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Abstract— In this paper, a distributed, non-cooperative and 

dynamic load-balancing algorithm is proposed in the context of 

multi-commodity adversarial network equilibria with constrained 

providers’ capacities. The algorithm is proven to converge to a 

generalised Wardrop user-equilibrium, referred to as Beckmann 

equilibrium in the literature, in which, for each commodity, the 

latencies of the unsaturated providers are equalized. The 

algorithm is then used as a Multi-connectivity algorithm in the 

context of 5G heterogeneous networks, in which the user 

equipments are able to use different access networks 

simultaneously to increase the transmission capacity and/or to 

improve the transmission reliability. The proposed controller 

provides a solution for dynamic traffic steering by distributing the 

traffic load over the available heterogeneous access points, 

considered as capacity providers. Simulation results validate the 

approach. The developed network simulator is available as an 

open-source environment [1]. 

Index Terms— Load balancing, Lyapunov design, Beckmann 

equilibrium, 5G networks. 

 

NOMENCLATURE 
 

𝑐𝑝   Maximum load of provider 𝑝 

ℐ  Set of commodities 
𝑙𝑝
𝑖 (𝑥𝑝

𝑖 )   Latency of commodity 𝑖 on provider 𝑝 under 
load 𝑥𝑝

𝑖  

ℒ(𝒙)  Candidate Lyapunov function under flow 𝒙 
𝑟𝑝𝑞
𝑖 [𝑘]  Migration rate of commodity 𝑖 from provider 𝑝 

to provider 𝑞 at time 𝑘 

𝒫,𝒫𝑖   Set of providers, set of providers available to 
commodity 𝑖 

𝑥𝑝
𝑖 [𝑘]  Load of commodity 𝑖 over provider 𝑝 at time 𝑘 

𝑥𝑝[𝑘] =  

  = ∑ 𝑥𝑝
𝑖 [𝑘]𝑖∈ℐ   

Total load over provider 𝑝 at time 𝑘 

𝒙 = (𝑥𝑝)𝑝∈𝒫  Flow vector at time 𝑘 

𝒳  Feasible state space 
𝒳𝑒𝑞 , 𝒳𝑒𝑞

𝜀   Set of Beckmann and 𝜀-Beckmann equilibria 

𝜆𝑖   Flow demand of commodity 𝑖 

 
 

Φ(𝒙)  Beckmann, McGuire and Winsten potential 
under flow 𝒙 

𝜇𝑝𝑞
𝑖 (𝑙𝑝

𝑖 , 𝑙𝑞
𝑖 )  Migration policy of commodity 𝑖 from provider 

𝑝 to provider 𝑞 
𝜎𝑖  Migration gain of commodity 𝑖 

I. INTRODUCTION 

Load Balancing is a classic problem of network control and can 

be interpreted as a particular case of traffic routing with 

providers representing unitary paths and latency functions 

describing the performance of each provider. In adversarial (or 

selfish) routing, the control algorithms are aimed at leading the 

network into convenient equilibrium states without the 

cooperation of its agents. One of such states is known in mean-

field game theory as Wardrop equilibrium (which can be 

regarded as a Nash equilibrium for infinite players [2]): in such 

state, the latencies experienced by the agents that constitute the 

traffic flows are equalised over all their available routes, and, 

as a consequence, no agent may improve its routing unilaterally. 

In this paper, we study a particular case of selfish capacitated 

load balancing, in which the capacities of the service providers 

are limited. Therefore, as it will be discussed, the proposed 

control law objective will be to equalize the latencies of all the 

providers which are not saturated. This network state is a 

generalization of the Wardrop equilibrium in capacitated 

networks and is known in the literature as the Beckmann user 

equilibrium [3]. 

Multi-connectivity is an emerging challenge in the 

heterogeneous network scenario envisaged by 5G, where 

multiple Radio Access Technologies (RATs), such as LTE, 5G 

and Satellite networks, are available to connect the network 

users to the core network [4]. According to the multi-

connectivity paradigm, each User Equipment (UE) may be able 

to be served by several of the various Access Points (AP) of the 

available RATs, potentially at the same time. The problem, 

referred to in the 5G literature as multi-connectivity, consists in 

dynamically choosing which APs shall serve each UE and 

deciding how much traffic relevant to each UE shall be routed 

through each of the serving APs. This paper focuses on the 

downlink direction, i.e., it refers to the traffic transmitted from 

the core network to the UEs via the APs; nevertheless, similar 

considerations apply when considering the uplink direction. 

In this paper, the performance of the network APs are 

measured in terms of latency functions that capture the amount 
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of resources (in terms of resource blocks) required from each 

AP to serve the various commodities. In the considered 5G 

scenario, such commodities consist in the so-called QoS-Flows, 

which are streams of data toward a User Equipment (UE) that 

are characterised by standardised Quality of Service (QoS) 

requirements (e.g., bit error rate, maximum tolerated delay…). 

In general, the latency functions may account for different 

connection-specific performance indexes (e.g., amount of 

network resources utilised on a given AP, power consumption, 

service reliability), and may include additional factors, as 

operator preferences or different usage tariffs.  

Overall, the objective of the proposed control law for load 

balancing is to dynamically steer the downlink traffic in such a 

way that the values of the latency functions are equalized.  

The described scenario is typical in adversarial routing and 

load balancing problems, as the various connections are not 

concerned with the overall network state and aim at optimising 

their own, individual, performances. The two main problems in 

the algorithm development are i) the fact that the latency 

functions are not known apriori, but can be only measured, ii) 

the fact that a distributed approach is needed since a centralized 

approach would require too much control traffic to exchange 

information among the potentially thousands of UEs. 

In this paper, a distributed, non-cooperative and dynamic 

load balancing algorithm is consequently developed in the 

context of adversarial network equilibria; specifically, the 

algorithm considers every single packet included in a QoS-

Flow as an agent, able to make a decision regarding the AP it is 

assigned to. Such decisions are based on the measurements of 

the latency functions, obtained starting from the observation of 

the resource blocks allocated on the APs over which the 

commodity is routed to sustain the connection, and are made 

unilaterally in an adversarial framework, with no concern for 

the overall system performance.  

The main motivations behind this work are then (i) to design 

a dynamic adversarial capacitated load balancing algorithm and 

to prove, using Lyapunov and Invariance Principle arguments, 

how the difference equation governing the global state of the 

system converges to an approximated Beckmann equilibrium, 

and (ii) to show the effectiveness of such an approach through 

its application to the multi-connectivity problem in a simulated 

5G network scenario. 

The work presented in this paper was carried out within the 

H2020 5G-ALLSTAR project (www.5g-allstar.eu), aimed at 

the seamless, reliable and ubiquitous provision of broadband 

services over heterogeneous 5G networks. However, we note 

that, since the algorithm is developed within the research 

framework of selfish routing, it can be applied to several 

problems and scenarios other than the one considered here. 

The paper is organized as follows: Section II presents the 

state-of-the-art on multi-connectivity in 5G-networks  and on 

Wardrop load balancing and the proposed novelties; Section III 

presents the algorithm and the convergence proof; Section IV 

introduces the open-source simulator and reports the simulation 

results; Section V draws the conclusions.  

II. STATE OF THE ART AND PROPOSED INNOVATIONS 

Section II.A motivates the choice of a distributed adversarial 

load-balancing algorithm to address the multi-connectivity  

 
Figure 1. Dynamic Traffic Steering framework from [5] 

 

problem in 5G networks, whereas Section II.B summarizes the 

works in the literature relevant to dynamic selfish routing and 

load balancing and the proposed innovations. 

A. Multi-Connectivity and Traffic Steering in 5G Networks 

This work addresses the problem of traffic steering, i.e., of 

selecting which APs a QoS-Flow shall utilise to connect the 

UEs with the core network by modelling it as a load-balancing 

problem. 

This vision is compliant with the latest developments of the 

5G architecture (see Figure 1), as designed by 5GPPP in [5]. 

Multi-connectivity comprises the concept of dynamic traffic 

steering, which envisages the ability of dynamically steering the 

traffic, partitioned into QoS-Flows among the various available 

APs of the RATs, based on feedbacks on the current AP 

performances. In this framework, QoS-Flows may be 

duplicated over different APs to increase their resiliency, while 

other ones may be split over multiple RATs to increase their 

throughput or to better meet their QoS requirements. 

Within the 5G architecture, the traffic steering problem is 

solved in three different ways: (i) with a User-Centric approach, 

where each UE decides its connection preferences according to 

local measures of some performance indicator; (ii) in a Radio 

Access Network (RAN)-Assisted fashion, in which the decision 

is still made by the UEs but the RAN provides them with 

additional information on the network state; (iii) with a RAN-

Controlled approach, where all decisions are made by the RAN, 

which is a centralised unit by nature, or delegated to the 

distributed control units that govern the single APs. 

Several works study the problem of multi-connectivity in the 

heterogeneous network framework proposed by 5G, from both 

architectural [6], [7] and algorithmic [8]–[10] points of view. 

Multi-connectivity enables the problem of optimally steering 

the network traffic over the available APs, in such a way that 

the QoS requirements of the various QoS-Flows are met [11], 

[12]. The problem of access network selection has been studied 

utilising several different approaches, spacing from fuzzy-logic 

control to multiple-attribute decision-making and 

combinatorial optimisation [8]. Common solutions utilise the 

concept of utility and latency functions, as in this work, to 

capture the network performances [8], [13], [14]. Several works 
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in the literature also employ game-theoretic approaches for the 

AP selection, typically in adversarial frameworks, as [8], [15], 

[16], leading the networks to Nash equilibrium states. 

Regarding game-theoretic solutions, one possible modelling 

choice is to have an adversarial game between the users, as in 

[15], [17] that envisage a setup similar to the one used in this 

work. In such scenarios, the users compete to attain the best 

connection quality while eventually also minimising their costs. 

An alternative approach is to set up a game between the various 

network operators, each controlling a set of APs as in [14], [16], 

and focusing on their economic performances. 

The algorithm proposed in this work utilises differential game 

theory, a branch of game theory that studies dynamical systems, 

and shares some of the characteristics of the previously 

mentioned works, as the adversarial nature of its equilibrium. 

The control algorithm designed in this work will be proven to 

drive the communication network state to a convenient 

equilibrium state, and this convergence will be attained by 

following an explicit discrete-time control law, with no need for 

round-games or price/cost bidding auctions. Contrary to 

optimisation-based works, the proposed control law is also 

suitable to steer the traffic flows in real-time, and, being a 

distributed decision process, it does not require any significant 

control traffic overhead. 

The previous aspects, together with the explicit inclusion of 

constraints on the available transmission capacity, makes the 

proposed approach a suitable candidate for the deployment in 

5G scenarios implementing network slicing [18], in which the 

APs provide a limited quantity of resources to the QoS-Flows 

of a given service type or managed by third party tenants (e.g., 

video streaming, autonomous guidance, voice…). With 

reference to the mentioned Dynamic Traffic Steering 

framework [5], the algorithm can be implemented in the RAN-

Assisted and in the RAN-Controlled configurations: in the 

former case, the algorithm would run in the UEs based on the 

information received by the RAN; in the latter case, the 

algorithm would run directly in the RAN and, in particular, for 

Non-StandAlone 5G systems (5G-NSA), in either the 

centralised unit (CU) or in the distributed units (DU) [19] of the 

next-generation-Node-Bs (gNodeBs or gNBs) [20] that govern 

the various APs. 

B. Adversarial Load Balancing in 5G Networks and 

Beckmann Equilibria 

The problem of optimally distributing the flow is one of the 

most fundamental and challenging aspects of any network 

operation. In the framework of selfish routing, the network flow 

is formed by a stream of infinitely-many decision-making agent 

[21] that compete for attaining the best performance, without 

consideration for the congestion, and consequent performance 

degradation, that their decisions cause to the other agents. 

Wardrop equilibria [22] were then introduced to describe a 

network state in which no single agent can unilaterally improve 

its performances (e.g., in terms of travel time, as in the original 

Wardrop formulation). Being an adversarial kind of equilibria, 

the overall network performance is not optimised and the 

performance loss is referred to as the price of anarchy in the 

literature [23]. The concept of Wardrop equilibrium has been 

extended to various families of networks, among which the 

capacitated ones [3], [24]–[26], and problems, as the load 

balancing one [27]–[29]. Even if Wardrop equilibria can be 

computed by centralized algorithms in polynomial time [30], 

for the low connection latency promised by 5G – and the 

consequent agile and fast traffic steering requirements – 

distributed approaches are more suitable, motivating the 

development of a dynamic algorithm.  

Based on a simple representation of the network dynamics in 

terms of difference equations derived from the flow 

conservations laws, this paper proposes a load balancing 

solution over the nodes of a dynamical network that represents 

the 5G infrastructure [31], [32], consisting in the connections 

between several APs and their users with the core network. In 

doing so, the algorithm takes into account that the amount of 

traffic each AP can support is limited, or capacitated, due to 

transmission power constraints and, in general, resource 

scarcity as in network slicing scenarios. This limitation implies 

that the user equilibrium to which the network will converge 

may not be in principle the Wardrop equilibrium [26], which is 

defined for unconstrained networks. Several works [3], [24]–

[26] extended the original formulation of the Wardrop user 

equilibrium, which corresponds to a situation in which all the 

latencies of each commodity are equalised, to deal with 

capacitated networks. The resulting equilibrium, known as 

Beckman user equilibrium, is such that the latencies of all the 

unsaturated APs of each commodity are equalised. Differently 

from [3], [24]–[26], this work proposes a dynamic algorithm 

which will be proven to converge to a Beckmann equilibrium. 

Regarding dynamic load balancing solutions for Wardrop 

equilibria in the literature, several works utilise the concepts of 

learning and exploration to cope with the limited feedback 

information that the decision-making agents have access to. To 

attain a better knowledge of the system state and dynamics, the 

agents sample different flow distribution strategies and then 

exploit the learned system characteristics to converge to 

optimal states. The authors of [33] present an asynchronous and 

distributed algorithm that employs reinforcement learning to 

update transmission probabilities, based on an estimation of the 

network edges latencies. In [34],  an iterative and distributed 

learning solution is proven to converge to a Wardrop 

equilibrium state using Lyapunov arguments, as in this work. 

An important contribution has been given by Fischer et al. in 

[35]–[37]. In [35] and [37], a round-based algorithm is 

developed to solve a game among the various commodities, 

aimed at redistributing the traffic flow and reaching an 

approximated Wardrop equilibrium. In [36], a similar set up is 

analysed assuming that the information available to the agents 

may be stale. In [38], a dynamic discrete-time load-balancing 

algorithm, later extended to the time-delayed case in [39], is 

presented in the context of Virtual Private Networks, which 

converges to an approximate Wardrop equilibrium. 

The present work extends the results of previous works, 

starting from the algorithm in [38], mainly in two directions: 

i) the convergence properties of the algorithm are studied in 

the multi-commodity case, a requirement for application in 
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the 5G framework, that was not explicitly discussed in the 

cited works; 

ii) the algorithm analysis and design are extended to the case 

of capacitated networks, not dealt with by the dynamic 

algorithms in the literature, enabling the application of the 

solution to more realistic case studies in several domains. 

III. PROPOSED WARDROP LOAD BALANCING ALGORITHM 

Section III.A describes the basic definitions needed for the 

algorithm analysis; Section III.B presents the load balancing 

algorithm and the convergence proof; Section III.C. models the 

5G traffic steering problem as a load balancing one. 

A. Preliminaries on Wardrop and Beckmann Equilibria and 

on Lyapunov Stability 

As anticipated in Section II, this paper further develops a 

well-known model for selfish routing [35], where an infinite 

population of agents carries an infinitesimal amount of load 

each and builds on the previous work [38] concerning 

distributed load balancing algorithms. The proposed control 

scheme relies on common assumptions on the latency functions. 

The considered network consists in a set of 𝒫 providers, which 

serve a set ℐ of commodities. Each commodity 𝑖 ∈ ℐ is 

characterised by a flow demand 𝜆𝑖  and is served by a subset of 

providers 𝒫𝑖 ⊂ 𝒫. Each commodity 𝑖 using provider 𝑝 is 

characterised by a latency function 𝑙𝑝
𝑖  and each provider 𝑝 is 

characterized by a capacity 𝑐𝑝.  

 

Assumption 1. The latency functions 𝑙𝑝
𝑖 (𝜉) are positive, non-

decreasing and Lipschitz continuous with constant 𝛽𝑝
𝑖 , for 𝜉 ∈

[0, 𝑐𝑝], where 𝑐𝑝 is the capacity of provider 𝑝, for all 𝑝 ∈ 𝒫. 

Furthermore, the maximum Lipchitz constant of all the 𝑙𝑝
𝑖 ’s is 

denoted as �̅� = max
𝑝∈𝒫𝑖,𝑖∈ℐ

𝛽𝑝
𝑖 . 

 

The assumption is not restrictive in real use-cases since the 

provider performances decrease with their load. 

In non-capacitated algorithms, if 𝑥𝑝
𝑖  indicates the amount of 

the flow of commodity 𝑖 allocated on the provider 𝑝, the set of 

feasible states is defined as 

 

𝒳 = {𝒙 = (𝑥𝑝)𝑝∈𝒫|𝑥𝑝 =
∑ 𝑥𝑝

𝑖
𝑖∈ℐ , 𝑥𝑝

𝑖 ≥ 0, ∀𝑝 ∈ 𝒫𝑖 ,

∑ 𝑥𝑝
𝑖

𝑝∈𝒫𝑖 = 𝜆𝑖 , ∀𝑖 ∈ ℐ},  (1) 

 

and a flow 𝒙 ∈ 𝒳 is at a Wardrop equilibrium if, for each 

commodity 𝑖 ∈ ℐ, the latencies of the loaded providers are 

equalized, i.e., if 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 ) ≤ 𝑙𝑞
𝑖 (𝑥𝑞

𝑖 ) for all 𝑝 ∈ 𝒫𝑖 such that 𝑥𝑝
𝑖 >

0, for all 𝑞 ∈ 𝒫𝑖 and for all 𝑖 ∈ ℐ. 
By defining the Beckmann-McGuire-Winsten potential 

 

Φ(𝒙) = ∑ ∑ ∫ 𝑙𝑝
𝑖 (𝜉)𝑑𝜉

𝑥𝑝
𝑖

0𝑝∈𝒫𝑖𝑖∈ℐ ,  (2) 

 

the Wardrop equilibria are the solutions of the optimization 

problem  

min𝒙∈𝒳  Φ(𝒙). (3) 

 

Capacity-constrained networks are characterized by the 

additional capacity constraints 

 

𝑥𝑝 ≤ 𝑐𝑝, ∀𝑝 ∈ 𝒫. (4) 

 

A flow 𝒙 ∈ 𝒳 is feasible if constraints (4) hold, and the set 

of feasible states is defined as 

 

𝒳𝐶𝑃 = {𝒙 ∈ 𝒳 |𝑥𝑝 ≤ 𝑐𝑝 , ∀𝑝 ∈ 𝒫}. (5) 

 

Considering a flow 𝒙 ∈ 𝒳𝐶𝑃 , provider 𝑝 ∈ 𝒫 is defined as 
capacity-constrained or saturated if 𝑥𝑝 = 𝑐𝑝. 

A flow 𝒙 ∈ 𝒳𝐶𝑃  is at a Beckmann user equilibrium if, for 

each commodity, the latencies of the loaded and unconstrained 

providers are equalized, i.e., more precisely: 

 

Definition 1 [3]. A flow 𝒙 ∈ 𝒳𝐶𝑃  is at a Beckmann user 

equilibrium if 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 ) ≤ 𝑙𝑞
𝑖 (𝑥𝑞

𝑖 ) for all 𝑝 ∈ 𝒫𝑖  such that 𝑥𝑝
𝑖 > 0, 

for all 𝑞 ∈ 𝒫𝑖  such that 𝑥𝑞 < 𝑐𝑞  and for all 𝑖 ∈ ℐ.  

 
The set of equilibria is then 

 

𝒳𝑒𝑞 = {𝒙 ∈ 𝒳𝐶𝑃|𝑙𝑝
𝑖 (𝒙) ≤ 𝑙𝑞

𝑖 (𝒙), ∀𝑝 ∈ 𝒫𝑖  s. t.  𝑥𝑝
𝑖 > 0, ∀𝑞 ∈

𝒫𝑖  s. t. 𝑥𝑞 < 𝑐𝑞 , ∀𝑖 ∈ ℐ}. (6) 

 

Let us consider the minimization problem (3) with 

constraints (4), hereinafter referred to as capacity-constrained 

problem (CP). The Beckman user equilibria [25] are the optimal 

solutions of the CP. 

 

Property 1 [3]. If the set of feasible solutions 𝒳𝐶𝑃  of the CP 

is nonempty, the optimization problem consists in minimizing 

a convex function over a nonempty polytope and, thus, the set 

of optimal flows 𝒳𝑒𝑞  is nonempty and convex.  

 

The algorithm convergence proof of Section III.B relies on 

LaSalle invariance principle for discrete-time nonlinear 

systems [40], [41]. 

 

Definition 2. ℒ:𝒳 → ℝ is a candidate Lyapunov function for 

a discrete-time nonlinear system 𝒙[𝑘 + 1] = 𝑓(𝒙[𝑘]) if 
i) ℒ ∈ 𝒞1 and is bounded from below; 

ii) If 𝒙𝑒𝑞 ∈ 𝒳𝑒𝑞 , where 𝒳𝑒𝑞  is the set of equilibrium points, 

ℒ(𝒙𝑒𝑞) = 0 and ℒ(𝒙) > 0 if 𝒙 ∉ 𝒳𝑒𝑞; 

iii) Along forward trajectories, ℒ satisfies 

 

Δℒ(𝒙[𝑘]) ≔ ℒ(𝑓(𝒙[𝑘])) − ℒ(𝒙[𝑘]) ≤ 0, 𝑘 = 0,1,2, … 

 

Theorem 1 ([40]). Let ℒ(𝒙) be a candidate Lyapunov 

function for the discrete-time nonlinear system 𝒙[𝑘 + 1] =
𝑓(𝒙[𝑘]). Then, any bounded trajectory tends to the largest 

invariant subset ℳ contained in the set of points defined by 

Δℒ(𝒙) = 0. 
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B. Capacitated Load Balancing Algorithm and Convergence 

Proof 

For each commodity 𝑖 ∈ ℐ, the control action consists in the 

decision, at time 𝑘, of migrating part of the flow mapped onto 

a given provider 𝑝 to another provider 𝑞, with 𝑝, 𝑞 ∈ 𝒫𝑖. By 

denoting the rate of such migration with 𝑟𝑝𝑞
𝑖 [𝑘], the system 

dynamics is written as 

 

𝒙[𝑘 + 1] = 𝑓(𝒙[𝑘]), 𝑘 = 0,1,2, …  (7) 

 

with  

 

𝑥𝑝[𝑘] = ∑ 𝑥𝑝
𝑖 [𝑘]𝑖∈ℐ , (8) 

 

𝑥𝑝
𝑖 [𝑘 + 1] = 𝑥𝑝

𝑖 [𝑘] + 𝜏 ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝒫𝑖 , (9) 

 

and with feasible initial conditions 

 

𝒙[0] ∈ 𝒳𝐶𝑃. (10) 

 

for all 𝑝, 𝑞 ∈ 𝒫𝑖 and 𝑖 ∈ ℐ 
The proposed controller builds on the dynamic algorithm in 

[38], which expresses the migration rate as 

 

𝑟𝑝𝑞
𝑖 [𝑘] = 𝑥𝑝

𝑖 [𝑘]𝜎𝑖𝜇𝑝𝑞
𝑖 [𝑘], (11) 

 

where 𝜎𝑖 is a positive migration gain and 𝜇𝑝𝑞
𝑖 [𝑘] is the 

migration policy, representing the decision of whether (if it is 

positive) or not (if it is equal to zero) migrate some flow from 

provider 𝑝 to provider 𝑞. 

As in [38] for the Wardrop equilibria, approximated 

Beckmann user equilibria are defined. 

 

Definition 3. The set of 𝜀-Beckmann user equilibria is 

defined as 

 

𝒳𝑒𝑞
ε = {𝒙 ∈ 𝒳𝐶𝑃|𝑙𝑝

𝑖 (𝑥𝑝
𝑖 ) ≤ 𝑙𝑞

𝑖 (𝑥𝑞
𝑖 ) + 𝜀, ∀𝑝 ∈ 𝒫𝑖  s. t.  𝑥𝑝

𝑖 >

0, ∀𝑞 ∈ 𝒫𝑖  s. t. 𝑥𝑞 ≤ 𝑐𝑞 −
𝜀

2�̅�
, ∀𝑖 ∈ ℐ}. (12) 

 

where 𝜀 ≥ 0 represents a maximum tolerated latency mismatch. 

 

Remark 1. The defined sets are such that 𝒳𝑒𝑞
𝜀

𝜀→0
→  𝒳𝑒𝑞  and 

𝒳𝑒𝑞 ⊆ 𝒳𝑒𝑞
𝜀 ⊆ 𝒳𝐶𝑃: the objective of the controller is then, 

starting from a physically admissible state in 𝒳𝐶𝑃 , to reach an 

approximated equilibrium state in 𝒳𝑒𝑞
𝜀 , whose degree of 

approximation with respect to the equilibrium state in 𝒳𝑒𝑞  

reduces with 𝜀. 
 

The tolerance 𝜀 is introduced since the kind of migration rates 

of equation (11) cannot guarantee convergence in the discrete-

time case, however small the sampling period [36]. A flow 𝒙 ∈
𝒳𝐶𝑃  is then at 𝜀-Beckman equilibrium if, for each commodity 

𝑖, the latencies of the loaded and 𝜀-unconstrained providers are 

equalized, where we define a provider 𝑝 ∈ 𝒫𝑖 to be 𝜀-

unconstrained if 𝑥𝑝 < 𝑐𝑝 −
𝜀

2�̅�
. 

In the proposed algorithm, the migration decision is defined 

as 

 

𝜇𝑝𝑞
𝑖 [𝑘] =

{
0, if 𝑙𝑝

𝑖 (𝑥𝑝
𝑖 [𝑘]) − 𝑙𝑞

𝑖 (𝑥𝑞
𝑖 [𝑘]) ≤ 𝜀 or if 𝑥𝑞[𝑘] ≥ 𝑐𝑞 −

𝜀

2�̅�

1,    otherwise                                                                   
. (13) 

 

The controlled system dynamics, hereafter denoted as load-

balancing (20) dynamics, is then expressed by equations (9), 

(11), (13), with control gains set as 

 

𝜎𝑖 =
𝜀

2𝜏�̅�𝜆𝑖(|𝒫𝑖|−1)|ℐ|
, (14) 

 

and with the tolerance set as 

 

0 < 𝜀 ≤ min
𝑖∈ℐ
�̅�𝜆𝑖|ℐ|. (15) 

 

Remark 2. The approximated capacity-constrained user 

equilibria are such that, for each commodity, the latencies of the 

loaded and 𝜀-unconstrained providers are equalized within the 

tolerance 𝜀. Then, for a given equilibrium flow 𝒙 ∈ 𝒳𝑒𝑞
𝜀  and for 

each commodity 𝑖 ∈ ℐ, three classes of providers exist: the 

unloaded providers 𝑝 ∈ 𝒫𝑖 such that 𝑥𝑝
𝑖 = 0; the 𝜀-constrained 

providers 𝑝 ∈ 𝒫𝑖  such that 𝑥𝑝 > 𝑐𝑝 −
𝜀

2�̅�
; the 𝜀-unconstrained 

providers, whose latencies are equalized. 

The convergence property of the algorithm relies on the 

following 3 lemmata. 

 

Lemma 1. Under Assumption 1, considering the LB 

dynamics, the latency variation of a provider 𝑝 ∈ 𝒫𝑖 in one 

time-step is bounded by 

 

|𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘 + 1]) − 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘])| ≤
𝜀

2|ℐ|
. (16) 

 

Proof: See Appendix A. 

 

Lemma 2. 𝒳𝐶𝑃  is a positively invariant set for the LB 

dynamics. 

 

Proof: See Appendix A. 

 

Lemma 3. The function  

 

ℒ(𝒙) ≔ Φ(𝒙) − Φ𝑚𝑖𝑛, 

 

where Φ𝑚𝑖𝑛 is the minimum value of Φ(𝒙) for all the 

minimizers of the CP, is a candidate Lyapunov function for the 

LB dynamics. 

 

Proof: See Appendix A.  
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Figure 2 Load balancing graph 

Finally, the following theorem proves the convergence 

towards an approximated Beckmann user equilibrium. 

 

Theorem 2. The trajectories of the LB dynamics 

asymptotically tend to the set of equilibria 𝒳𝑒𝑞
𝜀 . 

 

Proof: See Appendix A.  

C. 5G Traffic steering as a dynamic load-balancing problem 

In the dynamic multi-connectivity framework of 5G 

networks [5], each UE selects the serving APs for its QoS-

Flows. The network resources (capacity) are hence provided by 

the APs, and their efficient usage guides the design of traffic 

steering controllers. As introduced, in 5G systems, the dynamic 

management of such resources becomes of crucial importance 

in network slicing scenarios [18]. 

In order to model a multi-connectivity scenario in a network 

slicing environment as a dynamical network of the form (7-10),  

we regard the AP 𝑝 as a provider in the set of providers 𝒫, the 

QoS-Flow associated with a UE as a commodity 𝑖 in the set of 

commodities ℐ and we associate to the state variable 𝑥𝑝
𝑖 [𝑘] the 

amount of bitrate of the commodity 𝑖 that is provided by the AP 

𝑝 at time 𝑘. The bitrate demand of the commodity 𝑖 is then 𝜆𝑖 , 
which can be assumed, for limited time windows, to be 

constant. 

In the following, we will consider a network slicing scenario 

in which the network operator dedicated a certain amount of 

bitrate 𝑐𝑝 on each AP 𝑝 to the controlled slice. 

Regarding the latency functions, a natural choice is 

associating a different latency function 𝑙𝑝
𝑖  to the radio 

connection between the UE of commodity 𝑖 and the AP 𝑝 ∈ 𝒫𝑖. 
This choice allows to capture quantities related to the specific 

connection performance, such as the resource blocks [42] 

usage, the power consumption of the single commodity 𝑖 or its 

QoS degradation, but in turn implies that each commodity 𝑖 is 

subject to a different latency from provider 𝑝, that may even 

depend only on 𝑥𝑝
𝑖 . We mention that, in this kind of scenarios, 

in general the network admits various equilibria characterised 

by different costs (latencies) [43]. Nevertheless, in the proposed  

 

Figure 3 Network scenario 

framework depicted in Figure 2, the considered network is 

characterised by parallel arcs [43], implying that its equilibrium 

cost Φ𝑚𝑖𝑛  is unique. In fact, with simple manipulations, the 

scenario of Figure 2 can be shown to be equivalent to a network 

in which the latencies are associated to the depicted radio links, 

each of which can only be used by a single commodity. The 

scenario is then equivalent to a standard adversarial routing 

scenario with an unique equilibrium cost. 

Regarding the mapping of the proposed control law onto the 

standard 5G architecture, we mention that Access Traffic 

Steering, Switching and Splitting (ATSSS) [44] decision rules 

for multi-connectivity are typically produced by a software 

module of the 5G core network, the PCF (Policy Control 

Function). The PFC configures the UEs and the UPF (User 

Plane Function, an entity directly connected to the gNodeBs of 

the RAN) to handle traffic steering based on local 

measurements, respectively for the uplink and downlink phase. 

Such ATSSS rules may define the set of APs 𝒫𝑖 available to the 

user 𝑖, depending on its contract with the provider, their priority, 

and in general may define a control law to guide the steering of 

the QoS flows that constitute the considered PDU (Protocol 

Data Unit) session. The dynamic traffic steering functionalities 

[5] are taken at RAN level, as depicted in Figure 1, and so the 

proposed algorithm is designed to be deployed either in the 

distributed units (DU) of the gNodeBs that constitute the 

controlled RAN or in the UEs. The rules provided by the PCF 

can be included in the control logic by properly weighting or 

forbid the various AP connections. 

 

IV. NUMERICAL SIMULATION 

This section reports the simulation setup and results in 

sections IV.A and IV.B, respectively. 

A. Simulation Setup 

For the validation of the proposed algorithm, in the scope of 

the 5G-ALLSTAR project, we developed an open-source 

network simulator available in [1], able to model different AP 

technologies, connection protocols and interference models in 

a multi-connectivity scenario. We consider the network 

depicted in Figure 3, consisting of a 4 × 4 𝐾𝑚 area covered by 

a macro cell (provider BS1), a satellite (provider BS0) and six 

micro cells (BS2-BS7).  
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Table 1: Characteristics of micro and macro cells  

Operating band 

N° 

Carrier frequency  

(GHz) 

Bandwidth 

(MHz) 

𝒏𝟐𝟎 0.8 20 

𝒏𝟐𝟓 1.9 40 

𝒏𝟔𝟔 1.7 40 

𝒏𝟕𝟎 2 25 

 

A total of 20 UEs (grey dots in Figure 3) were randomly 

distributed in the area, each requiring a constant load 𝜆𝑖 =
50 𝑀𝑏𝑝 . The implemented interference model is taken from 

[45] and the frequency characteristics of the terrestrial APs are 

summarised in Table 1 [46], [47].  

Regarding the satellite AP, we considered a Time Division 

Multiplexing (TDM) as in the example 6.6.2 of [48]. The 

satellite parameters are adapted in order to have at least 1bit per 

symbol with typical SNR values [49], [50]. According to the 

TDM frame structure used, it is possible to allocate only blocks 

of 64 symbols (1 𝜇 ). Moreover, each allocation must consider 

a header made of 288 symbols and a spacing between 

allocations of 64 symbols. Additional implementation details 

and updates can be found in [1]. 

We considered as latency functions 𝑙𝑝
𝑖  the number of resource 

blocks utilised by the commodity 𝑖 on the access point 𝑝. This 

particular choice will drive the network towards a state in which 

each connection equalises the resource block usage over its 

available unsaturated APs 𝑝 ∈ 𝒫𝑖. 
Assuming a stationary UE 𝑖 (i.e., with constant path loss with 

all the access points 𝑝) and no interference, the amount of 

bitrate provided by a resource block on a given access point 𝑝 

is fixed. This implies that, in ideal conditions, 𝑙𝑝
𝑖  is linear, with 

a slope that depends on the utilised frequency bands, in line with 

Assumption 1. Note that several different choices could be 

made for the latency function, spacing from quantities that 

capture connection reliability, to transmission delay and user 

satisfaction, as the only requirements that such functions must 

satisfy are represented by Assumption 1, which open the 

possibility of considering a large family of functions (e.g., 

including polynomial or exponential ones).  

To allow a fair comparison with the terrestrial AP resource 

blocks, the assumptions made for the satellite imply that its 

latency function is equal to the number of its allocated symbols 

divided by 64. Additionally, each AP was associated to a 

multiplicative scaling factor for their latency functions to model 

different operating costs. In particular, the satellite was given 

the highest factor (0.5), the macro cell was given a medium 

value (0.2) and the lowest weight was associated to micro cells 

(0.1). Regarding the capacitated nature of the considered 

network, we assume that the network operator dedicated to the 

controlled slice 200 𝑀𝑏𝑝  on all micro cells, save for BS4 that 

was capacitated at 55 𝑀𝑏𝑝 .  
Concerning the parameters of the controller, the choice of 

latency functions leads to an experimentally determined value 

�̅� = 2.44 , the latency tolerance is selected as 𝜀 = 0.5  and the 

sampling time as 𝜏 = 10−  . The resulting values for 𝜎𝑖 are in 

the range [0.02,0.05]. 
 

 

Figure 4: Maximum latency mismatch during the simulation (dotted 

line: tollerance 𝜀). 

 

Figure 5 Network state in terms of total bitrate allocated on the 

various APs (solid lines: unconstrained providers, dashed line: 

constrained provider). 

 

 

Figure 6: Commodity latency examples during the simulation 

(solid lines: unconstrained providers used by the commodity; dashed 

line: constrained providers). 

B. Simulation Results 

Simulation runs were initialized by distributing uniformly 

the load of the commodities over |𝒫𝑖| − 1 of their available 

APs, selected randomly. 

The reported simulations showed a convergence time to an 

𝜀-Beckmann equilibrium in the order of 30 , averaged over 25 

runs. It is worth remarking that such convergence time is not 

related to the 5G QoS requirements, as it is assumed that the 

various access points are able to provide the proper QoS level 

(e.g., connection latency, average BER, reliability level,…) if 

their capacities are not violated.  
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Figure 7 Comparison for the three considered algorithms of the 

latencies over APs for commodity 𝑖 = 20. 

Figure 4 shows, for an example run, how the maximum 

latency mismatch over all the commodities, defined as 

 

𝑒[𝑘] = max
𝑖∈ℐ

{ max
𝑝∈𝒫𝑖|𝑥𝑝

𝑖 [𝑘]>0
𝑙𝑝(𝑥𝑝[𝑘]) − min

𝑞∈𝒫𝑖|𝑥𝑞[𝑘]<𝑐𝑞−
𝜀

2�̅�

𝑙𝑞(𝑥𝑞[𝑘])}, 

 

decreases with time and, even if the initial conditions are quite 

unbalanced, with 𝑒[𝑘] > 40, after 30  𝑒[𝑘] is already below 

the threshold 𝜀.As examples of simulation results, Figure 6 

reports the evolution of the latencies that characterise the 

commodities 4, and 8, for all of their available APs. 

The upper plot shows that the latencies of the APs available 

to QoS-Flow 8 converge to a common value, as expected, 

within the threshold 𝜀; in particular, we can notice how the 

commodity rapidly starts using the (initially unused) micro cell 

BS7 and rapidly discharges the satellite. 

The lower plot shows the latencies of the QoS-Flow 4 and 

highlights that the latency of micro-cell BS4 does not converge 

to the latencies of the other used APs: the reason is that the AP 

becomes 𝜀-saturated after about 3  (see Figure 5) – thus, by 

definition, the population of QoS-Flow 4 still converges to an 

𝜀-Beckmann equilibrium. Note that the latency associated to 

BS4 starts higher than its final value, as the commodity 

migrates towards BS5, but remains the lowest latency for the 

commodity 4 from 10  onwards, as the other QoS flows already 

𝜀-saturated BS4 (i.e., no bitrate can be migrated to it). 

Finally, Figure 5 shows the population dynamics over the 

APs, highlighting how the macro cell is the most utilised AP, 

while all the micro cells allocate a similar amount of bitrate. 

The satellite, whose latency was the most penalised as it is the 

most costly connection technology, is rapidly discharged.  

For the sake of comparison, in Figure 7 we benchmark the 

proposed controller against two classic examples of load 

balancing solutions in heterogeneous networks. The figure 

reports the latency functions values experienced by the 

commodity 𝑖 = 20 over the eight APs in the set 𝒫20. The first 

benchmarking algorithm (“uniform”) uniformly distributes the 

bitrate demand over the various APs. The second algorithm 

(“weighted”) distributes the bitrate considering the scaling 

factors associated to the latencies of the APs (i.e., 0.5 for the 

satellite, 0.2 for the macro cell and 0.1 for micro cells). From 

the analysis of the figure, one can note that the proposed 

controller – in the figure, the values are the ones achieved after 

convergence (~30s) – successfully equalises the latencies up to 

the threshold 𝜀 = 0.5. Furthermore, the other two controllers 

fail to allocate any bitrate on BS4, as it was already saturated 

by the other commodities. The uniform distribution causes the 

first controller to experience a very high latency on the satellite 

(BS0), while the distance and consequent low signal-to-noise-

ratio causes the weighted controller to allocate too much bitrate 

on BS5 (this behaviour is further amplified by the fact that BS5 

is a micro cell associated to a scaling factor of 0.1). Overall, we 

can conclude that the proposed controller, being a feedback-

based solution that steers the traffic flow based on 

measurements of the latency functions, better balances the 

overall usage of network resources. The main limitation of the 

proposed approach is related to the availability of the 

measurements needed to compute the steering decisions (i.e., 

the latency values in terms of assigned resource blocks), whose 

impact on the control traffic overhead is to be evaluated 

considering the control traffic already necessary for the 

different access technologies, and the estimation of �̅� which, 

however, can be performed starting from the channel models 

and the expected traffic that the network is designed to support. 

Regarding the complexity of the algorithm, the computation 

overhead is negligible since the control law (11) only involves 

basic operations (summations, multiplications and comparison 

between real numbers) that remain limited in number even for 

RANs with a high number of APs. 

To conclude, we mention that the two benchmarking 

algorithms discussed above could be used to initialise the 

network resource allocation (we recall that, to stress the 

algorithm asymptotic properties, in Figure 4-6 the network was 

initialised with all UEs distributing their bitrate over |𝒫𝑖| − 1 

APs), speeding up the convergence time. 

V. CONCLUSIONS 

This paper develops a distributed, non-cooperative and 

dynamic load balancing algorithm in the framework of 

adversarial selfish routing with link capacities. Each provider is 

associated to a latency function which represents its 

performance as a function of the provider’s load. By using 

Lyapunov arguments, the proposed algorithm is proved to 

converge to an approximate Beckmann user equilibrium, in 

which the latencies of the non-saturated providers are equalized 

up to a tolerated latency mismatch. 

The algorithm is then applied to the problem of multi-

connectivity, one of the key features of 5G networks, which 

enables the user equipment to simultaneously transmit/receive 

traffic flows over different access networks, with the aim of 

increasing the transmission rate and/or to improve the 

transmission reliability. In multi-connectivity, the traffic 

steering functionality is in charge of distributing the traffic load 

of each flow over the different access network. This paper 

models the traffic steering problem as a capacitated load-

balancing problem by associating a latency function to each 

access point/user equipment radio link. The problem is then 

solved by means of the developed algorithm. An open-source 

1
8

3

5

6

0

1
1

5 4

6
,6

9

1
,8

0

6
,8

0 8
,4

0

0

1
7

,6
0

7
,0

0

5
,5

0

7
,1

9

7
,0

0

7
,4

0

7
,4

0

7
,0

0

7 7 7

0

5

10

15

20

BS0 BS1 BS2 BS3 BS4 BS5 BS6 BS7

Uniform Weighted Proposed Controller



9 

 

 

simulation environment was proposed, and some numerical 

simulation results validate the approach. 

Beside the modelling of the 5G Multi-connectivity problem 

as a dynamic load-balancing one, this paper presents, up to the 

authors’ knowledge, the first multi-commodity, dynamic and 

adversarial load-balancing algorithm which explicitly considers 

capacitated providers. 

Future work is aimed i) at introducing latency constraints in 

the problem formulation in order to model more Quality-of-

Service constraints of the 5G services and ii) at considering 

time-varying loads. 
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APPENDIX A 

Proof of Lemma 1: Considering the generic commodity 𝑖 ∈

ℐ, provider 𝑝 ∈ 𝒫𝑖 and time 𝑘, the maximum latency decrease 

occurs when no commodities migrate their populations from the 

other providers to provider 𝑝: 

 

𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘 + 1])  

= 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘] + 𝜏∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝒫𝑖 )  

≥ 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘] − 𝜏 ∑ 𝑟𝑝𝑞
𝑖 [𝑘]𝑝∈𝒫𝑖 ). (17) 

 

Since 𝛽𝑝
𝑖  is the Lipschitz constant of the function 𝑙𝑝

𝑖 (⋅) 

between 0 and 𝑐𝑝, it follows that 

 

𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘 + 1]) ≥ 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘]) − 𝜏𝛽𝑝
𝑖 ∑ 𝑟𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫i . (18) 

 

Considering equations (11) and (14), the last term of equation 

(18) is written as 
 

𝜏𝛽𝑝
𝑖 ∑ 𝑟𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖 =  

= 𝜏𝛽𝑝
𝑖 ∑ 𝑥𝑝

𝑖 [𝑘]𝜎𝑖𝜇𝑝𝑞
𝑖 [𝑘]𝑞∈𝒫𝑖 =  

= 𝜏𝛽𝑝
𝑖𝑥𝑝
𝑖 [𝑘]𝜎𝑖 ∑ 𝜇𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖 =  

= 𝜏𝛽𝑝
𝑖𝑥𝑝
𝑖 [𝑘]

𝜀

2𝜏�̅�𝜆𝑖(|𝒫𝑖|−1)|ℐ|
∑ 𝜇𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖 =  

≤
𝜀

2|ℐ|
, (19) 

 

where the inequality holds since 𝑥𝑝
 [𝑘] ≤ 𝜆𝑖 , 𝛽𝑝

𝑖 ≤ �̅� and since, 

recalling equation (13), there are at most (|𝒫 | − 1) terms 

equal to 1 in ∑ 𝜇𝑝𝑞
 [𝑘]𝑞∈𝒫 . It follows that 

 

𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘 + 1]) ≥ 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘]) −
𝜀

2|ℐ|
. (20) 

 

Similarly, the maximum latency increase occurs when no 

commodities migrate their populations from provider 𝑝 to other 

providers: 

 

𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘 + 1]) ≤ 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘]) + 𝜏𝛽𝑝
𝑖 ∑ 𝑟𝑞𝑝

𝑖 [𝑘]𝑞∈𝒫𝑖 , (21) 

 

which yields 

 

𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘 + 1]) ≤ 𝑙𝑝
𝑖 (𝑥𝑝

𝑖 [𝑘]) +
ε

2|ℐ|
. (22) 

 ∎ 

 

Proof of Lemma 2: We need to show that, for all 𝑘 ≥ 0, for 

all 𝑝 ∈ 𝒫𝑖 and for all 𝑖 ∈ ℐ, i) ∑ 𝑥𝑝
𝑖 [𝑘]𝑝∈𝒫𝑖 = 𝜆𝑖 , ii) 𝑥𝑝

𝑖 [𝑘] ≥ 0, 

iii) 𝑥𝑝[𝑘] ≤ 𝑐𝑝. 

Considering that 𝑥[0] ∈ 𝒳𝐶𝑃, equations (9), (11) and (8) 

yield that the population remains constant, since 

 

𝑥𝑝
𝑖 [𝑘 + 1] − 𝑥𝑝

𝑖 [𝑘] =  ∑ ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝒫𝑖𝑝∈𝒫𝑖 =  

= ∑ ∑ 𝑟𝑞𝑝
𝑖 [𝑘]𝑞∈𝒫𝑖𝑝∈𝒫𝑖 − ∑ ∑ 𝑟𝑞𝑝

𝑖 [𝑘]𝑝∈𝒫𝑖𝑞∈𝒫𝑖 = 0, (23) 

 

and thus that ∑ 𝑥𝑝
𝑖 [𝑘]𝑝∈𝒫𝑖 = ∑ 𝑥𝑝

𝑖 [0]𝑝∈𝒫𝑖 = 𝜆𝑖 , ∀𝑘 ≥ 0. 

i) Given that 𝑥𝑝
𝑖 [0] ≥ 0, it is proven below by induction that 

𝑥𝑝
𝑖 [𝑘] ≥ 0, ∀𝑘 ≥ 0. Assuming that 𝑥𝑝

𝑖 [𝑘] ≥ 0, for a given 

𝑘, it is sufficient to prove that  

 

𝑥𝑝
𝑖 [𝑘 + 1] = 𝑥𝑝

𝑖 [𝑘] + 𝜏 ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝒫𝑖 ≥ 0, ∀𝑝 ∈ 𝒫𝑖.

 (24) 

 

If 𝑥𝑝
𝑖 [𝑘] = 0, it follows that 𝑟𝑝𝑞

𝑖 [𝑘] = 0 and thus equation 

(24) yields 𝑥𝑝
𝑖 [𝑘 + 1] ≥ 0. 

If 𝑥𝑝
𝑖 [𝑘] > 0, from equation (11) it follows that 𝑟𝑝𝑞

𝑖 [𝑘] ≥

0. Thus, the following inequality holds (in the worst case, 

no providers migrate part of their population to a provider 

𝑝): 

 

𝑥𝑝
𝑖 [𝑘 + 1] ≥ 𝑥𝑝

𝑖 [𝑘] − 𝜏 ∑ 𝑟𝑝𝑞
𝑖 [𝑘]𝑞∈𝒫𝑖 . (25) 

 

A sufficient condition for inequality (24) to hold is then 

 

𝑥𝑝
𝑖 [𝑘] − 𝜏 ∑ 𝑟𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖 ≥ 0. (26) 

 

Recalling equations (11) and (13), eq. (26) is written as 

 

𝑥𝑝
𝑖 [𝑘] − 𝜏 ∑ 𝑟𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖 = 𝑥𝑝
𝑖 [𝑘] − 𝜏 ∑ 𝑥𝑝

𝑖 [𝑘]𝜎𝑖𝜇𝑝𝑞
𝑖 [𝑘]𝑞∈𝒫𝑖 =    

= 𝑥𝑝
𝑖 [𝑘](1 − 𝜏𝜎𝑖 ∑ 𝜇𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖 )  

≥ 𝑥𝑝
𝑖 [𝑘] (1 − 𝜏𝜎𝑖(|𝒫𝑖| − 1)), (27) 

 

where the inequality holds since the summation has at 

most (|𝒫𝑖| − 1) terms equal to 1. In the case 𝑥𝑝
𝑖 [𝑘] > 0, 

equations (14) and (15) are sufficient for equation (27) to 

be non-negative; 

ii) Given that 𝑥𝑝[0] ≤ 𝑐𝑝, it is proven below by induction 

that 𝑥𝑝[𝑘] ≤ 𝑐𝑝, ∀𝑘 ≥ 0. Assuming that 𝑥𝑝[𝑘] ≤ 𝑐𝑝, for a 

given 𝑘, it is sufficient to prove that  
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𝑥𝑝[𝑘 + 1] = 𝑥𝑝[𝑘] + 𝜏 ∑ ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝒫𝑖𝑖∈ℐ ≤

𝑐𝑝, ∀𝑝 ∈ 𝒫
𝑖. (28) 

 

If 𝑥𝑝[𝑘] ≥ 𝑐𝑝 −
𝜀

2�̅�
 equation (13) entails that 𝑟𝑞𝑝

𝑖 [𝑘] = 0 

for all 𝑞 ∈ 𝒫𝑖  and 𝑖 ∈ ℐ and, thus, from equation (9), that 

𝑥𝑝[𝑘 + 1] ≤ 𝑥𝑝[𝑘]. 

Otherwise, if 𝑥𝑝[𝑘] < 𝑐𝑝 −
𝜀

2�̅�
, we consider that 

 

𝑥𝑝[𝑘 + 1] ≤ 𝑥𝑝[𝑘] + 𝜏 ∑ ∑ 𝑟𝑞𝑝
𝑖 [𝑘]𝑞∈𝒫𝑖𝑖∈ℐ =   

= 𝑥𝑝[𝑘] + 𝜏 ∑ 𝑥𝑖[𝑘]𝜎𝑖 ∑ 𝜇𝑞𝑝
𝑖 [𝑘]𝑞∈𝒫𝑖𝑖∈ℐ =  

≤ 𝑥𝑝[𝑘] + ∑
𝜀

2�̅�|ℐ|𝑖∈ℐ = 𝑥𝑝[𝑘] +
𝜀

2�̅�
 (29) 

 ■ 

 

Proof of Lemma 3: For the definition of Φ𝑚𝑖𝑛, the function 

ℒ(𝒙) is positive definite in 𝒳𝐶𝑃 . 

Let Δℒ(𝒙[𝑘]) denote the difference of the Lyapunov function 

ℒ(𝒙) along the solutions of the controlled system: 

 

Δℒ(𝒙[𝑘]) = ℒ(𝒙[𝑘 + 1]) − ℒ(𝒙[𝑘])  

= ∑ ∫ 𝑙𝑝(𝜉)𝑑𝜉
𝑥𝑝[𝑘+1]

𝑥𝑝[𝑘]𝑝∈𝒫   

≤ ∑ (𝑥𝑝[𝑘 + 1] − 𝑥𝑝[𝑘])𝑙𝑝(𝑥𝑝[𝑘 + 1])𝑝∈𝒫   

= 𝜏∑ ∑ (∑ 𝑟𝑞𝑝
𝑖 [𝑘]𝑞∈𝒫 − ∑ 𝑟𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫 )𝑖∈ℐ 𝑙𝑝(𝑥𝑝[𝑘 + 1])𝑝∈𝒫   

= 𝜏∑ ∑ ∑ 𝑟𝑝𝑞
𝑖 [𝑘] (𝑙𝑞(𝑥𝑞[𝑘 + 1]) − 𝑙𝑝(𝑥𝑝[𝑘 + 1]))𝑞∈𝒫𝑝∈𝒫𝑖∈ℐ . (30) 

 

where the inequality holds from geometric considerations: If 

𝑥𝑝[𝑘 + 1] > 𝑥𝑝[𝑘], recalling that the 𝑙𝑝’s are nondecreasing 

functions, the definite integral ∫ 𝑙𝑝(𝜉)𝑑𝜉
𝑥𝑝[𝑘+1]

𝑥𝑝[𝑘]
 is smaller than 

the quantity (𝑥𝑝[𝑘 + 1] − 𝑥𝑝[𝑘])𝑙𝑝(𝑥𝑝[𝑘 + 1]); conversely, if 

𝑥𝑝[𝑘 + 1] < 𝑥𝑝[𝑘], the integral ∫ 𝑙𝑝(𝜉)𝑑𝜉
𝑥𝑝[𝑘]

𝑥𝑝[𝑘+1]
 is larger than 

the quantity (𝑥𝑝[𝑘] − 𝑥𝑝[𝑘 + 1])𝑙𝑝(𝑥𝑝[𝑘 + 1]). 

Analysing each term of the inner summation, two cases hold: 

if 𝑟𝑝𝑞
𝑖 (𝑡) = 0 the term is null, otherwise, if 𝑟𝑝𝑞

𝑖 (𝑡) > 0, the term 

is negative. In fact, it is shown below that, if 𝑟𝑝𝑞
𝑖 [𝑘] > 0, it holds 

that 𝑙𝑝(𝑥𝑝[𝑘 + 1]) − 𝑙𝑞(𝑥𝑞[𝑘 + 1]) > 0. 

Lemma 1 states that 

 

𝑙𝑝(𝑥𝑝[𝑘 + 1]) − 𝑙𝑞(𝑥𝑞[𝑘 + 1])  

≥ (𝑙𝑝(𝑥𝑝[𝑘]) −
ε

2
) − (𝑙𝑞(𝑥𝑞[𝑘]) +

ε

2
)  

= 𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) − ε > 0, (31) 

 

where the inequality holds since a necessary condition for 

𝑟𝑝𝑞
𝑖 [𝑘] > 0 is that 𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) > 𝜀 (see equation 

(13)).  ■ 

 

Proof of Theorem 2: Given that Lemma 2 states that ℒ(𝒙) is 

a candidate Lyapunov function for the LB dynamics, the proof 

relies on the LaSalle invariance principle of Theorem 1, i.e., on 

showing that 𝒳𝑒𝑞
𝜀  is the maximum invariant set where Δℒ = 0. 

Let 𝒙 ∈ 𝒳𝑒𝑞
𝜀  and 𝒙[0] = 𝒙. By comparing definition (6) and 

equation (13), it holds that 𝑟𝑝𝑞
𝑖 [𝑘] = 0 for all 𝑝, 𝑞 ∈ 𝒫𝑖 and 𝑖 ∈

ℐ, which entails i) that 𝒙[𝑘] = 𝒙[0] = 𝒙𝑒𝑞 ∈ 𝒳𝑒𝑞
𝜀  for all 𝑘 > 0, 

i.e., that 𝒳𝑒𝑞
𝜀  is a positively invariant set, and ii)  that 

Δℒ(𝒙[𝑘]) = 0 in 𝒳𝑒𝑞
𝜀  (see equation (30)).  

To show that 𝒳𝑒𝑞
𝜀  is the maximum set where Δℒ(𝒙[𝑘]) = 0, 

it is proven below that Δℒ(𝒙[𝑘]) < 0 if 𝒙[𝑘] = 𝒙, with 𝒙 ∉
𝒳𝑒𝑞 . In fact, by definition (12), in this case there exist at least 

one pair of providers 𝑝, 𝑞 ∈ 𝒫𝑖 and a commodity 𝑖 ∈ ℐ such that 

𝑙𝑝(𝑥𝑝[𝑘]) − 𝑙𝑞(𝑥𝑞[𝑘]) > 𝜀, with 𝑥𝑝
𝑖 [𝑘] > 0 and 𝑥𝑞[𝑘] < 𝑐𝑞 −

𝜀

2�̅�
, which, in turn, yields 𝑟𝑝𝑞

𝑖 [𝑘] > 0 (see equations (11), (14) 

and (13)). Having established that 𝑟𝑝𝑞
𝑖 [𝑘] > 0 with 

𝑙𝑝 (𝑥𝑝(𝑡)) − 𝑙𝑞 (𝑥𝑞(𝑡)) > 𝜀, it follows that the corresponding 

term of the inner summation of equation (30) is negative, which 

is a sufficient condition for Δℒ(𝒙[𝑘]) < 0 (recalling that, in the 

proof of Lemma 3, it is shown that the terms of equation (30) 

are non-positive).  

 ■ 
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