet the

analytical challenges in isolation (Stanton et al., 2018) and there is

merit in using a combination of methods to understand the com-

plexity and diversity of sociotechnical systems (Salmon & Read, 2019;

Salmon et al., 2017).

A summary of how the different methods respond to the re-

search questions “What does it mean to be in control in a Joint

Cognitive System?” and “How is control distributed across such

systems” is provided below in Table 7 and is based on method

properties described in section:

In STAMP, dependencies are built up around control actions and

feedback which create several control loops within the boundaries of

an HCS. Multiple hierarchical control structures can be inter-

connected and receive external outputs. STAMP inherently labels its

connections in terms of control actions (downward arrows), feed-

backs (upward arrows), or external inputs (arrows with lateral inputs)

TABLE 7 Methods comparison table

STAMP FRAM EAST

Relation to research
question

What does it mean to be in control
is based on the systemic
distribution and management
of control

Understanding how control is distributed
precedes what it means to be in
control, interpreted as (positive)
performance variability

Understanding how control is distributed
precedes what it means to be in control,
examined through the lens of distributed
cognition, information access and
information management

Theoretical
foundations

Safety as a control problem Functional resonance Distributed Cognition/Distributed Situation
Awareness

Representation Hierarchical control structure Functional analysis representation Information, task and social network +
integrated network of networks

Dependencies Top‐down hierarchical control

from a systems‐thinking
perspective

Nonreductionistic, nontaxonomic method

to analyze nonnormative behavior

Nonreductionistic, nontaxonomic method to

analyze nonnormative behavior

Dependency
features

Control and feedback loops. Inputs
and interdependency of loops

Functions connected by six possible
aspects, phenotypes for endogenous

and exogenous couplings, and
assignment of agents

Elements and ties in information, task and
social network (agents) and integrated

network of networks

Distributed

cognition

STAMP maps control and feedback

loops by means of socio‐
technical hierarchy

Nonhierarchical functional analyses

(information exchanges and
functional exchanges are treated
equally)

Nonhierarchical distribution of information

among tasks and agents

Outcome STAMP results in the Hierarchical

Control Structure as causation
model

Assessment of the aggregated

performance variability to manage
positive and negative

Quantitative distance and centrality

measures

Qualitative representation of networks

STPA respectively provides safety
constraints

resonance by upstream and downstream
resonance

Broken links approach: Assessing
“alternative circuits,” “short circuits,”
“long circuits,” and “no circuits” for
predictive risk assessment

Risk mitigation
principle

Controller constraints are the logic
result from the methodology

Descriptive system understanding guides
understanding and managing risk on a
case study basis

Descriptive system understanding guides
understanding and managing risk on a
case study basis

Abbreviations: EAST, Event Analysis of Systemic Teamwork; FRAM, Functional Resonance Analysis Method; STAMP, System‐Theoretic Accident Model

and Processes.
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(Figures 3 and 4). Contrarily, in FRAM dependencies exist of cou-

plings connecting the six potential aspects of functions (Input, Out-

put, Precondition, Resource, Control, Time) and it is also possible to

assign phenotype values to the aspects, which permit to attach a

qualitative evaluation of dependencies (e.g., timing, precision, accu-

racy, etc.). FRAM is thereby the approach that provides more rigidity

in defining how dependencies (called couplings) influence system

behavior. In FRAM, a precondition for example needs to be satisfied

before the next action can start, whereas a resource defines a cou-

pling that is consumed by the next function. EAST, on the other hand,

does not distinguish between aspect types, but it essentially provides

a difference between information, tasks, and agent networks.

EAST provides an alternative perspective to assess the quality of

dependencies (sometimes called ties or edges in EAST, but in most

studies simply named relationships) using SNA metrics to assess the

centrality, position, or efficiency of a node. This quantitative as-

sessment of the network and its nodes is not offered by the other

two approaches. The EAST framework recently introduced the East

broken‐links approach for predictive risk assessment (Lane

et al., 2019; Stanton & Harvey, 2017). In the broken‐links extension,

EAST assesses series of dependencies through evaluating them in the

context of “alternative circuits,” “short circuits,” “long circuits,” and

“no circuits,” introducing an additional qualitative propagation po-

tential. The FRAM on the other hand verifies to which extent a series

of dependencies produces positive or negative resonances with other

couplings upstream or downstream of functions under investigation

with a strong emphasis on the nonlinear propagation potential.

Which method is better ultimately depends on the research subject.

EAST can be especially useful in smart factories which contain data

information networks in combination with networked technologies.

FRAM on the other hand has the advantage of being a method‐sine‐

model (Hollnagel, 2012), which makes it highly adaptable to different

contexts.

Concerning the focus of investigation and outcome, one im-

portant difference between STAMP and the other two approaches is

STAMP's focus on negative outcomes and countermeasures. Con-

trarily, FRAM has been described to apply a more descriptive resi-

lience engineering perspective (Patriarca et al., 2020) and EAST has

similarly been described to take advantage of a “non‐reductionistic,

non‐taxonomic method for analyzing non‐normative behavior of

systems” (Stanton & Bessell, 2014). Improving system safety through

FRAM and EAST approaches depends in great part on gaining a

better understanding of distributed cognition and control and ex-

posing the implicit functioning of the system. Safety mitigation is not

strictly instructed by the FRAM and EAST methodologies. Contrarily,

STAMP provides a top‐down model and takes a systems‐engineering

approach with predefined risk mitigation steps incorporated in its

methodology. All approaches acknowledge the role of normal per-

formance in accident causation s (Hollnagel, 2012; Leveson, 2011b;

Stanton et al., 2018). FRAM and EAST, therefore, tend to be more

suitable for describing operational systems, including emergent re-

lationships initially not foreseen in the design, whereby the hier-

archical control structure approach from STAMP can be preferential

for engineering approaches, especially in early design phases, where

design is based on the logic of controllers and anticipated contextual

parameters. STAMP as a causality model can be complemented with

STPA, as a hazard analysis extension. STPA results in system control

constraints that result from the HCS by the identification of control

actions, unsafe control actions, loss scenarios, and contextual para-

meters. See Adriaensen et al. (2021) for an extended STPA analysis

related to the STAMP analysis from this publication in which the

system control constraints for the AGV controller systematically

were systematically studied. By applying STPA, we widened the

scope to predictive risk analysis, Likewise, we recommend future

research to examine cobot applications through the EAST broken‐

links approach as a predictive risk analysis extension.

In essence, several methods can mutually support the under-

standing of the system or the scenarios and instantiations under in-

vestigation. The functional distribution from both EAST and FRAM

approaches can subsequently be verified and contrasted with the

control structure of the STAMP representation. Additionally, “the

focus” of the three systemic methods differ. STAMP delivers a

stepwise approach to derive the HCS from losses, hazards, and sys-

tem control constraints, which provides an opportunity to demon-

strate compatibility with more traditional safety analysis

requirements. FRAM has strong theoretical underpinnings that do

not prescribe specific data collection methods but require the re-

searcher to represent strong ontological models of the work systems

under consideration. In comparison to the other approaches, EAST

has a greater focus on a comprehensive data collection framework,

which increases the scientific reliability of the resulting models.

The limitations of the article can be found in the fact that an

actual case study requires interviews and observational data to build

more accurate models with support from subject matter experts. The

robust initial data gathering methods from EAST can yield data that

can in turn be re‐utilized in any of the other remaining systemic

methods. Future research could provide full‐fledged FRAM and EAST

analysis of multiagent networks.

Another limitation is that we used the methods for a limited

demonstration case and did not provide a systematic analysis of all

data that could be gained from this case study. Future research could

also investigate new configurations of the various method strengths

to be used in combination. From several possible configurations, at

least the combination of EAST and STAMP has been described

(Salmon et al., 2018), as well as a combination of network metrics and

FRAM (Falegnami et al., 2020). We would also like to point to the fact

that we only applied a selection of methods for this study, but ideally

future research would draw a full comparison of strengths and

weaknesses of several other available systemic methods, such as

CWA (Naikar, 2017), system dynamics (Ibrahim Shire et al., 2018), or

Net‐HARMS (Hulme et al., 2021; 2021) to just name a few. During

the writing of this manuscript, one publication in particular deserves

attention, because it compares the reliability and validity of, STPA

and the EAST broken‐links approach (Hulme et al., 2021), with the

recommendation to further test extensions to enhance the reliability

and validity of these methods in the future.
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6 | CONCLUSION

The literature review on collaborative robots presented in this pub-

lication revealed a great emphasis on a techno‐centric perspective,

whereby risk was narrowly defined in terms of uncontained energy,

with a typical focus on safety mitigation in terms of speed, kinetic

energy, and separation. The contribution from this article is to first

draw attention to a paradigm shift from a mere techno‐centric per-

spective toward a socio‐technical safety perspective, and secondly to

provide and demonstrate the feasibility of different systemic safety

analysis methods to complement the traditional energy‐barrier per-

spective for cobots safety analysis. Collaborative robot applications

purposefully use the principle of distributed cognition to the ad-

vantage of a joint action that is stronger than the sum of its parts,

which additionally motivated to examine the problem domain from a

JCS perspective. The finding from such an approach can support a

systemic human factors design perspective and provide insights

about implicit cues and effects that can be important for training

purposes. We believe this is the first study to explore the joint

possibilities of the three systemic approaches STAMP, FRAM, and

EAST or to highlight their specific benefits.

The controller‐constraint view from STAMP, the network ana-

lyses from EAST, and the variability‐resonance perspective from

FRAM provide complementary lenses to analyze collaborative work

in human‐machine collectives. Regardless of the specific approach to

be applied, with its respective pros and cons, we believe that a socio‐

technical research perspective is required to deal with issues referred

to modern and future cobot systems.
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