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Medulloblastoma (MB) is a highly aggressive pediatric tumor of the cerebellum.
Hyperactivation of the Hedgehog (HH) pathway is observed in about 30% of all MB
diagnoses, thereby bringing out its pharmacological blockade as a promising therapeutic
strategy for the clinical management of this malignancy. Two main classes of HH inhibitors
have been developed: upstream antagonists of Smoothened (SMO) receptor and
downstream inhibitors of GLI transcription factors. Unfortunately, the poor
pharmacological properties of many of these molecules have limited their investigation
in clinical trials for MB. In this minireview, we focus on the drug delivery systems engineered
for SMO and GLI inhibitors as a valuable approach to improve their bioavailability and
efficiency to cross the blood–brain barrier (BBB), one of the main challenges in the
treatment of MB.
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INTRODUCTION

Medulloblastoma (MB) accounts for 15–20% of pediatric brain tumors, and it is a leading cause of
cancer-related deaths in children. The current treatment for MB consists of surgery followed by
craniospinal irradiation and chemotherapy, which includes vincristine, cisplatin, and cyclophosphamide
or lomustine, depending on the patient’s age, suitability for radiotherapy, and risk category. This
standard protocol often results in damages to the developing brain, especially in children under age three
(Menyhárt and Gy}orffy, 2020). For this reason, the development of more effective and less toxic
therapies has emerged as an opportunity to improve the prospect for MB patients.

During the past two decades, intensive molecular investigations have provided new insights into
biology and clinical heterogeneity of MB. The latest classification recognizes four MB
subgroups—wingless (WNT), sonic-hedgehog (SHH), group 3 (G3), and group 4 (G4)—each with
different origins, genetic profiles, and variable prognoses, making the identification of a successful
therapeutic strategy very difficult (Northcott et al., 2019; Hovestadt et al., 2020). Among MB variants,
SHH-MB is themost prevalent one (∼30% of allMBs), and it is characterized by the aberrant activation
of the Hedgehog (HH) signaling cascade, an evolutionary conserved pathway crucial for tissue
development, regeneration, and stem cells maintenance (Briscoe and Thérond, 2013). The
canonical activation of HH signaling occurs through the binding of the SHH ligand to the
transmembrane receptor PATCHED 1 (PTCH1), which relieves the repression on the G protein-
coupled Smoothened (SMO) co-receptor. This event initiates a complex intracellular cascade that leads
to the dissociation of GLI transcription factors (GLI1, GLI2, and GLI3) from the cytoplasmic negative
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regulator suppressor of fused (SUFU) and to their following
translocation into the nucleus. While GLI1 acts exclusively as a
transcriptional activator, GLI2 and GLI3 can exert a repressor
function in their cleaved forms (GLI2R and GLI3R) (Humke et al.,
2010; Wang et al., 2010; Infante et al., 2018).

In response to SHH, the active full-length forms of GLI factors
lead to the expression of their target genes involved in proliferation,
angiogenesis, apoptosis suppression, and stemness (Ruiz i Altaba
et al., 2002; Gulino et al., 2007; Traiffort et al., 2010).Mutations and
copy-number variation in critical genes of HH signaling
(i.e., PTCH, SMO, SUFU, and GLIs) cause an aberrant
activation of this pathway and lead to formation of a wide
spectrum of tumors (Skoda et al., 2018). Therefore,
pharmacological blockade of HH signaling has emerged as a
promising anticancer therapeutic approach and a number of
HH inhibitors have been designed and developed (Lospinoso
Severini et al., 2020). Most HH inhibitors affect the function of
the SMO receptor even if their use for SHH-MB has shown several
limits, especially due to SMO drug-resistance mutations (Wang
et al., 2013; Atwood et al., 2015; Danial et al., 2016). Moreover, the
existence of noncanonical SMO-independent mechanisms of
activation of GLI transcriptional factors has brought out great
interest in the discovery of molecules able to block the activity of
GLI1, the most powerful and final effector of the HH pathway
(Infante et al., 2015; Ghirga et al., 2018).

One of the main challenges in the development of successful
SMO or GLI1 inhibitors for the treatment of MB is represented by
their poor ability to cross the blood–brain barrier (BBB).

The structure of BBB, consisting of brain endothelial cells
connected by tight junctions and covered by pericytes and
basement membrane, limits the transport of many hydrophilic,
protein-bound drugs, especially when their molecular weight
exceeds 400 Da (Kadry et al., 2020). In this regard,
nanoparticles, liposomes, or polymeric micelles carrying small
molecules stand as promising tools to overcome this crucial issue,
thus resulting in effective treatment of MB. In this minireview, we
summarize recent progress in the development of drug delivery
systems for SMO and GLI inhibitors overall based on the
encapsulation of these compounds in nanoparticles, with
particular focus on their use and efficacy on SHH-MB models.

DrugDelivery Systems for SMOAntagonists
Significant progress has been made in the identification and
synthesis of a broad class of SMO antagonists. Two of them,
vismodegib (GDC-0449) and sonidegib (LDE225), have been
approved by the Food and Drug Administration (FDA) for the
treatment of metastatic or locally advanced basal cell carcinoma
(BCC) and have entered in clinical trials for SHH-MB (Dlugosz
et al., 2012; Pak and Segal, 2016; Rimkus et al., 2016; Casey et al.,
2017; Lospinoso Severini et al., 2020). However, different toxicity
profiles and SMO drug-resistance mutations have limited their
advanced clinical investigation (Li et al., 2019). The major pitfalls of
SMO inhibitors include both limited bioavailability and
pharmacokinetics, due to unfavorable solubility, and low BBB
permeability, thus restricting their use for central nervous system
(CNS) tumors (Li et al., 2019; Lospinoso Severini et al., 2020; Dias
et al., 2021). In this scenario, nanoparticle-based drug delivery

systems represent a valid opportunity to overcome these issues,
by improving the pharmacological properties and safety profile of
SMO antagonists, as well as their delivery across BBB (Wei et al.,
2014). To date, several drug delivery methods for the treatment of
brain tumors have been exploited, including nanocarriers (viral
vectors, nanoparticles, and exosomes), or noninvasive techniques,
such as microbubble-enhanced diagnostic ultrasound (MEUS)
(Dong et al., 2018; Haumann et al., 2020). In particular, the
engineering and application of nanoparticles (NPs), successfully
used for the treatment of different cancer types, has aroused great
interest in ameliorating the bioavailability and BBB permeability of
anticancer drugs for brain tumors, due to their ability to enter into
the brain parenchyma (Lockman et al., 2002; Zhang et al., 2008).

NPs can be designed using a variety of materials, including
lipids, polymers, metals, and inorganic particles. NPs carry drugs to
tumors through three main strategies: i) passive targeting, which
involves enhanced permeability and retention effect due to the
poor vascular structure of the tumor microenvironment; ii) active
targeting, through the functionalization or decoration of NPs with
targeting moieties to promote internalization into tumor cells; iii)
endogenous and/or exogenous stimuli-responsive targeting that
triggers the drug release at the tumor site in a spatial–temporal
control (Swetha and Roy, 2018; Manzari et al., 2021).

Currently, two different strategies have been proposed for the
delivery of LDE225 and vismodegib in the treatment of SHH-MB:
engineered HDL-mimetic (eHNPs) and poly(2-oxazoline)
nanoparticles.

LDE225 (N-[6-[(2S,6R)-2,6-dimethylmorpholin-4-yl]pyridin-
3-yl]-2-methyl-3-[4-(trifluoromethoxy)phenyl]benzamide) belongs
to a class of biphenyl carboxamides and has been identified as a
SMOantagonist able to bind its transmembrane domain (TMD) and
to reduce tumor growth of both subcutaneous and subcortically
orthotopic mice models implanted with Ptch+/−;p53−/− MB cells.
LDE225 was advanced into phase I clinical trials in 2010 and was
approved by FDA in 2015 for treating locally advanced BCC (Pan
et al., 2010).

Recently, Kim et al. (2020) employed engineered biomimetic
high-density lipoprotein (HDL) nanoparticles (eHNPs) as an
active targeting strategy to deliver LDE225 in SHH-MB
(Table 1; Figure 1). The authors took advantage from the
previous evidences that the uptake of HDL NPs in SHH-MB
cells highly expressing the HDL receptor scavenger receptor
class B type 1 (SR-B1), deprives cells of natural HDL and their
cholesterol cargo, thereby blocking proliferation (Bell et al., 2018).
Given that SHH signaling is regulated through cholesterol
homeostasis, destroying the regulation of intracellular
cholesterol could stand as an alternative therapeutic option to
inhibit the activation of this pathway (Bidet et al., 2011; Ciepla
et al., 2014; Huang et al., 2016; Xiao et al., 2017).

In addition to regulating biological processes, such as reverse
cholesterol transport, HDL emerged also as a promising
nanocarrier for targeted delivery of therapeutic molecules with
high stability (Kuai et al., 2016). However, endogenous HDL
purified from human plasma shows structural and functional
heterogeneity, which may lead to unreproducible outcomes upon
systemic administration for drug delivery (Fazio and Pamir,
2016). To this regard, Kim et al. (2020) used a microfluidic
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technology to reconstitute in a simple single-step eHNPs with
high homogeneity and reproducibility for the targeted delivery
and enhanced therapeutic efficacy of the SMO inhibitor, LDE225,
in SHH MB cells. These nanoparticles were composed of
apolipoprotein A1 (ApoA1), DMPC lipid (1,2-dimyristoyl-sn-
glycero-3-phosphocho-line), anti-CD15 antibody, and LDE225
therapeutic cargo. ApoA1 and DMPC lipid form a nanoparticle
shell that encapsulates the SMO inhibitor into a hydrophobic
core. To enhance the delivery of LDE225 at the tumor site, the
NPs have been designed for a “dual targeting”mediated by: i) the
recognition of CD15 ligand expressed on murine SHH-MB
cancer stem-like cells by the anti-CD15 antibody present on
the surface of NPs; ii) the receptor-mediated transcytosis
following the direct interaction of ApoA1 to SR-B1, expressed

either on brain endothelial cells or SHH-MB cells (Kim et al.,
2020). The effect on cell viability of each component in the
proposed nanoparticles was tested in SHH MB cells (DAOY and
PZp53) treated with free LDE225, eHNP-A1, eHNP-A1-CD15,
eHNP-A1-LDE225, and eHNP-A1-CD15-LDE225. The
treatment with eHNP-A1-LDE225 dramatically increased the
therapeutic efficacy of free LDE225 (IC50 ∼70 nM and ∼2 μM,
respectively). The addition of anti-CD15 in the NPs (eHNP-A1-
CD15-LDE225) led to a drastic reduction of the IC50 value
(∼8 nM). Interestingly, eHNP-A1 and eHNP-A1-CD15
without drug loading also showed therapeutic effects, reducing
the cell viability of SHH-MB cells with a strength equivalent to a
treatment concentration corresponding to 10 μM LDE225 (Kim
et al., 2020). These observations support previous evidence

TABLE 1 | Nanoformulations for brain drug delivery of small HH inhibitors. Table shows composition, in vitro and in vivo efficacy, size, and the BBB crossing ability of the
nanoparticles for SHH-MB treatment under investigation.

Free drug Target NPs DDS In vitro
Efficacy

In vivo
Efficacy

Size (nm) NP BBB
crossing
ability

Ref.

Sonidegib (LDE225) SMO eHNP-A1-
CD15 (DMPC,
ApoA1, anti-
CD15)

Liposomal
nanoparticles

Cell viability
inhibition
DAOY;
PZp53

HH-dependent
MB growth
inhibition and
extended
survival in
SmoA1; Math-
Cre-ER-
Ptchflox/flox mice

28 Detected in brain
(24 h post i.v.)

Kim et al.
(2020)

Vismodegib (GDC-0449) SMO POx
(polyoxazoline
block
copolymer)

Polymeric
micelles

— Reduction of
free-drug
systemic
toxicity and
extended
survival in
Healthy mice;
Gfap-Cre/
SmoM2
100 mg/kg

25–40 Not able Hwang
et al.
(2020)

HPI-1 GLI1 NanoHHI
(PLGA-PEG)

Polymer
nanoparticles

— HH-dependent
MB growth
inhibition in
allograft model
of primary
MB cells from
SmoWT/
SmoD477G;
Ptch+/−;
Trp53−/− mice
30 mg/kg

100 Detected in brain
(3.9±2.1 mg/g 10’
post i.v.; 1.4 ±
0.4 mg/g 30’
post i.v.)

Chenna
et al.
(2012)

GlaB GLI1 mPEG5kDa-
cholane

Polymeric
micelles

Cell viability
inhibition in
primary
MB cells
from
Math1-Cre/
PtcC/C mice

HH-dependent
MB growth
inhibition and
extended
survival in
allograft model
of primary
MB cells from
Math1-Cre/
PtcC/C mice
9 mg/kg

21.7 ± 0.7 Detected: in brain
(1.93% ID/g 1 h
post i.v.; 1.8% ID/
g 2 h post i.v.)
in cerebellum
(1.87% ID/g 1 h
post i.v.; 1.67%
ID/g 2 h post i.v.)

Infante
et al.
(2021)

NPs, nanoparticles; DDS, drug delivery system; n.a., not available.
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regarding the inhibitory effects of HDL NPs on SHH-MB cells
through the cholesterol efflux (Bell et al., 2018). The double
mechanism of action of eHNP-A1-CD15-LDE225 offers the
opportunity to maximize therapeutic outcome and to reduce
the drug dosage (Kim et al., 2020). Importantly, eHNPs have
shown the ability to cross the BBB and to target cancer stem-like
cells both in ex vivo SmoA1 organotypic slice cultures and in in
vivo SHH-MB mouse model (SmoA1+/+;Math1-GFP+/+).
Intravenous (i.v.) administration of eHNP-A1-CD15-LDE225
increased the survival of SHH-MB mouse models (SmoA1-
GFP and Patched knockout mice) and drastically impaired
tumor growth by increasing apoptosis of tumor cells (Kim
et al., 2020). Of note, these findings suggest eHNPs as a useful
option for the delivery of other SMO-inhibitors that suffer of poor
bioavailability and unable to cross the BBB.

A valid candidate in generating nanoparticle-based
therapeutic products for tumor treatment is represented by the
poly(2-oxazoline) amphiphilic block copolymer (POx). This drug
delivery system, used for ovarian, breast, and lung cancers, has
recently been described to optimize the clinical features of
vismodegib (2-chloro-N-(4-chloro-3-(pyridin-2-yl)phenyl)-4-
(methylsulfonyl)benzamide), the first FDA-approved inhibitor
of SMO with low aqueous solubility and reduced bioavailability
(Table 1; Figure 1) (Luxenhofer et al., 2010; Han et al., 2012;
Hwang et al., 2020). Vismodegib is a benzamide obtained by
formal condensation between the carboxy group of 2-chloro-4-
(methylsulfonyl)benzoic acid and the anilino group of 4-chloro-
3-(pyridin-2-yl). Vismodegib is able to bind the TMD of SMO

and to induce tumor regression in a Ptch+/- derived MB allograft
mouse model (Robarge et al., 2009).

Hwang et al. (2020) used the thin film method to generate
micelles with vismodegib:POx polymer (POx-vismo) in different
ratios (2:10, 4:10, 6:10, and 8:10 w/w) (Hwang et al., 2020). The
loading efficiency of vismodegib encapsulated in POx was nearly
90% and the loading capacity ranking from 13.5 to 42.4% w/w,
depending on the drug:polymer ratio (Hwang et al., 2020).
Intraperitoneal (i.p.) injection of POx-vismo (100 mg/kg) in
MB-prone G-Smo mice revealed an increased pharmacokinetics
compared to free vismodegib, solubilized with N-methyl-2-
pyrrolidone (NMP) and PEG300. Higher concentration of
vismodegib, released from POx-vismo micelles, was detected by
liquid chromatography–mass spectrometry (LC-MS) in serum,
MB, and forebrain until 8 h after administration, compared to
free vismodegib. The analysis of exposure of tissues to the drug over
time showed for the POx-vismo an improved uptake across BBB
and limited distribution to nontarget organs, compared to free
vismodegib. Similarly, the administration of POx-vismo in C57BL/
6 mice with intact BBB increased CNS penetration, thus reducing
systemic biodistribution (Hwang et al., 2020). Moreover, POx-
vismo showed a limited toxicity effect on bone growth compared to
free vismodegib in C57BL/6mice treated at several post-natal days.
Although, POx-vismo exhibited similar pharmacodynamic effects
to systemically administer free vismodegib, this drug delivery
system resulted to be more efficient to prolong survival in MB-
prone G-Smo mice, with 30% of mice surviving to 35 days
compared to the control group (Hwang et al., 2020).

FIGURE 1 | Drug delivery strategies in SHH-MB. Graphical representation of current formulation encapsulating SMO antagonists (LDE225 and vismodegib) and
GLI1 inhibitors (HPI-1 and GlaB). NPs, nanoparticles; eHNP, engineered high-density lipoprotein-mimetic nanoparticle; ApoA1, apolipoprotein A1; PLGA, poly(lactic-co-
glycolic acid; PEG, polyethylene glycol; mPEG5kDa-cholane: end-functionalization of 5 kDa linear amino-terminating monomethoxy-poly(ethylene glycol) (PEG-NH2) with
5β-cholanic acid; GlaB, glabrescione B.
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These evidences underline as SMO antagonists encapsulated
in NPs drug delivery system for the treatment of SHH-MB, could
improve their ability to target the specific tumor site at optimal
therapeutic concentration, thus mitigating their toxic effects.
Moreover, the use of decorated NPs with additional
components able to recognize specific antigens expressed on
SHH-MB cells and cancer stem cells could offer the
opportunity to increase the therapeutic effects on tumor cells,
potentially avoiding off-target effects. Nevertheless, greater efforts
need to be directed for the encapsulation of SMO antagonists in
NPs for their advance in clinical practice.

Drug Delivery Systems for GLI Inhibitors
In the field of research oncology for the treatment of SHH-MB,
growing efforts have been focused on the development of small
molecules acting as GLI inhibitors. Cancer cells can acquire
resistance to SMO antagonists through secondary mutations in
the SMO receptor, following drug administration (Yauch et al.,
2009). Moreover, given that GLI1 can be either primarily
amplified or secondarily amplified/overexpressed in the setting
of HH inhibitor therapy, a pharmacologic targeting of this
transcription factor could have substantial benefits.

The most relevant contribution in the field of HH-driven tumor
biology arises from the synthesis of GLI inhibitors. These
compounds can act directly by blocking GLI transcriptional
function or indirectly through the alteration of posttranslational
modifications that control GLI activity (Infante et al., 2015).

In thisminireview, we focus onGLI inhibitors whose delivery in in
vivoMBmodels has been enhanced through encapsulation strategies.

In 2009, Hyman and colleagues identified a series of four
small HH pathway inhibitors, namely HPI 1–4 (4-(3-Hydroxy-
phenyl)-7-(2-methoxy-phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-
hexahydro-quinoline-3-carboxylic acid 2-methoxy-ethyl ester),
which act by blocking GLI1 and GLI2 function through different
mechanisms of action: HPI-1 targets posttranslational events of GLI
processing/activation downstream of SMO; HPI-2 and HPI-3 alter
the trafficking of GLI1 and increase the stability of GLI2; HPI-4
perturbs ciliogenesis by an unclear mechanism. Among them, only
HPI-1 and HPI-4 have shown the ability to inhibit the proliferation
of cerebellar granule neuron precursors (Hyman et al., 2009).

Although HPI-1 showed the highest efficacy in antagonizing
both GLI1/GLI2 proteins compared to the other HPI inhibitors, its
efficacy in vivo is hampered by highly lipophilic nature and poor
aqueous solubility, thus impairing its systemic bioavailability. To
overcome this drawback, HPI-1 has been encapsulated in a
polymer nanoparticle (NanoHHI) using [poly(lactic-co-glycolic
acid); (PLGA)] conjugated with polyethylene glycol (PEG)
(Table1; Figure 1) (Chenna et al., 2012). In vivo studies
performed in non-tumor bearing mice demonstrated the
improvement of pharmacokinetic parameters and systemic
bioavailability of HPI-1 encapsulated in the nanoformulation
compared to the free drug, following both oral and parenteral
administration. Of note, HPI-1 was readily detectable in brain
tissue at 3.9 ± 2.1 mg/g at 10 min and 1.4 ± 0.4 mg/g at 30min after
single-dose intravenous administration. NanoHHI (30 mg/kg, i. p.
administration) inhibited tumor growth in allograft models of MB
derived from both SmoWT and Smo resistant-mutant SmoD477G;

Ptch+/-; Trp53−/− mice, as consequence of the downregulation of
Gli1 gene expression (>50% compared to PLGA-PEG NPs used as
control) (Chenna et al., 2012).

A consistent advance in the identification of GLI1 antagonists
is represented by the synthesis of glabrescione B (GlaB) (3-(3,4′-
bis(3-methylbut-2-enyloxy)phenyl)-5,7-dimethoxy-4H–chromen-4-
one) as the first GLI1 inhibitor able to directly interact with the
zinc-finger of this transcription factor, thus impairing the
formation of the GLI1/DNA complex. GlaB is an isoflavone
naturally found in the seeds of Derris glabrescens
(Leguminosae) that inhibits the growth of HH-dependent
tumors, including SHH-MB, both in vitro and in vivo, as well
as the clonogenicity of cancer stem-like cells (Infante et al., 2015).
However, the low aqueous solubility of GlaB (0.02 μg/ml) results
in poor bioavailability, thus bringing out the need to improve this
aspect in order to enhance its therapeutic efficacy.

To this regard, Ingallina et al. (2017) loaded GlaB into
polymeric nanocapsules (NCs) composed of castor-oil-cored,
thus increasing about 70-fold the aqueous solubility of this
compound (∼700 μg GlaB/ml of NC). Good results have been
obtained in vitro by serum stability assays showing a minimal drug
release in blood circulation (<20% in 24 h), thus highlighting that
most of the drug achieve the tumor site (Ingallina et al., 2017).

Recently, GlaB has been successfully encapsulated in a
colloidal formulation of mPEG5kDa-cholane–based micelles, in
order to ameliorate its solubility, biodistribution, ability to cross
the BBB, and consequently its effectiveness in inhibiting SHH-
MB growth (Table 1; Figure 1) (Infante et al., 2021).

mPEG5kDa-cholane is an amphiphilic polymer demonstrated
to remarkably enhance the biopharmaceutical properties of either
small or macromolecular drugs (Ambrosio et al., 2016).
Compared to other amphiphilic polymers tested, mPEG5kDa-
cholane yielded the highest GlaB solubility: 1.18 mM GlaB
concentration was obtained with 0.4 mM of mPEG5kDa-
cholane, corresponding to 26,000 fold GlaB concentration in
water. GlaB-loaded micelles obtained with mPEG5kDa-cholane
had a typical spherical micelle shape with a size of 16.9 ± 0.7 nm
and a loading capacity of 27% w/w (Infante et al., 2021). Thanks
to these properties, GlaB formulated in mPEG5kDa-cholane
(mPEG5kDa-cholane/GlaB) affected the in vitro proliferation of
primary SHH-MB cell cultures derived from Math1-cre/PtcC/C

mice and significantly impaired GLI1 transcriptional activity
compared to free GlaB (Infante et al., 2021). Promising data
have also been reported in vivo: mPEG5kDa-cholane/GlaB
administered with the dose of 9 mg/kg to nude mice grafted
with primary HH-dependent MB cells strongly reduced the
tumor growth rate and tumor volume more than GlaB
dissolved at the same concentration in 2-HP-βCD/ethanol (3:
1) or with cremophor/DMSO containing mixtures. Of note,
HPLC coupled with electrospray mass spectrometry (HPLC-
MS) analysis demonstrated the ability of mPEG5kDa-cholane/
GlaB to cross the BBB and biodistribute into the brain and
cerebellum of CD1 wild-type mice i.v. injected with the
formulation (9 mg/kg) at different time points. In agreement
with these results, i.v. administration of mPEG5kDa-cholane/GlaB
drastically reduced tumor growth also in an orthotopic model of
HH-dependent MB (Infante et al., 2021). These findings highlight
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that mPEG5kDa-cholane/GlaB is a promising candidate for
clinical studies for the treatment of HH-dependent cancers
and nowadays is the most encouraging drug delivery
formulation for GLI inhibitors efficient in counteracting SHH-
MB growth in preclinical investigation.

Little information is available for drug delivery systems of
other GLI antagonists and for most of them there is no evidence
of their efficacy in SHH-MB models.

Recently, epigenetic enzymes have emerged as druggable
targets and critical regulators of HH transcriptional output. In
particular, BRD4, a member of bromo and extra C-terminal
(BET) bromodomain (BRD) proteins, is able to bind the
promoter of GLI1 and GLI2, thus inducing their
transcriptional activity. Tang and collaborators identified the
small molecule JQ1 [(S)-(+)-tert-Butyl 2-(4-(4-chlorophenyl)-
2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]
diazepin-6-yl)acetate] as a BRD4 inhibitor, capable of indirectly
affecting the GLI1 activity and suppressing the tumor growth in
several HH-dependent mouse models (BCC, MB, and atypical
teratoid rhabdoid tumor) resistant to SMO antagonists (Tang
et al., 2014). However, JQ1 is highly hydrophobic, a feature that
hinders its delivery in vivo. A recent study investigated the
anticancer activity of JQ1 encapsulated into apolipoprotein
(ApoE) mimetic peptide decorated nanoparticles (ApoE-NPs)
(Wang et al., 2020). In particular, this delivery strategy takes
advantage of the mimetic ApoE peptide COG-133 consisting of
only 18 amino acids sufficient to retain the binding potential to a
very low-density lipoprotein (VLDL) receptor. This mimetic
peptide has been conjugated with polymeric NPs to selectively
target MB cells and achieve therapeutic concentration of JQ1 in
the brain. In particular, cellular uptake of ApoE-NPs has been
reported in vitro in both HD-MB03 (G3 MB) and DAOY (SHH-
MB) cells showing a significant increase of targeted-NPs uptake
than nontargeted NPs treatment. ApoE-NPs are specifically taken
up by MB cells via the ligand-mediated endocytosis pathway.
ApoE-NPs encapsulation improved JQ1 anticancer efficiency also
in vivo as observed in orthotopic G3-MB bearing mice (10 mg/kg,
systemic administration). ApoE-NPs formulation significantly
enhanced JQ1 concentration in the brain and remarkably
inhibited tumor cell proliferation and induces apoptosis
(Wang et al., 2020).

Overall, these findings underline the relevance to further
investigate efficient drug delivery systems for GLI antagonists,
in order to ameliorate their biopharmaceutical properties and
anticancer efficacy, thus accelerating their next clinical
investigation for HH-dependent MB.

CONCLUDING REMARKS

In the last decade, large-scale multi-omics analyses have
confirmed the tight correlation between the hyperactivation of
HH signaling and the MB tumorigenesis, leading to definition of
the SHH-MB subgroup into four additional molecular subtypes
according to the patient’s age and HH signaling gene alterations.

Although, the HH pathway emerged as one of the most
attractive therapeutic target for this cancer entity, clinical

applications of SMO antagonists are restricted because of their
poor systemic bioavailability, development of drug-resistance
mutations, and additional GLI activation via noncanonical
pathways. Furthermore, the development of GLI inhibitors, as
a valid alternative to overcome these pitfalls, is still limited due to
their low pharmacological properties and BBB permeability.

Drug delivery to the brain represents one of the most important
challenges in the field of CNS tumors, including MB. Indeed,
astrocytes surrounding the BBB make it almost 98 and 100%
impermeable to small and large molecules, respectively (Fischer
et al., 1998). Interestingly, recent findings have shown that the MB
genotype dictates the composition of the BBB and blood vessel
phenotype. In particular, it was found that the WNT MB subtype
has a better response to chemotherapy because it has a fenestrated
vasculature, while non-WNT MB subtypes show an intact BBB,
rendering them more resistant to chemotherapy (Phoenix et al.,
2016). Moreover, during the development of brain malignancies,
the cancer cells damage the BBB, leading to the formation of the
tumor BBB (BBTB), another important physiological barrier to
drug delivery to MB (Zhang et al., 1992).

At the light of these evidences, in recent years, drug delivery
and nanomedicines have attracted significant attention for the
treatment ofMB. In particular, nanoparticles (NPs) offer concrete
promise as carriers to enhance the delivery of small HH
antagonists (Valcourt et al., 2020). As reviewed here,
encapsulating SMO or GLI inhibitors inside NPs can improve
their pharmacological properties, BBB permeability, and cell-
specific delivery by coating NPs with ligands. This enables the
nanoformulations much more effective than their freely delivered
counterparts to suppress SHH-MB growth. Currently, only few
SMO and GLI inhibitors encapsulated in drug delivery systems
have been tested in in vitro and/or in vivo SHH-MB models.
However, the promising results obtained emphasize how essential
nanomedicine is for the development of safe and effective
anticancer drugs for SHH-MB, in order to translate them into
clinical practice. Finally, drug delivery systems also represent an
opportunity for the improvement of combined targeted therapy
in SHH-MB, since they facilitate the administration of synergistic
drug combinations (Borah et al., 2020).
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