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Abstract 31 

Accurately locating and quantifying CO2 leakage to the atmosphere is important for diffuse 32 

degassing studies in volcanic / geothermal areas and for safety monitoring of Carbon Capture 33 

and Storage (CCS) sites. This is typically conducted by measuring CO2 flux at numerous points 34 

over a large area and applying statistics or geostatistical interpolation. Probability and accuracy 35 

of the results will depend on many factors related to survey/data-processing choices and site 36 

characteristics, and thus uncertainties can be difficult to quantify. To address this issue, we have 37 

developed a Monte Carlo-based program (MC-Flux) that repeatedly subsamples a high-38 

resolution synthetic or real dataset using five different sampling strategies at multiple user-39 

defined sample densities, keeping track of the anomalies found and estimating total flux using 40 

four approaches from the literature.  This paper describes the use of MC-Flux to assess the 41 

potential impact of various sampling and interpretation decisions on the accuracy of the final 42 

results. Simulations show that an offset grid sample distribution yields the best results, however 43 

relatively dense sampling is required to obtain a high probability of an accurate flux estimate. 44 

For the test dataset used, ordinary kriging interpolation produces a range of flux estimates that 45 

are centered on the true value while sequential Gaussian simulation tends to slightly overestimate 46 

values at intermediate sample spacings and is sensitive to input parameters. These results point to 47 

the need for developing new approaches that decrease uncertainty, such as integration with high-48 

resolution co-kriging datasets that complement the more accurate point flux measurements. 49 

Keywords: Soil diffuse degassing, Carbon Capture and Storage (CCS), CO2 flux quantification, 50 

uncertainty, probability, Monte Carlo 51 

1. Introduction 52 

Accurately finding and quantifying the leakage of deep-origin carbon dioxide (CO2) to 53 

the atmosphere is challenging considering that point flux measurements conducted over large 54 

areas are used to characterize spatial anomalies that can be irregular in size, shape, magnitude 55 

and distribution and that are superimposed on a background biological flux that is both spatially 56 

and temporally variable. In this paper we use a Monte Carlo approach to study the impact of 57 

these variables and to quantify some of the related uncertainties. 58 

Initial efforts to determine the probability of finding an anomaly using gridded sampling 59 

were conducted in the field of mineral exploration. Singer (1972, 1975) used a geometric 60 

probability model called ElipGrid to show how triangular and square grids are often equivalent, 61 

but that the former can be up to 6% more efficient for certain conditions. The accuracy of this 62 

code was proven using a Monte Carlo approach (Davidson 1995), followed by its integration into 63 

an environmental software package called Visual Sample Plan (VSP) (Matzke et al. 2014). 64 

Instead, the probability of finding anomalies using random sampling, calculated using the 65 

formula: 66 
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P=1- [1-x/A]
n
,        (1) 67 

where x is the size of the anomaly and A is the size of the survey area, is low and the 68 

approach is generally inefficient (Oldenburg et al. 2003). 69 

Uncertainties in quantifying CO2 leakage can be subdivided into four categories. First, 70 

analytical uncertainty is related to site conditions (Bain et al. 2005) and sampling / data 71 

processing protocols (Elío et al 2012; Kutzbach et al. 2007). Estimates of the measurement 72 

reproducibility range from ±10% (Chiodini et al. 1998) to ±24% for low flux rates (Carapezza 73 

and Granieri 2004).  Second, the probability of finding anomalies depends on their size and 74 

shape versus sample density and distribution. Wong (2018) used a Monte Carlo approach to 75 

illustrate that a large number of random samples are needed to obtain a high probability of 76 

accurately estimating the average CH4 flux above a small landfill site.   77 

Third, converting the measured point flux values into an estimated total flux for the entire 78 

survey area requires statistical characterization (e.g., arithmetic mean, AM, or minimum variance 79 

unbiased estimator, MVUE) or geostatistical extrapolation (e.g., kriging or sequential Gaussian 80 

simulation, SGS). Lewicki et al. (2005) compared these four approaches and found them to yield 81 

similar results but recommended SGS because this stochastic method honors the histogram and 82 

variogram of the original data and provides a measure of the uncertainty. Elío et al. (2016) also 83 

found SGS to yield the most robust estimates if the data can be fit with a variogram, otherwise 84 

they recommend AM, MVUE or bootstrap resampling for normal, log-normal or mixed 85 

populations, respectively. Cardellini et al. (2003) used SGS and data from multiple sites to define 86 

an empirical relationship linking flux estimate precision with the number of samples needed 87 

within a circular area having a radius equal to the data’s variogram range. Schroder et al. (2017) 88 

found that AM and MVUE approaches did not accurately estimate leakage rates from a 89 

controlled release experiment and thus proposed a new cubic interpolation approach that is not 90 

limited by spatial or statistical distribution . At present, SGS is the most commonly used 91 

approach, although it too has its limitations (Caers 2000; Gilardi et al. 2002; Emery 2004; 92 

Paravarzar et al. 2015). 93 

Fourth, the background biological flux must be estimated and subtracted from the total 94 

flux to determine the leakage flux. This can been conducted by making measurements in a 95 

separate non-leaking area (Chiodini et al. 2007), but it is much more common to use log-normal 96 
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probability plots to separate populations of different origins (Chiodini et al. 2020).  Elío et al. 97 

(2016), however, point out that this approach can be subjective and instead recommend a 98 

maximum likelihood procedure.  It is extremely difficult to estimate the background uncertainty, 99 

given its spatial and temporal variability (Sainju et al. 2008; Leon et al. 2014; Bond-Lamberty et 100 

al. 2019), however it can have an important impact on the final leakage uncertainty if 101 

background flux represents a significant proportion of the total. Recent efforts to use components 102 

associated with the leaking CO2, such as isotopic signatures or radon (e.g., Bini et al. 2019; 103 

Viveiros et al. 2020), have shown how this uncertainty can be significantly reduced. If resources 104 

are limited, however, additional analyses may not be feasible or they could lead to a reduction in 105 

the total number of flux measurement points (thus reducing spatial resolution). 106 

The present work takes a unique approach to quantitatively assess the issues and 107 

approaches described above. It better develops and greatly extends the preliminary efforts by 108 

Beaubien et al. (2009) and Beaubien (2015) to develop a Monte Carlo – based code (Beaubien 109 

and Bigi 2021a) capable of defining the probability of locating leakage flux anomalies and 110 

assessing the accuracy of associated quantification.  Synthetic and real data (Beaubien and Bigi 111 

2021b) are used to explore the effectiveness of different sampling strategies, the impact of 112 

anomaly shape and orientation, and to assess the uncertainties linked to the multiple steps 113 

(sampling density and strategy decisions, interpolation, background subtraction) required to 114 

estimate a final leakage flux. Ideas are presented that could reduce these uncertainties without 115 

significantly increasing survey times or costs. 116 

2. Materials and Methods 117 

The MC-Flux program, coded in Visual Basic 6 and run in Windows 10, uses a Monte 118 

Carlo approach to study the influence of sampling strategies and sample spacing on the 119 

probability of finding a gas leakage anomaly and on the accuracy of leakage flux estimates.  120 

Three main functions are available. The first imports or creates high-resolution input 121 

data, sub-samples it a user-defined number of times at different spacings using one of five 122 

sampling strategies (keeping track of anomalies or calculating statistics to estimate total flux), 123 

and saves each sub-sampled equi-probable realization in a simple text file. This function can be 124 

used as a stand-alone for determining the probabilities of finding leakage anomalies, or the total 125 

flux can be estimated for each sub-sampled realization both statistically and geostatistically using 126 
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external programs. The second function calls the commercial software Surfer (Golden Software) 127 

to perform interpolation using the ordinary kriging, natural neighbor, inverse distance to a power 128 

or the radial basis function methods, although only ordinary kriging was applied here. Note that 129 

the user must have Surfer installed to access this functionality; development was performed 130 

using version 9 however limited testing has shown that MC-Flux also works with version 20. 131 

The third function calls the program sGsim from the open source GSLib library (Deutsch and 132 

Journel 1997) to conduct sequential Gaussian simulations; this library of DOS executable files 133 

can be freely downloaded (http://www.gslib.com) and copied onto the user’s computer. 134 

A flowchart showing the logical structure of the program (Figure S1), the graphical user 135 

interface (GUI) developed for selecting options and inputting parameters (Figure S2), and the 136 

MC-Flux user manual are given in the Supporting Materials. Note that all GUI input is saved to a 137 

configuration file that can be re-loaded to repeat a simulation or make systematic parameter 138 

changes.  139 

2.1. Data input  140 

Both synthetic and real data can be used as input for estimating total CO2 flux while only 141 

synthetic data can be used to calculate the probabilities of finding anomalies.  142 

Synthetic data is created in two steps. First the background flux field is generated using 143 

one of three options: i) all points are assigned a value of 0 (to facilitate recognizing individual 144 

anomalies); ii) an internally created normal distribution is randomly placed over the grid (Figure 145 

S3a); or iii) an external file is imported into the program. For this last option, we have created a 146 

log-normal distribution using Poptools (Hood 2010) and coherently distributed it over a 1km
2
 147 

grid assuming an inverse relationship between topography and biological CO2 flux (Figure S3b, 148 

S4), given that topography influences environmental parameters (e.g., water content, organic 149 

matter) that affect soil respiration (Riveros-Iregui and McGlynn 2009). Second, one or multiple, 150 

chosen or random, circular or elliptical, gas leakage areas (“vents”) are superimposed on the 151 

background based on user-defined parameters (number of vents, location, semi-major axis 152 

length, semi-major vs semi-minor axis ratio, orientation, and maximum flux rate). This 153 

information is saved and can be imported for subsequent simulations. For the “find anomaly” 154 

option, vent points are assigned the vent number in a background of zeros, which allows for 155 

individual anomalies to be recognized. For the “calculate flux” option, individual vent flux 156 
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values are calculated using an empirically defined formula based on profiles across multiple gas 157 

vents (Figure S5a,b) and plotted on a background flux field (Figure S5c, d).  158 

If real data is used, the program imports a text file consisting of a single column of values 159 

ordered sequentially for each X point along progressive Y lines. As it is not feasible to collect 160 

real data at 1m sample spacing over a large area, a dataset of 548 CO2 flux measurements made 161 

on a regular, 10 m spacing grid in a polygonal area was modified for this purpose. The survey 162 

area is located in a well-studied field containing multiple gas vents in the Latera Caldera, Italy 163 

(Beaubien et al. 2008; Pettinelli et al. 2010). Flux measurements were made on July 13
th

 and 164 

14
th

, 2014, using three in-house accumulation chamber units that were inter-calibrated prior to 165 

the survey. The original grid was extended to a 260 x 375 m area by assigning random 166 

background values outside the polygon, and then a high-resolution (HR) grid (1 m node spacing) 167 

was created using the average of 10 sequential Gaussian simulations (SGS; Deutsch and Journel 168 

1997); SGS was performed to minimize any spatial biasing that may result from gridded 169 

sampling (Figure S6a). This data is formed by two main populations (Figure S6b). The lower 170 

background population ranges from about 20 to 70 g m
-2

 d
-1

 and has a mean of 51 g m
-2

 d
-1

; these 171 

relatively high biogenic fluxes were related to rainfall events shortly before sampling, similar to 172 

that observed by Viveiros et al. (2020). This interpretation is supported by the much lower 173 

background values observed in the same field (Figure S6c) during a previous campaign in July, 174 

2006 (Annunziatellis et al. 2008). The upper, leakage-related population has a maximum value of 175 

1645 g m
-2

 d
-1

. The standardized variogram of the HR data consists of a spherical model with a 176 

nugget of 0.02, a variance of 0.98 and a range of 37m (Figure S6d). 177 

2.2. Sub-sampling 178 

The program subsamples the high-resolution flux array using one of five possible 179 

sampling strategies (Figure S7): i) square grid, where X and Y distances are the same and points 180 

are aligned orthogonally; ii) off-set grid, where X and Y distances are the same but every second 181 

row is offset horizontally by X/2; iii) triangular grid, where every second row is offset 182 

horizontally by X/2 but with all point-to-point distances the same, resulting in Y<X; iv) random 183 

grid, where the program steps through a square grid, but at each node a random point is selected 184 

within a user-defined radius; and v) purely random sampling. Each subsampling iteration 185 

produces a single, equi-probable, sub-sample dataset.  186 



manuscript submitted to Stochastic Environmental Research and Risk Assessment 

7 

 

Simulations are conducted for different “sample densities”, which are defined by the 187 

sample spacing (grids) or equivalent number of samples (random) chosen by the user. A nested 188 

loop structure produces N unique sub-sampling realizations for M sample densities. Note, 189 

however, that the number of unique subsample realizations N for the non-random grid methods 190 

is limited to (sample spacing)
2
 when the input data has a 1m spacing, meaning that fewer unique 191 

simulations can be performed for closely spaced grids.  192 

2.3. Calculations  193 

For the “find anomaly” simulations, each sub-sampled dataset is queried to determine if 194 

any sample points intersect an anomaly, and if yes which ones. After all realizations for that 195 

sampling density are completed, the probability of finding each individual anomaly and the 196 

average number of anomalies found is calculated.  197 

For the “calculate flux” simulations, the first step involves calculating the “true” leakage 198 

flux by subtracting the background flux from the total flux for the original HR dataset; this value 199 

is then used as a benchmark for the subsequent subsampling results. For synthetic data the 200 

background and background-plus-vents flux rates are calculated using: 201 

𝝋𝑻 =  ∑ (𝑨𝒄 ∗  𝝋𝒄)𝒏
𝟏      (2) 202 

Where 𝜑𝑇 is the total flux being calculated, n is the total number of grid cells, Ac is the 203 

surface area of each cell (m
2
), and 𝜑𝑐 is the CO2 flux for each cell (g m

-2
 d

-1
). For real data, the 204 

total flux is calculated using Eqn 2 while the background is calculated by multiplying the grid’s 205 

surface area by the average of the lower flux population in a log-normal probability plot of the 206 

entire raw dataset (Chiodini et al. 2007).   207 

Four different approaches are used to calculate the total flux of the sub-sampled 208 

realizations, two statistical (arithmetic mean, AM, and minimum variance unbiased estimator, 209 

MVUE) and two geostatistical (ordinary kriging, OK, and sequential Gaussian simulations, 210 

SGS). For both statistical methods the resultant value is multiplied by the total surface area, and 211 

then the previously calculated “true” background leakage is subtracted from this value to yield 212 

the total leakage flux estimate. The AM, which is most appropriate for normally distributed 213 

datasets, is calculated as 𝑥 =  
1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1 . The MVUE, �̂�1, which better describes log-normal 214 

distributions, is calculated as �̂�1 = [exp (𝑦)] 𝜓𝑛(𝑡) (Gilbert 1987; Elío et al. 2016), where 𝑦 is 215 
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the sample arithmetic mean calculated using the n log-transformed values, 𝑡 is half of the log 216 

transformed variance 𝑠𝑦
2, and 𝜓𝑛 is an infinite series (see Figure S8 for details). 217 

Regarding the geostatistical methods, OK is implemented using the commercial software 218 

package Surfer 9 (Golden Software) and SGS is implemented using the program sGsim within 219 

the open source GSLib library (Deutsch and Journel 1997). The OK approach yields a single 220 

array for the grid area, whereas SGS produces a user-defined number of realizations for each 221 

sub-sampled dataset that are then averaged to produce a single array. As a compromise between 222 

level of detail and processing time, an output cell size of 5 x 5 m was chosen for all simulations. 223 

Each individual array produced by both OK and SGS is then processed with Eqn 2 to calculate 224 

the total flux, and the previously calculated “true” background flux is subtracted to yield the 225 

associated leakage flux estimate for each realization. 226 

3. Results and Discussion 227 

3.1. Probability of finding an anomaly 228 

3.1.1. Comparison with literature 229 

The accuracy of the MC-Flux Monte Carlo probability estimates were validated using test 230 

data reported in Table 1 in Singer (1972) and Table A3 in Davidson (1995) that consist of a wide 231 

range of single ellipse sizes, shapes, and orientations coupled with different node spacings for 232 

square and triangular grid strategies. The MC-Flux results, based on 5000 realizations, have a 1:1 233 

linear correlation with those generated using the mathematical approach of the ElipGrid 234 

program, with R
2
 = 0.9999 for both datasets and most individual simulations within 0.7% (Figure 235 

S9a). The test data were modified to convert grid spacing into an equivalent total number of 236 

samples to test the purely random sampling approach. The MC-Flux results match very closely 237 

with the theoretical probability calculated using Eqn 1 (Figure S9b), with R
2
 = 0.9998 and most 238 

individual simulations within 1%. These results give confidence in the MC-Flux simulations 239 

reported below. 240 

3.1.2. Number of simulations necessary 241 

Tests were performed to determine how many simulations are needed to obtain an stable 242 

probability estimate. All five strategies were used to sub-sample two different 1 km
2
 grids, one 243 

containing a circular anomaly (a=56.42, x/A=0.01) that was sampled with a c. 120m spacing and 244 
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one with an elliptical anomaly (a=79.79, b/a=0.5, angle=22.5°, x/A=0.01) that was sampled with 245 

a c. 150m spacing. Each test involved 10,000 realizations, each of which yielded 1 or 0 if the 246 

anomaly was encountered or not. A total of “n” random samples were collected from this dataset 247 

(where n = 30, 50, 75, 100, 200, 300, 400, 500, 1000, 2000, or 3000) a total of 200 times each to 248 

calculate the probability of finding the anomaly using different numbers of simulations (i.e., 249 

“n”).  250 

All square grid results for the first test yield relatively similar average probabilities but, 251 

as expected, the total range of estimated probability narrows significantly with the inclusion of 252 

larger numbers of simulations (Figure S10a). The standard deviation of all tests show a linear 253 

decrease with increasing number of simulations on a log-log plot (Figure S10b), regardless of 254 

anomaly shape, sampling strategy or sample spacing. Based on these results and the fact that the 255 

sub-sampling algorithm is fast, all “find anomaly” probability tests reported below were 256 

conducted using 5000 simulations (1 ≈ 0.7%). In contrast, the OK and SGS flux estimation 257 

tests are much slower, and thus 100 (1 ≈ 5%) or 500 (1 ≈ 2%) simulations were used for these.  258 

3.1.3. Probability of finding a single circular anomaly 259 

The efficiency of the different sampling strategies was first tested for the simple case of a 260 

single circular anomaly (a=56.42 m; x=10,000 m
2
) in the middle of a 1 km

2
 area (x/A=0.01). 261 

Simulations were conducted so that each strategy used the same average number of samples, thus 262 

spacing was the same for the square, offset and random grids (from 40 to 150 m), 1.07457 times 263 

larger for the triangular grid (Singer 1975), and an equivalent number of samples was used for 264 

the purely random method.  265 

Random sampling gives significantly poorer results across all probability levels (Figure 266 

1). All four gridded methods yield similar results up to a probability of 0.45, with the random 267 

grid rapidly diverging at higher levels. Its trend is a function of the chosen random search radius 268 

(here 50%), such that low values move its trend closer to the square grid results while higher 269 

values move it towards the random results. At a probability level above ca 0.8 the square grid 270 

method becomes less efficient than the offset and triangular grids, with the latter two being 271 

essentially equivalent over all probability levels. This higher efficiency of the triangular versus 272 

square grid is in agreement with the maximum improvement of about 6% observed by Singer 273 

(1975). As a comparison, the dashed lines in Figure 1 show that to ensure a 95% probability of 274 



manuscript submitted to Stochastic Environmental Research and Risk Assessment 

10 

 

finding the anomaly, about 100 samples would need to be collected using offset and triangular 275 

grids, 114 using the square grid, 148 using the random grid with a 50% search radius, and 300 276 

using a purely random approach. Sample numbers can also be estimated for other conditions 277 

using the ratio of the anomaly and grid cell areas given in the upper X axis. 278 

 279 

Figure 1. Probability of finding a circular anomaly as a function of sampling strategy and sample 280 

spacing. The lower X axis refers to the modelled conditions of x=10,000 and A=1,000,000 while 281 

the upper X axis standardizes the trends for all anomaly/cell ratios. 282 

3.1.4. Probability at different ellipse angles 283 

The probability of finding an ellipse as a function of its orientation was tested using the 284 

five different sampling strategies (spacing from 40 -175 m in 5 m steps, or equivalent). Because 285 

MC-Flux can keep track of individual anomalies and because the location of an anomaly within 286 

the domain has no effect on the Monte Carlo results, 46 ellipses (x=10,000 m
2
, b/a =0.25) were 287 

created at angles from 0-90° at 2° intervals within a 1 km
2
 area (Figure S11).  288 

Using the square grid results as an example, orientation and sample spacing clearly have 289 

a significant combined effect on the probability of finding a narrow ellipse (Figure 2a). At very 290 

low sampling densities the trends are relatively flat, while at very high densities all directions 291 

tend towards a probability of 100%. Instead, between these extremes maximum probabilities 292 

occur at 28° and 62°, minimum probabilities occur at 0° and 90°, and a lesser minimum occurs at 293 

45°, all due to the geometric positioning of the ellipse within the distributed points. For some 294 

sample spacings the differences are very large; for example, probabilities at a 95 m spacing can 295 

range from 60% at 0° up to almost 100% at 28°. This could mean that between 100 to 300 296 

samples would be needed to attain 95% probability (Figure 2b) depending on orientation. Similar 297 

plots for all sampling strategies are given in Figure S12. 298 
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 299 

Figure 2. Plots showing the impact of orientation on the probability of finding a 10,000 m
2
, 300 

elliptical (b/a=0.25) anomaly in a 1 km
2
 area: (a) square grids of different spacings (reported 301 

numbers); (b) same data plotted against the number of samples, with the dashed line showing the 302 

circular anomaly trend from Figure 1; (c) probabilities for all five sampling strategies at an 303 

equivalent sampling distance of 95 m; and (d) statistical distribution of the data in (c). 304 

Results from a sample spacing of 95 m (or equivalent) are used to compare the relative 305 

trends of all five strategies (Figure 2c). Again the offset and triangular grid results are quite 306 

similar (with a slight shift of < 5°), but are quite different from the square grid results. In 307 

particular, maximum and minimum values are opposite at 60° and 90°. The random grid results 308 

are only weakly influenced by anomaly direction and have probability values on the order of 309 

80%, while random sampling, as expected, is not affected by orientation and has a low, flat trend 310 

around 68%. The statistical distribution of these data (Figure 2d) show how the square, 311 

triangular, and offset grid strategies are essentially equivalent, meaning that if the angle is 312 

unknown or variable none of these methods are superior to the others for finding this narrow 313 

anomaly. Instead, the random grid produces a median probability that is only slightly lower than 314 

the other grid methods but with a much narrower range (i.e., more predictable outcome). 315 

Although potentially advantageous, this approach is not necessarily practical for field sampling 316 

campaigns. Similar plots for 75 m and 135 m sample spacing, or equivalent, are given in Figure 317 

S13. 318 
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 319 

Figure 3. Plots showing the probability of finding a 10,000 m
2
 elliptical anomaly in a 1,000,000 320 

m
2
 area as a function of its shape (b/a) and angle (where horizontal is 0°, moving counter-321 

clockwise to vertical at 90°) for the labelled grid types and sample spacings.  322 

 323 

Further simulations were conducted to address the combined effect of b/a values from 0.2 324 

to 1.0 (0.1 step size) and angles from 0° to 90° (15° step size). A single domain was defined that 325 

contained all anomalies (Figure S14) and simulations were conducted with the square and offset 326 

grid methods for sample spacings from 40 to 175 m (5 m step size). Trends are similar over a 327 

wide range of sample spacings and the impact of anomaly orientation diminishes at higher b/a 328 

values (Figure 3). Using the square grid results as an example, the total range of probability 329 

values is narrowest for the widest spacing (e.g., 15% difference in Figure 3a) but is much greater 330 

for the other two spacings (e.g., 35% in both Figure 3 b and c). A comparison of the latter two 331 

also shows that the impact is observed at much greater b/a values for the 115 m grid spacing (up 332 

to b/a=0.7 for a 5% difference) than for the 75 m spacing (b/a=0.4), as progressively narrower 333 

spacing is more likely to intersect wider ellipses that may lie between rows or columns. The 334 

square grid results are highly symmetrical at 0° and 90° (e.g., Figure 3b) whereas the offset grid 335 

results show higher probabilities at higher b/a values for angles at 0° compared 60° (e.g., Figure 336 

3e). That said, the average probability for all b/a values and orientation angles for a given sample 337 

spacing are essentially the same for the square and offset grids. 338 
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3.1.5. Average number of anomalies found 339 

Considering that more than one leakage anomaly may occur in a given survey area, 340 

simulations were performed to assess how many can be located using different sample spacings. 341 

Initial tests involved 6 different scenarios containing 1, 2, 4, 6, 8, or 10 circular anomalies, with 342 

all anomalies in each individual scenario having the same size and the sum of their areas being 343 

equal to 10,000 m
2
 (i.e., xtotal/A=0.01) (Figure S15). The square and offset grid methods were 344 

used for each sample spacing; as results are very similar only the latter results are described here.  345 

When plotted in terms of the average number of anomalies found, all scenarios follow the 346 

same trends for both sample spacing (Figure 4a) and total number of samples collected (Figure 347 

4b). Instead, plotting the same data in terms of the percentage of anomalies found relative to the 348 

total number present illustrates how, as expected, the smaller the average anomaly size the 349 

smaller the proportion that are found (Figure 4c, d). For example, the dashed lines in Figure 4a 350 

and c show how an average of 3 anomalies are found in the 4, 6, 8, and 10 anomaly scenarios 351 

when a sample spacing of about 60 m is used, but that this represents 70%, 48%, 35%, and 28%, 352 

respectively, of the anomalies actually present. Clearly how a total leakage amount is subdivided 353 

and, in turn, how many of these anomalies are found, will have an important impact on eventual 354 

quantification estimates.  355 

Using the 10 anomaly simulation as the base case, two additional tests were performed to 356 

look at the impact of different sized anomalies. Centered on the semi-major axis value from this 357 

scenario 1 (i.e., a=17.8 m), scenario 2 anomalies increase from a=12.6 to 22.5 m in ca. 1 m steps 358 

while scenario 3 anomalies increase from a=7.4 to 26.1 m in ca. 2 m steps (Figure S16). As 359 

above, the total surface area of all 10 anomalies in each scenario equals 10,000 m
2
. As the 360 

distribution of sizes is symmetrical above and below the scenario 1 dimension, trends for all 361 

three scenarios are the same up to 50% of the anomalies found (Figure 4e, f). Deviations are 362 

observed above this threshold, however, as the smaller anomalies require a closer grid spacing to 363 

ensure their discovery. For example, in order to find 9 out of 10 anomalies, 1000 samples are 364 

needed for the base case, 1300 for scenario 2 and 2500 for scenario 3, which corresponds to a 365 

grid spacing of 32, 27 and 19 m, respectively. While intuitive, these results quantitatively 366 

illustrate how challenging it is to locate all leakage areas present, especially if small anomalies 367 

occur in a wider size distribution. 368 
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 369 

 370 

Figure 4. The absolute number (a, b) and percent (c, d) of anomalies found with square grid 371 

sampling over a range of grid spacings (a, c) and number of samples (b, d) for 6 scenarios having 372 

a different number of equal-sized anomalies whose sum is always 10,000m
2
. The same for three 373 

scenarios having 10 anomalies of different sizes (e, f); note the expanded X scale in (f). 374 

3.2. Quantifying leakage 375 

3.2.1. Background flux estimates 376 

As stated above, the background biogenic CO2 flux must be estimated and subtracted 377 

from the total measured flux to calculate the leakage flux rate. Various approaches have been 378 

used in the literature. 379 

For example, the average background value can be calculated using measurements from a 380 

similar, sub-set area where no leakage occurs. To assess this the 1km
2
 synthetic background 381 

dataset was subdivided into 16, 250 x 250 m sub-areas (Figure S3b). MC-Flux was used to create 382 

1000 sub-sampling files for each sub-area (random grid with 35 m spacing) as well as the total 383 

area (random grid with 140m spacing). Each realization yielded about 50 samples which were 384 

used to calculate the average and MVUE flux rates. Although the statistical distribution of the 385 

estimates from each sub-area are relatively narrow, there is a wide range of values (blue boxes in 386 
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Figure 5a) compared to that for the entire area (red box in Figure 5a) due to the non-random 387 

distribution of the synthetic data. Although some sub-areas yield median estimates that are 388 

similar to the true value of 20 g m
-2

 d
-1

, others vary by as much as ± 4 g m
-2

 d
-1

.  389 

Another approach uses a log-normal probability plot of all survey data to separate and 390 

characterize the background. To examine this approach the HR Latera dataset (Figure S6) was 391 

subsampled 500 times with the offset grid approach using three different spacings (20, 30, 40m). 392 

Log-normal probability plots were made for 50 realizations of each of the three datasets, upper 393 

background thresholds were estimated graphically based on the inflection point in the data, and 394 

the MVUE of the background population was calculated for each realization. Different inflection 395 

points (e.g., Figure 5b) and sampled background values lead to background flux estimates 396 

(Figure 5c) that vary by up to a maximum of ± 3 g m
-2

 d
-1

 for the wider spacings.  397 

A third approach, similar to the previous but with background flux calculated using only 398 

the area that it is estimated to occupy, has not been assessed because it is impractical for MC 399 

simulations. Based on the results above, however, it is likely that this approach would have a 400 

similar level of uncertainty. A fourth method, using isotopes or co-migrating gases (e.g., Bini et 401 

al., 2020), should instead have significantly lower uncertainties. 402 

Although the true background flux uncertainty will be site-specific, and will depend both 403 

on the approach used and researcher experience, these results illustrate the potential for errors on 404 

the order of a few g m
-2

 d
-1

 for the estimated average. While small, it could have an important 405 

impact on the final leakage flux value if the survey area is large and/or the average biogenic flux 406 

is proportionally high. As an example, given a 100,000 m
2
 area with a total flux of 4 t d

-1
 and a 407 

true average background flux of 20 g m
-2

 d
-1

, an estimate that is ± 2 g m
-2

 d
-1

 from this value will 408 

result in an error of about ±10% in the final leakage estimate. Finally it should be remembered 409 

that these examples only consider uncertainty related to statistical sampling, and do not take into 410 

account uncertainty caused by temporal variability (given that flux surveys are conducted over 411 

many hours during the day and often over multiple days). 412 
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 413 

Figure 5. (a) Range of estimated average background CO2 flux for the synthetic dataset, 414 

including the total 1km
2
 area (red) and 16 sub-set areas (blue), compared to the true average 415 

(horizontal line). (b) Log-normal probability plots of the high density Latera dataset (black line) 416 

and the first 10 subsampling realizations at 30m sample spacing (grey lines). (c) Range of the 417 

estimated average background flux for the Latera data, based on log-normal probability plot 418 

interpretation of 50 subsample datasets at 20, 30, and 40m offset grid spacing.  419 

3.2.2. Leakage flux estimates - calculation approaches 420 

All leakage flux simulations discussed in this and the following sections were performed 421 

using the HR Latera data as input (Figure S6). For this section a total of 500 sub-sampling 422 

realizations were performed with MC-Flux using the off-set grid and random strategies at 8 423 

different sample densities each (5, 10, 15, 20, 25, 30, 35, 40m grid spacing, or equivalent number 424 

of samples); these strategies were chosen because they yielded the highest and lowest probability 425 

of finding anomalies, respectively, in Section 3.1. Total flux of the resultant sub-sampled 426 

datasets was calculated using all four methods. Certain parameters were fixed using the “true” 427 

values of the complete HR dataset to standardize the processing of thousands of datasets. For 428 

both kriging and SGS the standardized variogram model was defined as 0.02 Nugget + 0.98 * 429 

Spherical(37) (Figure S6d) and the search radius set to 46m, which is slightly larger than the 430 

variogram range to guarantee sufficient points for the widest grid spacing.  Parameters for back-431 

transforming the normal scores in sGsim were those used to create the original HR dataset (i.e., 432 

lower tail linear extrapolation to 20 and upper tail hyperbolic extrapolation to 4000 with  = 2). 433 

Other parameters fixed for the sGsim calculations include: previously simulated nodes to use = 434 
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16; multiple refinement grids = 0; minimum and maximum data for simulation = 0 and 8; kriging 435 

type = simple. Finally, the average background flux calculated in Section 2.1 (51 g m
-2

 d
-1

) was 436 

subtracted across the entire grid to convert the calculated total flux to leakage flux. These 437 

simplifications remove any uncertainties related to these parameters, thus highlighting variations 438 

that are primarily related to sub-sampling effects. A comparison of estimates made for 5 datasets 439 

from 3 grid sizes using these standardized parameters versus those calculated individually and 440 

manually for each file (Figures S17, S18) show relatively small changes and indicate that the 441 

approach is valid (Figure S19). Box plots for all data are given in Figure S20, while a subset of 442 

the offset grid simulations is given in Figure 6. 443 

 444 

Figure 6. CO2 leakage flux estimates of the Latera HR data using offset grid sub-sampling and 445 

four different calculating methods. (a) Statistical distribution versus the true value (horizontal 446 

line). (b-d) Comparison of kriging estimates with those defined using the average (b), MVUE 447 

(c), and SGS (d) calculation methods; the dashed lines indicate the true value.  (e-f) Cumulative 448 

error plots for the 20m grid sub-sampled files that yielded the lowest (e), median (f) and highest 449 

(g) SGS estimates.  450 

 451 
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The MVUE approach consistently under-estimates the leakage flux rates (Figure 6a), 452 

even at the 5 m grid spacing, likely because this approach is only valid for a single log-normal 453 

population (Schroder et al. 2017). The greater scatter of the MVUE data relative to kriging 454 

(Figure 6b) is likely due to the variable effect that different leakage samples have on the final 455 

calculated value. Although some research has indicated that the MVUE approach may be valid 456 

for CO2 leakage estimates if the data is log-normally distributed (Lewicki et al., 2005; Elio et al., 457 

2016), these results appear to support the affirmation by Schroder et al. (2017) that it is not 458 

appropriate. There is a sharp contrast between the MVUE and AM trends, as also shown by a 459 

change in their ratio when using only background values versus including progressively more 460 

leakage values (Figure S21). The AM data distribution is often centered on the true leakage flux 461 

value (Figure 6a) and has a distribution similar to that kriging (Figure 6c), despite the fact that it 462 

is also only valid for a single, in this case normal, population.  463 

The generally linear relationship between kriging and SGS (Figure 6d) is expected, as the 464 

latter has kriging at its core and the more realizations performed the more smoothed and similar 465 

to the former the results become (Cardellini et al. 2003). However, for some grid spacings (10 to 466 

30 m) SGS on average overestimates CO2 leakage (Figure 6a) and the slope between kriging and 467 

SGS deviates slightly from 1:1 (Figure 6d). Cumulative error plots (i.e., estimated minus true 468 

values, summed for increasing true values) for the 20m offset grid subsampled files that gave the 469 

lowest (Figure 6e), median (Figure 6f), and highest (Figure 6g) total flux estimates using SGS 470 

show how both methods generally overestimate the low values and underestimate the high 471 

values, which is a well-known artefact of kriging (Cardellini et al. 2003). However, while their 472 

trends are very similar at the low end, SGS continues to over-estimate across a mid-range of 473 

values before once again paralleling the kriging trend. These plots show that the final estimate 474 

for both methods is a balance between over- and under-estimating across the range of values, 475 

rather than a true representation, and how the higher SGS estimates are caused primarily by over-476 

estimation in mid-range values.  477 

To better understand the SGS results, sensitivity analyses were performed with MC-Flux 478 

using 100 sub-sampled datasets (offset grid, 20 m spacing) as input, systematically changing 479 

various SGS parameters. Base case (BC) calculations were made for AM, kriging and SGS 480 

(Figure 7a), with SGS BC parameters set to those used to produce the data in Figure 6. 481 
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 482 

Figure 7. (a) Statistical distribution of sensitivity analyses of various sGsim parameters; see text 483 

for description. Comparison of sGsim-estimated leakage flux using 16 nodes (base case) and 50 484 

nodes (b) and base case and “various” sGsim-estimated leakage flux versus the corresponding 485 

kriging results (c). 486 

The sGsim algorithm uses a large, odd integer as a seed to the pseudorandom number 487 

generator, and each realization can be reproduced exactly by re-running the simulation algorithm 488 

using that seed. In all simulations presented thus far the default value of 69069 has been used. 489 

For this test, the two sub-sample files that yielded the highest and lowest leakage flux estimates 490 

were each processed 100 times with sGsim, each time performing the usual 100 realizations with 491 

the BC parameters but with a unique random seed value. For both input files the statistical 492 

distribution of the leakage estimates were defined by 1 ≈ 1.5% and a total (i.e., minimum to 493 

maximum) range of about 8%. This uncertainty, however, is random and does not cause a fixed 494 

upwards or downwards shift in the data, as seen with other parameters.  495 

As each new node is simulated, sGsim adds this value to the original dataset used for 496 

kriging of subsequent points, leading to progressively more values and slower computations. To 497 

speed up the algorithm the user can limit the number of previously simulated nodes that are used 498 

at each step.  Sensitivity analyses show a drop in the median SGS leakage flux estimate by about 499 
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0.14 t d
-1

 (ca. 7%) when the number of nodes is increased from 16 (BC) to 50, but with little 500 

subsequent change using 100 nodes (Figure 7a). Both 50 and 100 nodes produce slightly 501 

narrower distributions, with greater impacts observed for those sub-sampled files that yield 502 

higher leakage flux estimates (Figure 7b). These results are most likely due to the observation 503 

that the use of a moving neighborhood of conditioning values can result in sGsim realizations 504 

that poorly reproduce second-order statistics, leading to simulated variograms that are biased 505 

relative to the theoretical one (Paravarzar et al. 2015). For example, Emery (2004) showed that 506 

using 20 nodes resulted in an increase in the apparent variogram range by up to 25%, while 507 

results with 100 nodes were better but still produced an increase of 14%. In the context of this 508 

work, an overestimated range would extend leakage anomalies over larger areas (compared to 509 

kriging) and yield a larger CO2 leakage estimate.  510 

If input data are not normally distributed they must be log-transformed prior to sGsim 511 

calculations and then back-transformed for final output, which requires the selection of the 512 

extrapolation model type and extreme values for both the lower and upper dataset tails. While 513 

lower tail characteristics can be estimated relatively accurately, the upper tail is much more 514 

difficult to assess. Estimating the maximum value by extrapolating the CPP is a valid approach 515 

(e.g., Cardellini et al. 2003), however the range of potential estimates that could result from 516 

probabilistically equivalent sub-sample datasets, like those shown in Figure 5b, indicates the 517 

uncertainty in this approach. Initial tests involved changing parameters of the hyperbolic model 518 

(Figure 7a). It was found that increasing the  parameter (related to trend curvature) from 2 (BC) 519 

to 2.5 to 3 decreased the median estimate by 1.8% and 3.2%, respectively, while decreasing the 520 

maximum value from 4000 g m
-2

 d
-1

 (BC) to 2000 and then 1500 (actual maximum value in the 521 

dataset) decreased it by 2.0 and 4.3%, respectively. Modification of the  parameter for the 522 

power model had even larger effects, with a value of 1 (equivalent to the linear model) giving a 523 

median value that is 13% above the BC while a value of 0.1 yielded one that was about 5.2% 524 

below (Figure 7a). 525 

Based on the above results a final test (“various” in Figure 7) was performed that 526 

changed three parameters at the same time (50 nodes used and hyperbolic model with a 527 

maximum value of 1500 and  = 2.5). This resulted in a narrowing of the distribution and 528 

decrease of the median value by 0.22 t d
-1

 (c. 11%). Plotted against the kriging results this final 529 
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test yielded a higher R
2
 and a slope closer to 1 compared to the base case (Figure 7c). Despite 530 

these improvements, the sGsim still overestimated, on average, the true value by about 0.2 t d
-1

 531 

for these tests on the 20 m offset grid sub-samples. Two possible explanations can be inferred 532 

from Emery (2004). First, a continued overestimate of the variogram range is possible despite the 533 

increased number of retained nodes. Second, the simulated area may be too small, in that the 534 

ratio between variogram range and domain length is 0.14 and 0.1 in the x and y directions, 535 

respectively, compared to the recommended value of <0.05.  536 

3.2.3. Leakage flux estimates - accuracy 537 

Up to 3000 MC-Flux sub-sample realizations were performed using the same input, 538 

assumptions and sample densities described above for the results in Figure 6, but applying all 539 

five sampling strategies (note that the number of unique square, offset, and triangular grid 540 

realizations are limited by (grid spacing)
2
). Considering the similar behavior of AM and kriging 541 

described in the previous section, kriging and sGsim simulations were not performed. 542 

The resultant AM data were used to calculate the probability that a given number of 543 

samples would yield a certain level of accuracy relative to the true value (Figure 8). Results of 544 

the random sampling strategy (Figure 8a) show smooth trends for all considered accuracy levels 545 

and low probability of high accuracy even for large number of samples, in agreement with that 546 

observed by Wong (2018). For example, there is only a 56% chance that 1000 samples would 547 

yield a leakage flux estimate that is within 10% of the true value while the same number of 548 

samples have an 88% chance of being within 20%. Unlike Wong (2018), however, we have also 549 

examined the response of different gridded sampling strategies, which show markedly improved 550 

results. For example, the offset grid data (Figure 8b) show trends that rise much more rapidly 551 

with far fewer samples. These trends are more irregular than those for the random sampling, 552 

likely due to the effect of sample node spacing combined with the individual size of each 553 

anomaly and the average distance between them. 554 

 555 
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 556 

Figure 8. Plots showing the probability that a certain number of samples will produce a given 557 

level of accuracy (lines) for random (a) and offset grid (b) sub sampling, and for all five sub-558 

sampling strategies at 10% (c), 20% (d), and 30% (e) levels of accuracy. 559 

A direct comparison of the results for the different sampling strategies at accuracy levels 560 

of 10% (Figure 8c), 20% (Figure 8d), and 30% (Figure 8e) show that random sampling 561 

consistently provides the poorest results, the different gridded approaches show similar trends 562 

(with triangular grid variations likely due to larger sample spacing for an equivalent number of 563 

samples, see Figure S7), and the offset grid yields the most accurate results (in agreement with 564 

results presented in Section 3.1).  From 20 to 100 samples (i.e., 70 to 30 m grid spacing, 565 

equivalent to 200 to 1000 samples km-2) the trends of all 5 strategies are relatively similar, with 566 

a less than 30% chance of 10% accuracy, less than 40% chance of 20% accuracy, and less than 567 

60% chance of 30% accuracy. Instead at the next sample density (i.e, 155 samples, 25 m grid 568 

spacing, 1550 samples km
-2

) there is a rapid improvement in the grid sampling results, with 569 

probabilities doubling in some cases. To put these results in context, the use of the offset grid 570 

strategy and a desired 90% probability level would require 15m spacing to obtain 10% accuracy, 571 

20m for 15%, 25m for 20% and 30m for 40%. It should be acknowledged that these results are 572 

based on an original dataset having a ca. 10 m sample spacing, and although sGsim processing 573 

was performed to reduce bias, a link cannot be excluded. For this reason similar simulations 574 

using high density datasets from other sites should be conducted in the future. 575 
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4. Conclusions 576 

Although it is true that each site is unique and its associated flux data must be interpreted 577 

individually to obtain the best results (Elío et al. 2016), the Monte Carlo approach used here 578 

(with its necessary standardization of input variables) provides useful information that can help 579 

reduce uncertainties and errors in the soil flux method. 580 

The offset and triangular grid sample strategies are recommended due to their superior 581 

performance under all conditions except low sample densities, where they were equivalent to the 582 

other methods. However, because the orientation of elongated anomalies were found to have a 583 

large impact on probabilities, due to alignment within grid gaps, any available site information 584 

regarding anisotropy, such as air photos, should be taken into consideration for deciding the 585 

orientation of the grid itself.  586 

Although sequential Gaussian simulation is the most commonly used method for 587 

interpolating and quantifying leakage flux data, the results presented here show how its estimate 588 

is sensitive to the chosen input parameters and, at least for the dataset used, slightly 589 

overestimated for mid-range sample spacings. In contrast, the much simpler and less subjective 590 

approaches using the arithmetic mean or kriging yielded probabilistic distributions were centered 591 

on the true value and thus may be more appropriate (although kriging accuracy seems to be 592 

linked to how well over- and under-estimated values are balanced across the grid). Additional 593 

simulations using other high resolution flux datasets from other sites should be performed to 594 

confirm these results.   595 

The need for large numbers of closely spaced samples to accurately define leakage flux is 596 

well known, and the results presented here help to quantify the potential level of uncertainty that 597 

can be expected at various sample densities. This raises the question of whether there are other 598 

approaches that could yield the same or lower uncertainty levels but with fewer samples, thus 599 

freeing resources for other analyses to better separate background and leakage populations (e.g., 600 

Bini et al. 2020). In this regard, both kriging and SGS would benefit from the use of a high 601 

resolution dataset of a linked parameter that could be used to both help choose appropriate 602 

sample spacing/ locations and for variogram definition and co-kriging. One such possibility is a 603 

map of CO2 concentration anomalies at ground level (Beaubien et al. 2018) or just above it 604 



manuscript submitted to Stochastic Environmental Research and Risk Assessment 

24 

 

(Barkwith et al. 2020), data which can be collected rapidly at high resolution. Our group is in the 605 

process of assessing this approach by combining these two datasets for MC-Flux simulations. 606 

Acknowledgments 607 

The assistance of Pietro Sacco and Davide de Angelis for the collection of the Latera 608 

field data is gratefully acknowledged.  609 

Declarations 610 

Funding: The research leading to these results received funding from the European Union's 611 

Horizon 2020 research and innovation programme under grant agreement No 653718. 612 

Conflicts of interest/Competing interests: The authors have no relevant financial or non-613 

financial interests to disclose. 614 

Availability of data and material: Datasets and configuration files used to conduct the reported 615 

simulations are available from the Zenodo open-source online repository at 616 

https://doi.org/10.5281/zenodo.4573725 (Beaubien and Bigi, 2021b).  617 

Code availability: The MC-Flux (V1.0) installation package and user’s manual are available 618 

from the Zenodo open-source online repository at https://doi.org/10.5281/zenodo.4573575 619 

(Beaubien and Bigi, 2021a).  620 

Authors' contributions: Conceptualization [SEB, SL], Methodology, Software, Visualization 621 

and Writing – Original Draft [SEB]; Formal Analysis [SEB, GC, MGF]; Validation [GC, MGF]; 622 

Writing – Review and Editing [GC, MGF, SB]; Supervision [SL]; Project administration and 623 

Funding acquisition [SB, SL]. 624 

References 625 

Annunziatellis A, Beaubien SE, Bigi S, Ciotoli G, Coltella M, Lombardi S (2008) Gas migration along 626 

fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for 627 

CO2 geological storage. Int J Greenhouse Gas Control, 2/3: 353-372. 628 

https://doi.org/10.1016/j.ijggc.2008.02.003 629 

Bain WG, Hutyra L, Patterson DC, Bright AV, Daube BC, Munger JW, Wofsy SC (2005) Wind-induced 630 

error in the measurement of soil respiration using closed dynamic chambers. Agricultural and 631 

Forest Meteorology, 131(3): 225-232. https://doi.org/10.1016/j.agrformet.2005.06.004 632 

Barkwith A, Beaubien SE, Barlow T, Kirk K, Lister TR, Tartarello MC, Taylor-Curran H (2020) Using 633 

near-surface atmospheric measurements as a proxy for quantifying field-scale soil gas flux. 634 

Geosci Instrum Method Data Syst, 9(2): 483-490. https://doi.org/10.5194/gi-9-483-2020 635 

Beaubien SE (2015) The mapping and quantification of CO2 leakage and its potential impact on 636 

groundwater quality. Ph.D. Thesis, Università Ca' Foscari, Venezia, Italia, 163 pp. 637 

http://hdl.handle.net/10579/6509 638 



manuscript submitted to Stochastic Environmental Research and Risk Assessment 

25 

 

Beaubien SE, Annunziatellis A, Ciotoli G, Lombardi S (2009) Near Surface Gas Simulator (NSGS): A 639 

Visual Basic program to improve the design of near-surface gas geochemistry surveys above CO2 640 

geological storage sites, 6th European Geosciences Union General Assembly 2009, Vienna, 641 

Austria. https://meetingorganizer.copernicus.org/EGU2009/EGU2009-12489.pdf 642 

Beaubien SE, Bigi S (2021) Example data and configuration / input files for conducting probability and 643 

accuracy simulations of CO2 flux surveys using the MC-Flux program. 644 

https://doi.org/10.5281/zenodo.4573725 645 

Beaubien SE, Bigi S (2021) MC-Flux (Version 1.0): a Monte Carlo-based program to determine how 646 

sample spacing, sample strategy, and calculation approaches impact the probability of finding 647 

CO2 leakage anomalies and the accuracy of total CO2 flux estimates. 648 

https://doi.org/10.5281/zenodo.4573575 649 

Beaubien SE, Ciotoli G, Coombs P, Dictor MC, Krüger M, Lombardi S, Pearce JM, West JM (2008) The 650 

impact of a naturally-occurring CO2 gas vent on the shallow ecosystem and soil chemistry of a 651 

Mediterranean pasture (Latera, Italy). Int J Greenhouse Gas Control, 2/3: 373-387. 652 

https://doi.org/10.1016/j.ijggc.2008.03.005 653 

Beaubien SE, Jones DG, Goldberg T, Barkwith KAP, Bigi S, Graziani S, Kirk K, Mattei E, Mulder B, 654 

Pettinelli E, Ruggiero L, Tartarello M-C (2018) Innovative tools for rapidly mapping / 655 

quantifying CO2 leakage and determining its origin, 14th Greenhouse Gas Control Technologies 656 

Conference  (GHGT-14) Melbourne, Australia. https://dx.doi.org/10.2139/ssrn.3366264 657 

Bini G, Chiodini G, Lucchetti C, Moschini P, Caliro S, Mollo S, Selva J, Tuccimei P, Galli G, Bachmann 658 

O (2020) Deep versus shallow sources of CO2 and Rn from a multi-parametric approach: the case 659 

of the Nisyros caldera (Aegean Arc, Greece). Scientific Reports, 10(1): 13782. 660 

https://doi.org/10.1038/s41598-020-70114-x 661 

Bond-Lamberty B, Pennington SC, Jian J, Megonigal JP, Sengupta A, Ward N (2019) Soil respiration 662 

variability and correlation across a wide range of temporal scales. Journal of Geophysical 663 

Research: Biogeosciences, 124(11): 3672-3683. https://doi.org/10.1029/2019jg005265 664 

Caers J (2002) Direct sequential indicator simulation. In: W. Kleingeld and D. Krige (Editors), 6th 665 

International Geostatistics Congress, South Africa, Cape Town, South Africa, pp. 39-48. 666 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.7285andrep=rep1andtype=pdf 667 

Carapezza ML, Granieri D (2004) CO2 soil flux at Vulcano (Italy): comparison between active and 668 

passive methods. Applied Geochemistry, 19: 73-88. https://doi.org/10.1016/S0883-669 

2927(03)00111-2 670 

Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: 671 

Mapping and quantification of gas release. Journal of Geophysical Research: Solid Earth, 672 

108(B9): 2425. http://dx.doi.org/10.1029/2002JB002165 673 

Chiodini G, Baldini A, Barberi F, Carapezza ML, Cardellini C, Frondini F, Granieri D, Ranaldi M (2007) 674 

Carbon dioxide degassing at Latera caldera (Italy): Evidence of geothermal reservoir and 675 

evaluation of its potential energy. Journal of Geophysical Research, 112(B12204). 676 

https://doi.org/10.1029/2006JB004896 677 

Chiodini G, Cardellini C, Caliro S, Avino R, Donnini M, Granieri D, Morgantini N, Sorrenti D, Frondini 678 

F (2020) The hydrothermal system of Bagni San Filippo (Italy): fluids circulation and CO2 679 

degassing. Italian Journal of Geosciences, 139(3): 383-397. https://doi.org/10.3301/IJG.2020.12 680 

Chiodini G, Cioni R, Guidi M, Marini L, Raco B (1998) Soil CO2 flux measurements in volcanic and 681 

geothermal areas. Applied Geochemistry, 13: 543-552. https://doi.org/10.1016/S0883-682 

2927(97)00076-0 683 



manuscript submitted to Stochastic Environmental Research and Risk Assessment 

26 

 

Davidson JR, 1995. Monte Carlo tests of the Elipgrid-PC algorithm. ORNL/TM-12899. Oak Ridge 684 

National Laboratory, Oak Ridge, Tennessee. https://doi.org/10.2172/52637 685 

Deutsch CV, Journel AG (1997) GSLIB: Geostatistical software library and users guide. Oxford Univ. 686 

Press, New York, USA, 2nd Edition, 369 pp. https://doi.org/10.1080/00401706.1995.10485913 687 

Elío J, Ortega MF, Chacón E, Mazadiego LF, Grandia F (2012) Sampling strategies using the 688 

"accumulation chamber" for monitoring geological storage of CO2. Int J Greenhouse Gas 689 

Control, 9: 303-311. https://doi.org/10.1016/j.ijggc.2012.04.006 690 

Elío J, Ortega MF, Nisi B, Mazadiego LF, Vaselli O, Caballero J, Chacón E (2016) A multi-statistical 691 

approach for estimating the total output of CO2 from diffuse soil degassing by the accumulation 692 

chamber method. Int J Greenhouse Gas Control, 47: 351-363. 693 

https://doi.org/10.1016/j.ijggc.2016.02.012 694 

Emery X (2004) Testing the correctness of the sequential algorithm for simulating Gaussian random 695 

fields. Stochastic Environmental Research and Risk Assessment, 18(6): 401-413. 696 

https://doi.org/10.1007/s00477-004-0211-7 697 

Gilardi N, Bengio S, Kanevski M (2002) Conditional Gaussian mixture models for environmental risk 698 

mapping, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 699 

777-786. https://doi.org/10.1109/NNSP.2002.1030100 700 

Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold 701 

Company Inc., New York, 332 pp. ISBN: 978-0-471-28878-7 702 

Hood GM, 2010. PopTools version 3.2.5. 703 

http://www.bioquest.org/esteem/esteem_details.php?product_id=248 704 

Kutzbach L, Schneider J, Sachs T, Giebels M, Nykanen H, Shurpali NJ, Martikainen PJ, Alm J, 705 

Wilmking M (2007) CO2 flux determination by closed-chamber methods can be seriously biased 706 

by inappropriate application of linear regression. Biogeosciences, 4(6): 1005-1025. 707 

https://bg.copernicus.org/articles/4/1005/2007/bg-4-1005-2007.pdf 708 

Leon E, Vargas R, Bullock S, Lopez E, Panosso AR, La Scala N (2014) Hot spots, hot moments, and 709 

spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem. Soil Biology and 710 

Biochemistry, 77: 12-21. https://doi.org/10.1016/j.soilbio.2014.05.029 711 

Lewicki JL, Bergfeld D, Cardellini C, Chiodini G, Granieri D, Varley N, Werner C (2005) Comparative 712 

soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, 713 

Nicaragua. Bull Volcanol, 68: 76-90. https://doi.org/10.1007/s00445-005-0423-9 714 

Matzke BD, Wilson JE, Newburn LL, Dowson ST, Hathaway JE, Sego LH, Bramer LM, Pulsipher BA 715 

(2014) Visual Sample Plan: Version 7.0 User’s Guide. Pacific Northwest National Laboratory for 716 

the U.S. Department of Energy. Richland, Washington, USA., pp. 291. 717 

https://doi.org/10.2172/1124046 718 

Oldenburg CM, Lewicki JL, Hepple RP, 2003. Near-surface monitoring strategies for carbon dioxide 719 

storage verification, Lawrence Berkeley National Laboratory, Report LBNL-54089. 720 

https://escholarship.org/uc/item/1cg241jb 721 

Paravarzar S, Emery X, Madani N (2015) Comparing sequential Gaussian and turning bands algorithms 722 

for cosimulating grades in multi-element deposits. Comptes Rendus Geoscience, 347(2): 84-93. 723 

https://doi.org/10.1016/j.crte.2015.05.008 724 

Pettinelli E, Beaubien SE, Zaja A, Menghini A, Praticelli N, Mattei E, Di Matteo A, Annunziatellis A, 725 

Ciotoli G, Lombardi S (2010) Characterization of a CO2 gas vent using various geophysical and 726 

geochemical methods. Geophysics, 75(3): B137-B146. http://dx.doi.org/10.1190/1.3420735 727 



manuscript submitted to Stochastic Environmental Research and Risk Assessment 

27 

 

Riveros-Iregui DA, McGlynn BL (2009) Landscape structure control on soil CO2 efflux variability in 728 

complex terrain: Scaling from point observations to watershed scale fluxes. Journal of 729 

Geophysical Research: Biogeosciences, 114(G2). https://doi.org/10.1029/2008jg000885 730 

Sainju UM, Jabro JD, Stevens WB (2008) Soil carbon dioxide emission and carbon content as affected by 731 

irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental Quality, 732 

37(1): 98-106. https://doi.org/10.2134/jeq2006.0392 733 

Schroder IF, Wilson P, Feitz AF, Ennis-King J (2017) Evaluating the performance of soil flux surveys 734 

and inversion methods for quantification of CO2 leakage. Energy Procedia, 114: 3679-3694. 735 

https://doi.org/10.1016/j.egypro.2017.03.1499 736 

Singer DA (1972) ELIPGRID, a FORTRAN IV program for calculating the probability of success in 737 

locating elliptical targets with square, rectangular, and hexagonal grids. Geocom Programs, 4: 1-738 

16. https://www.researchgate.net/publication/236410051 739 

Singer DA (1975) Relative efficiencies of square and triangular grids in the search for elliptically shaped 740 

resource targets. J Research U.S. Geological Survey, 3(2): 163-167. 741 

https://pubs.er.usgs.gov/publication/70164418 742 

Viveiros F, Chiodini G, Cardellini C, Caliro S, Zanon V, Silva C, Rizzo AL, Hipólito A, Moreno L 743 

(2020) Deep CO2 emitted at Furnas do Enxofre geothermal area (Terceira Island, Azores 744 

archipelago). An approach for determining CO2 sources and total emissions using carbon isotopic 745 

data. Journal of Volcanology and Geothermal Research, 401: 106968. 746 

https://doi.org/10.1016/j.jvolgeores.2020.106968 747 

Wong CLY (2018) Analysis of the number of flux chamber samples and study area size on the accuracy 748 

of emission rate measurements. Journal of the Air and Waste Management Association, 68(10): 749 

1103-1117. https://doi.org/10.1080/10962247.2018.1469555 750 


