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ABSTRACT
Nowadays, Internet of Things (IoT) devices are widely used in sev-
eral application scenarios. Due to their cheap structure, they often
do not guarantee high security standard, making them prone to
hacker attacks. Remote attestation is widely used to verify the con-
figuration integrity on remote devices. Unfortunately, checking the
integrity of each single device is impractical, thus several collective
remote attestation protocols have been recently proposed to effi-
ciently run attestations in wide device swarms. However, current
solutions still have several limitations in terms of network topology,
scalability, and efficiency.

This paper presents a new efficient collective remote attesta-
tion protocol for highly dynamic networks. Our protocol is imple-
mented according to the self-attestation procedure, where devices
iteratively establish a common view of the integrity of the network
through a consensus mechanism. Differently from previous pro-
tocols, we leverage on Bloom filters, which permits to drastically
reduce the message size for communication and to be more flexible
with mobile nodes that can also join or leave the swarm. We eval-
uate our proposal through several simulations and experiments,
showing that it outperforms the state of the art.
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1 INTRODUCTION
An IoT environment combines different aspects concerning infras-
tructures, protocols and communications. It consists of smart de-
vices that generally use embedded and low power systems, such
as processors, sensors, and communication hardware. IoT devices
need to send, receive and work with data acquired from their envi-
ronments in order to execute complex tasks. They share collected
information by connecting to an IoT gateway or some other devices,
where data is either locally analyzed or aggregated and transmitted
to cloud services. Nowadays, the application of smart objects is
growing exponentially, becoming an integral part of our life.

Despite the benefits of facilitating operations and services, IoT
devices present several security flaws. In fact, due to low-cost imple-
mentations, IoT systems lacks of security mechanisms [15], making
them prone to cyber attacks. IoT devices present several vulnerabil-
ities, which adversaries can exploit with little effort, endangering
service integrity, availability, and compromising users’ data pri-
vacy. The negligence in this field brings to the exposure of sensitive
information, ranging from unprotected video streaming like baby
monitors [19] to the obtaining of unauthorized emails, passwords,

and voice recordings. In order to solve such problems, there exist
several protocols [14, 26] concerning the three main IoT security
requirements: authentication, confidentiality, and access control.

Proposed in recent years, IoT Remote Attestation (RA) [21] is
a protocol that allows a verifier (V ) to identify a possible compro-
mised remote platform, called prover (P), from the software point
of view. RA allows V, considered a trusted entity, to obtain proof of
the integrity of the configuration of an untrusted device, through
a challenge-response protocol between them. However, the tradi-
tional challenge-response attestation protocols, which are defined
between the verifier and a single prover, have problems concerning
scalability. Thus, researchers recently started to develop new attes-
tation schemes, named Collective Remote Attestation (CRA), which
are capable of performing attestation over a large network of IoT
devices. They are based on end-to-end or hop-by-hop communica-
tion, allowing a verifier to obtain a unique result from a network
of smart devices.

Ideally, a CRA scheme should be scalable in the network size,
allow nodes to move, join, leave the network or to go idle, provide
strong security assumptions, be efficient in terms of runtime, cheap
in terms of power and communication complexity, expressing the
collective status of the system as well as the status of every device,
etc. However, despite several CRA schemes have been proposed,
there still are different challenges for the implementation and we
are far from satisfying all these requirements. Since the first CRA
attestation schemes, the static scenario has been a common assump-
tion in the CRA literature [2, 5, 9, 12]. It permits high scalability
and efficiency, but assumes that devices of the swarm maintain
connectivity during the entire execution of the CRA protocol. This
drastically influences the protocols usability in specific environ-
ments, such as areas with connectivity problems or motion devices.

In dynamic CRA [4, 13], attestation results needs to be combined
with key management, network discovery, and secure and efficient
routing, ensuring that compromised devices cannot evade detection
during attestation and non-compromised devices are not counted
twice. Furthermore, computation and communication costs for the
verifier and provers should be minimized, and the swarm burden
should be distributed over the network. Recent protocols rely on
attestation broadcasting and aggregate each single device attesta-
tion [13], at the expense of efficiency, or represent the status of
each device in a binary mask [4], which implies that each device
must know how many nodes compose the network and the owner
previously assign an index to each device.

Contributions. This paper proposes an innovative approach for
collective remote attestation of IoT systems. The main goal is to
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improve the state of the art of CRA schemes in terms of performance
and flexibility for dynamic swarms. The paper describes a collective
attestation in a dynamic network of devices that communicate with
each other in order to understand the status of the swarm. In our
model, we assume that nodes can move, join and leave the network,
or have intermittent activity, even while participating to the CRA
protocol. Differently from previous protocols, our solution estimates
the network status, instead of the exact knowledge of each device
status. The protocol bases its implementation on two algorithms:
Bloom filter and maximum consensus. The first one provides an
efficient data structure that allows to collect each result, reducing
runtime performance, and to be more scalable in the number of
devices, in joining and leaving the network. The second one allows
to reach a convergence of the network state through the collection
of each attestation proof from devices. From the final collective
result a verifier can i) easily check whether the network contains
compromised devices by querying any device of the network; ii)
estimate the number of compromised devices; iii) check if a specific
device is compromised (this is not the main purpose of the protocol
and we tolerate errors).

Our experimental results confirm the suitability of our protocol
for low-end devices and highly unstructured networks, reaching
better performance compared to previous proposals operating in
dynamic swarms. In fact it provides: i) flexibility in joining and
leaving of devices; ii) scalability regarding the number of devices;
iii) high runtime efficiency.

Outline. The rest of this paper is organized as follows: in Sec-
tion 2, we review related works; in Section 3, we present the system
model with the relevant adversary model; preliminary protocol
features are outlined in Section 4; then, Section 5 illustrates our
proposal; Section 6 shows complexity analysis and simulation re-
sults; finally, in Section 7, we provide some conclusions and discuss
possible directions for future works.

2 RELATEDWORKS
Collective Remote Attestation protocols [3] have recently been
proposed in order to efficiently verify groups of devices. In general
these protocols are implemented with the presence of a Trusted
Execution Environment (TEE), where the code executors have high
levels of trust through the isolation. The presence of minimal se-
cure hardware components in the TEE, such as Read Only Memory
(ROM), a Memory Protection Unit (MPU), and a reliable clock, is
sufficient to guarantee the right execution of the protocol, permit-
ting to ignore threats from the rest of the device. From SEDA [5],
the first CRA protocol proposed in literature, other enhanced ap-
proaches were porposed. Similarly to SEDA, most of them perform
attestations over a spanning tree with the verifier as root and there-
fore can operate only on static networks, which limits the usability
in several practical scenarios. Recently, SALAD [13] and PADS [4]
proposed innovative CRA protocols for highly dynamic swarm
topologies. SALAD provides an innovative aggregation protocol for
networks with intermittent connectivity. All devices within com-
munication range mutually attest each others’ software integrity
and then broadcast attestation results through the network, grad-
ually expanding their view of the network state until almost all

devices share the same result. Unfortunately, SALAD is computa-
tional expansive, making the proposal potentially unsuitable for
large networks, wherein collective remote attestation requires min-
utes. PADS has similar result distribution approach with respect
to SALAD, but it turns the attestation into a consensus problem,
where provers share attestation results after a self-attestation proce-
dure, and iteratively converge to a “snapshot” of the network state.
Verifier can obtain the collective status of the network by querying
any device in the network. Network status is represented through
a bitmap where a couple of bits is assigned to each device and
different values represents different status: healthy, compromised,
or unknown. Due to this static bitmap, the network owner must
reconfigure all the network devices each time that a node must
be added or removed. However, differently from SALAD, PADS
requires few seconds for the collective attestation of the network.
Thus, we just compare our protocol with PADS.

3 SYSTEM MODEL
The general system model for CRA schemes [3] contains several
heterogeneous devices from a software and hardware configuration
point of view, connected in a network. Such devices are able to
identify and communicate with their direct neighbours and can
randomly move within the area. Because of this dynamic scenario,
they are seldom tightly-coupled within a networking infrastructure,
which consequently reduce connections and successful packets ex-
change. In fact devices cannot always guarantee their availability,
due to intermittent connectivity or completely absence of commu-
nication. This is the case of large groups of embedded devices, such
as industrial control systems, IoT devices in smart environments,
drones, robots, etc., that can compose a network of either static or
dynamic topology.

As described in Figure 1, there are four main entities considered
in the system model:

• Network Owner (O): the entity for network setup and main-
tenance, providing the necessary cryptographic material and
credential for attestation.

Figure 1: Swarm Network model [3].
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• Verifier (V ): the entity that acts as an attestation checker,
on request of the owner. Generally, it executes the attesta-
tion process sending an attestation request to a device, and
collects the attestation result as an aggregated response.

• Prover (P): each device to be checked by the verifier. It com-
putes the proof of integrity with respect to its correct config-
uration. At the end of the protocol, any device is considered
healthy whether using the correct configuration, or compro-
mised.

• Aggregator (A): a device that relays messages among entities
in a network and aggregates responses from neighbours
in the topology. Whenever possible, it guarantees better
coverage of the network and better performance. In our
decentralized environment, provers also act as aggregators
within the network.

Adversary Model. The adversaries considered for this protocol
are the following:

• Communication adversary: an adversary that can obtain full
control of the communication channels among provers and
Verifier. Possible attacks can be: replay attestation reports
used for the communication among provers, forge attestation
reports to edit their values, and drop attestation reports from
provers.

• Software adversary: an adversary that can runmalicious code
or firmware on a device, exploiting software vulnerabilities,
or read unprotected regions and manipulate software state.

• Mobile software adversary: an adversary able to compromise
the software configuration of a device and then to eliminate
the malware used in order to be not visible to attestation
protocols. Moreover, the adversary changes location continu-
ously to evade detection and can performmalicious activities
during two consecutive attestation periods.

Key management. In this work, similarly to PADS [4] and many
other CRA protocol, we rely on symmetric encryption. It enables the
use of a master key 𝑘𝑎𝑡𝑡 , generated by O, shared by all the devices
in the swarm, and stored in a hardware-protected storage. This
choice can be weak in case of the physical attacker presence. In fact,
if a physical adversary captures a device, the presence of a single
secret key compromises the entire network, since the adversary is
able to forge every message. In order to mitigate this condition, the
protocol can be easily modified to have an individual private/public
key pair per each device, with a consequently increase of the cost
performance.

4 PRELIMINARIES
4.1 Requirements

Hardware. Our protocol needs specific hardware components
to guarantee the correctness of self-attestation and messages ex-
changed during consensus. Our minimal requirements are the same
of other preceding protocols in the literature. Thus, we base them
on SeED [9], the protocol that firstly introduce self-attestation of the
devices evaluated into a TEE, and PADS [4]. The implementation
design of this proposal needs an enhanced version of TrustLite [11],
which is equipped with a simple Memory Protection Unit (MPU), to
ensure access limitation to data, and a secure boot, to guarantee the

authenticity and confidentiality of both data and code isolated com-
ponents. The integrity of the secure boot code is also guaranteed
by storing it in read-only memory (ROM).

Figure 2: Protocol implementation based on SeED [9],
TrustLite [11], and PADS [4].

SeED extends TrustLite with a Real-Time Clock (RTC), which is
write-protected and not modifiable via software, and an Attestation
Trigger (AT), which updates and monitors the value of a timer
in order to start the attestation procedure. The implementation is
described in Figure 2. All the parameters required for attestation
(secret seed 𝑉𝑎𝑡𝑡 , set of configurations 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑀 } and
secret attestation key 𝑘𝑎𝑡𝑡 ) are stored in a writable memory, and
are read and write protected by MPU rule, ensuring the exclusive
access only to our protocol code. The integrity of our protocol code
is ensured by secure boot.

Communication protocol. All the communications in this proto-
col are carried out over the IEEE 802.15.4 protocol, which is the
main standard protocol for IoT devices [27]. This protocol defines a
standard for low rate wireless personal area networks (LR-WPANs),
implementing a communication based on low data rate, low cost
wireless networking, and low power consumption. IEEE 802.15.4
provides a maximum data rate of 250 Kbps, communication range
of around 75 m, and a frame size of 127 bytes, including the header
required for the layers.

4.2 Bloom filter
A Bloom filter [6] is a space-efficient probabilistic data structure
that is used to check whether an element is a member of a set. They
are used in several applications and, among them, demonstrated
their utility in network security for preventing distributed denial of
service [18], deep packet inspection [7], traffic mapping [23], etc.,
and is also one of the main component of our protocol.

With this data structure, false-positive matches are possible, but
it is not possible to have false-negatives. In fact, a search for an
element that is not in the filter can give an incorrect answer, but
it always retrieves a positive result in case of its presence in the
filter. In the standard Bloom filter implementation, elements can
be added to the set, but not removed, increasing the probability of
false positives as long as items are inserted. A Bloom filter is a bit
array of𝑚 bits, which initially are all set to 0. In order to insert an
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item in the filter, 𝑘 different hash functions are evaluated on some
item identifier, each one mapping the item to one of the𝑚 array
positions, generating a uniform random distribution. Therefore,
to add an element, Bloom filter must do an insertion for each of
the 𝑘 hash functions, setting 𝑘 array positions to 1. Typically, 𝑘 is
a constant which depends on the desired false error rate. At the
same time,𝑚 is proportional to 𝑘 and the number of elements to
be added. Of course, in a general approach, the number of hash
functions must be limited in order to avoid computational delays
for each insertion, but at the same time optimized with respect to
the false positive probability. The hash functions used in a Bloom
filter should be independent and uniformly distributed.

To test if a component is in the set, its identifier must be input
to the hash functions to get 𝑘 bit positions:

• If any of the bits at these positions is 0, the element definitely
is not in the set.

• If all of them are 1, then the element may be in the set or
we have a false positive, due to insertions of other elements
that collide with the results of the hash functions.

Figure 3: Bloom filter example.On the top, 𝑥, 𝑦, 𝑧 represent
items in the filter. On the bottom 𝑢, 𝑤 represent items to be
searched, where 𝑤 correctly results not in the filter, while 𝑢
is a false positive.

An example is represented in Figure 3. By checking if some
elements are in the Bloom filter, obviously we obtain that 𝑥, 𝑦, 𝑧
are in the filter, while the element𝑤 has not been inserted. On the
other side, the element 𝑢 is a false-positive in the set.

Performance. Bloom filters have great advantages in terms of
space with respect to other data structures, such as trees, hash
tables, or simple arrays, that require storing at least the data items
themselves. On the other side, Bloom filters do not really store
items. In fact, they save only the element reference with respect to
the output of each hash function used. Moreover, they also have
the property of fixing the time cost for adding or checking an
element, which requires for both O(𝑘), completely independent of
the number of items already in the set.

4.3 Maximum consensus
Consensus protocols [17] overcome the need for distributed and
fault-tolerant computation and information exchange algorithms.
A maximum consensus protocol allows broadcasting the devices
knowledge among devices efficiently, converging to a state equal
to the maximum of devices’ input.

In this paper we rely on asynchronous consensus protocols,
where nodes periodically broadcast their status within their com-
munication range. In practice, any node receives information from

the neighbours, updates its status, and broadcasts the new state to
its neighbours in the next step. The state of all the network nodes
will converge to the same consensus after a certain number of steps.
In [8, 24], authors demonstrate that distributed consensus proto-
cols converge in a finite amount of steps 𝑇 , which depends on the
connectivity of the graph.

The input of the device 𝑖 to the maximum consensus protocol is
represented by 𝑥0

𝑖
. Starting from 𝑥0

𝑖
, the device generates a sequence

of observation states {𝑥𝑡
𝑖
}𝑇
𝑡=0, through which at every step 𝑡 the

node 𝑖 updates its status by computing 𝑥𝑡+1
𝑖

= max𝑗 ∈𝑁𝑖∪{𝑖 } 𝑥
𝑡
𝑗
,

where𝑁𝑖 represents the neighbours of the node 𝑖 . According to [16],
the state of each device converges to max𝑖∈Network (𝑥0𝑖 ).

5 NEW APPROACH FOR AN EFFICIENT
ATTESTATION

Wehere present a new protocol, based on PADS [4], that implements
a collective attestation in a dynamic scenario, where each device
periodically broadcasts its knowledge of the network status and
aggregates the results to reach a bitwise maximum consensus of
the overall network. Differently from previous works, the proposal
uses a data structure called Bloom filter, that permits to reduce the
packet size and consequently the time of coverage of the network.

In this proposal, a verifier wants to check the status of the net-
work concerning the number of compromised devices, tolerating a
compromise state for only a small part of the network. Hence, our
protocol is used in order to verify whether the number of compro-
mised devices is below a given a threshold, which can be linked
to the number of positions set in the Bloom filter. If the protocol
outputs a value below a certain percentage of compromised devices,
then the swarm can carry on its tasks safely. Otherwise, it reaches
a condition where the swarm is probably not reliable and collective
attestation returns a compromised state.

The main advantage is that, differently to PADS, device can
dynamically join and leave the swarm, without the necessity of
changing the protocol’s configuration. Moreover the use of the
Bloom filter reduces the message size significantly. However, due to
the Bloom filter usage, it is impossible to understand with certainty
which devices are compromised, because we cannot exclude colli-
sions, but V can assert that a specific device (maybe an important
central node) is healthy at the self-attestation timestamp if at least
one of the corresponding positions on the Bloom filter are not set.

Another problem is that our protocol does not consider the pos-
sibility that compromised devices evade detection by not commu-
nicating with the network (such as for packets dropped or delayed
by adversaries). In this case, the verifier does not know if there are
hidden compromised devices not partecipating to the CRA protocol.
Nevertheless, this simple attack to the protocol does not influence
the correctness of swarm operations. In fact, we assume that healthy
devices and aggregators do not interact with devices that are not
sharing their attestation knowledge.

We base the protocol evaluation on the ability of covering the
area of reachable provers, using the following definition defined in
PADS:

Definition 5.1. Coverage: We say that at time 𝑡 our proposal has
coverage 𝑐𝑡

𝑋
= 𝑌 , if at least a portion 𝑋 ∈ [0, 1] of the provers in
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G hold information of at least a portion 𝑌 ∈ [0, 1] of the reachable
provers population.

Intuitively, increasing the level of coverage, the protocol requires
more update steps, increasing consequently the time required for
the execution. From this definition, in order to measure the runtime,
we derive the notion of Minimum Coverage Time (MCT), defined
in [4]:

Definition 5.2. Minimum Coverage Time: given a desired cover-
age level 𝑐𝑋 = 𝑌 , 𝑡𝑚 is the minimum amount of time necessary to
reach 𝑐𝑋 Formally: 𝑡𝑚 = argmin𝑡 𝑐𝑡

𝑋
.

5.1 Protocol description
Our approach, similarly to PADS [4], comprises four phases: initial-
ization, self-attestation, consensus, and verification. We remember
that the four protocols are evaluated inside a Trusted Execution
Environment.

Initialization. The initialization sets the main parameters for the
attestation. Our protocol assumes for simplicity that nodes in the
network share the symmetric key 𝑘𝑎𝑡𝑡 . Similar to previous works,
each prover is provisioned with a set 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑀 } of known
good configurations defined by hash values, which can be either
static or securely updated. Moreover, provers are characterized by
a shared secret seed 𝑉𝑎𝑡𝑡 . Seed allows to autonomously calculate a
pseudorandom sequence of self-attestation times, hiding next attes-
tations to the attackers. Another possible idea is to store the time
sequence of self-attestation on secure memory, but this increases
the memory overhead of each device. Initialization also sets the
parameter of the Bloom filter, i.e. its bitsize𝑚 and the number 𝑘 of
hash functions to evaluate during self-attestation.

Self-Attestation. The self-attestation operation is computed in a
certain point of time, defined by 𝑇𝑎𝑡𝑡 . It is generated every time by
the device’s secure clock using a pseudorandom number generator
initialized with the secret seed and triggered by a secure clock’s
function schedule. At the time 𝑇𝑎𝑡𝑡 , each prover simultaneously
executes a self-attestation procedure. In fact, the prover computes
its measurement value ℎ and checks by own its correctness against
the set of right configurations 𝐻 . The result is a binary value: 1
if the configuration is a correct one, and 0 otherwise. Differently
from PADS, where each device has two bits exclusively assigned to
share its status, the prover initializes the Bloom filter 𝑥0

𝑖
= {0}𝑚 ,

i.e. generates a null sequence of𝑚 zeros and whether the output of
self attestation is 0, the prover evaluates 𝑘 distinct hash functions
from its unique id in input to determine which positions must
be set to 1 in the Bloom filter. The unique id can be for example
the MAC address, the GPS location, an identifier assigned by the
owner, etc. We rely on non-cryptographic hash functions, such
as MurmurHash [25], computed on some unique identifier of the
device (such as the IP address and MAC address).

Consensus. In this phase, provers periodically update their knowl-
edge about the network status, using a modified version of the
distributed maximum consensus described before, where the maxi-
mum is bitwise computed. Each prover maintains its status of the
whole network, corresponding to its current knowledge of the net-
work health, saving the Bloom filter in its read and write protected

memory. Each prover updates it iteratively every time it receives a
valid message from its neighbours. In the meanwhile it periodically
broadcast the Bloom filter ( 𝑥𝑡

𝑖
) to allow other devices update their

status. Each message is characterized by 𝑥𝑡
𝑖
, attestation Time 𝑇𝑎𝑡𝑡 ,

current broadcast timestamp 𝑇 , and a MAC taken over them for
message authentication. We rely on SHA-1 for MAC, considered a
good balance for collision-avoidance and performance. Note that, a
compromised device transmitting a fake message can be identified
from a wrong MAC. Every other prover receiving a broadcast mes-
sage, after verifying the MAC, checks whether 𝑇 is in the current
interval, in order to prevent replay attacks, and finally executes the
maximum consensus considering the following equation:

𝑥𝑡+1𝑖 = maxatt(𝑥𝑡𝑖 , {𝑥
𝑡
𝑗 }𝑃 𝑗 ∈𝑁𝑖,𝑡∩𝑅𝑡 ),

s.t., 𝑥𝑡+1𝑖 [𝑙] = max(𝑥𝑡𝑖 [𝑙], {𝑥
𝑡
𝑗 [𝑙]}𝑃 𝑗 ∈𝑁𝑖,𝑡∩𝑅𝑡 ), 𝑙 = 0, . . . ,𝑚,

(1)

where 𝑁𝑖,𝑡 is the set of neighbors of the prover 𝑃𝑖 at time 𝑡 and 𝑅𝑡
is the set of active provers. In practice, for each position 𝑙 of the
Bloom filter, the prover 𝑃𝑖 computes the bitwise maximum between
the filter he computed in the previous step and the filters received
by the neighbors. Note that, due to the usage of the Bloom filter
with a combination of zeros and ones, the bitwise maximum can
be easily computed with an OR operator. Furthermore, in order to
guarantee the correctness of the consensus results, it is assumed
that 𝑥𝑡

𝑖
is stored in an access-restricted area of the prover, protected

by MPU inside the device.

Verification. In the verification phase, the verifier collects the es-
timation of the network status 𝑥𝑡 by contacting a prover, randomly
chosen from the network with respect to some condition, such
as the nearest prover or the first message obtained. The verifier
executes this final step in any moment after a reasonable amount
of time 𝑇MAX , which could be pre-established or randomly chosen
by V. The final verification step is similar to receive amessage broad-
casted by a prover during consensus. In fact, the verifier checks the
MAC of the message, and whether 𝑇 resides within the valid time
interval [𝑇𝑎𝑡𝑡 ,𝑇MAX ]. If any of the above checks fail, the verifier
considers the device to be compromised, discards the attestation
result, and query any other device. Otherwise it obtains an esti-
mation of a Bloom filter where the bits of all the compromised
devices in the swarm are set to 1. A null 𝑥𝑡 indicates the absence of
compromised device in the network. Otherwise, by the number of
bits set to 1, 𝑉 can estimate the number of compromised devices.
According to [22], the number of items in the Bloom filter, i.e. the
number of compromised devices, is

𝑛𝑐 ≈ 𝑚

𝑘
ln

(
1 − 𝑋

𝑚

)
,

where𝑚 is the bitlength of the filter, 𝑘 is the number of hashes, and
𝑋 is the number of bits set to 1. Whether interested to the status
of a given device, V can check device correctness by evaluating
MurmurHashes with respect to device identifier. If at least one of
the bits is null, V can deduce that the device is healthy, otherwise
the device could be compromised. Indeed this result is not really
reliable. A compromised device could result healthy because not
participating to the CRA protocol or because the protocol has not
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propagated its status to the node contacted by the verifier. More-
over, an healthy device could be considered compromised due to
collisions in Bloom filter insertions.

5.2 Security
In this section, we discuss the security of our proposal against
the main adversary models, previously described in Section 3. In
a collective attestation protocol, the goal of an adversary is gen-
erally to change the configuration of swarm devices, modifying
the firmware or data, and hide their malicious operation from the
verifier. In order to achieve this, the attack should be executed for a
non-negligible time, in which the adversary can restore the prover
to its original state within a negligible period of time.

We consider a collective attestation protocol for dynamic net-
works to be secure if it is computationally infeasible for a poly-
nomial attacker to induce the verifier to accept a fake attestation
result. It follows that this proposal is a secure collective attestation
protocol for dynamic networks, if:

• the adopted pseudo-random number generator is crypto-
graphically secure;

• theMAC, e.g., a Hash-basedMAC (HMAC), in use is selective
forgery resistant;

• hash function is collision-resistant.
This approach adopts similar PADS conditions to perform the

self-attestation and consensus. Thus, we can refer to [4, 9] for a
security proof of self-attestation and consensus. In the following
subsections, we discuss the security concerning a communication
adversary, a software adversary, and a mobile adversary.

Communication Adversary. Given full control over communica-
tion channels between verifier and prover and among provers, the
adversary either tries to forge the messages exchanged, or tries to
reuse an old good attestation report, making a replay attack. In our
case, both the attacks will fail, since:

• the probability for verifier or a prover to accept a message
with a forged MAC is negligible for a polynomial number of
steps of MAC operation;

• the freshness of every received message is guaranteed by
the time of attestation 𝑇𝑎𝑡𝑡 and the timestamp 𝑇 .

Software Adversary. A software adversary can try different ap-
proaches to remain undetected: edit the process responsible for
attestation, extract prover’s authentication key or other security
parameters, and handle provers’ clock in order to obtain future mea-
surements. However, these attacks are infeasible for a polynomial
attacker, since:

• the integrity of the measurement code is protected through
Read-only Memory (ROM);

• 𝑘𝑎𝑡𝑡 is protected by appropriate rules in Memory Protections
Unit (MPU);

• each prover has a Real-Time Clock (RTC), which is not ac-
cessible by any software.

Moreover, similarly to the self-attestation procedure, the consen-
sus code is protected by secure boot, so it cannot be accessible.

Mobile Software Adversary. Mobile Software Adversary scenario
assumes that an adversary compromises a prover before the next

attestation protocol, convincing the verifier to output a wrong con-
figuration state and being hidden from the protocol, possible for
example going out from the communication range. In this way,
the adversary evades detection and restores the prover to its origi-
nal state. Since the adversary can restore a prover in a negligible
amount of time, it has to know the exact attestation time in order to
execute this attack. However, the mobile adversary does not have
the possibility to get the needed information, due to the presence
of MPU protection, and the probability of predicting is negligible
with respect to the pseudo-random number generator.

6 SIMULATIONS AND RESULTS
This section provides the results of the simulations carried out for
testing our proposal in different setups. We analyze the communi-
cation, memory, and energy costs required by our protocol, and we
compare the results with PADS to better outline the improvements
respect to the literature. Other CRA protocols are not considered in
our comparisons because applicable only to static networks. To the
best of our knowledge, the only other CRA protocol for dynamic
networks is SALAD [13], but it uses asymmetric cryptography to
provide increased security, in spite of runtimes which are orders of
magnitude higher than PADS. We implement our protocol by using
the INET framework, differently from PADS [4], where MiXiM [1]
is used. To provide a fair comparison, we also re-implement and
evaluate PADS.

We simulate dynamic networks of small-medium sizes, starting
from 128 devices. Due to high computational requirements in sim-
ulation, we limit the number of devices to 2048. We adopt a fixed
rate for broadcasting the Bloom filter, i.e., 500 ms. Furthermore, we
consider all the provers, either good or compromised, to participate
in the attestation process. As outlined, compromised device has few
advantages to go offline, because if they do not participate to CRA
protocol, they should be cut off also by other network activities.

We rely on the IEEE 802.15.4 protocol, as outlined in Section 4.1.
However our protocol can work also with other protocols such as
Bluetooth, LoRaWan, etc. The frame size is often insufficient for the
transmission of the whole message. Therefore, in several protocol
executions the messages exceed the packet size, requiring message
fragmentation. This brings to an increase in the number of packets,
and thus an increase in runtime simulations that is not linear in
the number of bits of the Bloom filter.

We evaluate the performance through experiments in which
provers move according to a random path, making network connec-
tions dynamic and causing disconnections. We randomly deploy
them over a simulated area of size proportional to the number of
devices, ranging from 125 × 125 m2 for 128 devices to 500 × 500 m2

for 2048 device.
We measure the runtime of our proposal as the average MCT

in 50 runs of each simulation with different target coverage levels,
i.e., 85%, 90%, and 95%. For simplicity, we do not implement any
single operation in OMNeT++, but we focus on the implementation
of the consensus and verification phase, which are the crucial parts
to evaluate runtimes. We use benchmarks to evaluate the complex-
ity of the protocol (according to [5] and [9]), in which there are
estimation times of various operations of interest, and we set time
delays to estimate the self attestation procedure, considering all the
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devices already inizialized. We consider 48 ms as the time necessary
to compute HMAC and hash operations [9], and 187 ms as the
overhead of every self-attestation operation. As described in [9],
the latter is approximated by the generation of 32 random bits, and
the calculation of a hash over the amount of memory to be attested.
Moreover, self-attestation eventually computes also the insertions
in the Bloom filter, with at most 96 ms for each device. In fact, as
described in [10], in the case of usage of more than 2 hash functions,
as in the Bloom filter population, we can leverage on a standard
technique based on double hashing (e.g.𝑔𝑖 (𝑥) = ℎ1 (𝑥)+𝑖ℎ2 (𝑥)) that
permits to simulate additional hash functions without any loss of
false positive probability. However, since we do not have measures
of MurmurHash [25], we upperbound its runtime with the one of
SHA-1.

In our experiments, we vary the number of compromised devices
in percentage and the tolerated false-positive probability in order
to examine the Bloom filter dimension and consequently evaluate
how packet fragmentation affects protocol complexity.

6.1 Protocol complexity
We analyze the complexity of the proposed protocol in terms of
memory, energy and time required.

Memory overhead. Considering scenarios where all the provers
share the same symmetric attestation key 𝑘𝑎𝑡𝑡 , the memory over-
head required by our protocol depends on different aspects: the
attestation key 𝑘𝑎𝑡𝑡 , the number of allowed configurations in H,
and the size of the Bloom filter𝑚. Bloom filter size depends on the
settings chosen for the simulation, i.e. the number of provers to be
inserted and the probability of false positives (always considering
optimal the number of hash functions). Thus, considering each
element of 𝐻 of 160 bits (20 bytes), we define the memory overhead
as 𝑘𝑎𝑡𝑡 +𝑚 + 160 × |𝐻 | bits.

Communication overhead. The communication overhead is rela-
tive to consensus phase, where each prover broadcasts and receives
messages periodically. The message is composed by Bloom filter
(𝑚 bits), the attestation time 𝑇𝑎𝑡𝑡 (32 bits), the timestamp 𝑇 (32
bits), and one HMAC (160 bits). In total each brodcasted message is
𝑚 + 224 bits long.

The size of the message depends on the bitlength of the Bloom
filter, and impacts on the number of packets to be sent on the
communication link. In low power settings, in order to have bet-
ter performance, it is preferable to limit the number of packets
to be transmitted for each message. Moreover, as we will see in
Section 6.3, increasing the fragmentation increases drastically the
runtime of the protocol, and consequently the time required for
reaching a certain coverage.

Energy Consumption. We estimate the energy consumption for
an update step in the consensus protocol and for the computation
of the main cryptographic operations, similarly to [4].

Let Esend, Erecv, Ehmac, Efilter and Eatt denote, respectively, the
energy required to send a byte, receive a byte, calculate one HMAC,
compute Bloom filter insertion, which depends on the number of
hashes, and perform self-attestation. At timestamp 𝑡 each transmit-
ting prover sends a message which content and size are provided in
previous paragraph. Thus, we define the estimation of the energy

consumption for sending and receiving a single message as:

EProver𝑖
send = Esend ×

(
224 +𝑚

8

)
;

EProver𝑖
receive = Ereceive ×

(
224 +𝑚

8

)
.

Defining 𝑛 as the number of steps executed by each device for the
consensus, we estimate the energy required by our protocol consid-
ering that each prover shares its Bloom filter at fixed time intervals
(𝑡1, 𝑡2, ..., 𝑡𝑛). From the implementation point of view, the number
of time intervals is the same for all devices, but they transmit in dif-
ferent moments. In fact, each device broadcasts in random instants
of each interval in order to increase the possible packet reception.
Considering 𝑁𝑖,𝑡 the set of neighbors of the prover at time 𝑡 and
𝑅𝑡 the active provers, a prover computes an HMAC, broadcasts a
packet, receives a number of broadcast messages from its neighbors
𝑁𝑖,𝑡 , and verifies the HMAC associated with them. We estimate the
energy required by our protocol for a prover as:

EProver𝑖 = Eatt + Efilter + Emax .

where Emax is the energy necessary to compute the maximum
consensus and is equal to:

Emax =

𝑡𝑛∑
𝑡=𝑡1

(
Eℎ𝑚𝑎𝑐 + E𝑃𝑟𝑜𝑣𝑒𝑟𝑖

𝑠𝑒𝑛𝑑
+
(
Ehmac + EProver𝑖

receive

)
× |𝑁𝑖,𝑡 ∩ 𝑅𝑡 |

)
.

6.2 Simulations
We compute the number of fragments transmitted in each consensus
step according to the maximum packet size of the standard IEEE
802.1.54 protocol. We consider different possible protocol parameter
configurations, shown in Table 1. According to the network size, a
target percentage of compromised devices, and a specific probability
of false positives, i.e. the probability that a given healthy device the
Verifier considers to be compromised by checking its relative bits
in the Bloom filter, we derive the optimal Bloom filter bitlength𝑚
and the number of Hashes 𝑘 [20]. We also derive the number of
fragments necessary to broadcast the consensus status.

As we can see in the table, reducing the value of false-positive
probability or increasing the number of compromised devices to be
inserted, the number of bits of the Bloom filter increases.

6.3 Runtime complexity
This section focuses on the results of some of the simulations de-
scribed before. We compare the runtimes of our proposal with the
different parameter configurations identified in Section 6.2.

As we can see in Figure 4, there are not significant differences
between 85% (𝐶95 = 85), 90% (𝐶95 = 90), and 95% (𝐶95 = 95) of cov-
erage for 95% of network devices, which are more perceptible as the
number of devices increases. The performance principally changes
with the number of packets required for each message. Figures 4a
and 4c show a similar behavior up to 256 and 1024 devices respec-
tively, in which they require the same number of packets to send
their messages. Performances change in tests with 512 and 2048 de-
vices in the network. In fact, to tolerate 5% of compromised devices,
we require one packet for 512 devices and two packets for 2048,
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Table 1: Parameter configuration.

Network size 128 256 512 1024 2048
Number of compromised devices 𝑛𝑐 7 13 26 52 103
Number of bits required𝑚 68 125 250 499 988
Number of hash functions 𝑘 7 7 7 7 7
Fragments required 1 1 1 2 2

(a) 5% of compromised devices with 1% probability of false positives

Network size 128 256 512 1024 2048
Number of compromised devices 𝑛𝑐 7 13 26 52 103
Number of bits required𝑚 29 70 139 309 611
Number of hash functions 𝑘 3 4 4 4 4
Fragments required 1 1 1 1 2

(b) 5% of compromised devices with 5% probability of false positives

Network size 128 256 512 1024 2048
Number of compromised devices 𝑛𝑐 13 26 52 103 205
Number of bits required𝑚 125 250 499 988 1965
Number of hash functions 𝑘 7 7 7 7 7
Fragments required 1 1 2 2 3

(c) 10% of compromised devices with 1% probability of false positives

Network size 128 256 512 1024 2048
Number of compromised devices 𝑛𝑐 13 26 52 103 205
Number of bits required𝑚 70 139 309 611 1246
Number of hash functions 𝑘 4 4 4 4 4
Fragments required 1 1 1 2 2

(d) 10% of compromised devices with 5% probability of false positives

while, to tolerate 10% of compromised devices, we need two packets
for 512 and three packets for 2048, increasing the runtime required
for Figure 4c, which takes about 500 ms more for 512 devices and
about three seconds more for 2048. Figure 4b and Figure 4d present
a similar behaviour, where the only difference among them is when
we simulate 1024 devices, which displays a significant performance
gap. At the same time, the 2048 devices setting is of particular in-
terest. The simulations have the same number of packets required
but a significant difference in message size (about 70 bytes). In this
case, the graphs highlight a runtime difference between them of
about 200 ms. On the other side, Figure 4b and Figure 4d highlight
lower performance differences in message whose size is within the
same number of packets. In this case, we have only variations in
terms of milliseconds since the IEEE 802.15.4 data rate (up to 250
Kbps) reduces the message size gap.

Comparison with the state of the art. We compare our protocol
performance with PADS, with respect to 95% of the population that
reaches 95% of coverage (𝑐95 = 95). We provide the comparisons
in logarithmic scale in Figure 5. We underline that, due to the
high computational power requirements, our PADS implementation
reaches up to 1024 devices. So we compare our protocol from 128
to 1024 devices.

Our results show that our approach outperforms PADS in most
of the setting defined. We can observe that PADS is preferable in
small swarms, i.e., 128 devices, because the Bloom filter requires
more hashing operations to store the internal state. There are also
situations where the performances are similar, such as in Figure 5c.

(a) 5% of compromised devices with 1% probability of
false positives

(b) 5% of compromised devices with 5% probability of
false positives

(c) 10% of compromised devices with 1% probability of
false positives

(d) 10% of compromised devices with 5% probability of
false positives

Figure 4: AverageMCT of the protocol in function of the size
of the network, percentage of compromised devices, proba-
bility of false positives, and coverage.

In this condition, both our proposal and PADS have similar runtime
in 512 devices simulation, since the message of our protocol, of 499
bits, requires two packets in order to be transmitted.
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(a) PADS compared to 5% of compromised devices with
1% probability of false positives

(b) PADS compared to 5% of compromised deviceswith
5% probability of false positives

(c) PADS compared to 10% of compromised devices
with 1% probability of false positives

(d) PADS compared to 10% of compromised devices
with 5% probability of false positives

Figure 5: Protocol comparison with PADS.

7 CONCLUSIONS
We have presented a new flexible, secure, and efficient protocol for
collective remote attestation in highly dynamic low-power devices
networks. This protocol leverages on the Bloom filter data structure
in order to represent the state of the network, transforming the
collective attestation into amaximum consensus problem. It permits
to improve the performance and the flexibility respect to recent
works in literature based on dynamic swarm scenario, allowing a
dynamic change of network devices in the attestation and reducing

the message size for communication between devices. The protocol
simulation shows that it is possible to attestate thousands of devices
in few seconds.

While our approach gives advantages concerning the runtime
execution and dynamic presence of devices, there are significant
limitations to be considered. One of the main problem, shared with
the most of CRA protocol, is the Time of Check to Time of Use
attack [21], since the protocol cannot detect devices compromised
during the consensus phase. Another significant limitation is repre-
sented by the weakness for a physical attacker. In fact, our proposal
considers a software-only attacker, and a single physically com-
promised device is sufficient to reveal the secret key shared in
the network, enabling the attacker to inject easily fake attestation
reports. However, due to the usage of the maximum consensus
approach, it is not feasible to change bit values of Bloom filter, if
previously propagated by healthy provers in the network. More-
over, like PADS, our proposal is more resilient to physical attacks
then previous works. In fact, information is not processed along a
tree, and this limits the propagation of malicious information. A
single physically compromised device could change the attestation
report of a whole subtree of devices. Instead, in this protocol the
attacker might physically compromise all the network. A possibility
to reduce the adversary forgery is the public-key cryptography im-
plementation, which remove the possibility of obtaining the secret
key of the whole network. However, such implementation increases
the computational costs of each device. Another limitation with
respect to PADS [4] is represented by the fact that, due to its prob-
abilistic concept, the Bloom filter data structure does not permit
to certainly have the specific node status, especially if in order to
reduce the size of the Bloom filter, we tolerate a high percentage of
collisions. In this case, we cannot even consider a possible device
search by the verifier. In order to do that, we have to reduce drasti-
cally such probability, which proportionally increases the size of
the Bloom filter, reducing the usefulness of the protocol.

7.1 Future works
Our protocol can be improved in several directions. First of all,
the protocol assumes the usage of symmetric key cryptography,
which limits its resilience against physical attackers. CRA protocols
would benefit from new mechanism that permits attestations with
different communication keys without losing performance.

There is also the need to understand how many devices partic-
ipate in the CRA protocol. In fact, from the Bloom filter we can
derive the number of compromised protocols, but neither the num-
ber of inactive devices (healthy or compromised), nor the total
number of devices in the network is known.

Our protocol could be also modified in order to identify the
location of compromised devices. A possible choice is to create a
protocol where this approach is used with Bloom filters for location.
In this way, hashes are not evaluated on devices identifier, but on
areas identifiers, so that the verifier can locate the areas where
compromised devices are. Assuming that in a small area we have
a limited number of devices, their attestation is so fast that the
network can be considered to be static. Thus, the verifier can run a
different attestation protocol which permits to exactly identify the
compromised devices.
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The latter idea is the first step toward the development of a CRA
framework that can auto-configure and choose which protocol use
according to the state of the network. The goal of such a framework
is that it configures parameters (i.e., the Bloom filter size) according
to the number of devices in the network, or also switches to a
different CRA protocol, for example from this proposal to PADS,
when the number of compromised devices is over a given threshold
and there is the necessity to identify them, or to a spanning-tree
based CRA protocol, when verifying only a small sub-network.
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