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Abstract: LaAlO3/SrTiO3 interfaces are a nice example of a two-dimensional electron gas, whose
carrier density can be varied by top- and back-gating techniques. Due to the electron confinement near
the interface, the two-dimensional band structure is split into sub-bands, and more than one sub-band
can be filled when the carrier density increases. These interfaces also host superconductivity, and
the interplay of two-dimensionality, multi-band character, with the possible occurrence of multi-gap
superconductivity and disorder calls for a better understanding of finite-bandwidth effects on the
superconducting critical temperature of heavily disordered multi-gap superconductors.

Keywords: disordered superconductors; multi-gap superconductivity; finite-bandwidth effects

1. Introduction

Anderson’s theorem [1] states that superconductivity in a conventional s-wave super-
conductor is robust with respect to the introduction of (non-magnetic) impurities in the
material, and the superconducting critical temperature Tc is, to some extent, independent
of the amount of disorder in the system. On the other hand, an increase in Tc is generically
expected when an increase in the number of superconducting carriers leads to the filling
of additional conduction bands: the density of states increases, and the superconducting
coupling increases accordingly with important effects on Tc. So far, an increasing number of
materials has been found to display multi-gap superconductivity, as for example, MgB2 [2],
iron-based superconductors [3–6], and heavy fermions [7,8]. Owing to a large variety
of behaviors and different sensitivity to the effects of disorders, the interplay between
impurity scattering and multi-gap superconductivity has stimulated both experimental
and theoretical reanalyses of this important issue. Here, we will consider the paradigmatic
example of the SrTiO3-based interfaces as LaAlO3/SrTiO3 (LAO/STO), which are super-
conducting systems displaying various regimes as the number of carriers is changed by
top- or back-gating. In particular, the confinement of carriers near the interface induces the
splitting of the spectrum into discrete two-dimensional sub-bands. By changing the number
of carriers and also depending on the orientation of the interface with respect to the crystal
axes, different behaviors of Tc are observed. For (001)-oriented interfaces, the system is non-
superconducting at low carrier densities, while the critical temperature rapidly increases
above some filling threshold, which is likely related to the filling of some sub-band with a
high density of states [9–11], so these make a case of their own. For (111)- or (110)-oriented
interfaces, the system is always superconducting below a critical temperature. Although the
situation is not completely settled as far as the absolute values of the carrier concentration
is concerned, the various available results show that the critical temperature first slowly
increases upon increasing the carrier density, while above an optimal carrier density (corre-
sponding to the largest Tc), it decreases more rapidly as an increasing number of charge
carriers is introduced [12–14]. This decrease of Tc is intriguing because it is at odds with the
idea that larger carrier density implies the involvement of more bands, and consequently,
a larger density of states and a larger superconducting coupling. More specifically, it is
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found that a significant suppression of Tc takes place at a carrier density close to the value
at which a Lifshitz transition occurs and an upper sub-band starts to be filled. One possible
explanation for this counterintuitive behavior has been proposed in the Ref. [15], where
a two-band system is considered, with an inter-band pairing interaction in the presence
of elastic impurity scattering. In particular, for a repulsive inter-band interaction, one
finds a strong pair-breaking effect when the chemical potential approaches the bottom of
the upper band and this second band starts to interact with the first one. The aim of the
present work is to systematically investigate the interplay of disorder, multi-band physics,
and superconductivity in a range of parameters that is more pertinent to the LAO/STO
interface, considering that while the lower band is in a BCS-like weak-coupling regime
(henceforth, the acronym BCS stands for Bardeen-Cooper-Shrieffer), the second band en-
ters the superconducting regime when the chemical potential approaches the bottom of
the band by an energy of the order of the pairing energy cutoff Ω (set, for example, by
the Debye frequency ωD of the phonons involved in pairing, Ω = h̄ωD, where h̄ is the
Planck constant). This is a situation typical of strong-coupling superconductivity with a
Bose-Einstein condensation of Cooper pairs. This mixed regime for the two involved bands
deserves a specific analysis, which we consider within our systematic investigation. In our
work, we will also point out the crucial role of large-scale inhomogeneities to reproduce the
Tc versus filling behavior experimentally observed. We neglect all weak-localization effects,
but our interest is in the heavily disordered regime before weak-localization effects set in,
but in a regime when the premises upon which Anderson’s theorem rests are violated.

The paper is organized as follows. In Section 2 we briefly summarize the theoretical
model, particularly discussing the linearized gap equations from which we calculate the
critical temperature. Albeit in a heavily disordered system the concept of multiple bands
loses its meaning, as disorder mixes the band eigenstates, the eigenvalues of the clean
system (and the corresponding densities of states) enter into the calculation, so we keep
referring to the various bands in this loose sense. Since our goal here is to unravel all the
ingredients that can trigger the observed suppression of the superconductivity one by one,
the numerical results of Section 3 are grouped in subsections. We begin with the study
of effects of a finite bandwidth and the effect of disorder in a single band, in Section 3.1.
Then, in Section 3.2, we add a second uncoupled band to the system. The fully coupled s±
disordered model is studied in Section 3.3. Finally, in Section 4 we will make our concluding
remarks and discuss some perspectives of the present study.

2. Two-Band Superconductor in the Presence of Disorder

Let us consider a two-band system, as in Figure 1, to represent the crudest possible
description of a superconducting system where other bands come into play with increas-
ing the carrier density. Here, both bands display a constant density of states (DOS), N1
and N2. We indicate the Debye energy (here meaning the characteristic cutoff scale of
superconducting pairing) with Ω and

λ =

(
λ11 λ12
λ21 λ22

)
is the matrix of the bare coupling constant, the indices labeling the two bands of the clean
system. We do not perform the self-consistent calculation of the matrix element of the
pairing interaction starting from the exact electron wave functions in the potential well
that confines the electrons and creates the sub-band structure, although it is known that
this introduces further effects of modulation of Tc at the Lifshitz points, when a new band
starts to be filled, or the topology of the Fermi surface changes [16–18]. Calling the edges
of the two bands (with respect to the chemical potential, as it is suitable when dealing
with superconducting systems) as wj, for the lower band edge, and Λj for the higher band
edge, we have w1 = −µ, w2 = ε0 − µ and Λi = Li − µ. As one can see, we are considering
the system in an intermediate regime, where the lower band is described by the BCS
theory since the pairing window µ±Ω is fully contained within the band, while the upper
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band stays in Bose-Einstein condensation (henceforth, BEC) regime. This is because, when
the chemical potential approaches the bottom of the upper band, the coupling between
its carriers and the carriers in the lower band already starts to be effective when the
chemical potential is below the Lifshitz point (which occurs when µ enters the upper band
µ = ε0). This choice of parameter regime is motivated by the fact that, according to the
experimental analyses [19,20], it is more appropriate to the LAO/STO interfaces [10,11,19]
(see Section 3). We point out that in LAO/STO interfaces one of the two bands would be
doubly degenerate—the upper, in the conventional (001) orientation, the lower, in the (110)
orientation—so a three-band model would be more appropriate, at the expenses of a less
transparent, and more heavily numerical, theoretical treatment. Since the main features of
band interplay are already present in a two-band model, we keep our description as simple
as possible, to highlight the crucial aspects.

D
O
S

N1

N2

0 ε0ε

ξ=ε-μ w1 w2

L2 L1

Λ2 Λ1

//

//

//

ΩΩΩ Ω

Figure 1. Sketch figure of the density of states (DOS) N1 and N2 as functions of the energy ε (reduced
energy ξ = ε− µ) of the two-band system. The blue dashed lines highlight the observation window
of energy (reduced energy) accessible, so far, through experiments: according to the parameters
involved in LAO/STO interfaces, the lower band is well described by the BCS theory, the pairing
window µ±Ω lying entirely in the band, while the upper band stays in the so-called BEC regime.

Calculating the effect of disorder within the self-consistent Born approximation (see
also the Refs. [15,21]), one finds the linearized gap equations(

∆1
∆2

)
=

(
λ11 λ12
λ21 λ22

)(
A11 A12
A21 A22

)(
∆1
∆2

)
(1)

, which are needed to investigate the behavior of the critical temperature Tc, identified as
the first temperature at which the matrix on the right-hand side of Equation (1) develops
an eigenvalue equal to one (coming from high temperature). The elements of the matrix A
are given by

Aij = kBT ∑
n

Mij

det (M)

∫ max [Ω,wi ]

max [−Ω,wi ]

dξ

ω̃2
n + (ξ + hn)2 , (2)

ω̃n and hn being, respectively, the Matsubara frequency shifted by disorder effects and the
frequency-dependent correction to the chemical potential µ, calculated self-consistently:

ω̃n = ωn +
Γω̃n

2 ∑j=1,2 f̃n,j

hn = − Γ
2 ∑j=1,2 g̃n,j,

(3)
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where ωn = (2n + 1)πkBT, n ranging over integer numbers, is the Matsubara frequency of
the clean system, Γ is the disorder-induced broadening and sets the scale for the inverse
lifetime of the charge carriers,

f̃n,j =
1
π

∫ Λj

wj

dξ

ω̃2
n + (ξ + hn)2 , g̃n,j =

1
π

∫ Λj

wj

(ξ + hn)dξ

ω̃2
n + (ξ + hn)2 ,

and the matrix

M =

1− Γ
2 f̃n,1

Γ
2 f̃n,1

Γ
2 f̃n,2 1− Γ

2 f̃n,2

 (4)

introduces vertex corrections to the Cooper susceptibility due to disorder [22,23].

3. Results

The focus of this study is on the role of static impurity disorder on the Lifshitz
transition of the multi-band system. As anticipated in Section 1, we neglect all weak-
localization effects, but our interest is in the heavily disordered regime, which turns out
to be pertinent to LAO/STO interfaces. In order to justify the last statement, we make
some considerations about the order of magnitude of the main quantities involved, such as
energies and temperatures, before showing our results. A reasonable estimate of disorder
can be obtained from the mobilities µ observed in LAO/STO interfaces. We use the standard
relations Γ = 1

2 h̄τ−1 and µ = eτ/m∗, where τ is the scattering time, e the absolute value
of the electron charge and m∗ is the electron effective mass. One should, however, keep
in mind that the filling of different sub-bands, upon changing the carrier density, induces
substantial variations of the mobility [20]. Then, for instance, in (110)-oriented LAO/STO
interfaces, using the values of the experimentally determined mobilities, the energy scale
associated with the inverse scattering time, h̄τ−1, is found to range between approximately
0.3 and 5 meV (so that 0.15 meV < Γ < 2.5 meV). In order to keep the model as simple
as possible, we choose to keep τ constant, although it is clear that the above substantial
variations in the mobility would imply a marked carrier density dependence of τ.

Regarding the relevance the mixed BCS-BEC regime, this was chosen coherently with
known experimental facts: on the one hand, the Debye energy in bulk STO is of the order
of Ω = 400 K ·kB = 34.5 meV [24], while multi-gap superconductivity is observed at a
gate voltage corresponding approximately to ε0 = 90 meV. Using reasonable estimates for
the DOS and filling in the various sub-bands (as obtained from Hall measurements and
the known values of the dielectric constant one can translate the experimental range of
gate potential in experiments into the corresponding excursion of the chemical potential:
the observational window ranges from ∼40 meV up to ∼110 meV (blue dashed vertical
line in Figure 1 for an experimental setup with back-gating in a (110)-oriented LAO/STO
interface [19]). Lastly, the critical temperature we consider in this work corresponds to the
point at which the inverse Cooper susceptibility vanishes, so typical values of this quantity
at low carrier density are around hundreds of mK (Tc ≈ 0.2÷ 0.25 K [12,19]). Since Tc is set
by the Debye energy Ω, the coupling constants λ and, as it will be clear below, the disorder-
induced broadening Γ, one has to adjust the bare coupling constants (in particular, λ11), to
obtain the correct order of magnitude of the critical temperature. The unit of measures are
then Kelvin for the calculated temperatures and meV for all the energies. Equation (1) is
solved numerically in the following subsections, adding one element at a time, in order
to discern the role of the different physical ingredients. We start with a simple toy model,
with just one finite band in the presence of disorder, and then add the second uncoupled
band. Finally the effect of coupling the two bands will be investigated.
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3.1. Toy Model: Finite-Bandwidth Effect in a Single-Band System

We first unravel the physics of the single-band system, observing both finite-bandwidth
effects and the role of disorder-induced line and vertex corrections. Let us rewrite the
equation for Tc as

1 = πkBTc ∑
ωn

λϕn

1− Γ
2 ϕn

, (5)

where

ϕn =
1
π

∫ max (max (Ω,Λ),w)

min (max (−Ω,w),Λ)

dξ

ω̃2
n + (ξ + hn)2 ,

the band ranges from w = −µ to Λ = L− µ, and Ω is the Debye energy. The corrected
Matsubara frequency ω̃n and the correction to the chemical potential hn, are calculated
from the coupled self-consistent equations:{

ω̃n = ωn +
Γω̃n

2 f̃n,
hn = − Γ

2 g̃n.
(6)

In Figure 2 the critical temperature Tc is plotted as a function of the chemical potential
µ for a finite band ranging between 0 and 500 meV, with a constant DOS. Clearly, finite
bandwidth effects are important at the edges of the band, in particular in an energy
range that is set by the Debye energy Ω. We used here Ω = 30 meV and λ = 0.133, so
Tc ≈ 0.21 K in the clean case (blue circles in Figure 2). In agreement with Anderson’s
theorem, a small amount of disorder, Γ = 0.01 meV, does not change the value of the
superconducting critical temperature Tc. On the other hand, when Γ is at least 50 times
greater, Γ > 0.5 meV, a substantial suppression of Tc is found. We would also like to
highlight the more pronounced kink in the suppression of superconductivity, observed
when both disorder and finite-bandwidth effects are present, at µ = w + Ω and µ = Λ−Ω.
More on this will be discussed in Section 4.

0 100 200 300 400 500
µ (meV)

0.00

0.05

0.10

0.15

0.20

T
c

(K
)

Ω = 30 meV - λ = 0.133

Γ (meV)

0

0.01

0.1

0.5

0.6

0.7

Figure 2. Critical temperature Tc as a function of the chemical potential µ for a finite band, extending
from w = 0 to Λ = 500 meV for different values of the disorder-induced broadening Γ; the Debye
energy is Ω = 30 meV and the coupling constant is λ = 0.133.
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Figure 3. Critical temperatures for the single finite band (w = 0, Λ = 500 meV, Ω = 60 meV, λ = 0.19)
calculated for the single finite band with different disorder-induced broadening (a) Γ = 0.01 meV,
(b) Γ = 0.1 meV and (c) Γ = 0.5 meV. The blue dots one can see the clean system (Γ = 0), the dirty
cases are plotted in orange, while in green, one can see the calculation where the vertex correction is
suppressed by hand.

The role of both line and vertex corrections is shown in Figure 3, where larger values
of the Debye energy Ω and of the coupling constant λ are considered to emphasize the
effects. In particular, Ω = 60 meV enhances the finite bandwidth effects at the edges of
the band, while the increase of the critical temperature, taking λ = 0.19, was necessary
in order to emphasize the effects of the corrections, in particular the effect of the vertex
correction. Specifically, looking at Figure 3c, for Γ=0.5 meV the effect of the line correction
alone (green line) is so important that it can drastically suppress the critical temperature.
This is a trend that we observe also in Figure 3b and also slightly in Figure 3a, although
the effect here is really small: the line correction, that is, the correction to the Matsubara
frequency in Equation (3), lowers substantially the critical temperature while the vertex
correction, that is, the matrix M in Equation (4), largely compensates the line correction
almost completely restoring the clean value of the critical temperature Tc(Γ = 0). This is a
clear manifestation of Anderson’s theorem, which, as it is well-known, can be rephrased
by stating that superconductivity is robust against disorder whenever self-energy (line)
corrections coexist and get (largely) cancelled by vertex corrections. On the contrary, as it is
again well-known, whenever the wave symmetry or the magnetic character of impurities
leads to vanishing or small vertex corrections, the premises for Anderson’s theorem to
apply no longer hold.

Finally, let us stress once again the importance of the numbers involved. It is in
fact of great interest for both theoreticians, whose final goal is to describe real systems,
and experimentalist to understand quantitatively how all the parameters and quantities
involved interplay and contribute individually to the suppression of Tc. In the case at
issue here, we observe that the suppression of the critical temperature due to the presence
of disorder is of the same order of magnitude, that is, few tens of mK, independently
of the value of Tc in the clean case. Although this is not surprising, since Tc depends
only on the Debye energy Ω and the coupling constant λ, which are unrelated to the
disorder-induced broadening Γ, the relative suppression on Tc can be significant. Calling
δTc = Tc(Γ = 0)− Tc(Γ) the difference between the critical temperature of the clean system
and the one of the disordered system, and comparing our results for Γ = 0.5 meV in
Figure 2 (red dots), where Tc(Γ = 0) = 0.21 K, and in Figure 3c (orange dots), where
Tc(Γ = 0) = 4.03 K, we find, respectively, δTc/Tc(Γ = 0) ≈ 0.1 and δTc/Tc(Γ = 0) = 0.01.
This shows that the same disorder becomes relatively more important in systems with
lower critical temperature.

3.2. Two Uncoupled Disordered Bands

We present here the results of our calculations in an intermediate case between the one-
band model studied above and the full two-band disordered model. In other words, we add
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the second band to the system, keeping the two bands uncoupled, that is, λ12 = λ21 = 0.
Thus, Equation (1) reduces to

{
∆1 = λ11(A11∆1 + A12∆2)

∆2 = λ22(A21∆1 + A22∆2)
(7)

Hence, even if formally, the inter-band couplings are set to zero, the disorder still
couples the two bands because electrons can be scattered from one band to the other
(hence, the loose meaning of the multi-band description in the presence of disorder), even
though the pairs are still formed within each band separately. The parameters used are
λ11 = λ22 = 0.135 and Ω = 34.5 meV, and the lower edge of the second band is ε0 = 90 meV.
As one can see from Figure 4, increasing the chemical potential, a gradual decrease of the
critical temperature is observed, coherently with the decrease observed in the toy model
of Section 3.1, then a substantial suppression of the critical temperature is observed near
the Lifshitz transition. Further increasing µ, Tc starts to rise again, while the second band
starts to be filled. Eventually, if the chemical potential enters well inside the second band, a
situation similar to the one described in Section 3.1 should occur, albeit without particle-
hole symmetry (for a generic relative position of the two bands), so that the maximum
suppression of Tc (with respect to the value in the clean two-band system) due to finite-
bandwidth effects is no longer expected to be located when the chemical potential reaches
the middle of either bands.

40 60 80 100 120
µ (meV)

0.0

0.1

0.2

0.3

T
c

(K
)

Ω = 34.5 meV - λ11 = λ22 =0.135, λ12 = λ21 = 0

Γ (meV)

0.0

0.01

0.1

0.5

Figure 4. Two bands system with no inter-band coupling λ12 = λ21 = 0 and different amounts
of disorder Γ, the grey dashed line indicating the chemical potential corresponding to the Lifshitz
transition, that is, ε0 = 90 meV. Here the parameters used are comparable with the real ones of
LAO/STO heterostructures (Ω = 34.5 meV and λ11 = λ22 = 0.135. As one can see, already
Γ = 0.01 meV is enough to couple the bands and lower the critical temperature.

3.3. Two Coupled Disordered Bands

We finally discuss the complete model as presented in Section 2. We choose for the
disorder-induced broadening the value Γ = 0.6 meV, corresponding to h̄τ−1 = 1.2 meV−1,
and we tune the values of the coupling constants to obtain critical temperatures in the range
of the values observed for LAO/STO. A further simplification we make, besides taking Γ as
independent of the carrier density, is to keep the two DOS equal N1 = N2; otherwise, one
should take the inter-band coupling constants obeying the relation λ12 = λ21N2/N1 [19].
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Since in LAO/STO interfaces the DOS involved are typically of the same order, this simpli-
fication is not affecting substantially our results, with the noticeable exception of the (001)
oriented interface, where the DOS of the lowermost sub-band is so much smaller than the
DOS in the upper sub-bands, that superconductivity is suppressed altogether when the
carrier concentration is not large enough to fill the upper sub-bands [9].

Setting Ω = 34.5 meV, the initial decrease of the critical temperature is due to finite
bandwidth effects, as it was clear from the one band toy model presented in Section 3.1,
while λ11 tunes the order of magnitude of Tc.

The depth and shape of the well at µ ≈ ε0 are strongly dependent both on the amount
of disorder involved and on the values of the inter- and intra-band coupling constants.
Similarly to λ11, λ22 rules the order of magnitude of Tc when the chemical potential is
well inside the upper band (µ� ε0), so necessarily it will affect both the minimum of the
decrease of Tc, at µ = ε0, and its rise, for µ & ε0, as one can see from Figure 5a.

A subtler aspect is, however, the role of the inter-band coupling constants. As stated
in the Ref. [15], sub-leading negative inter-band coupling constants, together with a small
disorder, can induce the observed pair-breaking effect, while an attractive inter-band
interaction only produce a much smaller suppression of Tc when the chemical potential
approaches the edge of the second band. Nonetheless, in a strongly disordered system, this
statement is not so clearcut. In Figure 5b we plot the curves Tc vs µ for different values of
the inter-band coupling constant. As one can see, while λ12 = λ21 = −λ11 · 10−1 is indeed
enough for the critical temperature to be zero in a wide range of values of the chemical
potential (90 meV < µ < 100 meV, violet dots), a sub-leading positive coupling constant
λ12 = λ21 = +λ11 · 10−2 (lightblue dots) still generates a suppression of Tc at µ = ε0 and
the three curves with −λ11 · 10−2 < λ12 < +λ11 · 10−2 (light blue, green, and yellow dots)
present almost the same behavior in their increase inside the second band (µ > ε0), stating
the fact that the main pair-breaking effect is caused by the presence of a strong disorder.
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µ (meV)

0.0
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0.2

0.3

0.4

T
c
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)

Ω = 34.5 meV - Γ = 0.6 meV - λ11 = 0.135, λ12 = −λ11 · 10−2

λ22 =

0.125

0.135

0.145

(a)
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µ (meV)

0.0

0.1

0.2

0.3

0.4

T
c

(K
)

Ω = 34.5 meV - Γ = 0.6 meV - λ11 = λ22 =0.135

λ12 = λ21 =

+λ11 · 10−1

+λ11 · 10−2

−λ11 · 10−3

−λ11 · 10−2

−λ11 · 10−1

(b)
Figure 5. Calculations for the complete two-band disordered model presented in Section 2. The
grey dashed line indicates the chemical potential corresponding to the Lifshitz transition, that is,
ε0 = 90 meV. Here, we considered Γ = 0.6 meV, Ω = 34.5 meV and λ11 = 0.135. (a) The inter-band
coupling constant are fixed as λ12 = λ21 = −λ11 · 10−2, while varying λ22. (b) Here, λ22 = λ11.
while the values of λ12 = λ21 are varied.

4. Conclusions

Several theoretical concepts have been introduced to describe the non-monotonic
behavior of the superconducting critical temperature at oxide interfaces as a function of the
carrier concentration, highlighting, for example, the role of electron–electron correlations
and spin–orbit interactions [14,24], or of the extended s-wave pairing symmetry [25].

In this work, we studied a two-gap model for a disordered two-band superconductor.
Our scope was to highlight the role of disorder and inter-band scattering in the suppression
of the superconducting critical temperature. In order to fully understand the details of the
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model, we studied it one step at a time. Owing to the obvious importance of the relative
order of magnitude of the parameters describing the various physical regimes of the system
under investigation, all these were approximately fixed according to the experimental
measurement at our disposal in a specific relevant physical system, namely the LAO/STO
interface.

As a matter of fact, although Anderson’s theorem is well satisfied in the weak-to-
moderate disorder regime, the presence of a strong disorder is by itself an effective pair-
breaking mechanism that suppresses superconductivity, even before single-particle local-
ization effects set in. This effect becomes particularly relevant when a second band enters
the game (even in the absence of a direct inter-band coupling). According to our model,
once the scale of disorder is fixed to values compatible with transport measurements at
the LAO/STO interface, the suppression of Tc seems to be of the order of few tens of mK,
independently of the order of magnitude of Tc in the clean case. This leads to a relative
suppression which is comparatively more and more important for those systems that have
a low superconducting critical temperature: it is of about ten per cent, δTc/Tc(Γ = 0) = 0.1,
even in the one-band BCS system with a low clean critical temperature of a few hundreds
of mK, that is, the same order of magnitude of Tc in LAO/STO heterostructures.

On the other hand, finite-bandwidth effects can also play a role in this framework:
from the single band model, where the only element of pair-breaking is disorder, the
variation of the chemical potential with respect to the band edges has a clear visible effect:
considering, for instance, the lower edge to be at w = 0 (Figure 1), the curve Tc vs µ has
different regimes. Initially, as it is well-known [9–11], it is rapidly increasing (Tc ∼ √µ), as
soon as the chemical potential enters the band and as long as its energy distance from the
bottom of the band is smaller than the characteristic Debye energy (µ < Ω). Then, when
µ increases, entering well inside the band (µ & Ω), Tc slowly decreases as a consequence
of finite-bandwidth effects. Further increasing µ leads to a nearly constant Tc when µ
is around the center of the band, whereas Tc symmetrically increases slowly when the
chemical potential enters the upper half of the band (because of particle-hole symmetry
in a single band with constant DOS). These are rather weak effects that might obviously
be overcome by other DOS details in real band structures (like, for example, van Hove
singularities or Rashba spin-orbit couplings [26–28]), but they are often overlooked in
theoretical analyses and it might be informative on some specific features (bandwidth,
band edge positions, and so on) of the band structure specifically involved in experiments.

When adding the second band, this consideration is important in order to explain the
first slow decrease (or possibly slow increase) in the Tc curve at low doping. Moreover, in
Section 3.2 we also show that disorder alone can mix the two bands, scattering the electrons
and generating a more pronounced suppression of the critical temperature in the vicinity
of the Lifshitz point, where the second band starts to be filled.

Finally, we studied the effects of the coupling constants. In particular, once the disorder
is set, the inter-band coupling is another key ingredient. It was already clear in the Ref. [15]
that in the limit of weak disorder, a sub-leading repulsive interaction between bands
is enough to observe the decrease of Tc at the Lifshitz transition. We are considering
a much stronger disorder, with Γ of the same order of magnitude as the one extracted
from experiments on LAO/STO interfaces. On the one hand, we confirm that a repulsive
coupling favors the suppression of Tc, even bringing the critical temperature to vanish
near ε0, over a finite chemical potential range, before it rises again when µ enters well
inside the upper band. This happens already for λ12 = −λ11/10. On the other hand, a
small positive coupling between bands is still overcome by the disorder, especially near the
Lifshitz transition.

We conclude our systematic analysis by noticing that in all cases the static point-like
disorder due to quenched impurities creates a non-monotonic dip in Tc for µ around the
Lifshitz point, bearing strong resemblance to the antiresonance phenomenon observed
in clean systems when the pairing is calculated self-consistently [16–18]. This dip is
substantially sharper than the rapid, yet smoother, decrease of Tc observed in LAO/STO
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interfaces [19]. To properly fit these data, it turned out to be important to consider of large-
scale inhomogeneities in the density and in the superconducting properties of the interface.
This not only confirmed the inhomogeneous character of LAO/STO interfaces [9,29–33], but
naturally calls for further systematic investigation of the interplay between disorder due to
quenched impurities and large-scale inhomogeneities in low-dimensional superconducting
systems [34].
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