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Abstract
On the space of Ising configurations on the 2-d square lattice, we consider a family of non
Gibbsian measures introduced by using a pair Hamiltonian, depending on an additional
inertial parameter q . These measures are related to the usual Gibbs measure on Z

2 and turn
out to be the marginal of the Gibbs measure of a suitable Ising model on the hexagonal
lattice. The inertial parameter q tunes the geometry of the system. The critical behaviour
and the decay of correlation functions of these measures are studied thanks to relation with
the Random Cluster model. This measure turns out to be interesting also because it is the
stationary measure of a class of Probabilistic Cellular Automata (PCA). Such PCA can be
used to obtain a fast sample of the Ising measures on 2-d lattices.

Keywords Ising model · Random cluster model · Phase transitions · Correlation functions

1 Introduction and Definitions

Let � be a two-dimensional 2L × 2L square box in Z
2 centered at the origin and let B�

denote the set of all nearest neighbours in� assuming periodic boundary conditions. In other
words B� consists of all pairs {〈x, y〉 : x, y ∈ �, |x − y| = 1}, with |x − y| being the usual
lattice distance in Z

2, plus the pairs of sites at opposite faces of the square �. We denote
by X� the set of spin configurations in �, i.e., X� = {−1, 1}�. On this spin configuration
space we consider the nearest neighbours ferromagnetic Ising Hamiltonian
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H(σ ) = −
∑

〈x,y〉∈B�

Jσxσy (1)

with J > 0 and the associated Gibbs measure

πG(σ ) := 1

ZG
e−H(σ ) with ZG =

∑

σ∈X�

e−H(σ ). (2)

Looking for efficient algorithms to sample from this measure, an approximate sampling
by means of a pair Hamiltonian, adaptable to general pair interaction, has been introduced in
[5]. The main idea was, indeed, to define a parallel dynamics, i.e., a Markov chain updating
all spins at each time, with an invariant measure strictly related to πG . Following these ideas,
a non reversible parallel dynamics with polynomial mixing time in the size of the system has
been the subject of a successive paper [6] where the main ingredient was the combination of
parallel updating and non symmetric interaction.

Define the space of pairs of configurations

X 2
� = X� × X�.

For each pair (σ, τ ) ∈ X 2
� we define the Hamiltonian with asymmetric interaction

H(σ, τ ) = −
∑

x∈�

[
Jσx (τx↑ + τx→) + qσxτx

] = −
∑

x∈�

[
Jτx (σx↓ + σx←) + qτxσx

]
(3)

where x↑, x→, x↓, x← are respectively the up, right, down, left neighbours of the site x on
the torus (�,B�), J > 0 is the ferromagnetic interaction and q > 0 is an inertial constant. It
is straightforward to see that H(σ, σ ) = H(σ )− q|�| where H(σ ) is the Ising Hamiltonian
given in (1). Note also that H(σ, τ ) 	= H(τ, σ ).

On the configuration space X� we define the following family of measures, indexed by
q:

πq(σ ) = 1

Z

∑

τ∈X�

e−H(σ,τ ) with Z =
∑

(σ,τ )∈X 2
�

e−H(σ,τ ). (4)

These measures have been considered in the previous papers [5,6,10] and turn out to be the
invariant measure of the parallel dynamics defined there. In a more recent paper [3] πq(σ )

is the invariant measure of a reversible parallel dynamics, the “shaken dynamics”, that can
be used to model geological processes related to earthquakes for a suitable choice of the
parameter q .

The goal of the present paper is to study, from a static point of view, the thermodynamical
properties and the critical behaviour of this family of probability measures. This analysis is
performed relating πq to the Gibbs measure of the Ising model on a different lattice induced
by the pair Hamiltonian and using the standard coupling between Ising model and Random
Cluster Model (RCM). In this context we will show that the parameter q tunes the geometry
of the lattice.

In the remainder of the paper, in order to lighten the notation, we write π in place of πq .
The usual Gibbs measure (2) and the measure π(σ) defined above are connected by the

following result obtained in [5,10] (see Theorem 1.2 in [10]):

Theorem 1.1 Define the total variation distance, or L1 distance, between π and πG as
∥∥∥π − πG

∥∥∥
T V

= 1

2

∑

σ∈X�

∣∣∣π(σ) − πG(σ )

∣∣∣ . (5)
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Fig. 1 Interaction in the pair
Hamiltonian
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Set δ = e−2q , and let δ be such that

lim|�|→∞ δ2|�| = 0, (6)

then there exists J̄ such that for any J > J̄

lim|�|→∞ ‖π − πG‖T V = 0 (7)

Let us observe that the pair Hamiltonian (3), considering only half of the interactions
(down-left), allows to interpolate between different lattices. Indeed, as already shown in [3],
the space of pairs of configurations with interaction given by H(σ, τ ) can be represented as
the configuration space XH for the Ising model on an hexagonal latticeH = (V , E). Indeed,
the hexagonal latticeH is obtained by considering two copies�1 and�2 of� and associating
each vertex x ∈ � to the pair (x1 ∈ �1, x2 ∈ �2). Setting σ = (σ 1, σ 2)with σ i ∈ X�i , i =
1, 2, and considering the interaction defined by H(σ 1, σ 2) it is straightforward to observe that
H is a bipartite graph. On this graph we distinguish two types of edges and set E = EJ ∪ Eq .
Indeed two of the three edges exiting from each site correspond to the left and downwards
interactions of strength J (in the set EJ ), while the third corresponds to the self-interaction
q (in the set Eq ) (Fig. 1).

In other words we associate to each edge e a weight

Je =
{
J if e ∈ EJ

q if e ∈ Eq

We define the Gibbs measure for configurations σ = (σ 1, σ 2) on the hexagonal lattice

π2(σ
1, σ 2) = e−H(σ 1,σ 2)

Z
(8)
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where the pair Hamiltonian, defined in (3), has been written as

H(σ 1, σ 2) = −
∑

e∈E
Jeσ

1
e1σ

2
e2 (9)

with e1, e2 the two sites in H connected by the edge e. Exploiting this representation, we
can apply to our model the powerful connection between Ising model and Random Cluster
Model.

Assume periodic boundary conditions and define� := {0, 1}E . For any ω ∈ � the edge e
is open (or present) if ω(e) = 1. Let η(ω) := {e ∈ E : ω(e) = 1} and let k(ω) := k(η(ω))

denote the number of connected components (or open clusters) of the graph (V , η(ω)). Given
now two parameters pJ , pq ∈ [0, 1], by defining

pe =
{
pJ if e ∈ EJ

pq if e ∈ Eq

we introduce the measure on �:


pe (ω) = 1

Z RC

{
∏

e∈E
pω(e)
e (1 − pe)

1−ω(e)

}
2k(ω) (10)

with partition function

Z RC =
∑

ω∈�

{
∏

e∈E
pω(e)
e (1 − pe)

1−ω(e)

}
2k(ω).

Following the general theory (see for instance [9]) we define now a coupling between our
pairs of configurations σ = (σ 1, σ 2) ∈ X 2

� and the random cluster configuration ω ∈ � by
the following probability mass on X 2

� × �:

μ(σ , ω) ∝
∏

e∈E

{
(1 − pe)δω(e),0 + peδω(e),1δe(σ )

}
(11)

where

δe(σ ) = δσ 1
x ,σ 2

y
for e = (x, y), with x ∈ �1, y ∈ �2

We have the following result:

Proposition 1.2 If pJ = 1 − e−2J and pq = 1 − e−2q

(1) The marginal on X 2
� of μ(σ , ω) is

μ1(σ ) =
∑

ω∈�

μ((σ ), ω) = π2(σ
1, σ 2)

(2) The marginal on � of μ(σ , ω) is

μ2(ω) =
∑

σ

∈ X 2
�,Bμ(σ , ω) = 
pe (ω)

(3) The conditional measure onX 2
� given ω is obtained by putting uniformly random spins

on entire clusters of ω. These spins are constant on given clusters, are independent
between clusters and each is uniformly distributed on the set {−1,+1}.

(4) The conditional measure on � given σ is obtained by setting ω(e) = 0 if δe(σ ) = 0
and otherwise ω(e) = 1 with probability pJ (pq ) for e ∈ EJ (e ∈ Eq).
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For the proof of this propositionwe refer to the clear reviewbyGrimmett [9] of the Fortuin–
Kasteleyn construction [8], and to the rich papers [1] and [7] for further developments. The
coupling between these two models is robust and of wide applicability, in particular in [9]
the infinite-volume random-cluster measure and phase transitions are widely discussed.With
this construction we can easily prove that our model exhibits a phase transition and we can
compute the strong anisotropy of the correlation functions.

Our results are presented in the next section and are proven in Sect. 3. In the final section
we describe some numerical aspects. In what follows, for any x, y ∈ V we will denote by
{x ↔ y} the set of ω ∈ � for which there exists an open path joining the vertex x with the
vertex y.

2 Results

The measure π , although not Gibbsian, turns out to be the marginal of the Gibbs measure
π2 of the Ising model of the hexagonal lattice and inherits from it the thermodynamics. In
other words we can extend to the non Gibbsian measure π thermodynamical relations and
the control of the critical behaviour obtained for the measure π2. To obtain these results we
leverage on the well established random cluster coupling.

The first result relates the thermodynamical properties of the measures π and π2.

Theorem 2.1 Consider the measure π defined in (4) as the marginal of the Gibbs measure
on the hexagonal lattice

π2(σ
1, σ 2) = 1

Z
e−H(σ 1,σ 2) (12)

with the same partition function

Z =
∑

(σ 1,σ 2)∈X 2
�

e−H(σ 1,σ 2).

The following relations hold:

(1) The average magnetization with respect to the measure π and π2 is the same, that is

m := π
(∑

x∈� σx

|�|
)

= m2 := π2

(∑
x∈�1∪�2 σ x

2|�|
)

(2) Let π+ (π−) and π+
2 (π−

2 ) be the previous measures with plus (minus) boundary
conditions, then for any x ∈ �

π±(σx ) = ±
pe (x
1 ↔ ∂�1)

(3) For any x, y ∈ �

π(σxσy) = 
pe (x
1 ↔ y1)

with the obvious notation x1, y1 ∈ �1 for the sites in the layer �1 corresponding to
vertices x and y in �, respectively.

In our second theorem we identify the critical behaviour of the system.

Theorem 2.2 The critical equation relating the parameters J and q in the measure π is given
by the equation:
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Fig. 2 The function Jc(q)
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Jc(q) = tanh−1
(

− tanh q +
√
tanh2 q + 1

)
(13)

Remark 2.3 It is well known that the Gibbs measure πG on the square lattice exhibits a phase
transition at

JGc = tanh−1 (√
2 − 1

) = 0.4407...

Note that

lim
q→∞ Jc(q) = JGc

Furthermore, the curve Jc(q) intersects the line J = q for J = tanh−1
(√

3
3

) = 0.6585...,
corresponding to the critical value of J in the homogeneous hexagonal lattice (see Fig. 2).

The parameter q tunes the geometry of the system. In fact the limit q → 0 corresponds
to erasing the q-edges obtaining, from the hexagonal lattice, independent copies of 1-d Ising
model. Indeed for q → 0 we find Jc → ∞ showing the absence of phase transition for the
one-dimensional Ising model. The opposite limit, q → ∞, corresponds to the collapse of
the hexagonal lattice into the square one, by identifying the sites connected by the q-edges.
The case J = q corresponds to the homogeneuous hexagonal graph.

The next and last result is about correlation functions and reflects the anisotropy of the
model, depending on the parameter q .

Theorem 2.4 If the parameter q is sufficiently small, for any integer � ∈ (0, L) there exist
two constants c1 < c2 such that

π(σ(0,0)σ(�,�)) ≤ c1 < c2 ≤ π(σ(0,�)σ(�,0)).
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3 Proof of the Results

3.1 Proof of Theorem 2.1

(1) The statement immediately follows from direct computation, indeed:

m =
∑

σ

∑
x∈�

σx

|�| ·
∑

τ

e−H(σ,τ )

Z
= 1

2

∑

(σ,τ )

∑
x∈�(σx + τx )

|�| · e
−H(σ,τ )

Z
= m2

where the second equality follows by a symmetry argument.
(2) The standard coupling between Ising and the RCM on H yields

π+(σx ) =
∑

σ

σxπ
+(σ ) =

∑

σ

σ 1
x1π

+
2 (σ ) = π+

2

(
σ 1
x1

)

=
∑

ω∈�

∑

σ

μ(σ , ω)σ 1
x1

(
1x1↔∂�1 + 1x1�∂�1

)

= 
pe (x
1 ↔ ∂�1) +

∑

ω∈�

∑

σ

[
μ(σ , ω|ω)σ 1

x11x1�∂�1

]

pe (ω)

= 
pe (x
1 ↔ ∂�1)

since by proposition 1.2 the square bracket vanishes. The minus boundary conditions
can be treated in the same way.

(3) The proof of point (3) can be obtained following the same argument. ��

3.2 Proof of Theorem 2.2

As shown in [4], for a planar weighted graph G = (V , E) that is non degenerate, finite and
doubly periodic, the critical curve of the Hamiltonian

H(σ ) = −
∑

e={u,v}∈E
Jeσuσv

is the unique solution of the equation
∑

γ∈E0(G)

∏

e∈γ

tanh Je =
∑

γ∈E1(G)

∏

e∈γ

tanh Je (14)

where E(G) is the set of the even subgraphs of G, i.e., the set of subgraphs γ of G such
that each vertex of G is an endvertex of an even number of edges of γ , E0(G) is the set of the
even subgraphs of G winding an even number of times around each of the two dimensions
of the torus and E1(G) = E(G) \ E0(G). The main step in the proof of this result is to show
that the free energy per fundamental domain can be expressed in terms of the Kac–Ward
determinants.

In our case the hexagonal lattice H = (V , E) satisfies the conditions of the theorem 1.1
in [4] and the equation (14) can be obtained by periodically glueing on the torus the cell
represented in Fig. 3.

The explicit form of the equation is

1 = 2 tanh J tanh q + tanh2 J (15)
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J J
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J J

Fig. 3 The elementary cell on the torus and the three corresponding even subgraphs γ ∈ E1

where on the r.h.s. we have the sum of the contributions from the three even subgraphs in E1
shown in Fig. 3 while the 1 on the l.h.s. is the contribution of the unique graph in E0 without
edges.

Solving Eq. (15) w.r.t. J gives the curve

Jc(q) = tanh−1 (√
tanh2 q + 1 − tanh q

)
(16)

represented in Fig. 2 ��

3.3 Proof of Theorem 2.4

Let γ ⊂ E be a path of open edges connecting two vertices x1, y1 ∈ �1. We introduce the
notation η(ω) ⊃ γ to identify all the configurations ω ∈ � such that ω(e) = 1, ∀e ∈ γ . By
definition


pe (x
1 ↔ y1) =

∑

γ :x1↔y1

∑

ω∈� :
η(ω)⊃γ


pe (ω)

= 1

Z RC

∑

γ :x1↔y1

(∏

e∈γ

pe

) ∑

ω′∈{0,1}E\γ

( ∏

e∈E\γ
pω′(e)
e (1 − pe)

1−ω′(e)
)
2k(η(ω′)∪γ )

= 1

Z RC

∑

γ :x1↔y1

(∏

e∈γ

pe

)
Zγ

where

Zγ =
∑

ω′∈{0,1}E\γ

( ∏

e∈E\γ
pω′(e)
e (1 − pe)

1−ω′(e)
)
2k(η(ω′)∪γ )

Upper Bound

For any path γ and any configuration ω ∈ � we denote by ω′ the restriction of ω to the
set of edges in E \ γ and by ω′′ its restriction to the set of edges in γ .

Since k(η(ω)) ≥ k(η(ω′) ∪ γ ) we can state the following inequality for the partition
function
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(0, 0)

( )

( 0)
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(a)

(0, 0)

( )

( 0)

(0 )

(b)

Fig. 4 LatticeHwith the slices used for the estimation of the correlation functions. Picture a shows an example
of path γ : (0, 0) ↔ (�, �). Picture b shows the diagonal path γ �

Z RC ≥
∑

ω∈�

(∏

e∈γ

pω(e)
e (1 − pe)

1−ω(e)
)( ∏

e∈E\γ
pω(e)
e (1 − pe)

1−ω(e)
)
2k(η(ω′)∪γ )

=
( ∑

ω′′∈{0,1}|γ |

∏

e∈γ

pω′′(e)
e (1 − pe)

1−ω′′(e)
)
Zγ = Zγ

This observation implies


pe (x
1 ↔ y1) ≤

∑

γ :x1↔y1

(∏

e∈γ

pe
)

(17)

Now let us suppose to slice the lattice H as in Fig. 4. It is easy to see that each path
γ : (0, 0) ↔ (�, �) must visit all slices separating (0, 0) and (�, �) and therefore it crosses
at least 2� q-edges (see Fig. 4(a)). We give an upper bound for the sum in (17) in terms of
possible crossing-paths that start in (0, 0) and stop in the slice which contains (�, �). The
transition from one slice to the other is determined by the crossing of a q-edge. After a q-edge
has been crossed the path must traverse an arbitrary number of J -edges, either on the left
or on the right, before crossing the next q-edge. Denoting by �(n, 2�) the number of one
dimensional random walks between slices of length n arriving at distance 2� from the origin,
we can write


pe ((0, 0) ↔ (�, �)) ≤
∞∑

n=2�

�(n, 2�)(2pq pJ )n
( ∞∑

m=0

pmJ

)n

=
∞∑

n=2�

�(n, 2�)(2pq pJ )n
(

1

1 − pJ

)n

=
∞∑

n=2�

(
n

n+2�
2

)(
2pq pJ
1 − pJ

)n

≤
∞∑

n=2�

(
4pq pJ
1 − pJ

)n

.

The last sum converges if q is sufficiently small so that the parameters pJ and pq satisfy the

condition 4pq pJ
1−pJ

< 1 and we get

123



1018 V. Apollonio et al.

c1 =
(
4pq pJ
1−pJ

)2�

1 −
(
4pq pJ
1−pJ

) ·

Lower Bound

We introduce the diagonal path γ ∗ connecting (0, �) and (�, 0) remaining in the same
slice as in Fig. 4(b) and γ̄ = γ ∗ ∪ ∂γ ∗. Let ZE\γ̄ be the partition function of the Random
Cluster Model defined on the graph Hγ̄ = (V , E \ γ̄ ). By Theorem (3.60) in [9] we have
that ZE\γ̄ ≥ ZE = Z RC and hence we can give a lower bound for the correlation function
as follows


pe ((0, �) ↔ (�, 0)) ≥

≥ 1

Z RC

⎛

⎝
∏

e∈γ ∗
pe

⎞

⎠
∑

ω′′∈{0,1}E\γ̄

⎡

⎣
∏

e∈∂γ ∗
(1 − pe)

⎤

⎦

⎡

⎣
∏

e∈E\γ̄
pω′′(e)
e (1 − pe)

1−ω′′(e)

⎤

⎦ 2k(ω
′′)+1

= 1

Z RC

⎛

⎝
∏

e∈γ ∗
pe

⎞

⎠

⎡

⎣
∏

e∈∂γ ∗
(1 − pe)

⎤

⎦ 2ZE\γ̄ ≥ 2

⎛

⎝
∏

e∈γ ∗
pe

⎞

⎠

⎡

⎣
∏

e∈∂γ ∗
(1 − pe)

⎤

⎦

= 2e−4J (1 − e−2J )2�e−2q(2�+1) = c2.

If q is sufficiently small such that, for instance,

4pq
(1 − pq)(1 − pJ )

<
1

2

and
(

pq
1 − pq

)2

<
(1 − pJ )3(1 − pq)

16
,

we immediately get c1 < c2. Note that the first of these two conditions is stronger than
4pq pJ
1−pJ

< 1 and, therefore, c1 is well defined. ��

4 Numerical Indications

The measure π is not a Gibbs measure. However it is possible to sample from it in an
effective way by drawing samples from the Gibbs measure π2. Remarkably, this sampling
can be performed in reasonably short times even for values of the parameters close to the
critical ones.

To this purpose, consider the “shaken dynamics” introduced in [3]. This dynamics can
be seen as a dynamics on XH that, alternatively, updates the spins in �1 and in �2. In
[3], Theorem 2.2, it has been shown that the equilibrium measure of the shaken dynamics,
regarded as a dynamics on XH, is the Gibbs measure π2.

This parallel dynamics preserves the natural partial ordering between Ising configurations.
Consequently, it allows to effectively exploiting massively parallel computing to draw unbi-
ased samples from π2 using perfect sampling techniques [11,12]. To draw a sample from π

it is, therefore, enough to draw a configuration from π2 and look at the sub-configuration on
the layer �1. A more detailed numerical analysis of the shaken dynamics will be the topic
of a forthcoming paper [2].
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(a) (b)

Fig. 5 J = 0.44, q = 3.0

(a) (b)

Fig. 6 J = 0.6585, q = 0.6585

Figures 5, 6 and 7 show samples from the measure π and the corresponding samples from
the Gibbs measure π2 on XH for several pairs of values of J and q near the critical curve.

Furthermore, numerical simulations show that the responsiveness of the “shaken dynam-
ics” introduced in [3] to variations of the parameters is in very good accordance with the
theoretical results of Theorem 2.2. For instance, looking at the average magnetization over
a large number of iterations, it is possible to see that the parameter space is clearly split into
two regions corresponding to the ordered and disordered phase. The numerically determined
curve separating these two phases strongly agrees with the theoretical one (13) as shown in
Fig. 8.
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(a) (b)

Fig. 7 J = 2.0, q = 0.03

Fig. 8 The numerically determined critical curve
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