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A B S T R A C T

Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonization
process. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequent
failures and downtime periods, leading to ever-increasing attention to effective Condition Monitoring strategies.
In this paper, we propose a novel unsupervised deep anomaly detection framework to detect anomalies in wind
turbines based on SCADA data. We introduce a promising neural architecture, namely a Graph Convolutional
Autoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph. This
structure improves the unsupervised learning capabilities of Autoencoders by considering individual sensor
measurements together with the nonlinear correlations existing among signals. On this basis, we developed
a deep anomaly detection framework that was validated on 12 failure events occurred during 20 months of
operation of four wind turbines. The results show that the proposed framework successfully detects anomalies
and anticipates SCADA alarms by outperforming other two recent neural approaches.
1. Introduction

Wind energy is possibly one of the game-changer in future de-
carbonization scenarios, in view of a plurality of factors. To men-
tion but a few, an incoming generations of multi-MW wind turbines
(WTs) [1], the maturity of technology and infrastructures, and the cost
competitiveness even in off-shore applications [2–4].

As reported in Hameed et al. [5], the most critical elements in WT
energy converters reside in powertrain components, subject to highly
irregular loads driven by wind turbulence and extreme weather condi-
tions. As such, the fatigue loading of major structural components can
be remarkably greater and peculiar when compared to other rotating
machines.

Therefore, second to CAPEX investments are operation and main-
tenance (O&M) costs, being the most frequent faults on electric and
control systems, followed by blades and hydraulic groups [6,7]. In
addition, failures (typically in generators and gearboxes) entail high
repair and replacement costs and result in long downtimes with signif-
icant loss of production. Remedial approaches to face O&M challenges
advocate Condition Monitoring (CM) strategies capable of early detec-
tion and isolation of incipient faults. CM is a key ingredient to enable
condition-based maintenance, able to outperform the on-schedule state-
of-the-art, in a view to identify (at early stages) component degradation
and limit unnecessary outage of WTs. In mechanical systems, CM is typ-
ically based on the acquisition of high-frequency data (e.g., vibrational
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analysis), possibly processed through a variety of methods (see [8] for
a recent review). However, this strategy suffers from several limitations
as it demands the installation of additional sensors on WTs and specific
data infrastructure, in fact discouraging the implementation [5,9].

On the other hand, modern WTs are integrated with sensor net-
works as part of Supervisory Control and Data Acquisition (SCADA)
systems for monitoring power-train status (e.g. bearing temperature,
lube oil sub-system, etc.) with standard practice to record 10-minute
averaged values and other statistics of the sensor time series. CM of
wind power generation plants through analysis of routinely collected
SCADA data is envisaged as a viable mean of forestalling expensive
failures and optimizing maintenance through the identification of faults
at the earliest possible stage [10,11]. The challenge to operators is,
therefore, in identifying the signature of failures within data streams
and disambiguating those from other behavioural factors. The strong
heterogeneity of signals, together with the loss of high-frequency tem-
poral dependencies caused by the 10-minute averaging, makes the task
very demanding [12].

In view of the lack of a comprehensive physical or mathematical
model of WT operations, many data-driven methods based on 10-
minute SCADA were recently proposed (see [13] for a systematic
review). Probabilistic methods fail in modelling the proper temporal
dependencies (and dynamics) in sensor networks [14]. For this reason,
vailable online 12 February 2022
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to take into account signals mutual non-linearity and causal dependen-
cies among WT components, most of the methods appeared to date rely
on the use of Artificial Neural Networks (NNs) models [15].

In the field of early fault detection, NNs are often employed to
learn the normal operating conditions of the system and detect incip-
ient faults by monitoring the real-time deviations from the standard
behaviour. The common assumption is that failure occurrences reflect
a change of correlation among signals, causing a high multivariate
reconstruction error.

To this end, several neural architectures have been proposed in
order to capture anomalous scenarios based on prediction errors, where
the neural models regress a target variable on a multivariate input. For
example, approaches based on Convolutional NN (CNN) [12] have been
developed, together with space–time fusion NNs combining convolu-
tional kernels with recurrent units, such as Long Short-Term Memory
(LSTM) or Gated Recurrent Unit (GRU), to extract multi-scale spatial
and temporal correlations [16–18].

However, as reported in [19,20], the standard convolutional opera-
tion of CNNs restricts the model to consider only local spatial structures
in the signal time series rather than the general domain of the process.
In addition, recurrent NNs for sequenced learning require iterative
training, which may suffer from error accumulation, difficult training,
and increase in computational costs [19].

As a promising alternative to regression models, Autoencoder (AE)
architectures have been recently employed in unsupervised anomaly
detection, in view of their ability to extract salient features character-
istic of normal operating conditions. Examples of such architectures
include deep AEs, denoising AEs, LSTM-based AEs, and CNN-based
AEs [21–24].

In this paper, we propose an original unsupervised deep anomaly
detection framework which has at its core a neural architecture combin-
ing AEs and Graph Convolutional Networks (GCNs). Both AEs and GCNs
have recently been employed for traffic forecasting or shape coding
of buildings in maps where the graph formulation is intrinsic in the
application domain [25–27]. Instead, we propose to adapt the formu-
lation to multivariate time series, by modelling the sensor network as a
graph where each node represents a sensor with specific feature vectors
extracted from its time series. Owing to its multivariate formulation,
we advocate the method to be able to analyse contextual anomalies in
sensor networks [24].

In detail, we introduce a Graph Convolutional Autoencoder for
Multivariate Time series (MTGCAE), composed by an encoder and a
decoder based on GCNs adapted to multivariate time series. By repre-
senting the data as graphs, the structural information can be encoded
to model the relations among entities and furnish more promising
insights underlying the sensor data measurements, outperforming stan-
dard CNNs, especially in modelling arbitrarily structured systems like
sensor networks [28–30].

To perform anomaly detection, the network is trained to learn
the normal behaviour of the system in an unsupervised fashion. By
defining local and global indicators based on the model reconstruc-
tion errors, the framework triggers warnings after the application of
a four-stage threshold method that aims at minimizing false alarms
during normal operating conditions. In fact, only significant model
errors are considered by filtering individual spikes and transient dis-
turbances, allowing to generate sensor-level warnings that isolate the
assembly/sub-assembly mostly involved in the anomaly.

We tested the model on SCADA data gathered from 4 WTs belonging
to the same wind farm, with a nominal power of 2 MW each [31]. The
results showed that the proposed model can anticipate 10 SCADA log
alarms with an average time to failure of about 23 days involving some
of the most critical components, without triggering any false alarms.
Furthermore, to validate the effectiveness of the model, two recently
proposed neural architectures have also been applied to the same
dataset, one based on an LSTM AE [23] and one on the combination
2

of CNNs, LSTM cells and attention mechanisms [18]. The comparison
confirms that the proposed model outperforms these two approaches in
terms of evaluation metrics.

The rest of the paper is organized as follows. In Section 2, we
present the proposed MTGCAE neural architecture and in Section 3 we
discuss the building blocks of the deep anomaly detection framework.
Then, in Section 4, we describe the case study and the obtained results,
and, finally, in Section 5 we summarize the present work and draw our
conclusions.

2. Neural architecture

In this chapter, we describe Autoencoders and Graph Convolutional
Networks, together with the proposed neural architecture, namely a
Graph Convolutional Autoencoder for Multivariate Time series, which
is formulated as a combination of the first two and adapted for multi-
variate time series.

2.1. Autoencoder

An Autoencoder (AE) is a neural network trained to learn a com-
pressed representation for a set of data in an unsupervised manner [32].
First, it produces a reduced encoding for the input data. Then, it tries to
reconstruct the original input from the reduced encoding. In particular,
it aims at learning an identity function under specific constraints, for
example with a limited number of neurons in the hidden layers. An AE
consists of two parts, namely an Encoder and a Decoder.

The Encoder maps the input 𝐱 ∈ R𝑛 to a latent space and, by
considering a feedforward neural network, the output 𝐡(𝑙+1)𝐞 of the 𝑙th
layer can be written as:

𝐡(𝑙+1)𝐞 = 𝜎(𝐖(𝑙)
𝐞 ⋅ 𝐡(𝑙)𝐞 ) (1)

where 𝐖(𝑙)
𝐞 are the trainable weights of the layer and 𝜎 is a non-linear

activation function. Considering an Encoder with 𝐿𝑒 layers, we have
that 𝐡(0)𝐞 = 𝐱 and that 𝐡(𝐿𝑒)

𝐞 = 𝐡, where 𝐡 ∈ R𝑘 is the compressed version
of the input.

The Decoder, instead, maps the compressed representation 𝐡 back
o its original space and, by considering again a feedforward neural
etwork, we have that:
(𝑙+1)
𝐝 = 𝜎(𝐖(𝑙)

𝐝 ⋅ 𝐡(𝑙)𝐝 ) (2)

where 𝐡(𝑙+1)𝐝 is the output of the 𝑙th layer, 𝐖𝑑 is the trainable weight
matrix and 𝜎 is a non-linear activation function. Considering 𝐿𝑑 layers,

e have that 𝐡(0)𝐝 = 𝐡 and that 𝐡(𝐿𝑑 ) = 𝐱′, where 𝐱′ is the reconstruction
of the input vector 𝐱

Since the goal of an AE is to reconstruct the input as accurately as
possible (ideally 𝐱′ = 𝐱), it is trained by minimizing the reconstruction
error (𝐱′, 𝐱) = ‖𝐱′ − 𝐱‖, also referred as loss function, through the
backpropagation algorithm [33].

It is important to notice that, based on the specific application,
other neural architectures different from feedforward NNs can also be
considered as Encoder or Decoder with an arbitrary number of hidden
layers.

2.2. Graph convolutional network

A Graph Convolutional Network (GCN) is a neural network de-
signed to work directly on graphs and leverage their structural infor-
mation [34]. The input of a GCN is a graph 𝐆 = (𝐕,𝐄), where 𝐕 and
𝐄 are the set of nodes and edges respectively. 𝐕 is represented as an
𝑁 × 𝐹 feature matrix 𝐗, composed by the feature vectors of length 𝐹
associated with each of the 𝑁 nodes. The structural information of the
graph enclosed in 𝐄 is, instead, represented as an 𝑁 × 𝑁 adjacency
matrix 𝐀. GCNs produce a node-level output 𝐎 in the form of an 𝑁 ×𝐾
matrix, where 𝐾 is the number of output features computed for each

node.
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Fig. 1. Detail of the proposed MTGCAE neural architecture. Starting from 𝑁 sensor signals, the adjacency matrix 𝐀 is computed through MI and a sliding window 𝐗 of length 𝐹 is
extracted as input for the GCN Encoder. The compressed output representation 𝐇, together with the adjacency matrix 𝐀, are used by the GCN Decoder to produce a reconstruction
of the input signals 𝐗′.
Fig. 2. Diagram of the proposed framework for deep anomaly detection.
This matrix can be written as function of the feature matrix 𝐗 and
the adjacency matrix 𝐀 as:

𝐎 = 𝑓 (𝐗,𝐀) = 𝜎(𝐀𝐗𝐖) (3)

where 𝐖 is a 𝐹 ×𝐾 trainable weight matrix.
When multiplying by 𝐀, for each node a weighted sum is computed

between the feature vectors of all neighbouring nodes excluding itself.
For this reason self-loops are added by defining 𝐀̂ = 𝐀 + 𝐈, where
𝐈 is the 𝑁 × 𝑁 identity matrix. Since 𝐀 is typically not normalized,
the matrix multiplications defined in Eq. (3) can cause a change of
scale in the feature vectors. To prevent numerical instabilities and
vanishing/exploding gradients, the adjacency matrix can be normalized
by computing 𝐃

1
2 𝐀𝐃

1
2 , where 𝐃 is the diagonal node degree matrix

defined as 𝐃 =
∑

𝐀 .
3

𝑖𝑖 𝑗 𝑖𝑗
Considering the previous adjustments, the output of a GCN layer

can be rewritten as:

𝐎 = 𝑓 (𝐗,𝐀) = 𝜎(𝐃
1
2 𝐀̂𝐃

1
2 𝐗𝐖) (4)

It is possible to define a multi-layer GCN by feeding the output feature

matrix of a layer together with the adjacency matrix 𝐀 as input for the

next layer. Generally, GCNs are trained by minimizing a loss function

 defined between its output 𝐎 and the expected output 𝐎̄ by means

of the backpropagation algorithm.
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2.3. Graph convolutional autoencoder for multivariate time series (MTG-
CAE)

We propose a neural architecture based on the combination of GCNs
and AEs, namely a Graph Convolutional Autoencoder for Multivariate
Time series (MTGCAE), in order to exploit the extraction of multi-scale
spatial and temporal correlations by encoding data as graphs.

In particular, as shown in Fig. 1, the neural architecture consists
of a multi-layer GCN which uses as input a graph representation of the
sensor network. Each node in the graph represents one of the 𝑁 signals
nd the edges quantify the degree of correlation between pairs of time
eries. More specifically, as input feature matrix 𝐗 we consider a sliding
indow which is a 𝑁 × 𝐹 matrix. In this way, the feature vector 𝐱𝐢
ssociated with the 𝑖th node (i.e. the 𝑖th sensor in the SCADA system)
s composed by the values of the 𝑖th time series in a time window of
ength 𝐹 . As for the adjacency matrix 𝐀, we define the entry (𝑖, 𝑗) as
he Mutual Information (MI) between the 𝑖th and 𝑗th signals or nodes
n the graph sensor network [35].

The layers of the GCN are divided into an Encoder and a Decoder,
ach of which can be composed by multiple layers. Following the
ypical structure of AEs, the Encoder compresses the input to a latent
epresentation, while the Decoder tries to reconstruct the original input
s accurately as possible. Unlike standard AEs, here we adapt the
ormulation given in Eq. (1) and (2) in order to consider as input a
eature matrix instead of a vector.

With reference to the GCN layer formulation in Eq. (4), the output
(𝑙+1)
𝐞 of the 𝑙th Encoder layer can be written as function of the previous

ayer output 𝐇(𝑙)
𝐞 and the adjacency matrix 𝐀 as:

(𝑙+1)
𝐞 = 𝑓 (𝐇(𝑙)

𝐞 ,𝐀) = 𝜎(𝐃
1
2 𝐀̂𝐃

1
2 𝐇(𝑙)

𝐞 𝐖(𝑙)
𝐞 ) (5)

where 𝐖(𝑙)
𝐞 is the trainable weight matrix of the layer and 𝜎 is the

ReLu activation function [36]. Considering an Encoder with 𝐿𝑒 layers,
we have that 𝐇(0)

𝐞 = 𝐗 and that 𝐇(𝐿𝑒)
𝐞 = 𝐇, where 𝐇 is an 𝑁 × 𝐾

matrix representing the compressed version of the input feature matrix
(𝐾 < 𝐹 ) after passing through the Encoder.

The Decoder, instead, maps the compressed feature matrix back to
its original space and can be formulated in a mirrored way as:

𝐇(𝑙+1)
𝐝 = 𝑓 (𝐇(𝑙)

𝐝 ,𝐀) = 𝜎(𝐃
1
2 𝐀̂𝐃

1
2 𝐇(𝑙)

𝐝 𝐖(𝑙)
𝐝 ) (6)

where the subscript 𝑑 is adopted to discriminate Decoder matrices.
onsidering 𝐿𝑑 layers, we have that 𝐇(0)

𝐝 = 𝐇 and that 𝐇(𝐿𝑑 ) = 𝐗′,
where 𝐗′ is the reconstruction of the input feature matrix 𝐗.

Similarly to AEs, the reconstruction error  = ‖𝐗′ − 𝐗‖2𝐹 is mini-
mized during training using the backpropagation algorithm.

The MTGCAE is trained to reconstruct the sensor signals assuming
a reference state. When reapplying it to unseen data during anomalous
conditions, we expect the prediction of the trained network to deviate
from the actual signals, thus generating residuals.

3. Deep anomaly detection framework

In this chapter, we discuss the main steps of the proposed deep
anomaly detection framework shown in Fig. 2. First, we describe the
preprocessing of the monitored signals and the proposed MTGCAE
model application. Then, we define global and local health indicators
together with a four-stage threshold approach for anomaly detection.

3.1. Signal preprocessing

Before the training of the proposed neural architecture, all moni-
tored signals are preprocessed by deleting the records having missing
values. In the case of few isolated points, a linear interpolation was
applied without introducing distortion in the data [37].

Then, signals presenting high levels of noise were smoothed using
the Savitzky–Golay filter [38].

Finally, extreme outliers were filtered using the 5-sigma rule and
data was scaled by means of the min–max normalization.
4

3.2. MTGCAE model

In order to take into account the temporal dependencies in time
series, data are explored using sliding windows. Given the data matrix
𝐙 = (𝐳𝟏,… , 𝐳𝐢,… , 𝐳𝐓)𝑇 , where 𝐳𝐢 is the 𝑖th 𝑁-dimensional multivariate
sample, with 𝑁 the number of signals and 𝑇 the number of time
observations, the 𝑖th sliding window is an 𝑁 × 𝐹 matrix defined
as:

𝐒𝐢 = (𝐳𝐢−𝐅, 𝐳𝐢−𝐅+1,… , 𝐳𝐢)𝑇 , 𝑖 = (𝐹 , 𝐹 + 1,… , 𝑁) (7)

where 𝐹 is the length of the window. As a consequence, the dataset 𝐒
is structured in successive 𝑤 = 𝑇 − 𝐹 + 1 sliding windows:

𝐒 = (𝐒1,… ,𝐒𝑖,… ,𝐒𝑤)𝑇 (8)

To isolate the reference period used to train the proposed MTGCAE
model for anomaly detection, as discussed in [24], we employed an
unsupervised approach based on the assumption that the hidden layers
of deep AEs are capable of capturing intrinsic properties of the majority
of the data, representing the normal operation.

In detail, to sample a subset 𝐒𝐧 of normal behaviour windows, we
trained the proposed MTGCAE architecture on all windows in 𝐒 to learn
the most common patterns in the data. Downtimes caused by failures
are not captured by the model since rare operating conditions, thus
generating high model residuals during their occurrence. In this way,
it is possible to isolate outages in an unsupervised manner and exclude
them from 𝐒𝐧.

To prevent that fault precursors might be included in the dataset of
standard behaviour 𝐒𝐧, we exclude all windows falling in a potentially
anomalous time period preceding each downtime consisting of half the
Mean Time Between Failure (MTBF), since further away from the last
repair.

Once the normal operating conditions are isolated, the MTGCAE
model is trained on 𝐒𝐧 and employed for anomaly detection and early
fault prediction.

Based on the above, we split 𝐒𝐧 into training 𝐒𝐭𝐫𝐚𝐢𝐧 and validation
𝐒𝐯𝐚𝐥 both containing only standard behaviour windows, and a testing
set 𝐒𝐭𝐞𝐬𝐭 which includes both normal and anomalous windows. In par-
ticular, the model is trained for 𝐸 epochs using the Adam optimizer,
considering early stopping to avoid overfitting [39].

It is important to notice that the latent representation 𝐇 of the
MTGCAE directly depends on the parameter 𝐾, which should be smaller
than the window size 𝐹 in order to compress the inputs properly, but
should also be large enough to capture the most common patterns in
the data.

Another crucial parameter is the window size 𝐹 , which defines the
temporal depth of the model. If too small, it will capture only small-
scale local patterns and, if too large, it will processes excessively wide
time windows and fail to capture their temporal patterns.

3.3. Global Mahalanobis Indicator (GMI) and Local Residual Indicators
(LRIs)

The errors of the MTGCAE model are used to specify a rule to warn
as early as possible about incipient anomalies. To this end, we define
the Global Mahalanobis Indicator (GMI), reflecting the operating status
of the whole sensor network, and a Local Residual Indicator (LRI), for
each monitored variable.

The GMI is computed as the distance between the model multi-
variate reconstruction error and the reference multivariate probability
distribution of the errors obtained on the validation set 𝐒𝐯𝐚𝐥 by means
of Minimum Covariance Determinant [22]. The LRI for each signal is,

instead, defined as its specific reconstruction error.
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Fig. 3. The time distribution of logs recorded by the SCADA system at sub-assembly and part level for the four WTs.
Fig. 4. 4(a) and 4(b) show, respectively, the trend of the Global Mahalanobis Indicator (GMI) and the Local Residual Indicators (LRIs) in correspondence of the alarm ID A06G3.
This alarm reports a damage of the T06 generator, detected by SCADA on October 27, 2016 at 16:26. In particular, Fig. 4(a) shows the trend of the global indicator and the
threshold 𝑑𝑚 applied in the first step of the four-stage filtering method. Fig. 4(b), on the other hand, reports the local residuals that satisfy all the conditions necessary to trigger an
alarm based on the four-stage threshold. The vertical red line in the LRI plot represents the MTGCAE model warning associated with possible fault precursors. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3.4. Four-stage threshold

In order to generate a prompt warning before the occurrence of
failures and, at the same time, reduce false alarms during normal
operation, a multi-stage threshold is designed for the GMI and LRIs.
In particular, as in [14], it evaluates the magnitude of the model errors
to detect deviations from standard conditions, but also considers their
duration in time to attenuate the effect of individual spikes and tran-
sient disturbances. To make the warnings produced by the model more
5

robust to false alarms, we apply a four-stage threshold, considering first
the GMI and, then, the LRIs.

The four sequential filtering steps applied to the local and global
indicators are the following:

Two-stage threshold on GMI:
1. filter GMI values below a threshold 𝑑𝑚 to consider only signifi-

cant multivariate reconstruction errors;
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Fig. 5. 5(a) and 5(b) show, respectively, the trend of the Grid Power Request and the Total Active Power of the T06 WT in correspondence of the alarm ID A06G3. The dashed
boxes detail the periods in which anomalies were detected by the proposed deep anomaly detection framework (see Fig. 4).
2. filter GMI values that have a duration less than 𝐹 in order to
consider only residuals persistent in time for at least the length
of the model input sliding window;
Two-stage threshold on LRI:

3. for each signal 𝑖, filter LRI values below a threshold 𝑑𝑖 to
consider only significant reconstruction errors;

4. for each signal 𝑖, filter LRI values that have a duration less than
𝐹 in order to consider only residuals persistent in time for at
least the length of the model input sliding window.

When the conditions of all four stages are satisfied in the presented
order, the model triggers a warning for the sensor having the highest
LRI.

4. Experimental results

In this section, the proposed fault detection framework is validated
using the open dataset available at [31]. More details can be found
below.

4.1. Dataset description

The data is collected from four WTs belonging to the same wind
farm, each having a diameter of 90 m, a maximum rotor speed of 14.9
rpm, and a maximum rated power of 2 MW at a nominal wind speed
of 12 m/s. The wind farm is ranked class 2 according to the standard
6

Table 1
Technical information of each turbine.

Rated power (kW) 2000

Cut-in wind speed (m/s) 4
Rated wind speed (m/s) 12
Cut-out wind speed (m/s) 25
Rotor diameter (m) 90
Rotor swept area (m2) 6362
Number of blades 3
Max rotor speed (rpm) 14.9
Rotor tip speed (m/s) 70
Rotor power density 1 (W/m2) 314.4
Rotor power density 2 (m2/kW) 3.2
Gearbox Type Planetary/spur
Gearbox stages 3
Generator type Asynchronous
Max generator speed (rpm) 2016
Generator voltage (V) 690
Grid frequency (Hz) 50
Hub height (m) 80

IEC 61400 [40]. The complete description of the technical information
of the WTs is given in Table 1.

All WTs are equipped with a SCADA system for the monitoring
of multiple parameters collected from the main components together
with ambient measurements. In particular, for each WT we considered
a separate dataset composed by 30 monitored parameters listed in
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Fig. 6. 6(a) and 6(b) show, respectively, the trend of the Global Mahalanobis Indicator (GMI) and the Local Residual Indicators (LRIs) in correspondence of the alarm ID A07T1.
This alarm reports a high temperature anomaly of the T07 transformer detected by the SCADA system on July 10, 2016 at 03:46. In particular, Fig. 6(a) shows the trend of
the global indicator and the threshold 𝑑𝑚 applied in the first step of the four-stage filtering method. Fig. 6(b), on the other hand, reports the local residuals that satisfy all the
conditions necessary to trigger an alarm based on the four-stage threshold. The vertical red line in the LRI plot represents the MTGCAE model warning associated with possible
fault precursors.
Table 2. The dataset covers a time span of about 20 months (from
January 1, 2016 to September 1, 2017).

In addition to the sensor signals, we considered the event log that in-
cludes all alarms recorded by the SCADA system on the four WTs during
the reported period. These events include all potential operational risks,
which can be seen as anomalies reducing the remaining useful life of
components. In fact, the SCADA system supervises the operating status
of the wind turbines and protects them from extreme loads. In this way,
when a critical signal exceeds predefined operating thresholds, an event
is triggered and recorded in the log file.

With reference to the Reliawind turbine taxonomy presented in
[41], the event log available in [31] mainly contains the details of the
anomalies recorded at the assembly and sub-assembly levels, and only
for some alarms at the component/part level. Starting from this, we
filtered out all false alarms and minor events that did not lead to repair
or replacement actions for the component.

Table 3 lists all the events we considered for this study, detailing the
turbine IDs, the assembly/sub-assembly involved, the date and time of
the alarm recorded by the SCADA system and the type of action taken
by the operators to restore proper operation (repair or replacement).
Fig. 3, instead, shows the time distribution of the alarms for each WT
over the investigated period.

From the analysis of the logs contained in Table 3 and Fig. 3 it
is possible to notice that most of the recorded alarms concern the
7

drive train and power sub-systems. In particular, two repairs were
carried out on the T01 turbine, one involving the gearbox and the other
the transformer, in response to component level anomalies detected
respectively on the gearbox pump (July 18, 2016) and the transformer
fan (August 11, 2017).

As for the three alarms recorded on the T06 turbine, they refer to
generator anomalies that occurred in the period June–November, 2016,
and two of these required a full replacement at the assembly level.

The alarms of the T07 turbine, on the other hand, concern two
episodes of high temperature recorded in the transformer on July 10,
2016 and August 23, 2016 and an anomaly in the generator that
occurred about a year later (August 21, 2017), which required specific
repair interventions.

Finally, in turbine T09, four distinct alarms were recorded on the
generator bearings, two of which concern high temperature events on
June 7, 2016 and August 22, 2016, requiring a repair of the damaged
parts. The other two alarms, instead, were triggered on October 17,
2016 and January 25, 2017, and involve major damages that led to
the replacement of the components.

4.2. MTGCAE parameter setting

The analysis was carried out for each wind turbine, from the pre-
processing and data preparation to the training of the model.
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Fig. 7. 7(a) and 7(b) show, respectively, the trend of the Grid Power Request and the Total Active Power of the T07 WT in correspondence of the alarm ID A07T1. The dashed
boxes detail the periods in which anomalies were detected by the proposed deep anomaly detection framework (see Fig. 6).
The MTGCAE was trained for 𝐸 = 50 epochs considering early
stopping to avoid overfitting. Specifically, we considered one layer for
the Encoder having 𝐾 output features as latent representation and one
layer for the Decoder to reconstruct the input data. A single layer was
sufficient for the autoencoding process and stacking more layers did
not significantly improve the performance of the model.

The parameter 𝐾 was set to be proportional to 𝐹 so that the number
of neurons scaled with the length of the input sliding window, allowing
the model to increase its complexity for larger windows. In particular,
we set 𝐾 = 𝐹

6 in order to compress the inputs to a lower dimension
(𝐾 < 𝐹 ) and at the same time provide the network with enough
neurons to reconstruct the inputs. The sliding window size 𝐹 was set
to 144 (24 h) by means of grid search aimed at minimizing the Mean
Absolute Error (MAE) on the validation set. This configuration allowed
the model to capture the daily patterns which are also highlighted by
the autocorrelation function of signals.

In order to determine the standard operating conditions, we applied
the unsupervised approach discussed in Section 3.2 by considering a
MTBF of 75 days as reported in [42]. In this way, as confirmed by
the event logs, the main failures and time periods preceding outages
were excluded from the standard behaviour data which was, then, split
into training set 𝐒𝐭𝐫𝐚𝐢𝐧 (70%) and validation set 𝐒𝐯𝐚𝐥 (30%). The test set
𝐒𝐭𝐞𝐬𝐭 , instead, was defined by selecting time periods including failure
occurrences reported in the log files.

Based on of the reconstruction errors, warnings were triggered by
the model according to the four-stage threshold method presented in
Section 3.4, allowing to consider only significant residuals both in terms
8

of magnitude and duration. In particular, the GMI threshold 𝑑𝑚 was set
to the 3rd quantile of the validation set distribution of Mahalanobis
distances, and the LRI threshold 𝑑𝑖 for the 𝑖th signal to the 3rd quantile
of its reconstruction error distribution.

4.3. Reconstruction errors

The MTGCAE model was compared in terms of reconstruction error
for all SCADA signals with two other promising neural architectures
recently applied for anomaly detection in wind turbines, namely LSTM-
AE (introduced in [23]) and CNN–LSTM (introduced in [18]). The first
is based on LSTMs and AEs, and the other is a regression model based
on the combination of CNNs and LSTMs.

Table 4 shows the scores achieved by the three architectures, by
evaluating the Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE) and the Median Absolute Percentage
Error (MDAPE).

Even though MTGCAE performs better, the reconstruction errors of
all three models are low, being the highest error 0.085, reached by the
RMSE of the LSTM-AE model.

Since the training is performed on standard operating condition
data, low errors are expected because all input windows are drawn from
the same normal behaviour distribution. High residuals are, instead,
expected during anomalous conditions and failures, as confirmed by
the next section.
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Fig. 8. 8(a) and 8(b) show, respectively, the trend of the Global Mahalanobis Indicator (GMI) and the Local Residual Indicators (LRIs) in correspondence of the alarm ID A09GB3.
This alarm reports a damage of the T09 generator bearings, detected by the SCADA system on October 17, 2016 at 09:19 (see Table 3). In particular, Fig. 8(a) shows the trend
of the global indicator and the threshold 𝑑𝑚 applied in the first step of the four-stage filtering method. Fig. 8(b), on the other hand, reports the local residuals that satisfy all the
conditions necessary to trigger an alarm based on the four-stage threshold. The vertical red line in the LRI plot represents the MTGCAE model warning associated with possible
fault precursors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4.4. Deep anomaly detection results

As a first result of the proposed deep anomaly detection framework,
Fig. 4 shows the trend of the GMI and LRIs in the period that goes
from September 26 to November 6, 2016, in proximity of the IDA06G3
alarm. This alert notifies a damage on the T06 turbine generator
detected by the SCADA system on October 27, 2016 at 16:26 (see
Table 3 for details).

From Fig. 4(a), it can be seen that the GMI detects a possible
anomaly from September 29 to October 3, 2016, identified by indicator
values exceeding the global threshold 𝑑𝑚 for at least 24 h (the first two
filtering steps of the four-stage threshold discussed in Section 3.4).

Then, looking at Fig. 4(b), we can observe high values of the
LRIs in the same period as for the GMI, relative to the three phases
of the generator stator windings (Gen_Phase1_Temp, Gen_Phase2_Temp,
Gen_Phase3_Temp) and also to the temperature measured in the split
ring chamber (Gen_SplitRing_Temp). Therefore, by applying all the fil-
tering steps provided by the four-stage threshold, the model triggers
a warning associated with the sensor having highest LRI, namely the
Gen_Phase1_Temp. This anomaly, detected on the temperature of the
first phase of the generator stator winding, anticipates of about 28 days
the SCADA alarm related to the damage of the generator assembly.
9

It is interesting to notice that, when comparing the grid power
request (Fig. 5) and the total active power produced by the T06
turbine (Fig. 5(b)), no significant mismatch is found in proximity of
the precursor (dashed box on the left), thus showing the ability of the
model to capture hidden anomalies even when the turbine continues to
deliver the power requested by the grid.

On the other hand, looking at the dashed box on the right after
the SCADA alarm in Fig. 5(b), a long outage of about six days can be
observed, needed to replace the damaged generator. This results in an
anomaly in terms of expected power, which also generates significant
residuals in the MTGCAE model indicators (see Fig. 4).

As a second result, Figs. 6(a) and 6(b) show the evolution of the
GMI and LRIs during a period of about three months (i.e., from May
22 to July 24, 2016), during which a high temperature anomaly was
reported by the SCADA system on July 10, 2016 at 03:46 (alarm ID
A07T1 in Table 3).

In this case, after the application of the four-stage threshold to
the reconstruction errors of the MTGCAE model, an anomaly on the
temperature of the T07 transformer windings (HVTrafo_Phase1_Temp,
HVTrafo_Phase2_Temp, HVTrafo_Phase3_Temp) is isolated about 9 days
before the SCADA alarm.

As for the previous example, also in this case the model is able to
detect an operational anomaly even if the total active power of the T07
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Fig. 9. 9(a) and 9(b) show, respectively, the trend of the Grid Power Request and the Total Active Power of the T09 WT in correspondence of the alarm ID A09GB3. The dashed
boxes detail the periods in which anomalies were detected by the proposed deep anomaly detection framework (see Fig. 8).
turbine matches the power required by the grid (see the first dashed box
on the left in Fig. 7).

About one week after the investigated event, an anomalous be-
haviour in the power delivered by the turbine T07 is observed for two
days (dashed box on the right), during which significant residuals are
produced by the deep anomaly detection framework at the assembly
level of both the transformer and the generator (see Fig. 6(b)).

As a last application, Fig. 8 details the results in terms of the
MTGCAE global and local indicators in the vicinity of a T09 generator
bearing damage, reported by the SCADA system on October 17, 2016
at 09:19 and labelled as alarm ID A09GB3 in Table 3.

Looking at the GMI and LRIs shown, respectively, in Fig. 8(a)
and Fig. 8(b), the first warning is triggered about 18 days before
the SCADA alarm, and is associated with an anomaly isolated by the
generator bearing temperature residuals (Gen_Bear2_Temp). Also during
this anomalous period, turbine T09 seems to be unable to deliver the
power required by the grid (see the first dashed box on the left in
Fig. 9).

After the SCADA alarm, Fig. 9 shows a period of forced turbine
downtime (the rightmost dashed box) required to replace the dam-
aged generator bearings, during which high reconstruction errors are
produced by the model.

4.5. Deep anomaly detection assessment

The best performance corresponds to the early detection of the
greatest number of anomalies and faults recorded by the SCADA system
10
that required repair or replacement at the assembly/sub-assembly level,
with the minimum false alarms and the maximum time advance.

In particular, we considered a discrete event evaluation of the
performance where a True Positive (TP) corresponds to triggered model
warnings associated to the assembly/sub-assembly that presents a
SCADA alarm (with reference to the logs reported in Table 3) in the
next time window consisting of 𝑇𝑓 = 4320 samples (1 month). False
positives (FP), on the other hand, are model warnings that are not
followed by a SCADA alarm associated with the involved assembly/sub-
assembly. Finally, SCADA alarms not anticipated by a model warning
within the reference time window are considered as False Negatives
(FN).

At this point, we quantified the performance of the model through
classification metrics typically used in the field of Machine Learning:

Precision (𝑃 ) = TP
TP + 𝐹𝑃

(9)

Recall (𝑅) = TP
TP + 𝐹𝑁

(10)

F1-score (𝐹1) = 2 ⋅ Precision ⋅ Recall
Precision + 𝑅𝑒𝑐𝑎𝑙𝑙

(11)

In addition, we also consider the mean time advance (Avg Advance),
which represents the time period between the warnings triggered by the
model and the reference SCADA alarm.

Based on these metrics, as for the model reconstruction errors
discussed in Section 4.5, the deep anomaly detection capabilities of
the proposed MTGCAE were validated against the LSTM-AE and the
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Table 2
Parameters monitored by WT SCADA system.
Signal ID Description Component

Gen_Bear_Temp Temperature in generator bearing 1 (Non-Drive End) Generator Bearings
Gen_Bear2_Temp Temperature in generator bearing 2 (Drive End) Generator Bearings
Gen_RPM Generator rpm Generator
Gen_Phase1_Temp Temperature inside generator in stator windings phase 1 Generator
Gen_Phase2_Temp Temperature inside generator in stator windings phase 2 Generator
Gen_Phase3_Temp Temperature inside generator in stator windings phase 3 Generator
Gen_SlipRing_Temp Temperature in the split ring chamber Generator
Hyd_Oil_Temp Temperature oil in hydraulic group Hydraulic
Gear_Oil_Temp Temperature oil in gearbox Gearbox
Gear_Bear_Temp Temperature in gearbox bearing on high speed shaft Gearbox
Nac_Temp Temperature in nacelle Nacelle
Nac_Direction Nacelle direction Nacelle
Rtr_RPM Rotor rpm Rotor
Amb_WindSpeed Wind speed Ambient
Amb_WindDir_Relative Wind relative direction Ambient
Amb_WindDir_Abs Wind absolute direction Ambient
Amb_Temp Ambient temperature Ambient
Prod_TotActPwr Total active power Production
Prod_TotReactPwr Total reactive power Production
Grd_Prod_PsblPwr Grid Power Request Grid
HVTrafo_Phase1_Temp Temperature in HV transformer phase L1 Transformer
HVTrafo_Phase2_Temp Temperature in HV transformer phase L2 Transformer
HVTrafo_Phase3_Temp Temperature in HV transformer phase L3 Transformer
Cont_Top_Temp Temperature in the top nacelle controller Controller
Cont_Hub_Temp Temperature in the hub controller Controller
Cont_VCP_Temp Temperature on the VCP-board Controller
Cont_VCP_ChokcoilTemp Temperature in the choke coils on the VCS-section Controller
Cont_VCP_WtrTemp Temperature in the VCS cooling water Controller
Spin_Temp Temperature in the nose cone Spinner
Blds_PitchAngle Blades pitch angle Blades
Table 3
Main alarms reported in the maintenance log file available in Ref. [31].

Turbine ID Alarm ID Alarm timestamp Assembly/Sub-assembly Type of alarm Type of action

Repair Replacement

T01 A01GX 18/07/2016; 02:10 Gearbox Gearbox pump damaged x
T01 A01T 11/08/2017; 13:14 Transformer Transformer fan damaged x
T06 A06G1 11/07/2016; 19:48 Generator Generator damaged x
T06 A06G2 04/09/2016; 08:08 Generator High temperature generator error x
T06 A06G3 27/10/2016; 16:26 Generator Generator damaged x
T07 A07T1 10/07/2016; 03:46 Transformer High temperature transformer x
T07 A07T2 23/08/2016; 02:21 Transformer High temperature transformer x
T07 A07G 21/08/2017; 14:47 Generator Generator damaged x
T09 A09GB1 07/06/2016; 16:59 Generator bearings High temperature generator bearing x
T09 A09GB2 22/08/2016; 18:25 Generator bearings High temperature generator bearing x
T09 A09GB3 17/10/2016; 09:19 Generator bearings Generator bearings damaged x
T09 A09GB4 25/01/2017; 12:55 Generator bearings Generator bearings damaged x
Table 4
The table shows the reconstruction errors in terms of MAE, MSE, RMSE and MDAPE
for the proposed MTGCAE model, comparing it with the LSTM-AE and CNN–LSTM
architectures.

Model MAE MSE RMSE MDAPE

MTGCAE 0.038 0.004 0.061 0.058
LSTM-AE 0.053 0.007 0.085 0.08
CNN–LSTM 0.051 0.007 0.082 0.075

CNN–LSTM architectures. It is important to notice that the same frame-
work for anomaly detection presented in Section 3 was applied when
considering LSTM-AE and CNN–LSTM, in order to make their outputs
comparable with MTGCAE.

Table 5 presents the evaluation metrics for the three models on the
same test set.

Results shows that MTGCAE is able to detect 10 out of 12 anomalous
events without triggering any false alarm. LSTM-AE, while achieving
the same TPs, counts 4 FPs, thus reducing the Precision and F1-score.
Finally, the CNN–LSTM model only detects 9 events and presents 4 false
alarms, producing lower scores also in terms of the Recall metric.
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Table 5
Results of MTGCAE, LSTM-AE and CNN–LSTM models.

Model TP FN FP Avg Advance (Time) P R F1

GCAE 10 2 0 23 days, 0:05:42 1.0 0.83 0.91
LSTM-AE 10 2 4 27 days, 12:55:18 0.71 0.83 0.77
CNN–LSTM 9 3 4 28 days, 16:10:20 0.69 0.75 0.72

Even though MTGCAE achieves a lower average time advance (23
days) with respect to the other two models, the proposed approach
seems to be more reliable in view of the lack of FPs, and robust
provided the number of FNs.

5. Conclusions

In this paper, we present an original unsupervised deep anomaly
detection framework in the context of horizontal axis wind turbines
(WTs) based on SCADA data. The core of the method is the proposed
neural architecture, namely a Graph Convolutional Autoencoder for
Multivariate Time series (MTGCAE), which models the sensor network
as a dynamical functional graph. The main advantage with respect to
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standard Autoencoders (AE) lies in the capability to simultaneously
take into account the information content of the individual sensors
measurements (graph node features) and the nonlinear correlations
existing between all pairs of sensors (graph edges).

The proposed neural architecture is trained to learn the normal
behaviour of the system without providing any kind of data labelling
and, based on the model reconstruction errors, multiple monitoring
indicators are defined, namely a Global Mahalanobis Indicator (GMI)
for the whole sensor network, and a Local Residual Indicator (LRI)
for each monitored variable. All indicators are evaluated considering
both their magnitude and duration in time by a four-stage threshold
method. In this way, only significant model errors are taken into
account, allowing to attenuate the effect of individual spikes and tran-
sient disturbances, thus reducing false alarms during normal operating
conditions. After the four-stage threshold, a warning is triggered for
the sensor having the highest reconstruction error, allowing to iso-
late the assembly/sub-assembly mostly involved in the anomaly for
troubleshooting purposes.

The proposed method was validated on 10-minute SCADA data
collected from four WTs belonging to the same wind farm, with a rated
power of 2 MW each. The dataset counts 12 failures on the most critical
components (generator, gearbox, and transformer) occurred during 20
months of operation. The model was trained on normal behaviour data
isolated using an unsupervised method and was tested on anomalous
periods selected using the maintenance logs.

The presented model was compared with other two promising ap-
proaches, namely an architecture based on LSTMs and AEs (LSTM-AE)
and one that combines CNNs and LSTMs (CNN–LSTM). To guarantee a
reliable and robust analysis, we trained a separate model for each WT
and considered all 12 anomalies for the final evaluation metrics.

The results show that the MTGCAE outperforms the other two neu-
ral architectures in terms of Precision (1.0), Recall (0.83) and F1-score
(0.91). It is important to notice that the MTGCAE demonstrates the
ability to capture hidden anomalies even when the turbine continues
to deliver the power requested by the grid.

Since the model is unsupervised and completely data-driven, we
expect it to be independent of the specific use case and potentially
applicable to any WT equipped with a SCADA system.
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