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Abstract We study the one-dimensional periodic derivative nonlinear Schrödinger
equation. This is known to be a completely integrable system, in the sense that there is
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∫
hk , k ∈ Z+. In each

∫
h2k the term

with the highest regularity involves the Sobolev norm Ḣ k(T) of the solution of the
DNLS equation. We show that a functional measure on L2(T), absolutely continuous
w.r.t. the Gaussian measure with covariance (I + (−Δ)k)−1, is associated to each
integral of motion
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1 Introduction

In this paper we consider the derivative nonlinear Schrödinger equation (DNLS) in
the space periodic setting:

{
iψt = ψ ′′ + iβ

(
ψ |ψ |2)′

ψ(x, 0) = ψ0(x),
(1.1)

where ψ(x, t) : T × R → C, ψ0(x) : T → C, ψ ′(x, t) denotes the derivative with
respect to x , and β ∈ R is a real parameter.

TheDNLS is a dispersive nonlinear equation coming frommagnetohydrodynamics.
It describes the motion along the longitudinal direction of a circularly polarized wave,
generated in a low-density plasma by an external magnetic field [23,31] (see also
[36]). It is known to be an integrable system [20] (see also [13]) in the sense that there
is an infinite sequence of linearly independent quantities (integrals of motion) which
are conserved by the flow of (1.1) for sufficiently regular solutions. The integrals of
motion are functionals defined on Sobolev spaces of increasing regularity.

The aim of this paper is to construct an infinite sequence of functional Gibbs
measures associated to the integrals of motion. These measures turn out to be
absolutely continuous with respect to the standard Gaussian measures with covariance
(I + (−Δ)k)−1; thus, different measures are disjointly supported (see “Appendix”).

The program of statistical mechanics of PDEs begins with the seminal paper by
Lebowitz et al. [21]. The authors study the periodic one-dimensional NLS equations
and introduce the statistical ensembles naturally associated to the Hamiltonian, as in a
classical field theory. Successively, Bourgain completed this study: in [3] by proving
the invariance of the Gibbsmeasure for the cubic periodic case and in [6] extending the
results to the real line. Similar achievements have been obtainedwith differentmethods
in [26] for cubic NLS, in [25] for the wave equation, and in two dimensions in [4] for
defocusing cubic NLS equation, in [7] for the focusing case, in three dimensions for
the Gross–Pitaevskii equation in [5].

For integrable PDEs one can carry out the same study by profiting from an infinite
number of higher Hamiltonian functionals. This was originally noted by Zhidkov [47],
who analyzed the Korteweg–de Vries (KdV) and cubic nonlinear Schrödinger (NLS)
equation on T. The main idea, already contained in [21], is to restrict the measure
associated to a given integral of motion to the set of solutions with fixed values for all
the other integrals of motion involving less regularity (in a sense that will be clarified
below). The invariance of such a set of measures gives interesting informations on
the long-time behavior of the regular solutions, for instance through the Poincaré
Recurrence Theorem (see [8,47]). In the last years this approach has been adopted in
a series of papers by Tzvetkov et al. [11,12,39–42] for the Benjamin Ono equation
on T. In this case a more careful construction of the measure is required compared to
KDV and NLS. We find similar difficulties in studying the DNLS equation.

Despite the extensive investigation in the past decades on integrable PDEs, a limited
attention has been given to the integrability properties of the DNLS equation. An
infinite sequence of integrals of motion for this equation has been found in [20] using
the inverse scattering method. More recently, another proof of the integrability of the
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DNLS equation has been achieved using the so-called the Lenard–Magri scheme [22]
within the framework of (non-local) Poisson vertex algebras [13].

The first few integrals of motion of the DNLS equation are:
∫

h0 = 1

2
‖ψ‖2L2 ,

∫
h1 = i

2

∫
ψψ̄ ′ + β

4
‖ψ‖4L4 , (1.2)

∫
h2 = 1

2
‖ψ‖2

Ḣ1 + 3i

2
β

∫
ψ2ψ̄ψ̄ ′ + β2

4
‖ψ‖6L6 ,

∫
h3 = i

2

∫
ψ ′ψ̄ ′′ + β

4

∫ ((
ψ ′)2 ψ̄2 + 8ψψ̄ψ ′ψ̄ ′ + ψ2 (

ψ̄ ′)2)

+ 5i

4
β2

∫
ψ3ψ̄2ψ̄ ′ + 5

16
β3‖ψ‖8L8 ,

∫
h4 = 1

2
‖ψ‖2

Ḣ2 + 5i

4
β

∫
(
ψψ̄ψ ′ψ̄ ′′ − ψψ̄ψ ′′ψ̄ ′)

+ 5

4
β2

∫ (
ψψ̄3 (

ψ ′)2 + 5ψ2ψ̄2ψ ′ψ̄ ′ + ψ3ψ̄
(
ψ̄ ′)2)

+ 35i

16
β3

∫
ψ4ψ̄3ψ̄ ′ + 7

16
β4‖ψ‖10L10 . (1.3)

Here and further, we denote by
∫

f = 1
2π

∫
T
f . Note that, while for k even the term

of highest regularity in the integral of motion
∫
hk is the Ḣ

k
2 (T) norm, for odd k this

term is not definite in sign. This prevents us to associate an invariant Gibbs measure
to every integral of motion

∫
hk , k ∈ Z+. The same does not occur for KdV, NLS or

Benjamin–Ono equations.
The DNLS equation has been shown to be locally well posed for initial data in

Hs≥1/2 for both periodic and non-periodic settings (see [19] and, respectively, [37]).
The global well-posedness has been proven for Hs≥1/2(R) in [24] and in Hs>1/2(T)

in [44]. The global results hold for initial data with small L2(T) norm. For instance, a
standard procedure (see [19]) allows to globalize the local H1(T) solutions provided
that ‖ψ0‖L2(T) < δ with δ small enough, by using the conservation law

∫
h2 and the

Gagliardo–Nirenberg inequality

‖u‖3L6(T)
≤ ‖u‖Ḣ1(T)‖u‖2L2(T)

+ 1

2π
‖u‖3L2(T)

. (1.4)

On the other hand, this approach does not give the best possible value for δ, which is
still unknown. In particular, in the case of DNLS onR the sharp Gagliardo–Nirenberg
inequality

‖u‖3L6(R)
≤ 2

π
‖u‖Ḣ1(R)‖u‖2L2(R)

,

proved in [43], gives the value δ = √
2π/|β| for global well-posedness [17,18], which

has been actually improved to δ = 2
√

π/|β| in [45,46] by different techniques. We
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point out that δ = 2
√

π/|β| is also sufficient on T [27]. All these results are originally
stated for β = ±1, and the case of general β can be easily deduced by using the
transformation u(t, x) → |β|−1/2u(t, β

|β| x).
The lack of well-posedness at low regularity makes hard to construct an invariant

measure associated to the lowest order integrals of motion. For
∫
h2 the main issue is

that there is no well-posedness in
⋂

ε>0 H
1
2−ε(T)which is the support of the Gaussian

measure with covariance I−Δ. A very delicate analysis is necessary to deal with this
problem. In [28] the authors constructed a functional measure in the Fourier–Lebesgue
space FLs,r (T), r ∈ (2, 4), s ∈ [1/2, 1 − r−1), for which there is a local existence
theorem [14]. They are able to prove the invariance of this measure with respect to
the DNLS flow (studying in fact the gauged DNLS equation). Then in [29] the study
is completed, by proving the absolute continuity of this measure with respect to the
Gibbs measure constructed in [38], which would be a more natural candidate for
the invariant measure associated to the energy functional

∫
h2. Similar results for the

DNLS equation have been obtained, with different methods, in [8]. To the best of our
knowledge, so far these are the sole known results for Gibbs measures associated to
the DNLS equation.

1.1 Setup and main result

The main goal of this paper is to construct Gaussian measures supported on Sobolev
spaces with increasing regularity, associated to the integrals of motion of the DNLS.
Let us introduce now the main objects we are going to deal with.

As usual we denote by Hk(T), k ∈ Z+, the completion of C∞(T) with respect to
the norm induced by the scalar product

(u, v)Hk :=
∑

n∈Z
(1 + |n|)2k ūnvn .

where un are the Fourier coefficients of u. For every k ∈ Z+, Hk(T) is a separable
Hilbert space, andwe note that H0(T) = L2(T). A function in Hk(T) is represented as
a sequence {un}n∈Z+ such that

∑
|n|≤N (1+|n|)2k |un|2 is finite uniformly in N ∈ Z+.

We also use the homogeneous Sobolev spaces Ḣ k(T), defined as the completion
of C∞(T) with respect to the norm induced by the homogenous scalar product

(u, v)Ḣ k :=
∑

n∈Z
n2k ūnvn .

Now we consider the Hilbert space L2(T). For any k ∈ Z+, let us denote by

I+ (−Δ)k the closure in L2(T) of the operator 1+
(
− d2

dx2

)k
acting on C∞(T). As it

is well known this is a positive, self-adjoint operator with a trivial kernel. Therefore,
its inverse (I − Δk)−1 is bounded, and moreover, it can be shown that it is of trace
class.



Gibbs measures associated to the integrals of motion of the. . . 1667

In virtue of this last property we can construct a Gaussian measure on L2(T) as
follows. We denote by en = einx the eigenvectors of I + (−Δ)k :

(
I + (−Δ)k

)
en =

(
1 + n2k

)
en .

Since I+ (−Δ)k is self-adjoint the set of its eigenvectors spans the space L2(T), and
so each function u(x) ∈ L2(T) can be written as

u(x) =
∑

n∈Z
unen,

that is nothing but Fourier series. We consider at first finite dimensional truncations,
looking only at the components of the expansion for |n| ≤ N . We define

γ N
k (A) :=

∏
|n|≤N

√
1 + n2k

(2π)2N+1

∫

A
du−Ndū−N . . . duNdūN e

− 1
2

∑
|n|≤N

(
1+n2k

)|un |2

to be the complex Gaussian measure of a set A ⊆ C
2N+1. This measure can be

extended in infinite dimensions following a standard method [33,47]. For any Borel
subset B ⊂ C

2N+1 we introduce the corresponding cylindrical set in L2(T) as

MN (B) =
{
u ∈ L2(T) | [

u−N , ū−N , . . . , uN , ūN
] ∈ B

}
.

Since I + (−Δ)k is of trace class, we can extend the Gaussian measure γ N
k to L2(T)

functions by setting γk(MN ) := γ N
k (MN ) and then using Kolmogorov reconstruction

theorem. It can be verified that this defines a countably additive measure on L2(T).
We refer to [2,33] for a more detailed presentation (see also “Appendix” for some
properties that will be used in the paper). We denote by L p

γk the Banach space of
functionals F : L2(T) → C such that

∫
dγk(dψ)|F(ψ)|p < ∞.

For the ease of notation we simply denote as E[·] (instead of Eγk [·]) the expectation
value w.r.t. the measure γk . Anyway the particular γk considered will be always clear
from the context.

For N ≥ 1, we set EN = spanC{einx | |n| ≤ N }, and we denote by PN : L2(T) →
EN the projection map onto the space EN . Namely, for u = ∑

n∈Z uneinx ∈ L2(T),
we have

PNu :=
∑

|n|≤N

une
inx. (1.5)

When there is no confusion, we simply denote

uN := PNu. (1.6)
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For ψ ∈ L2(T), we show in Sect. 2 that

∫
h2k[ψ] = 1

2
‖ψ‖2

Ḣ k +
∫

qk[ψ], k ∈ Z+,

where
∫
qk is a sum of terms of the form

∫
ψ̄(α1) . . . ψ̄ (αl )ψ(β1) . . . ψ(βl ),

with l ≤ 2k + 2, αi , βi ∈ Z+ and
∑

i≤l αi + βi ≤ 2k − 1.
Let now R > 0, and let χR : R → [0, 1] be a smooth function such that χ =

0 ∈ R\[−R,+R] and χ = 1 in [−R/2,+R/2]. For k ≥ 2, let us fix Rm > 0, for
m = 0, . . . , k − 1. Thus, we can define the density

Gk,N (ψ) =
(

k−1∏

m=0

χRm

(∫
h2m(ψN )

))

e− ∫
qk (ψN ). (1.7)

The associated measure dρk,N is

ρk,N (dψ) = Gk,N (ψ)γk(dψ).

The main result of the paper is the following:

Theorem 1.1 Let k ≥ 2 and R0 ≤
√

2
9|β| sufficiently small. The sequence Gk,N (ψ)

defined by Eq. (1.7) converges in measure, as N → ∞, w.r.t. the measure γk . Denote
by Gk(ψ) its limit. Then, there exists p0(R0, . . . , Rk−1, k, |β|) > 1 such that, for all
1 ≤ p < p0, Gk(ψ) ∈ L p(γk) and Gk,N (ψ) converges to Gk(ψ) in L p(γk).

Remark 1.2 The best range one should expect to obtain for R0 is the same of the

global-well-posedness problem, which at the moment is R0 < 2
√

π
|β| . The fact that

we only get R0 ≤
√

2
9|β| is, as we have observed above, a limitation of the Gagliardo–

Nirenberg inequality approach. Therefore, one could presumably obtain the widest

range
[
0, 2

√
π
|β|

)
by using different techniques. We point out that this could improve

the absolute constant, while the behavior � 1/
√|β| seems to be a peculiar feature of

the equation.

As a consequence of Theorem 1.1, we obtain that the measures ρk,N weakly con-
verge, as N → ∞, to the Gibbs measures ρk on L2(T):

ρk(dψ) = Gk(ψ)γk(dψ).

Since each Gk is supported on a set of positive measure w.r.t. γk , for every k ≥ 2, ρk
is non-trivial and absolutely continuous w.r.t. to γk . We choose the class observables
associated to each of these Gibbs measure to be the functionals in L∞

γk
.
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1.2 Strategy of the proof

The first part of our proof relies on an accurate inspection of the algebraic struc-
tures of the integrals of motion of the DNLS equation. This has been done in
Sect. 2. We use the Lenard–Magri scheme of integrability for non-local Pois-
son vertex algebras to find out the following general structure of the integrals of
motion:

∫
h2k = 1

2
‖ψ‖2

Ḣ k + i

2
β(2k + 1)

∫
ψ̄(k)ψ(k−1)ψ̄ψ + a remainder, k ∈ Z+,

where we consider as remainder all the terms that we can estimate with a certain power
of the Hk−1 norm. Note that this quantity is finite in the support of the Gaussian mea-
sure γk .

In Sect. 3 we show, under the L2 smallness assumption, that the Sobolev norm
Hk of the solutions of the DNLS equation (1.1) stays bounded by a constant
depending on the values of

∫
h2m , m = 1, . . . , k, integrals of motion. There-

fore, when we introduce the cut off functions χ in (1.7), we know that the Hs

norms, s ≤ k − 1, are bounded a.s. in the support of the Gibbs measure ρk,N
uniformly in N . This allows us to prove in Sect. 4 that all the remainder terms con-
verge point-wise in the support of ρk,N as N → ∞, thus also in measure w.r.t.
γk .

The terms
∫

ψ̄(k)ψ(k−1)ψ̄ψ are estimated by the Hk(T) norm, which is not finite
in the support of γk . Therefore, they need to be treated separately. This is done by
using a method outlined by Bourgain [4] (see also [7]), which is reminiscent of the
works in quantum field theory in the ‘70 [15,34]. Successively this approach has been
exploited by Tzvetkov and collaborators in [38] for DNLS equation and in [39,40] for
the Benjamin Ono equation.

In Sect. 4 we prove the convergence in L2(γk) of these terms as N → ∞, employ-
ing essentially the Wick theorem. L2(γk) convergence yields L p(γk) (p ∈ [1,∞))
convergence by a standard hypercontractivity argument. This is enough to prove con-
vergence inmeasure of the density. In Sect. 5 we ultimate our strategy showing L p(γk)

boundedness of the densityGk for p ∈ [1,∞), provided that
∫
h0 is sufficiently small.

Here we follow the nice ideas of [39], making use of some helpful properties of the
measures γk reviewed in “Appendix”.

From the L p(γk) boundedness the convergence in L p(γk) (and so the weak con-
vergence) of the density easily follows.

In the whole paper (except for Sect. 4) we are not concerned about the dynamics.
However, the measures that we construct are naturally expected to be invariant under
the flow ofDNLS. To prove this result, a careful analysis is required (as, for instance, in
the case of the Benjamin–Ono equation [12,41,42]) which we leave to a forthcoming
work.

Throughout the paper we write X � Y to denote that X ≤ CY for some positive
constant C independent on X,Y .
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2 Structure of the integrals of motion of the DNLS equation

In this section we recall briefly the theory of Poisson vertex algebras aimed at the
study of the integrability properties of bi-Hamiltonian equations using the so-called
Lenard–Magri scheme (see [1,13,22]). We use this formalism to describe explicitly
the structure of the integrals of motion of the DNLS equation which will be used
throughout the paper.

2.1 Algebras of differential polynomials

Let V be the algebra of differential polynomials in � variables: V = C[u(n)
i |i ∈ I, n ∈

Z+], where I = {1, . . . , �}. (In fact, most of the results hold in the generality of
algebras of differential functions, as defined in [13].) It is a differential algebra with
derivation defined by ∂(u(n)

i ) = u(n+1)
i . We also let K be the field of fractions of V (it

is still a differential algebra).
For P ∈ V� we have the associated evolutionary vector field

XP =
∑

i∈I,n∈Z+

(
∂n Pi

) ∂

∂u(n)
i

.

This makes V� into a Lie algebra, with Lie bracket [XP , XQ] = X[P,Q], given by

[P, Q] = XP (Q) − XQ(P) = DQ(∂)P − DP (∂)Q,

where DP (∂) and DQ(∂) denote the Frechet derivatives of P, Q ∈ V� (we refer to [1]
for the definition of Frechet derivative).

For f ∈ V its variational derivative is δ f
δu =

(
δ f
δui

)

i∈I ∈ V⊕�, where

δ f

δui
=

∑

n∈Z+

(−∂)n
∂ f

∂u(n)
i

. (2.1)

Given an element ξ ∈ V⊕�, the equation ξ = δh
δu can be solved for h ∈ V if and only

if Dξ (∂) is a self-adjoint operator: Dξ (∂) = D∗
ξ (∂) (see [1]).

For f ∈ V , we denote by
∫
f = f + ∂V , where ∂V = {∂h | h ∈ V}, the image of

f in the quotient space V/∂V , and we call it a local functional. Note that the integral
symbol ismotivated by the fact thatV/∂V provides a universal spacewhere integration
by parts holds, namely

∫
f ∂g = −

∫
g∂ f, for every f, g ∈ V.

It is possible to show that Ker δ
δu = ∂V ⊕ C. Hence, δ f

δu = δ
∫

f
δu = 0. Recall also that

we have a non-degenerate pairing (·|·) : V� × V� → V/∂V given by (P|ξ) = ∫
P · ξ

(see [1]).
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Given f ∈ V\C, we say that it has differential order n, and we write ord( f ) = n,
if ∂ f

∂u(n)
i

�= 0 for some i ∈ I and ∂ f

∂u(m)
j

= 0 for all j ∈ I and m > n. We also set

the differential order of elements in C equal to −∞. Let us denote by Vn the space
of polynomials of differential order at most n. This gives an increasing sequence of
subalgebras C = V−∞ ⊂ V0 ⊂ V1 ⊂ · · · ⊂ V such that ∂Vn ⊂ Vn+1.

We extend the notion of differential order to elements in P ∈ V� as follows:

ord(P) = max {ord(P1), . . . , ord(P�)} .

We also define two gradings on V in the following way. First, we let deg be the
usual polynomial grading of V defined by

deg u(n)
i = 1, for every i ∈ I, n ∈ Z+.

On the other hand, we define the differential grading on V , which we denote dd, by

dd u(n)
i = n, for every i ∈ I, n ∈ Z+.

This means that, given a monomial (i1, . . . , ik ∈ I , n1, . . . , nk ∈ Z+)

f = u(n1)
i1

u(n2)
i2

. . . u(nk)
ik

∈ V,

we have

deg( f ) = k, dd( f ) = n1 + · · · + nk .

Note that, for a homogeneous polynomial f ∈ V , we have

deg(∂ f ) = deg( f ), dd(∂ f ) = dd( f ) + 1. (2.2)

2.2 Rational matrix pseudodifferential operators and the association relation

Consider the skewfield K((∂−1)) of pseudodifferential operators with coefficients in
K, and the subalgebra V[∂] of differential operators on V .

The algebra V(∂) of rational pseudodifferential operators consists of pseudodif-
ferential operators L(∂) ∈ V((∂−1)) which admit a fractional decomposition L(∂) =
A(∂)B(∂)−1, for some A(∂), B(∂) ∈ V[∂], B(∂) �= 0. The algebra of rational matrix
pseudodifferential operators is, by definition, Mat�×� V(∂) [10].

A matrix differential operator B(∂) ∈ Mat�×� V[∂] is called non-degenerate if it is
invertible in Mat�×� K((∂−1)). Any matrix H(∂) ∈ Mat�×� V(∂) can be written as a
ratio of two matrix differential operators: H(∂) = A(∂)B−1(∂), with A(∂), B(∂) ∈
Mat�×� V[∂], and B(∂) non-degenerate.

Given H(∂) ∈ Mat�×� V(∂), we say that ξ ∈ V⊕l and P ∈ V� are H -associated,
and denote it by

ξ
H←→ P, (2.3)
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if there exist a fractional decomposition H = AB−1 with A, B ∈ Mat�×� V[∂] and B
non-degenerate, and an element F ∈ K�, such that ξ = BF, P = AF [13].

2.3 Non-local Poisson structures

A non-local Poisson vertex algebra is a differential algebra V endowed with a λ-
bracket {·λ·} : V × V → V((λ−1)), where V((λ−1)) denotes the space of Laurent
series in λ−1 with coefficients in V , satisfying sesquilinearity ( f, g ∈ V):

{∂ fλg} = −λ{ fλg}, { fλ∂g} = (λ + ∂){ fλg},

the Leibniz rule ( f, g, h ∈ V):

{ fλgh} = { fλg} h + { fλh} g,

skewsymmetry ( f, g ∈ V):

{ fλg} = − {g−λ−∂ f } ,

admissibility ( f, g, h ∈ V):

{
fλ{gμh}} ∈ V

[[
λ−1, μ−1, (λ + μ)−1

]]
[λ,μ],

and Jacobi identity ( f, g, h ∈ V):
{
fλ

{
gμh

}} − {
gμ { fλh}} = {{ fλg}λ+μ h}.

We refer to [13] for the details on the notation.
To a matrix pseudodifferential operator H = (Hi j (∂))i, j∈I ∈ Mat�×� V((∂−1))we

associate a λ-bracket, {·λ·}H : V × V → V((λ−1)), given by the following Master
Formula (see [13]):

{ fλg}H =
∑

i, j∈I
m,n∈Z+

∂g

∂u(n)
j

(λ + ∂)nHji (λ + ∂)(−λ − ∂)m
∂ f

∂u(m)
i

∈ V
((

λ−1
))

. (2.4)

For arbitrary H , it is proved in [1,13], that the λ-bracket (2.4) satisfies sesquilin-
earity and the Leibniz rule. Furthermore, it has been shown that skewadjointness of
H is equivalent to the skewsymmetry condition, and that, if H is a rational matrix
pseudodifferential operator, then the admissibility condition holds.

Definition 2.1 A non-local Poisson structure on V is a skewadjoint rational matrix
pseudodifferential operator H with coefficients in V such that the corresponding λ-
bracket (2.4) satisfies Jacobi identity; namely, V endowed with the λ-bracket (2.4) is
a non-local Poisson vertex algebra.
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Two non-local Poisson structures H, K ∈ Mat�×� V(∂) on V are said to be com-
patible if any of their linear combination (or, equivalently, their sum) is a non-local
Poisson structure. In this case we say that (H, K ) form a bi-Poisson structure on V .

2.4 Hamiltonian equations and integrability

Let H ∈ Mat�×� V(∂) be a non-local Poisson structure. An evolution equation on the
variables u = (ui )i∈I ,

du

dt
= P ∈ V�, (2.5)

is calledHamiltonianwith respect to the non-local Poisson structure H and the Hamil-
tonian functional

∫
h ∈ V/∂V if (see Sect. 2.2)

δh

δu
H←→ P.

Equation (2.5) is called bi-Hamiltonian if there are two compatible non-local Pois-
son structures H and K , and two local functionals

∫
h0,

∫
h1 ∈ V/∂V , such that

δh0
δu

H←→ P and
δh1
δu

K←→ P. (2.6)

An integral of motion for the Hamiltonian equation (2.5) is a local functional
∫
f ∈

V/∂V which is constant in time, namely such that (P| δ f
δu ) = 0. The usual requirement

for integrability is to have sequences {∫ hn}n∈Z+ ⊂ V/∂V and {Pn}n∈Z+ ⊂ V�, starting
with

∫
h0 = ∫

h and P0 = P , such that

(C1) δhn
δu

H←→ Pn for every n ∈ Z+,
(C2) [Pm, Pn] = 0 for all m, n ∈ Z+,
(C3) (Pm | δhn

δu ) = 0 for all m, n ∈ Z+.
(C4) The elements Pn span an infinite dimensional subspace of V�.

In this case, we have an integrable hierarchy of Hamiltonian equations

du

dtn
= Pn, n ∈ Z+.

Elements
∫
hn’s are called higher Hamiltonians, the Pn’s are called higher symmetries,

and the condition (Pm | δhn
δu ) = 0 says that

∫
hm and

∫
hn are in involution. Note that (C4)

implies that element δhn
δu span an infinite dimensional subspace of V�. The converse

holds provided that either H or K is non-degenerate.
Supposewe have a bi-Hamiltonian equation (2.5), associated to the compatible non-

local Poisson structures H, K and the Hamiltonian functionals
∫
h0,

∫
h1, in the sense

of Eq. (2.6). The Lenard–Magri scheme of integrability consists in finding sequences
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{∫ hn}n∈Z+ ⊂ V/∂V and {Pn}n∈Z+ ⊂ V�, starting with P0 = P and the given
Hamiltonian functionals

∫
h0,

∫
h1, satisfying the following recursive relations:

δhn
δu

H←→ Pn
K←→ δhn+1

δu
for all n ∈ Z+. (2.7)

In this case, we have the corresponding bi-Hamiltonian hierarchy

du

dtn
= Pn ∈ V�, n ∈ Z+, (2.8)

all Hamiltonian functionals
∫
hn, n ∈ Z+, are integrals of motion for all equations

of the hierarchy, and they are in involution with respect to both non-local Poisson
structures H and K , and all commutators [Pm, Pn] are zero, provided that one of
the non-local Poisson structures H or K is local (see [13, Sect. 7.4]). Hence, in this
situation (2.8) is an integrable hierarchy of compatible evolution equations, provided
that condition (C4) holds.

2.5 A bi-Hamiltonian structure and integrability for the DNLS equation

Let V = C[a(n), b(n) | n ∈ Z+] be the algebra of differential polynomials in two
variables a and b. Sometimes we will also use the notation a′ = a(1), a′′ = a(2) and
so on (and similarly for the b(n)’s).

Let H, K ∈ Mat2×2 V((∂−1)) be pseudodifferential operators with coefficients in
V defined as follows:

H =
(

∂ 0
0 ∂

)

and K =
(
2βb∂−1 ◦ b −1 − 2βb∂−1 ◦ a
1 − 2βa∂−1 ◦ b 2βa∂−1 ◦ a

)

,

where β ∈ C. Note that H(∂) ∈ Mat2×2 V[∂] is in fact a differential operator.
The following result have been proved in [13].

Theorem 2.2 (a) There exist A(∂), B(∂) ∈ Mat2×2 V[∂], with B(∂) non-degenerate,
such that K = A(∂)B(∂)−1. Explicitly:

A(∂) =
(− b

a
1
a ∂ ◦ a − 2βab

1 2βa2

)

and B(∂) =
(
1 0
b
a

1
a ∂ ◦ a

)

.

(b) (H, K ) is a bi-Poisson structure on V .
(c) There exist infinite sequences {∫ hn}n∈Z+ ⊂ V/∂V and {Pn}n∈Z+ ⊂ V2 such that

the Lenard–Magri recursive relations (2.7) hold.

(d) ord
(

δhn
δu

)
= n, for every n ∈ Z+. In particular, since H is non-degenerate, all

the elements
∫
hn’s and Pn’s are linearly independent (see Sect. 2.4).

In conclusion, by the discussion in Sect. 2.4, we get an integrable hierarchy of
bi-Hamiltonian equations (2.8) and all the Hamiltonian functionals

∫
hn, n ∈ Z+, are

integrals of motion for all equations of the hierarchy.
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The first few elements in the series of the integrals of motion are

∫
h0 = 1

2

∫ (
a2 + b2

)
,

∫
h1 =

∫ (

ab′ + β

4

(
a2 + b2

)2)

. (2.9)

The corresponding Hamiltonian equations, given by (2.8), are

⎧
⎨

⎩

da
dt0

= a′

db
dt0

= b′ ,

⎧
⎨

⎩

da
dt1

= b′′ + β
(
a

(
a2 + b2

))′

db
dt1

= −a′′ + β
(
b

(
a2 + b2

))′ .

Let us write ψ = a + ib. Then, the first non-trivial equation of the hierarchy is the
DNLS equation:

i
dψ

dt1
= ψ ′′ + iβ

(
ψ |ψ |2

)′
.

Let us consider β ∈ C as a formal parameter, and let us naturally extend the notion
of polynomial degree and differential degree of V to the field of fractionsK and toK2.
The following result is a consequence of the Lenard–Magri recursive relations (2.7)
and the explicit form of the differential operators A and B.

Proposition 2.3 For every n ∈ Z+, the variational derivatives δhn
δu ’s are polynomials

in β (with coefficients in V2) of order n. Let us write

δhn
δu

=
n∑

k=0

(
δhn
δu

)

k
βk .

Then, for every 0 ≤ k ≤ n, we have

ord

(
δhn
δu

)

k
= n − k.

Moreover, the components of
(

δhn
δu

)

k
are homogeneous polynomials with respect to

the polynomial grading (respectively, differential grading) of degree:

deg

(
δhn
δu

)

k
= 2k + 1

(

respectively, dd

(
δhn
δu

)

k
= n − k

)

.

Proof The fact that the variational derivatives δhn
δu ’s are polynomials in β (with coef-

ficients in V2) of order n is true for n = 0, 1 using Eq. (2.12) and the definition
of variational derivative (2.1). Let us assume that δhn

δu has order n as a polynomial
in β, and let us write explicitly the Lenard–Magri recursion relations (2.7) using
the formulas for the differential operators A and B. We get the following system of
equations
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⎧
⎪⎨

⎪⎩

∂(ag) = −a∂ δhn
δa − b∂ δhn

δb
δhn+1

δa = ∂ δhn
δb − 2βa2g

δhn+1
δb = −∂ δhn

δa − 2βabg,

(2.10)

where g ∈ K and δhn+1
δa ,

δhn+1
δb ∈ V have to be determined [we know the system can be

solved by Theorem 2.2(b)]. From the first equation in (2.10) and inductive assumption,
it follows that g is a polynomial of order n in β. Then, by the second and third equation
in (2.10), it follows that δhn+1

δu is a polynomial of order n + 1 in β.

Moreover, by Theorem 7.15(c) in [13], we have that ord
(

δhn+1
δu

)
= ord(Pn). Recall

that Pn = H
(

δhn
δu

)
. Hence, equating the orders of the coefficients of powers of β we

get

ord

(
δhn+1

δu

)

k
= ord

(

H

(
δhn
δu

)

k

)

= n + 1 − k.

In the last equality we used the fact that ∂Vn ⊂ Vn+1. The last part of the proposition
follows by a simple inductive argument using Eqs. (2.2) and (2.10). ��
Remark 2.4 By the first part of Proposition 2.3, we can write hn as a polynomial in
β. By the second part, using the definition of variational derivative and Eq. (2.2), we
get that

hn =
n∑

k=0

hn,kβ
k, (2.11)

where hn,k ∈ V are homogeneous differential polynomials such that deg(hn,k) =
2k + 2 and dd(hn,k) = n − k.

2.6 Explicit structure of the integrals of motion of the DNLS equation

Let us define a sequence {ξn}n∈Z+ ⊂ V2 as follows:

ξ0 =
(
a
b

)

, ξ1 =
(

b′ + βa
(
a2 + b2

)

−a′ + βb
(
a2 + b2

)
)

, (2.12)

and, for n ≥ 1, we set

ξ2n = (−1)n
(
a(2n) − (2n + 1)β

(
a2 + b2

)
b(2n−1) + ra2n

b(2n) + (2n + 1)β
(
a2 + b2

)
a(2n−1) + rb2n

)

,

ξ2n+1 = (−1)n
(
b(2n+1) + 2βa

(
aa(2n) + bb(2n)

) + (2n + 1)β
(
a2 + b2

)
a(2n) + ra2n+1

−a(2n+1) + 2βb
(
aa(2n) + bb(2n)

) + (2n + 1)β
(
a2 + b2

)
b(2n) + rb2n+1

)

,

where r x2n ∈ V2n−2 and r x2n+1 ∈ V2n−1, for x = a or b.
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Lemma 2.5 Let us denote ξn =
(

ξan

ξbn

)

∈ V2, for every n ∈ Z+. Then we have:

(a)

aξb2n+1 − bξa2n+1 − (−1)n+1∂
(
aa(2n) + bb(2n)

)

− (−1)n(2n + 1)β∂
(
(a2 + b2)(ab(2n−1) − a(2n−1)b)

)
∈ V2n−1.

(b)

aξb2n − bξa2n − (−1)n∂
(
ab(2n−1) − a(2n−1)b

)

− (−1)n(2n + 1)β∂
((

a2 + b2
) (

aa(2n−2) + bb(2n−2)
))

∈ V2n−2.

(c)

ξa2n+1 − ∂ξb2n − (−1)n2βa
(
aa(2n) + bb(2n)

)
∈ V2n−1,

ξb2n+1 + ∂ξa2n − (−1)n2βb
(
aa(2n) + bb(2n)

)
∈ V2n−1.

(d)

ξa2n − ∂ξb2n−1 − (−1)n+12βa
(
ab(2n−1)b − a(2n−1)b

)
∈ V2n−2,

ξb2n + ∂ξa2n−1 − (−1)n+12βb
(
ab(2n−1) − a(2n−1)b

)
∈ V2n−2.

Proof Straightforward. ��
Let us also define a sequence {Pn}n∈Z+ ⊂ V2 as follows:

Pn = Hξn =
(

∂ξan

∂ξbn

)

.

Lemma 2.6 For every n ∈ Z+, there exists Fn ∈ K2 such that:

(a) P2n − AF2n ∈ V2
2n−1 and ξ2n+1 − BF2n ∈ V2

2n−1;
(b) P2n+1 − AF2n+1 ∈ V2

2n and ξ2n+2 − BF2n+1 ∈ V2
2n.

Proof For every n ∈ Z+, let us consider

Fn =
(

ξan+1
fn + gn

)

∈ K2,

where
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f2n = (−1)n+1 aa
(2n) + bb(2n)

a
+ (−1)n(2n + 1)β

(
a2 + b2

)
(ab(2n−1) − a(2n−1)b)

a
,

f2n+1 = (−1)n+1 ab
(2n+1) − a(2n+1)b

a

+ (−1)n+1(2n + 3)β

(
a2 + b2

) (
aa(2n) + bb(2n)

)

a
,

and gn ∈ Vn−2. Then, using the definition of the differential operators A and B given by
Theorem 2.2(a), it is straightforward to check that part (a) follows from Lemma 2.5(a)
and (c), while part (b) follows from Lemma 2.5(b) and (d). ��
Proposition 2.7 Let {∫ hn}n∈Z+ ⊂ V/∂V be the sequence in Theorem 2.2. Then, for
every n ∈ Z+, we have

δhn
δu

− ξn ∈ V2
n−2.

Proof By Eq. (2.9) and the definition of variational derivative (2.1) it follows that
δhn
δu = ξn , for n = 0, 1. Hence, by Theorem 2.2(d), in order to prove the proposition
weneed to show that the sequence {ξn}n∈Z+ ⊂ V2 satisfies theLenard–Magri recursive
relations (2.7) up to elements in Vn−2. This follows by definition of the association
relation (2.3), the definition of the sequence {Pn}n∈Z+ ⊂ V2 and Lemma 2.6(a) and
(b). ��
Corollary 2.8 For every n ∈ Z+ we can assume that the conserved densities h2n ∈ V ,
defined by Theorem 2.2, have the form:

h2n = 1

2

((
a(n)

)2 +
(
b(n)

)2) + (2n + 1)β
(
a2 + b2

)
a(n−1)b(n) + R2n,

where R2n ∈ Vn−1.

Proof It follows by Proposition 2.7 and the definition of the variational derivative
(2.1), using the fact that ∂Vk ⊂ Vk+1, for every k ∈ Z+, and that the variational
derivative of a total derivative is zero. ��

2.7 Changing variables

Let VC be the algebra of differential polynomials in two variables ψ and ψ̄ . We have
a differential algebra isomorphism V ∼→ VC given on generators by

a = ψ + ψ̄

2
, b = ψ − ψ̄

2i
.

Clearly,the inversemap is given byψ = a+ib and ψ̄ = a−ib. (In the usual analytical
language, if a and b are real functions, then we want to consider them as the real and
imaginary parts of the function ψ .)
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The differential order, the polynomial grading and the differential grading of V and
VC are compatible under this isomorphism. Hence, all the results in Sect. 2.5 hold true
for δhn

δu ∈ (VC)2 (by an abuse of notation we are denoting with the same symbol an
element in V and its image in VC) Moreover, we can restate Corollary 2.8 as follows.

Corollary 2.9 For every n ∈ Z+ we can assume that the conserved densities h2n ∈
VC, defined by Theorem 2.2, have the form:

h2n = 1

2
ψ(n)ψ̄(n) + (2n + 1)i

2
βψ̄(n)ψ(n−1)ψ̄ψ + R2n,

where R2n ∈ VC

n−1.

Proof Clearly, (a(n))2 + (b(n))2 = ψ(n)ψ̄(n), for every n ∈ Z+. Moreover, we have

(
a2 + b2

)
a(n−1)b(n) = i

4

(
ψ̄(n)ψ(n−1)ψ̄ψ − ψ(n)ψ̄(n−1)ψ̄ψ +ψ̄(n)ψ̄(n−1)ψ̄ψ

−ψ(n)ψ(n−1)ψ̄ψ
)

. (2.13)

Note that, integrating by parts, we have

ψ(n)ψ̄(n−1)ψ̄ψ = −ψ(n−1)∂
(
ψ̄(n−1)ψ̄ψ

)
mod ∂V

=
(
−ψ̄(n)ψ(n−1)ψ̄ψ + f

)
mod ∂V, (2.14)

where f ∈ VC

n−1. Moreover, again using integration by parts, we have

ψ(n)ψ(n−1)ψ̄ψ = −ψ(n−1)∂
(
ψ(n−1)ψ̄ψ

)
mod ∂V

=
(
−ψ(n)ψ(n−1)ψ̄ψ + 2g

)
mod ∂V,

with g ∈ VC

n−1. Then,

ψ(n)ψ(n−1)ψ̄ψ = f mod ∂V. (2.15)

Similarly, we get that
ψ̄(n)ψ̄(n−1)ψ̄ψ = h mod ∂V. (2.16)

for some h ∈ VC

n−1. Combining Eqs. (2.13)–(2.16) the proof is concluded. ��

We want to give a description of the conserved densities h2n ∈ VC which will be
used throughout the rest of the paper.

Let Ṽ be the algebra of differential polynomials in one variable u. Let us denote by

˜ : VC → Ṽ (2.17)



1680 G. Genovese et al.

the differential algebra homomorphism defined as follows: Given f ∈ VC, we denote
by f̃ ∈ Ṽ the differential polynomial obtained by replacing ψ and ψ̄ by u (and their
nth derivatives by u(n)). Note that Ṽ inherits the polynomial and differential grading
of VC.

Recall, by Remark 2.4, that we can write the conserved densities as in Eq. (2.11).
Then, by Corollary 2.9, we have that

h2n,0 = 1

2
ψ(n)ψ̄(n), (2.18)

and

h2n,1 = (2n + 1)i

2
ψ̄(n)ψ(n−1)ψ̄ψ +

∑

p∈P̃

c2n(p)p, (2.19)

where ck(p) ∈ C (they can be possibly 0) and

P̃ =
{
p ∈ VC | p̃ = u(n−1)u(n1)u(n2)u(n3), n1 + n2 + n3 = n,

0 ≤ n3 ≤ n2 ≤ n1 ≤ n − 1} . (2.20)

3 Control of the Sobolev norms

The goal of this section is to show the persistence of regularity of small solutions of
DNLS equation (1.1), using the higher Hamiltonians introduced in Theorem 2.2.

For every k ∈ Z+, we denote

Ek =
∫

h2k .

By Eqs. (2.11), (2.18), (2.19) and Corollary 2.9 it is possible to write

Ek = 1

2
‖ψ‖Ḣ k +

∫
qk, (3.1)

where

qk := (2k + 1)i

2
βψ̄(k)ψ(k−1)ψ̄ψ + β

∑

p∈P̃

c2k(p)p +
2k∑

m=2

βmh2k,m . (3.2)

We recall that dd(hk,m) = 2k − m and P̃ is defined in (2.20).

Remark 3.1 Note that using Proposition 2.7 [and recalling Eq. (2.11)] it is possible to
write

∫
h2k+1 = i

2

∫
ψ(k)ψ̄(k+1) +

2k+1∑

m=1

βm
∫

h2k+1,m .
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Differently from the case of
∫
h2k , the constant term in β of the above equation has no

definite sign and, in particular, it does not coincide with ‖ψ‖Ḣ k/2 .

The main result of the section is the following.

Proposition 3.2 Let k ∈ Z+. For every 0 ≤ m ≤ k let us fix Rm ≥ 0, assuming

R0 ≤
√

2
9|β| . There exists C = C(R0, . . . , Rk, k, |β|) such that if

|Em[ψ]| ≤ Rm, for any m = 0, . . . , k,

then
‖ψ‖Ḣ k ≤ C. (3.3)

To prove Proposition 3.2 we need some preliminary results.

Lemma 3.3 Let k ≥ 2 and u ∈ Hk−1. For l ≥ 5 and αi ≥ 0 (i = 1, . . . , l) such that
α1 + · · · + αl ≤ 2k − 2, we have

∣
∣
∣
∣

∫
u(α1) . . . u(αl )

∣
∣
∣
∣ � ‖u‖lHk−1 . (3.4)

Proof We reorder the terms in the integrand in the l.h.s. of (3.4), such that α1 ≥ α2 ≥
· · · ≥ αl . Furthermore, using integration by parts, we may assume that

α1, α2 ≤ k − 1, and αi ≤ k − 2, i = 3, . . . , l. (3.5)

By the Holder inequality and the first condition in (3.5) we get

∣
∣
∣
∣

∫
u(α1) . . . u(αl )

∣
∣
∣
∣ ≤ ‖u‖2

Ḣ k−1

l∏

i=3

‖u(αi )‖L∞ . (3.6)

Using the embedding H1 ↪→ L∞ and the second condition in (3.5) we have (for all
i = 3, . . . , l):

‖u(αi )‖L∞ � ‖u(αi )‖H1 ≤ ‖u‖Hk−1 . (3.7)

The inequality (3.4) follows combining the inequalities (3.6) and (3.7). ��
Lemma 3.4 Let k ≥ 2 and u ∈ Hk−1. Let also α1 ≥ α2 ≥ α3 ≥ α4 ≥ 0 be such that
α1 + α2 + α3 + α4 = 2k − 1. For α1 = k − 1 and α2, α3, α4 ≤ k − 1, we have

∣
∣
∣
∣

∫
u(k−1)u(α2)u(α3)u(α4)

∣
∣
∣
∣ � ‖u‖4Hk−1 .

Proof Same as the proof of Lemma 3.3. ��
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Lemma 3.5 Let k ≥ 2 and let u ∈ Hk. Then

∣
∣
∣
∣

∫
u(k)u(k−1)u2

∣
∣
∣
∣ ≤ ε‖u‖2

Ḣ k + C(ε)‖u‖6Hk−1 ,

for all ε > 0.

Proof By using the Holder inequality and the embedding H1 ↪→ L∞ we get

∣
∣
∣
∣

∫
u(k)u(k−1)u2

∣
∣
∣
∣ ≤ ‖u‖Ḣ k‖u‖Ḣ k−1‖u‖2L∞ � ‖u‖Ḣ k‖u‖3Hk−1 .

The proof is concluded by applying the Young inequality in the last expression. ��
Corollary 3.6 Let k ≥ 2 and c(k) > 0 a constant depending only by k. For every
ψ ∈ Hk and ε > 0, we have

∣
∣
∣
∣

∫
qk(ψ)

∣
∣
∣
∣ ≤ c(k)ε‖ψ‖2

Ḣ k + C, (3.8)

where C = C(‖ψ‖Ḣ0 , ‖ψ‖Ḣ k−1 , ε, k, |β|).
Proof Let us focus on the representation (3.2):

qk(ψ) = (2k + 1)i

2
βψ̄(k)ψ(k−1)ψ̄ψ + β

∑

p∈P̃

c2k(p)p +
2k∑

m=2

βmh2k,m .

The Lemma 3.3 and the fact that |ψ | = |ψ̄ | allow us to bound [through the homomor-
phism defined in (2.17)]

∣
∣
∣
∣

∫
hk,m

∣
∣
∣
∣ ≤ C(‖ψ‖Ḣ0 , ‖ψ‖Ḣ k−1 , k), (3.9)

for all m = 2, . . . , 2k. Similarly, Lemma 3.4 implies

∣
∣
∣
∣

∫
p

∣
∣
∣
∣ ≤ C

(‖ψ‖Ḣ0 , ‖ψ‖Ḣ k−1 , k
)
, (3.10)

for all p ∈ P̃ . Finally, Lemma 3.5 gives

∣
∣
∣
∣

∫
ψ̄(k)ψ(k−1)ψ̄ψ

∣
∣
∣
∣ ≤ ε‖u‖2

Ḣ k + C(ε)‖u‖6Hk−1 . (3.11)

Combining Eq. (3.2), the inequalities (3.9)–(3.11), the estimate (3.8) follows. ��
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Lemma 3.7 Let ψ ∈ H1 and let us denote R0 = ‖ψ‖L2 . Then

∣
∣
∣
∣

∫
ψ̄ ′ψ̄ψ2

∣
∣
∣
∣ ≤ 3

2
‖ψ‖2

Ḣ1R
2
0 + 1

8π2 R
4
0 .

Proof By the Hölder inequality

∣
∣
∣ψ̄ ′ψ̄ψ2

∣
∣
∣ ≤ ‖ψ‖Ḣ1‖ψ3‖L2 = ‖ψ‖Ḣ1‖ψ‖3L6 . (3.12)

Using the Gagliardo–Nirenberg inequaltity (1.4) we get

‖ψ‖Ḣ1‖ψ‖3L6 ≤ ‖ψ‖2
Ḣ1‖ψ‖2L2 + 1

2π
‖ψ‖Ḣ1‖ψ‖3L2 = ‖ψ‖2

Ḣ1R
2
0 + 1

2π
‖ψ‖Ḣ1R3

0 .

(3.13)
Furthermore, using the Young inequality we have

1

2π
‖ψ‖Ḣ1R3

0 ≤ 1

2
‖ψ‖2

Ḣ1R
2
0 + 1

8π2 R
4
0 . (3.14)

Combining (3.12)–(3.14) the proof follows. ��
Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2 We prove (3.3) by induction on k. For k = 0, there is nothing
to prove, since E0(ψ) = 1/2‖ψ‖2

L2 [Eq. (1.2)].

For k = 1, by Eq. (1.3) we can write E1(ψ) = 1/2‖ψ‖2
Ḣ1 + ∫

q1(ψ), where

∫
q1(ψ) = 3i

4
β

∫
ψ̄ ′ψ̄ψ2 + β2

4
‖ψ‖6L6 .

Hence,
1

2
‖ψ‖2

Ḣ1 = E1(ψ) −
∫

q1(ψ) ≤ E1(ψ) − 3i

4
β

∫
ψ̄ ′ψ̄ψ2. (3.15)

By Lemma 3.7 and choosing R0 ≤
√

2
9|β| we obtain

∣
∣
∣
∣
3i

4
β

∫
ψ̄ ′ψ̄ψ2

∣
∣
∣
∣ ≤ 1

4
‖ψ‖2

Ḣ1 + 3

32
R4
0 . (3.16)

Thus, by (3.15) and (3.16), it follows that

1

4
‖ψ‖2

Ḣ1 ≤ |E1| + 3

32
R4
0 =: C(R0, R1).

This proves (3.3) in the case k = 1. Let us assume that Eq. (3.3) holds for k ≥ 2,
namely

‖ψ‖Ḣ k ≤ C(R0, . . . , Rk, k, |β|),
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and let us show that it holds for k + 1. By Eq. (3.1) and Corollary 3.6 we have

1

2
‖ψ‖2

Ḣ k+1 ≤ |Ek+1(ψ)| −
∫

qk+1(ψ)

≤ Rk+1 + c(k)ε‖ψ‖2
Ḣ k+1 + C

(‖ψ‖Ḣ0 , ‖ψ‖Ḣ k , ε, k, |β|) . (3.17)

On the other by the inductive assumption we have

C
(‖ψ‖Ḣ0 , ‖ψ‖Ḣ k , ε, k, |β|) = C (R0, . . . , Rk, ε, k, |β|) .

Hence, from (3.17), choosing ε ≤ 1/4c(k), we get

1

4
‖ψ‖2

Ḣ k+1 ≤ C (R0, . . . , Rk, Rk+1, k + 1, |β|) ,

thus proving Eq. (3.3) and concluding the proof. ��

4 Convergence of the integrals of motion

In this section we study the convergence of Gk,N (ψ) defined in (1.7) with respect to
the Gaussian measure γk . The main result is given by the following.

Proposition 4.1 Let k ≥ 2 and 1 ≤ m ≤ k. Then
∫
qm(ψN ) converges in measure to∫

qm(ψ) w.r.t. the Gaussian measure dγk . Furthermore, if 1 ≤ m < k, then Em(ψN )

converges in measure to Em(ψ) w.r.t. γk .

As a consequence, by composition and multiplication of continuous functions, we
obtain

Corollary 4.2 The sequence Gk,N (ψ) converges in measure, with respect to γk , as
N → ∞, to a function which we (already) denoted Gk(ψ).

We split the proof of Proposition 4.1 in several steps.

Lemma 4.3 Let k ≥ 2, and let α1 ≥ α2 ≥ α3 ≥ α4 ≥ 0 be such that α1 + α2 + α3 +
α4 = 2k − 1. For α1 = k − 1 and α2, α3, α4 ≤ k − 1, we have

lim
N→∞

∫
u(k−1)
N u(α2)

N u(α3)
N u(α4)

N =
∫

u(k−1)u(α2)u(α3)u(α4),

almost everywhere with respect to the measure γk .

Proof We have

∣
∣
∣
∣

∫
u(k−1)
N u(α2)

N u(α3)
N u(α4)

N −
∫

u(k−1)u(α2)u(α3)u(α4)

∣
∣
∣
∣ ≤ A1 + A2,
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where

A1 :=
∣
∣
∣
∣

∫
(u(k−1)

N − u(k−1))u(α2)
N u(α3)

N u(α4)
N

∣
∣
∣
∣ ,

A2 :=
∣
∣
∣
∣

∫
u(k−1)

(
u(α2)
N u(α3)

N u(α4)
N − u(α2)u(α3)u(α4)

)∣
∣
∣
∣

by using the embedding H1 ↪→ L∞ and uN → u in Ḣ k−1, γk-a.s. we immediately
see that A1 → 0, γk-a.s. Then we notice that

A2 ≤ B1 + B2

where

B1 :=
∣
∣
∣
∣

∫
u(k−1)

(
u(α2)
N − u(α2)

)
u(α3)
N u(α4)

N

∣
∣
∣
∣ ,

B2 :=
∣
∣
∣
∣

∫
u(k−1)u(α2)

(
u(α3)u(α4) − u(α3)

N u(α4)
N

)∣
∣
∣
∣

and as before B1 → 0, γk-a.s. We finally notice that

B2 ≤ C1 + C2

where

C1 :=
∣
∣
∣
∣

∫
u(k−1)u(α2)

(
u(α3) − u(α3)

N

)
u(α4)

∣
∣
∣
∣ ,

C2 :=
∣
∣
∣
∣

∫
u(k−1)u(α2)u(α3)

N

(
u(α4) − u(α4)

N

)∣
∣
∣
∣ (4.1)

and as before both C1,C2 → 0, γk-a.s., which completes the proof. ��
Lemma 4.4 For k ≥ 2, l ≥ 5, and αi ≥ 0 (i = 1, . . . , l) such that 0 ≤ α1+· · ·+αl ≤
2k − 2, we have

lim
N→∞

∫
u(α1)
N . . . u(αl )

N =
∫

u(α1) . . . u(αl ),

almost everywhere with respect to the measure γk .

Proof As in the proof of Lemma 3.3, by reordering and integration by parts we can
reduce to the case

α1, α2 ≤ k − 1, and αi ≤ k − 2, i = 3, . . . , l.

Then the proof is the same of Lemma 4.3. ��
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Let l ∈ Z+. We denote by Sl the group of permutations on l elements. In the sequel
we use the following version of the Wick formula (we refer to [9] or to [15,34] for
more details). Let (m1, . . . ,ml , n1, . . . , nl) ∈ Z

2l . Then we have

E

⎡

⎣
l∏

j=1

ψ̄m j ψn j

⎤

⎦ =
∑

σ∈Sl

l∏

i=1

δmi ,nσ(i)
(
1 + |nσ(i)|k

)2 . (4.2)

Let us denote by

f kN (ψ) :=
∫

ψ
(k)
N ψ̄

(k−1)
N ψ̄NψN . (4.3)

Proposition 4.5 Let k ≥ 2. The sequence { f kN }N∈Z+ is a Cauchy sequence in L2
γk
,

for all s < k − 1/2. Indeed, for all N > M ≥ 1, we have

‖ f kM − f kN‖L2
γk

� 1√
M

.

Proof By an explicit computation we get

f kN (ψ) = i
∑

AN

nk1m
k−1
1 ψ̄m1ψ̄m2ψn1ψn2 ,

where

AN :=
{
(m1,m2, n1, n2) ∈ Z

4 | |mi |, |ni | ≤ N , n1 + n2 = m1 + m2

}
.

According to our convention, the labels mi (respectively ni ) are associated to the
Fourier coefficients of ψ̄ (respectively ψ). Moreover, we define

AN ,M := {(m1,m2, n1, n2) ∈ AN , max (|m1|, |m2|, |n1|, |n2|) > M} .

Thus,
f kN (ψ) − f kM (ψ) = i

∑

AN ,M

nk1m
k−1
1 ψ̄m1ψ̄m2ψn1ψn2 . (4.4)

Taking the square of Eq. (4.4) we get

∣
∣
∣ f kN (ψ) − f kM (ψ)

∣
∣
∣
2 =

∑

AN ,M×A′
N ,M

nk1m
k−1
1 mk

3n
k−1
3

4∏

j=1

ψ̄m j ψn j ,

where

A′
N :=

{
(m3,m4, n3, n4) ∈ Z

4 | |mi |, |ni | ≤ N , m3 + m4 = n3 + n4
}

,

A′
N ,M := {

(m3,m4, n3, n4) ∈ A′
N | max (|m3|, |m4|, |n3|, |n4|) > M

}
.
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By definition of the measure γk we have

‖ f kM − f kN‖2L2
γk

=
∑

AN ,M×A′
N ,M

nk1m
k−1
1 mk

3n
k−1
3 E

⎡

⎣
4∏

j=1

ψ̄m j ψn j

⎤

⎦ . (4.5)

By using the Wick formula (4.2) with l = 4, Eq. (4.5) becomes

∥
∥
∥ f kM − f kN

∥
∥
∥
2

L2
γk

=
∑

AN ,M×A′
N ,M

nk1m
k−1
1 mk

3n
k−1
3

∑

σ∈S4

4∏

i=1

δmi ,nσ(i)
(
1 + |nσ(i)|k

)2 . (4.6)

Let us consider the subgroup G = {1, (12), (34), (12)(34)} ⊂ S4 and its action on
S4 by left multiplication. For X ⊂ S4, we denote by G · X = {gx | g ∈ G, x ∈ X} the
orbit of the subset X . We have the following partition of S4 = W1 ∪ W2 ∪ W3, where
W1 := G · {1} = G, W2 := G · {(13), (14), (23), (24)} and W3 := G · {(13)(24)}.
Hence, we can further rewrite Eq. (4.6) as follows:

∥
∥
∥ f kM − f kN

∥
∥
∥
2

L2
γk

=
3∑

i=1

∑

Ai
N ,M

∑

σ∈Wi

nk1n
k−1
σ(1)n

k−1
3 nkσ(3)

∏4
j=1

(
1 + |n j |k

)2 , (4.7)

where the subsets of indices Ai
N ,M will be presented case by case.

We consider the three contributions to the sum in (4.7) separately.
First case: i = 1 We have

A1
N ,M =

{
(n1, n2, n3, n4) ∈ Z

4 | |ni | ≤ N , max (|n1|, |n2|) > M,

max (|n3|, |n4|) > M} ,

and the contribution to the sum in (4.7) is

∑

A1
N ,M

(
n2k−1
1 n2k−1

3
∏4

j=1

(
1 + |n j |k

)2 + nk1n
k−1
2 n2k−1

3
∏4

j=1

(
1 + |n j |k

)2 + n2k−1
1 nk−1

3 nk4
∏4

j=1

(
1 + |n j |k

)2

+ nk1n
k−1
2 nk−1

3 nk4
∏4

j=1

(
1 + |n j |k

)2

)

. (4.8)

The sum in (4.8) is zero. In fact, all the functions involved in the sum are odd functions
with respect to the transformation n1 → −n1, n2 → −n2 while the index set A1

N ,M
is invariant.
Second case: i = 2 In this case we have

A2
N ,M =

{
(n1, n2, n3) ∈ Z

3 | |ni |≤N , max(|n1|, |n2|)>M, max (|n1|, |n3|)>M
}

.
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Similarly to the previous case, the contribution in the sum (4.7) corresponding to a
permutation σ ∈ W2 which fixes 1 (respectively 3) is zero since the summand is odd
with respect to the transformation n1 → −n1 (respectively n3 → −n3) while the
index set A2

N ,M is invariant. The summands corresponding to the remaining elements
in W2 have the following form

∑

A2
N ,M

na11
(
1 + |n1|k

)4
na22

(
1 + |n2|k

)2
na33

(
1 + |n1|k

)2 (4.9)

where a2, a3 ∈ {0, k − 1, k}, a1 + a2 + a3 = 4k − 2 (hence 2k − 2 ≤ a1 ≤ 4k − 2).
So, by a straightforward computation, we have (we remind that we are considering
k ≥ 2)

(4.9) �
∑

max(|n1|,|n2|)>M,
max(|n1|,|n3|)>M

na11
(
1 + |n1|k

)2
na22

(
1 + |n2|k

)2
na33

(
1 + |n3|k

)2 � 1

M
. (4.10)

Third case: i = 3 We have

A3
N ,M =

{
(n2, n3, n4) ∈ Z

3 | |ni |≤N , max (|n3+n4 − n2|, |n2|, |n3|, |n4|)>M
}

.

Two summands in (4.7), corresponding to the elements (13) (24) and (1423) in W3,
have respectively the following form

∑

A3
N ,M

(n3 + n4 − n2)2k
(
1 + |n3 + n4 − n2|k

)2
1

(
1 + |n2|k

)2
n2(k−1)
3

(
1 + |n3|k

)2
1

(
1 + |n4|k

)2 , (4.11)

∑

A3
N ,M

(n3 + n4 − n2)2k
(
1 + |n3 + n4 − n2|k

)2
1

(
1 + |n2|k

)2
nk−1
3

(
1 + |n3|k

)2
nk−1
4

(
1 + |n4|k

)2 . (4.12)

We can bound these terms as

(4.11) �
∑

max(|n2|,|n3|,|n4|)>M/3

1
(
1 + |n2|k

)2
n2(k−1)
3

(
1 + |n3|k

)2
1

(
1 + |n4|k

)2 � 1

M
,

(4.13)

(4.12) �
∑

max(|n2|,|n3|,|n4|)>M/3

1
(
1 + |n2|k

)2
nk−1
3

(
1 + |n3|k

)2
nk−1
4

(
1 + |n4|k

)2 � 1

Mk
.

(4.14)
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The other two terms correspond to the elements (14) (23) and (1324). They can be
estimated respectively as

∑

A3
N ,M

(n3 + n4 − n2)k
(
1 + |n3 + n4 − n2|k

)2
nk2

(
1 + |n2|k

)2
nk−1
3

(
1 + |n3|k

)2
nk−1
4

(
1 + |n4|k

)2 � 1

Mk−1 ,

(4.15)
∑

A3
N ,M

(n3 + n4 − n2)k

(1 + |n3 + n4 − n2|k)2
nk−1
2

(
1 + |n2|k

)2
n2(k−1)
3

(
1 + |n3|k

)2
1

(
1 + |n4|k

)2 � 1

Mk−1 .

(4.16)

In conclusion, recollecting all the contributions given by (4.10) and (4.13–4.16) , we
see immediately that, for k ≥ 2, we have

‖ f kN − f kM‖2L2
γk

� 1

M
, (4.17)

thus concluding the proof. ��
We can extend the estimate (4.17) to all the L p(Hs, γk)-norms, with p ≥ 1. For

1 ≤ p < 2 it is trivial, since γk is a probability measure. For p > 2 we have to
use the properties of the Gaussian measure. For any r−linear form Ψ r (ψ), a direct
application of the Nelson hypercontractivity inequality [30], as shown for instance in
[34, Theorem I.22], yields

∥
∥Ψ r

∥
∥
L p

γk
≤ (p − 1)

r
2 ‖Ψ r‖L2

γk
.

This leads us to the following.

Corollary 4.6 For all p ≥ 2 and N > M ≥ 1, we have

∥
∥
∥ f kM (ψ) − f kN (ψ)

∥
∥
∥
L p(Hs ,γk )

� (p − 1)2√
M

. (4.18)

Corollary 4.7 Let k ≥ 2, then
∫
qk,2k−1(ψN ) converges in measure to

∫
qk,2k−1(ψ),

w.r.t. γk .

Proof It follows by the explicit form of
∫
qk,2k−1 given in Corollary 2.9 and by Propo-

sition 4.5 and Lemma 4.3.

Finally, we can prove Proposition 4.1.

Proof of Proposition 4.1 The explicit form of
∫
qk given by Corollary 2.9, Lemma 4.4

and Corollary 4.7 imply that
∫
qm(ψN ) converges in measure to

∫
qm(ψ) w.r.t. γk , for

1 ≤ m ≤ k, k ≥ 2. In addition, Proposition 3.2 ensures that as long as 1 ≤ m < k we
have ‖ψN‖Hm ≤ C N -uniformly; thereby it converges to ‖ψ‖Hm a.e. w.r.t. γk . ��
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5 Proof of Theorem 1.1

In this section we conclude the proof of Theorem 1.1. First, we state a useful technical
lemma that we borrow from [39, Proposition 4.5]. We report the proof for the sake of
completeness:

Lemma 5.1 Let (Ω,S, μ) a finitemeasure space. If there areC, r > 0, and an integer
p0 > 0, such that for every p ≥ p0 we have

‖F‖p ≤ Cpr ,

then there exist 0 < δ < re−1 and a constant L = L(r, δ, p0) such that

∫

Ω

dμ exp

[

δ

( |F |
C

) 1
r
]

≤ L . (5.1)

Proof We expand

exp

[

δ

( |F |
C

) 1
r
]

=
∑

n∈Z+

δn

n!
( |F |

C

)n/r

.

Thus,

∫

Ω

dμ exp

[

δ

( |F |
C

) 1
r
]

=
∫

�

dx
∑

n∈Z+

δn

n!
( |F |

C

)n/r

=
∑

n∈Z+

δn

n!
‖F‖n/r

n/r

Cn/r

≤
∑

n<p0r

δn

n!
‖F‖n/r

n/r

Cn/r
+

∑

n≥p0r

δn

n!
(n

r

)n

=:
∑

n<p0r

δn

n!
‖F‖n/r

n/r

Cn/r
+ L1(r, δ, p0),

where the constant L1(r, δ) is finite for δ < re−1. For the finite sum we readily have

‖F‖n/r
n/r ≤ ‖F‖n/r

p0 ≤ Cn/r pn0 ,

hence

∑

n<p0r

δn

n!
‖F‖n/r

n/r

Cn/r
≤

∑

n<p0r

δn

n! p
n
0 =: L2(r, δ, p0).
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The constant L2 is always finite, so we can set L = L1 + L2 and the assert follows.
��

Remark 5.2 The exponent 1/r in (5.1) is optimal: The formula remains valid for each
α ≤ 1/r and fails otherwise.

By using Lemma 5.1 and Proposition 4.5 we can deduce that we have a sub-
exponential tail for the convergence in probability of the Cauchy sequence f kN defined
in Eq. (4.3).

Lemma 5.3 Let N > M ≥ 1 be integer numbers and f kN defined as in (4.3). Then for
any λ > 0 and k ≥ 2 we have

γk

(∣
∣
∣ f kN − f kM

∣
∣
∣ ≥ λ2

)
� exp

(

−
√
2

3
λM1/4

)

. (5.2)

Proof By formula (4.18) in Proposition 4.5 we can apply the Lemma 5.1 with F =
f kN − f kM , p0 = 2, r = 2, C = 2/

√
M and δ = 2/3. We immediately obtain

∫
γk(dψ) exp

⎡

⎣2

3

(∣
∣ f kN − f kM

∣
∣
√
M

2

)1/2
⎤

⎦ < ∞.

Formula (5.2) follows straightforwardly from Markov inequality:

γk

(∣
∣
∣ f kN − f kM

∣
∣
∣ ≥ λ2

)
= γk

⎛

⎝

√√
M| f kN − f kM |

2
≥ λM1/4

√
2

⎞

⎠

≤ exp

(

−2

3

λM1/4

√
2

)

E

⎡

⎣exp

⎛

⎝2

3

√√
M | f kN − f kM |

2

⎞

⎠

⎤

⎦

≤ exp

(

−2

3

λM1/4

√
2

)

= exp

(

−
√
2

3
λM1/4

)

.

��
Now we come to the most important result of this section, namely the integrability

of the density Gk,N (ψ) w.r.t. the Gaussian measure γk . More precisely we state:

Proposition 5.4 Let C = C(R0, . . . , Rk−1, k, |β|) be the constant appearing in

Proposition 3.2 and let us take R0 ≤
√

2
9|β| such that

p0 := min

(

2

(

3(2k + 1)|β|
√
CR3

0

)−1

, (4(2k + 1)|β|R0C)−1

)

> 1.
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Then for any k ≥ 2, 1 ≤ p < p0 and N ≥ ( 2k+1
2 |β|)2 R6

0C2 we have

‖Gk,N (ψ)‖L p(γk ) ≤ C < +∞,

where Gk,N (ψ) are the Gibbs densities introduced in (1.7).

The proof needs two accessory results:

Lemma 5.5 For every p ≥ 1 and k ≥ 2, we have

∥
∥Gk,N (ψ)

∥
∥
L p(γk )

≤ eC
∥
∥
∥
∥
∥

k−1∏

m=0

χRm

(∫
hm(ψN )

)

e− f kN [ψN ]
∥
∥
∥
∥
∥
L p(γk )

.

Proof The lemma follows as a direct consequence from Corollary 2.9, Lemmas 3.3,
3.4, 4.3, 4.4, and Proposition 3.2. ��
Lemma 5.6 For λ ≥ R2

0

√
N we have

γk

(

sup
x∈T

∣
∣
∣ψ(k)

N ψ̄N

∣
∣
∣ ≥ λ

)

� N 2+2ke− λ
4 .

Proof The proof follows from Propositions 6.5 and 6.8 for quadratic forms in “Appen-
dix.” Expanding in Fourier series we see that

QN (x) :=
∣
∣
∣ψ(k)

N (x)ψ̄N (x)
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∑

| j |,|h|≤N

(ih)kei(h− j)xψhψ̄ j

∣
∣
∣
∣
∣
∣

is a quadratic form in the Fourier coefficients of ψ and it fulfills the requirement (6.5)
in Proposition 6.5, with Tk ≤ 1. Hence, for each x ∈ T we obtain

γk

(∣
∣
∣ψ(k)

N (x)ψ̄N (x)
∣
∣
∣ ≥ λ

)
� e− λ

4 ,

for all λ > 0. Moreover, for any x, y ∈ T, by the Cauchy–Schwarz and Bernstein
inequality

|QN (x) − QN (y)| =
∣
∣
∣
∣

∫ x

y
Q̃N (z)dz

∣
∣
∣
∣

≤ √|x − y|‖Q̃N‖L2

≤ √|x − y|N‖QN‖L2

≤ √|x − y|N 3
2+k R2

0 .

Therefore, we can apply Proposition 6.8 with α = 1
2 and LN = N

3
2+k R2

0 to get for

any ε > 0 and λ ≥ N
3
2+k R2

0
√

ε
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γk

(

sup
x∈T

∣
∣
∣ψ(k)

N (x)ψ̄N (x)
∣
∣
∣ ≥ λ

)

� e−λ/4

ε
.

We recover the assert by setting ε = N−2−2k . ��

Now we can give the

Proof of Proposition 5.4 Let us set for brevity σ := i 2k+1
2 β. By Lemma 5.5 we have

to estimate

∫ +∞

0
t p−1γk

(
k−1∏

m=0

χRm

(∫
h2m(ψN )

)

e−σ
∫

ψ
(k)
N ψ̄

(k−1)
N ψN ψ̄N ≥ t

)

dt. (5.3)

We use

γk

(
k−1∏

m=0

χRm

(∫
h2m(ψN )

)

e−σ
∫

ψ
(k)
N ψ̄

(k−1)
N ψN ψ̄N ≥ t

)

= γk

(
k−1∏

m=0

χRm

(∫
h2m(ψN )

)

e−σ
∫

ψ
(k)
N ψ̄

(k−1)
N ψN ψ̄N ≥ t,

∣
∣
∣
∣

∫
h2m(ψN )

∣
∣
∣
∣ ≤ Rm, 0 ≤ m ≤ k − 1

)

≤ γk

(∣
∣
∣
∣

∫
ψ

(k)
N ψ̄

(k−1)
N ψN ψ̄N

∣
∣
∣
∣ ≥ ln t

|σ | ,

∣
∣
∣
∣

∫
h2m(ψN )

∣
∣
∣
∣≤ Rm, 0≤m ≤ k − 1

)

.

It is convenient to split the integral in (5.3) into three parts:

(5.3) =
∫ exp(σ 2R6

0C2)

0
(·) +

∫ exp(|σ |R3
0C

√
N )

exp(σ 2R6
0C2)

(·) +
∫ +∞

exp(|σ |R3
0C

√
N )

(·). (5.4)

For t ≤ eσ 2R6
0C2

it suffices to use the trivial bound

γk

(∣
∣
∣
∣

∫
ψ

(k)
N ψ̄

(k−1)
N ψN ψ̄N

∣
∣
∣
∣ ≥ ln t

|σ | ,
∣
∣
∣
∣

∫
h2m(ψN )

∣
∣
∣
∣ ≤ Rm, 0 ≤ m ≤ k − 1

)

≤ 1.

(5.5)
In the range σ 2R6

0C2 ≤ ln t ≤ |σ |CR3
0

√
N we define

N∗ = N∗(t) :=
⌊

ln t

|σ |CR3
0

⌋2

,
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noting that N > N∗. We decompose

γk

(∣
∣
∣
∣

∫
ψ

(k)
N ψ̄

(k−1)
N ψN ψ̄N

∣
∣
∣
∣ ≥ ln t

|σ | ,
∣
∣
∣
∣

∫
h2m(ψN )

∣
∣
∣
∣ ≤ Rm, 0 ≤ m ≤ k − 1

)

≤ γk

(∣
∣
∣
∣

∫
ψ

(k)
N ψ̄

(k−1)
N ψN ψ̄N −

∫
ψ

(k)
N∗ ψ̄

(k−1)
N∗ ψN∗ψ̄N∗

∣
∣
∣
∣ ≥ ln t

2|σ |
)

(5.6)

+ γk

(∣
∣
∣
∣

∫
ψ

(k)
N∗ ψ̄

(k−1)
N∗ ψN∗ψ̄N∗

∣
∣
∣
∣ ≥ ln t

2|σ |
)

. (5.7)

For the first addendum (5.6), we exploit formula (5.2) in Lemma 5.3, to obtain

γk

(∣
∣
∣
∣

∫
ψ

(k)
N ψ̄

(k−1)
N ψN ψ̄N −

∫
ψ

(k)
N∗ ψ̄

(k−1)
N∗ ψN∗ψ̄N∗

∣
∣
∣
∣ ≥ ln t

2|σ |
)

� t
−

(

3|σ |
√
CR3

0

)−1

.

(5.8)
Since in (5.7) we have ln t ≥ |σ |R3

0C
√
N∗, we can treat this term and the third

addendum in (5.4) (where we consider ln t ≥ |σ |R3
0C

√
N ) by the same method as

follows. We bound

∣
∣
∣
∣

∫
ψ

(k)
N ψ̄

(k−1)
N ψN ψ̄N

∣
∣
∣
∣ ≤ ‖ψ(k)

N ψ̄N‖∞R0C,

whence

γk

(∣
∣
∣
∣

∫
ψ

(k)
N ψ̄

(k−1)
N ψN ψ̄N

∣
∣
∣
∣ ≥ ln t

|σ | ,
∣
∣
∣
∣

∫
h2m(ψN )

∣
∣
∣
∣ ≤ Rm, 0 ≤ m ≤ k − 1

)

≤ γk

(

max
x∈T

∣
∣
∣ψ(k)

N ψ̄N

∣
∣
∣ R0C ≥ ln t

|σ |
)

.

Thus, to estimate the r.h.s. probability we use Lemma 5.6 with λ = ln t
|σ |R0C to get

γk

(
k−1∏

m=0

χRm

(∫
h2m(ψN )

)

e−σ
∫

ψ
(k)
N ψ̄

(k−1)
N ψN ψ̄N ≥ t

)

≤ N 2+2ke
− ln t

4|σ |R0C . (5.9)

In particular for N = N∗ we have

γk

(∣
∣
∣
∣

∫
ψ

(k)
N∗ ψ̄

(k−1)
N∗ ψN∗ψ̄N∗

∣
∣
∣
∣ ≥ ln t

2|σ |
)

≤ (N∗)2+2ke
− ln t

8|σ |R0C . (5.10)

Now we can estimate (5.3). We first notice that (5.5) gives

∫ eσ2R60C2

0
t p−1γk

(
k−1∏

m=0

χRm

(∫
h2m(ψN )

)

e−σ
∫

ψ
(k)
N ψ̄

(k−1)
N ψN ψ̄N ≥ t

)

dt < eσ 2R6
0C2

.
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Then by using (5.10) and (5.8) we obtain

∫ exp(|σ |R3
0C

√
N )

eσ2R60C2
t p−1γk

(
k−1∏

m=0

χRm

(∫
h2m(ψN )

)

e− ∫
ψ

(k)
N ψ̄

(k−1)
N ψN ψ̄N ≥ t

)

dt

�
∫ exp(|σ |R3

0C
√
N )

eσ2R60C2
t p−1−(8|σ |R0C)−1

ln t2+2k

+
∫ exp(|σ |R3

0C
√
N )

eσ2R60C2
t
p−1−

(

3|σ |
√
CR3

0

)−1

.

We note that as p < min((3|σ |
√
CR3

0)
−1, (8|σ |R0C)−1) both the functions on the

r.h.s. are integrable, so we can bound both terms by an appropriate constant.
Finally, using (5.9), we have

∫ +∞

exp(|σ |R3
0C

√
N )

t p−1γk

(
k−1∏

m=0

χRm

(∫
h2m(ψN )

)

e−σ
∫

ψ
(k)
N ψ̄

(k−1)
N ψN ψ̄N ≥ t

)

� N 2+2k
∫ +∞

exp(|σ |R3
0C

√
N )

t p−1e
− ln t

4|σ |R0C dt

= N 2+2k
∫ +∞

exp(|σ |R3
0C

√
N )

t p−1−(4|σ |R0C)−1
dt

= N 2+2ke−[p−(4|σ |R0C)−1]√N

|p − 1 − (4|σ |R0C)−1 | ,

that vanishes for N → ∞, provided that p < (4|σ |R0C)−1. ��
We can finally proceed to complete the proof of Theorem 1.1 as follows

Proof of Theorem 1.1 The first part of the statement has been proved in Corollary
4.2. We are left to show that Gk(ψ) ∈ L p(γk) and that it is the L p(γk)-limit of the
sequence Gk,N (ψ).

We start proving that Gk(ψ) ∈ L p(γk). Let p ≥ 1 and let us choose R0 > 0 such
that Proposition 5.4 holds. Then there exists a subsequence Gk,Nm (ψ), m ∈ Z+, such
that Gk,Nm (ψ) → Gk(ψ), γk-a.s. Hence, by Fatou’s Lemma, we have

∫
|Gk(ψ)|pγk(ψ) ≤ lim inf

m→∞

∫
|Gk,Nm (ψ)|pγk(ψ) < ∞,

thus proving that for 1 ≤ p < p0 given by Proposition 5.4 Gk(ψ) ∈ L p(γk). By the
uniform (for N large enough) L p(γk)-boundedness of Gk,N (ψ) we also have

∫
|Gk,N (ψ) − Gk(ψ)|pdγk(ψ) < ∞.

We are now ready to prove the convergence in L p(γk) for p < p0. For all ε > 0, we
define
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Ak,N ,ε = {ψ ∈ Hk | |Gk,N (ψ) − Gk(ψ)| ≤ ε},

and denote by Ac
k,N ,ε its complement. Then let p < q < p0

∫
|Gk,N (ψ) − Gk(ψ)|pdγk(ψ) =

∫

Ak,N ,ε

|Gk,N (ψ) − Gk(ψ)|pdγk(ψ)

+
∫

Ac
k,N ,ε

|Gk,N (ψ) − Gk(ψ)|pdγk(ψ)

≤ ε pγk(Ak,N ,ε)

+ ‖Gk,N (ψ) − Gk(ψ)‖p
Lq (γk )

(
γk

(
Ac
k,N ,ε

))1−p/q
.

Since Gk,N (ψ) converges to Gk(ψ) with respect to the measure γk , we have that, as
N → ∞,

γk(Ak,N ,ε) → 1, γk
(
Ac
k,N ,ε

) → 0,

Therefore, for a certain δN , vanishing for N → ∞, we have the inequality

∥
∥Gk,N (ψ) − Gk(ψ)

∥
∥p
L p(γk )

≤ ε p + δN
∥
∥Gk,N (ψ) − Gk(ψ)

∥
∥p
Lq (γk )

that concludes the proof. ��
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6 Appendix: Gaussian measures in Sobolev spaces: a toolbox

We are here interested in giving a succinct but self-contained survey on the theory of
Gaussian measures in Hilbert Sobolev spaces. For a complete treatment we refer to
[2,33].

6.1 Concentration of measure in Ḣk(T)

Here we study the concentration property of the Gaussian measure with covariance
(I + (−Δ)k)−1. The main feature is that the measure is concentrated on functions in
L2(T) having slightly less then k − 1

2 weak derivatives as regularity. This is stated
precisely in the following.

Proposition 6.1 For every k ≥ 0 we have γk(
⋂

ε>0 Ḣ
k− 1

2−ε) = 1.
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We will proceed by steps. At first we prove

Lemma 6.2 γk(Ḣ k− 1
2+ε) = 0 for every ε ≥ 0.

Proof We take any function ϕ ∈ Ḣ s(T)with s ≥ k− 1
2 . We have that ‖ϕN‖Ḣ s is finite

uniformly in N , where we recall ϕN is the projection on the Fourier modes |n| ≤ N
defined by (1.5) and (1.6). We show that for all λ > 0

γk
(‖ϕN‖Ḣ s ≤ λ

) → 0, as N → ∞.

To do so, we make use of the Markov inequality: For every μ > 0

γk
(‖ϕN‖Ḣ s ≤λ

) ≤ e
μλ
2

∫ ∏

|n|≤N

(
1 + n2k√

2π
dϕndϕ̄n

)

e− 1
2

∑
n

(
1+n2k

)|ϕn |2e− μ
2

∑
n n

2s |ϕn |2

≤ e
μλ
2

∫
1

(2π)2N+1 dϕ
′
ndϕ̄

′
ne

− 1
2

∑
n |ϕ′

n |2e−μ
∑

n n
2(s−k)|ϕ′

n |2

= exp

⎡

⎢
⎢
⎣

μλ

2
− 1

2

∑

|n|≤N ,
n �=0

ln

(

1 + μ

|n|κ
)

⎤

⎥
⎥
⎦ ,

where we have performed the change of variables ϕ′
n = √

1 + n2kϕn and set −2(k −
s) =: κ . Let us first consider negative κ . In this case

∑

|n|≤N ,
n �=0

ln

(

1 + μ

|n|κ
)

≥ 2N ln(1 + μ),

and so we have an exponential decay in N for every choice of positive μ:

γp
(‖ϕN‖Ḣ s ≤ λ

)
� e

μλ
2 e−2N ln(1+μ), (s > k). (6.1)

For κ ∈ [0, 1) the series ∑
n ln

(
1 + μ

nκ

)
diverges as N 1−κ . Hence,

γk
(‖ϕN‖Ḣ s ≤ λ

)
� e−μN1−2(k−s)

,

(

k ≥ s > k − 1

2

)

. (6.2)

Finally, for κ = 1 we have a logarithmic divergence at exponent and therefore

γk
(‖ϕN‖Ḣ s ≤ λ

) ≤
(
e

λ
2

N

)μ

,

(

s = k − 1

2

)

, (6.3)

for arbitrary μ > 0. We obtain the statement by taking N → ∞ in (6.1)–(6.3). ��
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Remark 6.3 The same strategy can be also used to show the stronger statement

γk
(‖ϕN‖Ḣ s ≤ ln N

) → 0 as N → ∞,

(

s ≥ k − 1

2

)

.

Lemma 6.4 We have that for every s < k − 1
2 and λ > 0

γk
(‖ϕ‖Ḣ s ≥ λ

)
� e−λ/4. (6.4)

Proof Let us take a function ϕ ∈ Ḣ s for some s < k− 1
2 . We look at its truncation ϕN

and again it is ‖ϕN‖Ḣ s finite uniformly in N . We exploit the reverse Chernoff bound
at finite N : For every μ ∈ (0, 1) and λ > 0, we get

γk
(‖ϕN‖Ḣ s ≥λ

) ≤ e− μλ
2

∫ ∏

|n|≤N

(
1 + n2k√

2π
dϕndϕ̄n

)

e− 1
2

∑
n(1+n2k )|ϕn |2e

μ
2

∑
n n

2s |ϕn |2

≤ e− μλ
2

∫
1

(2π)2N+1 dϕ
′
ndϕ̄

′
ne

− 1
2

∑
n|ϕ′

n|2eμ
∑

n n
2(s−k)|ϕn |2

= exp

⎡

⎢
⎢
⎣−μλ

2
− 1

2

∑

|n|≤N ,
n �=0

ln

(

1 − μ

|n|κ
)

⎤

⎥
⎥
⎦ ,

where again we have used the same change of variables as before. Note that now it is
κ > 1. Since 1

2

∑
n ln(1 − μ

nκ ) is convergent for all μ < 1 and κ > 1, we can choose
μ ∈ (0, 1) and take the limit N → ∞. We get (6.4) by setting μ = 1/2. ��

Equation (6.4) implies that ‖u‖Hq is boundedwith probability 1 for every k < s− 1
2 .

This is sufficient to complete the proof of Proposition 6.1.

6.2 Quadratic forms

Then we present some results about quadratic forms of Gaussian random variables,
used in the paper.

Proposition 6.5 Let k ≥ 2 and Q be a (2N + 1) × (2N + 1) matrix such that

sup
l,h

|Qlh |√
1 + h2k

=: Tk < +∞ (6.5)

Then for λ > 0
γk ((ϕ, Qϕ) ≥ λ) � e−λ/4Tk . (6.6)

Proof To begin with, we exploit the Markov inequality: For any μ > 0

γk ((ϕ, Qϕ) ≥ λ) ≤ e−μλ
Eeμ(ϕ,Qϕ). (6.7)
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Now we compute

Eeμ(ϕ,Qϕ) =
∫ ∏

|n|≤N

(
1 + n2k√

2π
dϕndϕ̄n

)

exp

⎡

⎣−1

2

∑

i, j

ϕ̄i

(
(1 + j2k)δi j − 2μQi j

)
ϕ j

⎤

⎦

= 1

(2π)N

∫
dϕ′−N . . . dϕ′

N ϕ̄′−N . . . dϕ̄′
N exp

⎡

⎣−1

2

∑

i, j

ϕ̄′
i

(
δi j − 2μQi j (k)

)
ϕ′
j

⎤

⎦

= e− 1
2 ln det(I−2μQ(k)). (6.8)

where we have performed the change of variables ϕ′
j = √

1 + j2kϕ j , ϕ̄′
j =

√
1 + j2k ϕ̄ j and we have introduced Qi j (k) := Qi j/

√
(1 + j2k)(1 + i2k). We claim

that
|Tr((Qi j (k))

m)| � Tm
k , m ∈ Z+, (6.9)

so the expansion of the determinant

− ln det(I − 2μQ(k)) =
+∞∑

m=1

(2μ)m Tr
(
(Qi j (k))m

)

m

is convergent provided that μ < 1
2Tk

. We choose μ = 1
4Tk

, so that (6.7, 6.8) imply the
desired inequality. It remains to show the (6.9).

Tr
(
(Q(k))m

) =
∑

i1,...,im+1

Qi1i2(k) . . . Qimim+1(k)δi1im+1

=
∑

i1,...,im+1

Qi1i2 . . . Qimim+1δi1im+1√(
1+i2k1

) (
1+i2k2

) (
1+i2k2

)
. . .

(
1+i2km

) (
1+i2km

) (
1+i2km+1

)

≤ Tm
k

∑

i1,...,im+1

δi1,im+1√(
1 + i2k1

)
. . .

(
1 + i2km

)

= Tm
k

∑

i1,...,im

1
√(

1 + i2k1
)
. . .

(
1 + i2km

)

= Tm
k

⎛

⎝
∑

i

1
√(

1 + i2k
)

⎞

⎠

m

� Tm
k ,

where we have used the assumption (6.5) in the first inequality and k ≥ 2 in the last
inequality. ��

Remark 6.6 We observe that we can make different assumptions on the matrix Q and
obtain similar inequalities. For instance, if the trace norm of Q(k) is finite uniformly
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in N , we have (see, for instance, Lemma 3.3 in [35])

− ln det (I − 2μQ(k)) ≤ ‖Q(k)‖Tr
and so for every N

γk ((ϕ, Qϕ) ≥ λ) � e−λ/‖Q(k)‖Tr , (6.10)

by the same argument of the last proposition. If we assume the Hilbert-Schmidt norm
of Q(k) to be finite uniformly in N , we obtain the Hanson–Wright inequality (see [16]
and more recently [32]), holding for any N

γk

(
Var(ϕ, Qϕ) ≥ λ2

)
� e−cmin

(
λ2/‖Q(k)‖HS ,λ/‖Q(k)‖)

, (6.11)

where ‖A‖ denotes the operator norm of A and c is a positive constant.

Remark 6.7 For any linear operator Aϕ := ∑N
n=1 aiϕi , with

Tk :=
∑

|i |≤N

|ai |2
(1 + i2k)

< ∞ uniformly in N ,

by using γk(|Aϕ| ≥ λ) = γk(|Aϕ|2 ≥ λ2) we can infer

γk (|Aϕ| ≥ λ) � e−λ2/Tk . (6.12)

Note that if Aϕ = ϕ(s) we have Tk < ∞ uniformly in N for s < k − 1
2 . In this way

we can improve Lemma 6.4, obtaining a sub-Gaussian decay.

Proposition 6.8 Let Q(x) be a N × N matrix as before. Moreover, we assume Q(x)
to be Hölder continuous w.r.t. x ∈ T with exponent α and constant LN , i.e.,

|(ϕ, Q(x)ϕ) − (ϕ, Q(y)ϕ)| ≤ LN |x − y|α, for every ϕ ∈ R
N . (6.13)

Then for any ε > 0 and λ ≥ 2LN εα

γk

(

sup
x

(ϕ, Qϕ) ≥ λ

)

� e−λ/4Tk

ε
. (6.14)

Proof We exploit Proposition 6.5 along with an ε-net argument. For ε > 0 we divide
the interval T in 1/ε points at distance ε. We denote by x j a point in the j th segment,
and by x∗ the point in which the maximum is attained. By Proposition 6.5 for each
x ∈ T we obtain for λ > 0

γk ((ϕ, Q(x)ϕ) ≥ λ) � e−λ/4Tk . (6.15)

Let j0 be such that |x j0 − x∗| ≤ ε. Therefore, it has to be

∣
∣(ϕ, Q

(
x∗) ϕ

) − (
ϕ, Q

(
x j0

)
ϕ
)∣∣ ≤ LN εα, for every ϕ ∈ R

N .
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Then we use the union bound for the probabilities:

γk
(∣∣Q

(
x∗)∣∣ ≥ λ

) ≤
∑

j

γk

(∣
∣Q

(
x∗)∣∣ ≥ λ

∣
∣
∣ |x∗ − x j | ≤ ε

)

≤
∑

j

γk

(∣
∣Q(x j )

∣
∣ ≥ λ

2

)

+
∑

j

γk

(∣
∣Q(x j ) − Q

(
x∗)∣∣ ≥ λ

2

∣
∣
∣
∣
∣x∗ − x j

∣
∣ ≤ ε

)

.

We immediately see by (6.13) that the second addendum in the last formula is zero as
soon as λ ≥ 2LN εα . Therefore, we bound the first addendum by the total number of
terms in the sum, which is ε−1, times the estimate (6.15), so obtaining (6.14). ��
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