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a b s t r a c t

The main determinants of COVID-19 spread in Italy are investi-
gated, in this work, by means of a D-vine copula based quantile
regression. The outcome is the COVID-19 cumulative infection
rate registered on October 30th 2020, with reference to the
107 Italian provinces, and it is regressed on some covariates of
interest accounting for medical, environmental and demographic
factors. To deal with the issue of spatial autocorrelation, the
D-vine copula based quantile regression also embeds a spatial
autoregressive component that controls for the extent of spatial
dependence. The use of vine copula enhances model flexibility
accounting for non-linear relationships and tail dependencies.
Moreover, the model selection procedure leads to parsimonious
models providing a rank of covariates based on their explanatory
power with respect to the outcome.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In the late December 2019, the atypical pneumonia originated by SARSCoV-2 virus has exponen-
ially spread out from the city of Wuhan, the capital of the Chinese province of Hubei, identified
s the epicentre of the contagion, to all other countries in the world becoming a global health
mergency (Li et al., 2020).
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Italy was the first European country seriously hit by pandemic (Murgante et al., 2020); in
articular, the two regions of Lombardia and Veneto, in February 2020, early experimented the
trong negative effects of the first COVID-19 epidemic wave on their regional health systems.
On March 9th 2020, the Italian government established a total lockdown extended to the whole

erritory based on social distancing, use of mask, contact tracing and isolation of positives (Giordano
t al., 2020). All these measures reduced the initial exponential growth of infection and mortality
ates as well as the hospital admissions; the attention was, above all, on intensive care units in order
o prevent beds saturation, being Italy one of the European countries with the lowest availability
f acute care beds per person (Farcomeni et al., 2020; Remuzzi and Remuzzi, 2020).
The Italian Civil Protection Department, from the late February 2020, provides, daily, real time

ata on the Italian outbreak, the most part at the regional level. With reference to the Italian
rovinces, the only available information is the cumulative number of infected people with no
nformation on the total number of individuals swabbed.

However, the drawback refers to data quality, in general, due to misreporting of the number
f positive people and deaths, especially in the first phase. Moreover, since swabs are mainly
erformed on symptomatic people, the pandemic spread in the Italian population is certainly
ffected by a negative bias.
For all above considerations, the main determinants of COVID-19 spread in Italy are far from

eing clearly identified and deeply analysed.
Our proposal has been that of modelling the dependence relationships among the COVID-19 cu-

ulative infection rate and some covariates of interest through a subclass of R-vine copula (Bedford
nd Cooke, 2001, 2002; Kurowicka and Cooke, 2006), the so-called D-vine copula (Aas et al., 2009).
his allowed to deal with non-linear dependencies ensuring a greater model flexibility.
In this work, the combined use of vine copula and quantile regression has been considered: more

pecifically, a D-vine copula based quantile regression, as proposed by Kraus and Czado (2017), has
een applied to model the COVID-19 cumulative infection rate, registered on October 30th 2020
or the 107 Italian provinces, by means of some covariates of interest collected from different data
ources and referred to the last available year.
When studying the COVID-19 infection rate, it is important to consider its spatial spread pattern,

articularly evident in Italy and, once time again, related to the well-known geographical distinction
etween North-centre and South.
To take into account the spatial component, the dependent variable, spatially lagged by means

f a suitable spatial weight matrix, has been efficiently embedded in the D-vine quantile regression
s further covariate, similarly to the Spatial Autoregressive Model (SAR, Anselin (1988)) widely used
n spatial Econometrics for the same scope.

In particular, two different Spatial D-vine copula based quantile regression models have been
roposed according to two different specifications of the spatial weight matrix.
This theoretical framework has been built with the aim of identifying the main factors that

irectly, or not, could influence the infection spread, its incidence and severity.
In particular, we argue that the main advantage of using the copula based quantile regression

odel arises from the consideration that the copula allows great flexibility in dependence modelling
vercoming some limits of the classical regression, firstly linearity that, in this context, could result
n a very strong and misleading assumption. By means of the spatial autoregressive component, the
odel accounts for spatial dependence, also providing a general measure of its extent.
Moreover, the vine copula based quantile regression constitutes an interesting methodological

ovelty in literature (Kraus and Czado, 2017); based on our knowledge, it has been recently applied
n few works (Niemierko et al., 2019; Nguyen-Huy et al., 2018; Liu et al., 2020; Martey and
ttoh-Okine, 2019) and not yet applied to COVID-19 data.
More generally, for interesting works applying spatial and spatio-temporal model to COVID-19

ata, we can refer to Aràndiga et al. (2020), Bertuzzo et al. (2020), Giuliani et al. (2020), Mollalo
t al. (2020), Kang et al. (2020), Bartolucci and Farcomeni (2021), Lee et al. (2021), Sahu and Böhning
2021), Vitale et al. (2021). For the application of a robust non linear regression model to the same
ata, see Girardi et al. (2020).
The paper is organized as follows. The general theory of vine copula is introduced in Section 2

hile in Section 3 the theoretical framework of the D-vine copula based quantile regression is
2



P. D’Urso, L. De Giovanni and V. Vitale Spatial Statistics 47 (2022) 100586

h
a
n
F

f

F
d

m

described in detail, focusing on the model selection procedure. The definition of the spatial weight
matrices used in the model are described in Section 4 while results are presented in Section 5.
Section 6 includes conclusions and further perspectives of research.

2. The vine copula

2.1. Copula model

A n-dimensional copula C is a n-variate cumulative distribution function (cdf) on the unit
ypercube [0, 1]n with uniformly distributed marginals U on the interval [0, 1]. The link between
multivariate distribution and its copula is provided by the Sklar theorem (Sklar, 1959): let F be a
-dimensional distribution function of the random vector X = (X1, . . . , Xn) with univariate marginals
1 . . . Fn, any n-variate cdf F can be written as:

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (1)

or some appropriate n-dimensional copula C that, when X is absolutely continuous, is unique.
The theorem states that any joint distribution can be retrieved from the marginal distributions

1 . . . Fn through the copula. In other words, a copula function enables to separate the marginal
istributions from the dependency structure of a given multivariate distribution.
Moreover, the copula from (1) can be expressed as:

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un)) (2)

where F−1
i (ui) is the inverse function of the ith marginal.

In terms of density functions f , if F is absolutely continuous with strictly increasing continuous
arginals F1 . . . Fn, through the chain rule decomposition, we have:

f (x) = c(F1(x1) . . . Fn(xn))
n∏

i=1

fi(xi) (3)

for some appropriate unique n-variate copula density c.
As already said, while there is an exhaustive literature on bivariate copula families, for higher

dimensions the choice is very limited.1 The extension to more than three dimensions is not
straightforward; indeed, some multivariate copulae, such as the Gaussian, the Student-t or the
Archimedean ones, lack flexibility to accurately model the dependence structure in high dimensions.

The pair-copula construction (PCC) has been introduced by Joe (1996) to overcome this limit. It
decomposes the multivariate dependence structure, i.e. the multivariate copula distribution, into
the product of bivariate distributions named pair-copulae, each one modelled, independently, by
a suitable copula. Therefore, differently than multivariate copulae, it does not assume that all the
bivariate dependencies are of the same type.

Since in higher dimensions the number of possible pair-copulae constructions grows up signifi-
cantly, a graph-theoretic representation called R-vine, i.e. Regular vine, was proposed by Bedford and
Cooke (2001, 2002) and then analysed in detail by Kurowicka and Cooke (2006); inspired by these
works, Aas et al. (2009) and Czado (2010) derived the inference techniques for two sub-classes of
regular vines, known as C- and D-vines, widely used in research and the applications.

Therefore, in the following, the R-vine graphical models will be presented focusing, after, on
its subclass of D-vines, of major interest in this work being used in the copula quantile regression
model proposed by Kraus and Czado (2017).

1 For theoretical references on copulae we can refer to Joe (1997).
3
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Fig. 1. A six-dimensional R-vine.

.2. R-vines and D-vines

More generally, the R-vine is a sequence of trees each edge of which corresponds to a pair-copula.
ccording to Kurowicka and Cooke (2006), a R-vine R = (T1 . . . Tn−1) on n variables is formally
efined as follows:

(a) T1 is a tree with nodes N1 = {1, . . . , n} and edges E1.
(b) For j = 2, . . . , n − 1, the tree Tj has nodes Nj = Ej−1 and edges set Ej.
(c) If two edges in Tj have to be joined (by an edge) as nodes in Tj+1, they must share a common

node in Tj (proximity condition).

ore simply, a n-dimensional R-vine is a set of n−1 trees such that the first tree comprises n nodes,
dentifying n − 1 pairs of variables and also n − 1 corresponding edges.

Therefore each subsequent tree is derived such that all the edges of tree j turn into nodes of the
ree j + 1 and can be joined by an edge in Tj+1 only if the proximity condition holds. An example
f six-dimensional R-vine is displayed in Fig. 1. Since for a R-vine many possible tree sequences
an be specified, two sub-classes of R-vines, the Canonical vines (C-vines) and the Drawables vines
D-vines), are more often applied being their tree sequences easier to identify.

For the scope of this work, we will focus only on the latter. Properly, a D-vine has a path structure
ince no node in any tree Tj is connected to more than two edges. It is completely defined by the
rdering of the sequence of the first tree only; all other subsequent trees are univocally identified
ccording to the given sequence of the first one.
An example of D-vine on six dimensions is shown Fig. 2. Its nested tree structure consists of five

rees Tj for j = 1, . . . , 5. Each tree Tj is composed of 7 − j nodes and 6 − j edges and, differently
han a R-vine specification, each node in any tree T is connected to almost two edges.
j

4
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Fig. 2. A six-dimensional D-vine.

According to the proximity condition, the nodes in Tj+1, joined by an edge, are only those
corresponding to the edges in Tj sharing a common node. For example, the edges {1, 2} and {3, 4}
f the first tree cannot be joined by an edge when they become nodes in the second tree since they
o not share a common node in T1.
The tree structure allows the specification of all pair copulae of the pair copula construction since

bivariate copula density is associated with each edge and, hence, its label is the subscript of this
opula: i.e. the edge {1, 4|2, 3} in Fig. 2 defines the copula density c14|23(·).
In particular, the copulae defined in the first tree are unconditional copulae while the others are

ll conditional; the copulae of the second tree have only one node as conditioning set, increasing by
ne for each tree.
Following Aas et al. (2009), with reference to a D-vine, the density f (x1, . . . , xn) can be written

s:

f (x1, . . . ., xn) =

n∏
k=1

fk(xk)× (4)

n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1{(F (xi|xi+1, . . . , xi+j−1), F (xi+j|xi+1, . . . , xi+j−1)}

where fk is the density of the corresponding Fk, for k = 1...n and ci,i+j|i+1,...,(i+j−1) is the bivariate
(conditional) copula density.

The density in (4) corresponds to a simplified PCC (Hobæk Haff et al., 2010) for which the
assumption is that all pair-copulae depend on the conditioning vector xi+1, . . . , xi+j−1 only through
their arguments, not directly.

According to (4), any n-dimensional absolutely continuous pdf can be written as the product of
the n marginal densities and the n(n − 1)/2 pair-copulae corresponding to the edges of the n − 1
trees; each bivariate copula has, as its arguments, the marginal CDFs at the first level, the conditional
CDFs for all Tj, j = 2, . . . , n − 1.

Let denote the generic CDF with F (x|v), Joe (1996) derived the recursive formula defined in (5)
to compute it using only the pair-copulae specified from lower trees, the so called h-function:

h(x|v) := F (x|v) =
∂Cxvj|v−j (Fx|v−j , Fvj|v−j )

∂Fvj|v−j

, ∀j (5)

here V is the random vector excluding X while V is the same vector excluding the jth variable.
−j

5
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Suppose to consider the simplest case, a three-dimensional D-vine with order 1, 2, 3, the pdf is
qual to:

f (x1, x2, x3) =f1(x1)f2(x2)f3(x3)· (6)
· c12{F1(x1), F2(x2)} · c23{F2(x2), F3(x3)}·
· c13|2{F (x1|x2), F (x3|x2)}

here, according to (5):

F (x1|x2) =
∂C12(F (x1), F (x2))

∂F (x2)
(7)

F (x3|x2) =
∂C32(F (x3), F (x2))

∂F (x2)
(8)

It is worth remembering that the importance of all the above results arises from the fact
hat all bivariate copulae can belong to different families and their parameters can be specified
ndependently from each other.

The theoretical definition of the D-vine allows to introduce, in the next section, the D-vine copula
ased quantile regression model, recently proposed in literature by Kraus and Czado (2017).

. The D-vine copula based quantile regression

In the field of quantile regression, the most famous and applied method is the linear quantile
egression proposed by Koenker and Bassett (1978); properly, an extension of the well-known linear
egression model based on the ordinary least squares extended, later, to account for non-parametric
ffects by Koenker (2011) and Fenske et al. (2011) (for a literature review on quantile regression
odels, see Kraus and Czado (2017) and reference therein.). In the work of Bernard and Czado

2015), it has been pointed out that linear quantile regression suffers from some limitations such
s model mis-specification, crossing of quantiles, multicollinearity and from all the other typical
rawbacks of linear models.
In this context, the use of vine copula enhances flexibility overcoming all previous issues

ffecting linear models; as shown later, this novel class of models inherits all the advantages related
o the fact that the dependence relationship between the response variable and its covariates could
e modelled through a vine copula.
The use of vine copula in the framework of quantile regression is essentially a novel proposal

ue to Kraus and Czado (2017) and Schallhorn et al. (2017), where the vine structure is restricted
o the class of D-vine. Some extensions to the use of the general class of R-vine copula are in Cooke
t al. (2015), where the response and the explanatory variables are both continuous, and in Chang
nd Joe (2019), where the variables are mixed. The latter approach finds the locally optimal regular
ine structure among all predictors and then adds the response to each selected tree in the vine
tructure as a leaf.
We chose to apply the D-vine based approach (Kraus and Czado, 2017) since the R-vine copula

egression proposed by Chang and Joe (2019) suffers from the drawback of a high computational
ost for high-dimensional data; moreover, as argued by Tepegjozova et al. (2021), the procedure
ay not be that maximizes the conditional response likelihood while the approach proposed
y Kraus and Czado (2017) is specifically based on optimizing the conditional log-likelihood and
electing covariates using a procedure similar to the forward selection in multiple regression that
ould be easier realized with a D-vine.
Indeed, as described in detail later, the methodology proposed by Kraus and Czado (2017)

s not only able to account for non linear dependencies but also to select parsimonious models
ince the algorithm used to identify the D-vine copula model implicitly implements a variable
election procedure too. In a more formal way, according to Kraus and Czado (2017), the main
arget of a quantile regression, based on a D-vine copula specification, is the quantiles’ estimate
α , where α ∈ (0, 1) is some quantile level of the response variable Y given its covariate vector

′.
= (X1, . . . , Xd)

6
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In particular, the conditional quantile function is defined as:

qα(x1, . . . , xd) := F−1
Y |X1,...,Xd

(α|x1, . . . , xd) (9)

Let V and Uj denote the uniformly distributed probability integral transforms (PIT) of Y and the
jth component of X, i.e. FY (Y ) and Fj(Xj), respectively. By Sklar theorem, it follows that:

FY |X1,...,Xd (y|x1, . . . , xd) = CV |U1,...,Ud (v|u1, . . . , ud) (10)

F−1
Y |X1,...,Xd

(α|x1, . . . , xd) = F−1
Y

(
C−1
V |U1,...,Ud

(α|u1, . . . , ud)
)

(11)

Therefore, to get q̂α(x1, . . . , xd), suitable estimators of the univariate marginals FY and Fj ∀ j =

1, . . . , d as well as of the copula CV ,U1,...,Ud have to be computed; accordingly, a kernel estimator is
used for the marginals while a simplified D-vine copula is used for C .

To this purpose, the D-vine structure is estimated such that the ordered sequence of nodes of the
first tree has V as its first node followed by one among the possible permutations of the covariates
U1, . . . ,Ud.

By using the recursive formula (5), the copula C−1
V |U1,...,Ud

(α|u1, . . . , ud) could be computed in
terms of nested inverse h-functions.

As argued by Kraus and Czado (2017), being the inverse copula monotonically increasing in α,
it does not allow the crossing of quantiles functions. Moreover, the use of multivariate copula
enhances flexibility embedding non-linear and asymmetric dependencies, heavy tails and tail
dependencies.

The fitting procedure as well as the open question about which permutation of the covariates
has to be chosen are both analysed, in detail, in the next paragraph.

3.1. The variables selection procedure

The algorithm used to fit a D-vine based quantile regression model is implemented in the R
package vinereg (Nagler, 2018).

As already specified, the first step consists in fitting the marginals non-parametrically by means
of kernel estimators in order transform the n observed values to the corresponding so called pseudo
copula data vi and ui for i = 1, . . . , n, respectively.

In the second step, the pseudo copula data are used in the estimation of the D-vine copula. In
order to increase the model explanatory power, the d + 1 dimensional D-vine is chosen such that,
given V as first node of the first tree, the sequence of the other d nodes of the same tree is chosen
based on a sequential procedure.

Properly, one covariate at a time is added that improves the conditional log-likelihood2 (cll) of
the estimated D-vine copula.

Suppose that, at the lth step, the unselected covariates are Uk and Um. Two D-vine copula models
are fitted according to the sequence V −U1 −· · ·Ul−1 −Uk and V −U1 −· · ·Ul−1 −Um, respectively.
Also denote the associated clls with cllk and cllm and that associated to the D-Vine of previous step
with clll−1.

If cllk > cllm > clll−1, the lth selected covariate will be Uk, i.e. that associated with the highest
increase of the cll (Um if cllm > cllk > clll−1). If none of them increases clll−1, the algorithm stops
selecting l − 1 covariates.

Therefore, an implicit variable selection procedure is defined allowing to choose the most
influential covariates, ranking them according to their explanatory power with respect to the
response variable, leading to parsimonious models.

2 The algorithm allows to choose the best model also according to the penalized conditional loglikelihoods AIC and
BIC. See Kraus and Czado (2017) for the mathematical derivation of the cll in the model.
7
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4. Spatial dependence

A variable is said to be spatially autocorrelated if it shows a systematic spatial pattern, that is,
he variable values at a location are highly influenced by those at the adjacent locations and, more
enerally, the spatial autocorrelation declines with increasing distance.
Spatial autocorrelation could be positive or negative: the former occurs when a high value of

variable at a location is associated with high values at neighbouring locations, the latter when a
igh value at a location is associated with low values at the neighbouring ones.
In this application, in order to take into account the strong spatial dependence among units, a

patial lagged dependent variable has been added to the model, as in the Spatial Autoregressive
odels (SAR) widely used in spatial Econometrics (Anselin, 1988). Hence, the dependent variable,
ay Y of dimension n, is usually lagged by means of a spatial weight matrix, sayWn×n, that is a square
matrix whose element wij is 0 if zones i and j are not adjacent while is equal to some positive value
if they are neighbours:

W =

{
wij > 0 if zones i and j are adjacent with i ̸= j

0 otherwise

Here, we adopted the adjacency definition between spatial polygons known as ‘‘Queen’s Case
adjacency" according to which two units are close if they share a side or an edge. In Fig. 3, the links
between the polygons of the Italian provinces are reported: a red edge has been drawn between
the centroids of the two zones that are adjacent according the Queen criterion.

In this study, two different definitions of weights matrices have been taken into account, named
W1 and W2:

W1 =

{
wij =

1
si

if zones i and j are adjacent with i ̸= j

0 otherwise

where si is the number of neighbours of polygon i,

W2 =

{
wij = 1 if zones i and j are adjacent with i ̸= j

0 otherwise.

Fig. 3. The links between polygons according to the Queen criterion.
8
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In the former, each element of ith row is divided by the number of its neighbours so that the
ffect of any individual neighbour decreases as the number of neighbours increases. This produces
hat called the row normalization of W. In the latter definition, the simplest one, the matrix W
orresponds to the indicator matrix.
We argue that the role of the spatial autoregressive component in the model is twofold: at the

ame time, it allows to evaluate the effects of spatial autocorrelation as well as the impact of all
ther covariates controlled for the spatial dependence.

. Application

.1. Data description

In this study, the analysis focuses on the application of the D-vine copula-based quantile
egression, with spatial autoregressive component, to model the COVID-19 cumulative infection rate
er 10000 inhabitants registered on October 30th 2020, with reference to the 107 Italian provinces
s shown in the map of Fig. 4.
In Table 1, all involved covariates, with their labels, the reference year and their sources, are

eported.3 In particular, the disposable income and the employment rate have the role of control
variables, while the total-age dependency ratio, the old-age dependency ratio and the healthy
expectancy at birth account for the population structure knowing that COVID-19 infection is more
insidious for the elderly population.

The age-adjusted mortality rates per gender, as well as the drugs consumption for diabetes,
ypertension, asthma and BPCO, have been included in the model as proxies of the spread and
everity of the main diseases in the territories.
The variables related to the climate and air pollution have been taken into account in order to

nvestigate the possible relationship between infection and environment conditions.

3 For the new province named ‘‘South Sardinia", born in 2017, when the datum was not available, it has been imputed
with the mean of its neighbours.

Fig. 4. The COVID-19 cumulative infection rate per 10000 inhabitants registered on October 30th, 2020.
9
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Table 1
The variables used in the D-vine copula-based quantile regression model.
Label Variable Reference year Source

COVID_Infection_rate Total number of infections per
10000 inhabitants

2020 Civil Protection Department

Life_expectancy_at_birth Life expectancy at birth 2018 ISTAT
Income Per capita disposable income 2016 ISTAT
Employment_rate Employment rate (20-64 years

old)
2018 ISTAT

Total_age_dependency Total-age dependency ratio 2020 ISTAT
Old_age_Dependency Old-age dependency ratio 2020 ISTAT
MortalityInfections_M Age-adjusted mortality rate

from infectious diseases for
Male per 10000 inhabitants

2017 Health For All Italia 2020

MortalityInfections_F Age-adjusted mortality rate
from infectious diseases for
Female per 10000 inhabitants

2017 Health For All Italia 2020

MortalityCancer_M Age-adjusted mortality rate
from cancer for Male per
10000 inhabitants

2017 Health For All Italia 2020

MortalityCancer_F Age-adjusted mortality rate
from cancer for Female per
10000 inhabitants

2017 Health For All Italia 2020

MortalityPneumonia_Flu_M Age-adjusted mortality rate
from pneumonia and influenza
for Male per 10000 inhabitants

2017 Health For All Italia 2020

MortalityPneumonia_Flu_F Age-adjusted mortality rate
from pneumonia and influenza
for Female per 10000
inhabitants

2017 Health For All Italia 2020

NO2 Nitrogen dioxide annual mean
(average of mean values of
stations belonging to the
Province)

2018 ISPRA

PM10 PM10 annual mean (average of
mean values of stations
belonging to the same
Province)

2018 ISPRA

Climate Climate index 2019 Sole 24 Ore’s life-quality index
General_practitioners General practitioners per

10000 inhabitants
2019 Sole 24 Ore’s life-quality index

Diabetes Diabetes drug consumption
(per capita minimum units)

2019 Sole 24 Ore’s life-quality index

Hypertension Hypertension drug
consumption (per capita
minimum units)

2019 Sole 24 Ore’s life-quality index

Asthma Asthma and Chronic
obstructive pulmonary diseases
drug consumption (per capita
minimum units)

2019 Sole 24 Ore’s life-quality index

Lagged_COVID_Infection1 Total number of infections per
10000 inhabitants weighted by
the contiguity matrix W1)

2020 Authors’ elaboration

Lagged_COVID_Infection2 Total number of infections per
10000 inhabitants weighted by
the contiguity matrix W2)

2020 Authors’ elaboration

The rate of general practitioners has been included being a topic of a strong debate in Italy; the
OVID-19 outbreak has highlighted several disparities in the regional health systems showing, in
ome cases, a lack of an adequate primary care network, although it has been known the key role
f general practitioners in meeting the needs of patients in their communities (Mugnai and Bilato,
020; Cicchetti et al., 2021; Mauro and Giancotti, 2021).
10
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5.2. The estimated models

According to the model selection procedure described in Section 3.1, in the first step, each
arginal has been fitted using a local polynomial kernel density estimator, implemented in the R
ackage kde1d, also suitable to handle data with a bounded support4. In the second step, the D-vine
opula has been fitted to the transformed data, involving an implicit variable selection procedure
hat ranks the covariates according to their explanatory power with respect to the response variable,
rom the most influential to the less one with respect to the outcome. The best model has been
hosen by minimizing the penalized conditional loglikelihood (cAIC).
Two D-vine copula quantile regression models have been estimated depending on the spatially

agged dependent variable used in the model to control for the extent of spatial dependence. The
ormer, henceforth called DVQR_1 model, includes the variable named Lagged_COVID_Infection1 in
able 1 based on the contiguity matrix W1, i.e. the mean of the infection rate per 10000 inhabitants
f the neighbouring provinces. The latter, henceforth called DVQR_2 model, includes the variable
amed Lagged_COVID_Infection2 in Table 1 based on the contiguity matrix W2, i.e. the sum of
nfection rate per 10000 inhabitants of the neighbouring provinces.

Based on the estimation procedure described in Section 3.1, the DVQR_1 model includes the
elected covariates reported in Table 2 while the DVQR_2 model includes those reported in Table 3.
he associated cAIC value is 987.544 and 1000.29 for the DVQR_1 and DVQR_2 model, respectively.

Table 2
The outcome and the selected covariates for the DVQR_1
model.
Vine Node
label

Variables p_value

1 COVID_Infection_rate
7 Lagged_COVID_Infection1 0.000
6 Hypertension 0.012
5 MortalityPneumonia_Flu_M 0.029
2 Life_expectancy_at_birth 0.028
8 Old_age_Dependency 0.050
3 Income 0.035
4 MortalityInfections_F 0.041

Table 3
The outcome and the selected covariates for the DVQR_2
model.
Vine Node
label

Variables p_value

1 COVID_Infection_rate
11 Lagged_COVID_Infection2 0.000
8 MortalityPneumonia_Flu_M 0.000
10 General_pratictioners 0.002
6 MortalityCancer_M 0.009
7 MortalityCancer_F 0.011
9 Hypertension 0.042
5 MortalityInfections_F 0.030
3 Income 0.002
2 Life_expectancy_at_birth 0.022
4 MortalityInfections_M 0.044

The covariates in Tables 2 and 3 are ranked according to their own explanatory power with
espect to the outcome5; the order is retrieved by the sequence of the first tree of the estimated
D-vine, shown in Figs. 5 and 6 for the DVQR_1 and DVQR_2 model, respectively.

4 The choice of the polynomial degree as well as the bandwidth multiplier have been individually set for each variable.
5 The first column in the tables represents the identification number of the variable in the D-vine representation.
11
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Fig. 5. The first tree of D-vine for the DVQR_1 model (the sequence has to be read from the right to the left).

Fig. 6. The first tree of D-vine for the DVQR_2 model (the sequence has to be read from the right to the left).
12
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For the sake of completeness, all other trees are shown in Fig. A. 1 of Appendix A, for the DVQR_1
model, and in Fig. B. 1 of Appendix B, for the DVQR_2 model. Moreover, in the same appendices,
Tables A. 1 and B. 1 show the selected copula and its parameters associated with all edges of the
D-vine of the DVQR_1 model and DVQR_2 model, respectively: the last column, in particular, shows
the corresponding theoretical Kendall Tau.

By looking at the first tree, for both models, the first influential covariate is represented by
the lagged dependent infection rate, as expected, proving that the spread of COVID-19 outbreak
is affected by spatial dependence, i.e. its values are influenced by those of its neighbours.

We argue that the strength of spatial dependence could be assessed, here, by means of the
Kendall Tau coefficient associated to the estimated marginal bivariate copula density between the
infection rate and itself spatially lagged (the copula associated to the edge 1 of Tree 1 of the D-vine).
Like the Moran’s I index, widely used in spatial statistics to the same scope, the Tau coefficient
properly provides a suitable measure of the degree of spatial dependence.

In particular, the Tau coefficient associated to the marginal bivariate copula density between the
infection rate and itself spatially lagged, depicted in Fig. 7, is 0.678 and 0.611 for the DVQR_1 and
VQR_2 model respectively, suggesting a positive spatial autocorrelation for the spread of pandemic
n Italy. In particular, we argue that, in both plots, there is a higher positive correlation between
he lower percentiles of both variables.

For the sake of completeness, in Appendices A and B, Figs. A. 2 and B. 2 show the conditional
opula densities between the outcome and each selected covariate for the DVQR_1 and DVQR_2
odel, respectively.
As far as the other covariates are concerned, some other important considerations can be

ddressed when looking at their marginal effects, as shown in the next section.

Fig. 7. The estimated marginal bivariate copula density with uniform margins between the COVID-19 Infection rate and
tself, spatially lagged, for both models.

.3. Marginal effects

The plots of Fig. 8 are the marginal effects of the covariates belonging to DVQR_1 model to which
smoothed line is added for the quantile levels 0.1, 0.5, 0.9. As already said, the first influential
ovariate is the spatially lagged dependent variable; the other main factors contributing to explain
he COVID-19 infection rate are, in the order, the hypertension drug consumption, the age-adjusted
ortality rate for Pneumonia and Flu in the males, the two covariates related to the population age
13



P. D’Urso, L. De Giovanni and V. Vitale Spatial Statistics 47 (2022) 100586

s
i

t
r
r
a
k
i
t
o
2

r
t
i

C
a

c
p
c

Fig. 8. The marginal effects of the selected covariates in DVQR_1 model.

tructure followed by the disposable income levels and the age-adjusted mortality rate for infections
n the females.

At a first insight, the marginal effects clearly give evidence of non-linear relationships between
he outcome and its covariates, as expected. Moreover, it is worth noting that the only negative
elationship is that between the COVID-19 infection rate and hypertension drug consumption. The
ole of this covariate is twofold: it is a proxy of the incidence of the chronic disease in the area but
lso of the level of diffusion of treatments. Therefore, a territory with a higher consumption of this
ind of drug could be also an area in which the prevention and the therapy are more widespread and
ncisive or, more simply, in which people take more care of their health. More generally, we believe
hat this unexpected negative relationship could be more likely due to the fact that the provinces
f Lombardy, seriously hit by pandemic, show lower consumptions of hypertension drugs (AIFA,
020).
Both positive relationships with the life expectancy at birth and with the old-age dependency

atio support the evidence that COVID-19 virus is particularly insidious in those territories charac-
erized by an elderly population, for which it is known that the co-occurrence of chronic diseases
s also a very frequent problem.

As far as the positive relationship with the income is concerned, it reflects the geography of the
OVID-19 spread in Italy that has particularly hit the Northern regions for which the income levels
nd the employment rate are markedly higher than those of southern ones.
The relationship with the mortality rate for Pneumonia and Flu in the males, the third influential

ovariate, deserves particular attention being related to two important features of COVID-19
andemic, that is the Pneumonia is also the most common serious complication of the new

oronavirus and the mortality rate caused by COVID-19 in the male is higher than in the females.

14
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Therefore, the model seems to highlight that COVID-19 virus has been spread in those territories
already characterized by a high incidence and severity of Pneumonia, in particular in the male
population. This is confirmed by the geographical spread of the 2017 age-adjusted mortality rate
due to Pneumonia in the males, strongly concentrated in the North of Italy as shown in Fig. 9. It
is worth noting that the only exception is represented by the province of Lodi, that was also the
epicentre of contagion in Lombardy in the late February. As the same way, the relationship with
the Mortality rate for infections in the females suggests that this new coronavirus has been spread
mainly in those territories already marked by a higher prevalence of severe infections.

As far as the marginal effects of the DVQR_2 model are concerned (see plots of Fig. 10) we notice
hat, in this model, the mortality rate for Pneumonia and Flu in the males becomes the second most
nfluential covariate and, more interesting, it is also the role of the subsequent three covariates
eading to the following observations.

There is a marked reduction of the infection rate as the number of general practitioners per
0000 inhabitants increases; this yields important insights into the debate recently developed in
taly around the important role of the general practitioners in providing the first treatments to
OVID-19 patients contributing to prevent hospital bed saturation. An in-depth analysis led to
he following considerations. From the map in Fig. 11, the provinces of Lombardy are those both
eriously hit by pandemic and with lower rates of general practitioners per 10000 inhabitants. As
ointed out by Cicchetti et al. (2021), general practitioners have a fundamental role in the system,
cting as a filter, being able to decide on hospitalization or home care for positives thus reducing
ressure on hospital services. The different approach adopted to face Covid-19 emergency revealed
he corresponding differences in the regional health systems. Some regions were a positive example
f integrated-home care such as Emilia Romagna that chose to early care for positives at home,
hus reducing infection among health workers; Veneto, the first region hit by pandemic, adopted a
erritorial or ‘‘out-of-hospital’’ model of management by increasing the number of swabbed people,
reating positives early thus reducing hospital admissions. On the contrary, Lombardy adopted the
‘in-hospital’’ COVID-19 management of positives (Mugnai and Bilato, 2020; Mauro and Giancotti,

Fig. 9. The map of the Age-adjusted mortality rate from Pneumonia and Flu for Males per 10000 inhabitants, year 2017.
15
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Fig. 10. The marginal effects of the selected covariates in DVQR_2 model.

021); indeed, during the first pandemic wave, the ratio between people in hospital versus those
ho received care at home was 1.14 in Lombardy and 0.61 in Emilia Romagna (Cicchetti et al.,
021).
Summing up, as argued by Cicchetti et al. (2021), the main drawback of some regional health

are systems concerned the lack of continuity of care (essential to ensure the sustainability of
ny health care) due ‘‘to a lack of clear, homogeneous and effective approaches for primary care
rovision due to the still-unclear role of general practitioners’’ that led to a tendency for a hospital-
entred approach. The absence of a primary care forced patients with minor symptoms to crowd the
ospitals too. Therefore, a good primary assistance is the only winning strategy avoiding hospitals
aturation and preventing the spread of infections.
The positive relationships between the infection rate and the age-adjusted mortality rate for

ancer, for both males and females, suggest that the outbreak has been more spread in the same
erritories for which the incidence of cancer diseases is also significant and severe. It is worth
ooking, once again, at the geographical spread of the disease in Italy, shown in Fig. 12 for males and
emales, for which it emerges that the areas of Lombardy (see the province of Bergamo, for example)
trongly hit by pandemic are also characterized by very high values of these rates. This does not
rove any causal relationship but could suggest an indirect link with the pollution in the same
ones, since it is long been known that pollution could increase the risk of contracting respiratory
iseases. As far as the other covariates in the model are concerned, we point out that they are the
ame of the first model, except for the age-adjusted mortality infection rate for male, here selected
s the last covariate in the model.
We can resume that the spread of COVID-19 infection seems to follow a spatial pattern with a

igher incidence in the same areas, in general, more vulnerable to pulmonary diseases and other
nfections, for which the old-age of their resident population could represent an additional negative
actor contributing to COVID-19 diffusion, above all if combined with a low level of primary medical
ssistance.
16
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Fig. 11. The map of the number of General Practitioners per 10000 inhabitants, year 2019.

The COVID-19 dynamics in Italy fairly reflects the geographical stratification between North-
centre and South of Italy and could be due to the fact that the northern and central regions are much
more interested by business relationships promoting social interaction. In general, the question
deserves much more attention in order to explore possible causal effects between the COVID-19
incidence rate and some environmental and territorial characteristics.

6. Conclusions

The COVID-19 outbreak in Italy has been massive with 647,674 infections and 38,321 deaths as
reported by the Italian Civil Protection Department on October 30th, 2020. As of now, its spread
has been characterized by strong territorial differences with the northern regions particularly hit
by pandemic in the first wave.

The main results of this work concern the identification of the main factors influencing the
spread of infections taking into account its spatial pattern. For this purpose, a D-vine copula
based quantile regression has been applied to model the COVID-19 cumulative infection rate
by means of some covariates of interest such as the incidence in the territories of the main
severe diseases in terms of mortality rates or drug consumption, the population age structure, the
levels of air pollution as well as the efficiency of the primary medical care system. The spatial
dependence has been embedded in the model by means of the autoregressive component, i.e. the
patially lagged dependent variable. The use of pair-copulae and quantile regression allowed to
ccount for non-linear dependencies, overcoming some drawbacks of classical regression models.
oreover, the copula density, modelling the bivariate relationship between the outcome and the
patial autoregressive component, also provided the extent of spatial dependence by means of the
ssociated theoretical Kendall Tau coefficient.
Aware that our results could not be exhaustive of the complexity of the phenomenon under

onsideration neither to be conclusive about possible ‘‘causal" effects, we believe that our study
ould represent a first interesting insight into identification of the main factors related to the
OVID-19 diffusion.
17
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Fig. 12. The map of age-adjusted mortality rate for cancer in the males (top) and the females (bottom) per 10000
inhabitants, year 2017.
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Both estimated models account for a positive spatial autocorrelation, a distinctive and predictable
rait of pandemic. Moreover, in both proposed models, the influential covariates are strictly related
o the main features of the new coronavirus since the COVID-19 infection rate has been more
nsidious in the same areas already more exposed to Pneumonia, especially in the male population,
nd vulnerable to infections, also increasing in those territories with a higher value of the old-
ge dependency rate, i.e. the ratio between people aged 65 and over and those aged 15-64. The

unexpected negative relationship with the hypertension could be explained by the fact that the
provinces of Lombardy, seriously hit by pandemic, show lower consumptions of hypertension
drugs (AIFA, 2020), even if this relationship deserves further in-depth analysis.

For one of the two estimated models, also the mortality rate for cancer has been identified as
influencing factor and, more interesting, the number of general practitioners per 10000 inhabitants,
a proxy of the efficiency of the primary medical care in the territories. The strong negative associ-
ation with the COVID-19 infection rate corroborates the belief of who, in the Italian public debate
on this theme, considers the role of general practitioners essential to prevent the hospitalization of
COVID patients and to allow an efficient health monitoring of the territory.

In the future, the further perspectives of research will be focused on studying the mortality risk
associated with the COVID-19 virus, with an in-depth analysis on the role of co-morbidities in the
hospitalized patients by means of spatial and spatio-temporal models.
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Appendix A. D-vine for the DVQR_1 model

Table A. 1
The D vine specification for the DVQR_1 model.

Tree Edge Conditioned Conditioning Family Rotation Parameter1 Parameter2 df tau

1 1 1 1, 7 bb8 180 8.000 2 0.678
2 1 2 7, 6 indep 0 0 0.000
3 1 3 6, 5 indep 0 0 0.000
4 1 4 5, 2 bb7 0 1.000 0.578 2 0.224
5 1 5 2, 8 joe 180 1.315 1 0.152
6 1 6 8, 3 clayton 0 0.888 1 0.307
7 1 7 3, 4 clayton 0 0.725 1 0.266
8 2 1 1, 6 7 gaussian 0 −0.218 1 −0.140
9 2 2 7, 5 6 bb8 180 3.343 0.909 2 0.477
10 2 3 6, 2 5 indep 0 0 0.000
11 2 4 5, 8 2 gaussian 0 0.367 1 0.239
12 2 5 2, 3 8 gaussian 0 0.452 1 0.299
13 2 6 8, 4 3 gumbel 180 1.056 1 0.053
14 3 1 1, 5 6, 7 gumbel 180 1.135 1 0.119
15 3 2 7, 2 5, 6 indep 0 0 0.000
16 3 3 6, 8 2, 5 clayton 0 0.731 1 0.268
17 3 4 5, 3 8, 2 bb8 180 3.459 0.858 2 0.448
18 3 5 2, 4 3, 8 clayton 0 0.241 1 0.108
19 4 1 1, 2 5, 6, 7 clayton 90 0.097 1 −0.046
20 4 2 7, 8 2, 5, 6 joe 180 1.193 1 0.100
21 4 3 6, 3 8, 2, 5 indep 0 0 0.000
22 4 4 5, 4 3, 8, 2 indep 0 0 0.000
23 5 1 1, 8 2, 5, 6, 7 frank 0 −1.145 1 −0.126
24 5 2 7, 3 8, 2, 5, 6 frank 0 4.054 1 0.392
25 5 3 6, 4 3, 8, 2, 5 bb8 0 1.198 0.998 2 0.100
26 6 1 1, 3 8, 2, 5, 6, 7 bb8 0 1.355 0.963 2 0.136
27 6 2 7, 4 3, 8, 2, 5, 6 indep 0 0 0.000
28 7 1 1, 4 3, 8, 2, 5, 6, 7 bb8 0 1.299 0.977 2 0.125

See Fig. A. 1, Table A. 1 and Fig. A. 2.
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Fig. A. 1. DVQR_1 model: the D-vine trees.
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Fig. A. 1. (continued).
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Fig. A. 2. DVQR_1 model: the estimated conditional bivariate Copula densities with uniform margins between the outcome
and its covariates.
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Appendix B. D-vine for the DVQR_2 model

See Fig. B. 1, Table B. 1 and Fig. B. 2.
Table B. 1
The D vine specification for the DVQR_2 model.

Tree Edge Conditioned Conditioning Family Rotation Parameter1 Parameter2 df tau

1 1 1 1, 11 bb8 180 8.000 0.689 2 0.611
2 1 2 11, 8 bb8 180 3.982 0.747 2 0.414
3 1 3 8, 10 frank 0 −1.911 1 −0.205
4 1 4 10, 6 t 0 −0.255 4.676 2 −0.164
5 1 5 6, 7 bb7 180 1.347 1.669 2 0.495
6 1 6 7, 9 joe 270 1.140 1 −0.075
7 1 7 9, 5 bb1 0 0.000 1.155 2 0.134
8 1 8 5, 3 clayton 0 0.725 1 0.266
9 1 9 3, 2 gaussian 0 0.538 1 0.361
10 1 10 2, 4 clayton 0 0.405 1 0.168
11 2 1 1, 8 11 gumbel 180 1.303 1 0.233
12 2 2 11, 10 8 frank 0 −1.906 1 −0.205
13 2 3 8, 6 10 gaussian 0 0.143 1 0.091
14 2 4 10, 7 6 gumbel 90 1.271 1 −0.213
15 2 5 6, 9 7 indep 0 0 0.000
16 2 6 7, 5 9 gaussian 0 0.267 1 0.172
17 2 7 9, 3 5 indep 0 0 0.000
18 2 8 5, 2 3 indep 0 0 0.000
19 2 9 3, 4 2 gaussian 0 0.320 1 0.207
20 3 1 1, 10 8, 11 frank 0 −1.985 1 −0.212
21 3 2 11, 6 10, 8 frank 0 0.791 1 0.087
22 3 3 8, 7 6, 10 clayton 0 0.608 1 0.233
23 3 4 10, 9 7, 6 bb7 180 1.108 0.199 2 0.139
24 3 5 6, 5 9, 7 clayton 0 0.194 1 0.089
25 3 6 7, 3 5, 9 bb8 180 2.523 0.825 2 0.299
26 3 7 9, 2 3, 5 indep 0 0 0.000
27 3 8 5, 4 2, 3 bb7 0 1.582 0.333 2 0.327
28 4 1 1, 6 10, 8, 11 frank 0 1.506 1 0.164
29 4 2 11, 7 6, 10, 8 joe 180 1.224 1 0.113
30 4 3 8, 9 7, 6, 10 indep 0 0 0.000
31 4 4 10, 5 9, 7, 6 joe 270 1.201 1 −0.103
32 4 5 6, 3 5, 9, 7 frank 0 −1.776 1 −0.191
33 4 6 7, 2 3, 5, 9 gaussian 0 −0.394 1 −0.258
34 4 7 9, 4 2, 3, 5 gaussian 0 −0.173 1 −0.111
35 5 1 1, 7 6, 10, 8, 11 joe 180 1.130 1 0.070
36 5 2 11, 9 7, 6, 10, 8 indep 0 0 0.000
37 5 3 8, 5 9, 7, 6, 10 clayton 0 0.690 1 0.256
38 5 4 10, 3 5, 9, 7, 6 gaussian 0 −0.180 1 −0.115
39 5 5 6, 2 3, 5, 9, 7 frank 0 −2.543 1 −0.266
40 5 6 7, 4 2, 3, 5, 9 gaussian 0 0.224 1 0.144
41 6 1 1, 9 7, 6, 10, 8, 11 gaussian 0 −0.173 1 −0.111
42 6 2 11, 5 9, 7, 6, 10, 8 indep 0 0 0.000
43 6 3 8, 3 5, 9, 7, 6, 10 clayton 0 1.204 1 0.376
44 6 4 10, 2 3, 5, 9, 7, 6 indep 0 0 0.000
45 6 5 6, 4 2, 3, 5, 9, 7 frank 0 −0.995 1 −0.110
46 7 1 1, 5 9, 7, 6, 10, 8, 11 bb8 0 1.237 0.989 2 0.109
47 7 2 11, 3 5, 9, 7, 6, 10, 8 gaussian 0 0.282 1 0.182
48 7 3 8, 2 3, 5, 9, 7, 6, 10 indep 0 0 0.000
49 7 4 10, 4 2, 3, 5, 9, 7, 6 indep 0 0 0.000
50 8 1 1, 3 5, 9, 7, 6, 10, 8, 11 bb8 0 1.593 0.953 2 0.203
51 8 2 11, 2 3, 5, 9, 7, 6, 10, 8 joe 90 1.160 1 −0.084
52 8 3 8, 4 2, 3, 5, 9, 7, 6, 10 gaussian 0 0.152 1 0.097
53 9 1 1, 2 3, 5, 9, 7, 6, 10, 8, 11 clayton 90 0.085 1 −0.041
54 9 2 11, 4 2, 3, 5, 9, 7, 6, 10, 8 bb8 90 1.703 0.853 2 −0.169
55 10 1 1, 4 2, 3, 5, 9, 7, 6, 10, 8, 11 joe 90 1.209 1 −0.107
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Fig. B. 1. DVQR_2 model: the D-vine trees.
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Fig. B. 1. (continued).
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Fig. B. 1. (continued).
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Fig. B. 1. (continued).
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Fig. B. 2. DVQR_2 model: the estimated conditional bivariate Copula densities with uniform margins between the outcome
and its covariates.
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Fig. B. 2. (continued).
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