
TuringMobile: A Turing Machine of Oblivious Mobile Robots

with Limited Visibility and Its Applications

Giuseppe A. Di Luna∗ Paola Flocchini† Nicola Santoro‡

Giovanni Viglietta§

Abstract

In this paper we investigate the computational power of a set of mobile robots with
limited visibility. At each iteration, a robot takes a snapshot of its surroundings, uses
the snapshot to compute a destination point, and it moves toward its destination. Each
robot is punctiform and memoryless, it operates in Rm, it has a local reference system
independent of the other robots’ ones, and is activated asynchronously by an adversarial
scheduler. Moreover, the robots are non-rigid, in that they may be stopped by the
scheduler at each move before reaching their destination (but are guaranteed to travel at
least a fixed unknown distance before being stopped).

We show that despite these strong limitations, it is possible to arrange 3m + 3k of
these weak entities in Rm to simulate the behavior of a stronger robot that is rigid (i.e.,
it always reaches its destination) and is endowed with k registers of persistent memory,
each of which can store a real number. We call this arrangement a TuringMobile. In its
simplest form, a TuringMobile consisting of only three robots can travel in the plane and
store and update a single real number. We also prove that this task is impossible with
fewer than three robots.

Among the applications of the TuringMobile, we focused on Near-Gathering (all robots
have to gather in a small-enough disk) and Pattern Formation (of which Gathering is a
special case) with limited visibility. Interestingly, our investigation implies that both
problems are solvable in Euclidean spaces of any dimension, even if the visibility graph
of the robots is initially disconnected, provided that a small amount of these robots are
arranged to form a TuringMobile. In the special case of the plane, a basic TuringMobile
of only three robots is sufficient.

1 Introduction

Framework and background The investigations of systems of autonomous mobile robots
have long moved outside the boundaries of the engineering, control, and AI communities. In-
deed, the computational and complexity issues arising in such systems are important research
topics within theoretical computer science, especially in distributed computing. In these the-
oretical investigations, the robots are usually viewed as punctiform computational entities
that live in a metric space, typically R2 or R3, in which they can move. Each robot operates
in “Look-Compute-Move” (LCM) cycles: it observes its surroundings, it computes a desti-
nation within the space based on what it sees, and it moves toward the destination. The
only means of interaction between robots are observations and movements: that is, commu-
nication is stigmergic. The robots, identical and outwardly indistinguishable, are oblivious:

∗Aix-Marseille University and LiS Laboratory, France. E-mail: giuseppe.diluna@lif.univ-mrs.fr.
†University of Ottawa, Canada. E-mail: paola.flocchini@uottawa.ca.
‡Carleton University, Canada. E-mail: santoro@scs.carleton.ca.
§JAIST, Japan. E-mail: johnny@jaist.ac.jp.

1

when starting a new cycle, a robot has no memory of its activities (observations, computa-
tions, and moves) from previous cycles (“every time is the first time”). In other words, the
robots have no persistent memory; for this reason, they are sometime said to be memoryless.
Clearly obliviousness is a desirable property as it ensures a degree of self-stabilization and
fault-tolerance into the system and its computations. Equally clear is that being memoryless
severely constrains the computational capabilities of the robots.

There have been intensive research efforts on the computational issues arising with such
robots, and an extensive literature has been produced in particular in regard to the important
class of Pattern Formation problems [8, 19, 21, 22, 28, 29] as well as for Gathering [1, 2, 4, 7,
9, 10, 11, 12, 14, 20, 24]; and Scattering [5, 23]; see also [6, 13, 30]. The goal of the research
has been to understand the minimal assumptions needed for a team (or swarm) of such robots
to solve a given problem, and to identify the impact that specific factors have on feasibility
and hence computability.

The most important factor is the power of the adversarial scheduler that decides when
each activity of each robot starts and when it ends. The main adversaries (or “environments”)
considered in the literature are: synchronous, in which the computation cycles of all active
robots are synchronized, and at each cycle either all (in the fully synchronous case) or a
subset (in the semi-synchronous case) of the robots are activated, and asynchronous, where
computation cycles are not synchronized, each activity can take a different and unpredictable
amount of time, and each robot can be independently activated at each time instant. An
important factor is whether a robot moving toward a computed destination is guaranteed to
reach it (i.e., it is a rigid robot), or it can be stopped on the way (i.e., it is a non-rigid robot) at
a point decided by an adversary. In all the above cases, the power of the adversaries is limited
by some basic fairness assumption. All the existing investigations have concentrated on the
study of (a-)synchrony, several on the impact of rigidity, some on other relevant factors such
as agreement on local coordinate systems or on their orientation, etc.; for a review, see [18].

From a computational point of view, there is another crucial factor: the visibility range
of the robots, that is, how much of the surrounding space they are able to observe in a Look
operation. In this regard, two basic settings are considered: unlimited visibility, where the
robots can see the entire space (and thus all other robots), and limited visibility, when the
robots have a fixed visibility radius. While the investigations on (a-)synchrony and rigidity
have concentrated on all aspects of those assumptions, this is not the case with respect to
visibility. In fact, almost all research has assumed unlimited visibility; few exceptions are
the algorithms for Convergence [4], Gathering [15, 16, 20], and Near-Gathering [24] when the
visibility range of the robot is limited. The unlimited visibility assumption clearly greatly
simplifies the computational universe under investigation; at the same time, it neglects the
more general and realistic one, which is still largely unknown.

Let us also stress that, in the existing literature, all results on oblivious robots are for R1

and R2; the only exception is the recent result on plane formation in R3 by semi-synchronous
rigid robots with unlimited visibility [30]. No results exist for robots in higher dimensions.

Contributions In this paper we contribute several constructive insights on the computa-
tional universe of oblivious robots with limited visibility, especially asynchronous non-rigid
ones, in any dimension.

The first and main contribution is a technique to construct a “moving Turing Machine”
made solely of asynchronous oblivious non-rigid robots in Rm with limited visibility, for any
m ≥ 2. More precisely, we show how to arrange 3m+ 3k identical non-rigid oblivious robots
in Rm with a visibility radius of V + ε (for any ε > 0) and how to program them so that they
can collectively behave as a single rigid robot in Rm with k persistent registers and visibility

2

radius V would. This team of identical robots is informally called a TuringMobile.
We obtain this result by using as fundamental construction a basic component, which is

able to move in R2 while storing and updating a single real number. Interestingly, we show
that 3 agents are necessary and sufficient to build such a machine. The TuringMobile will
then be built by arranging multiple copies of this basic component side by side.

We stress that robots forming the TuringMobile are asynchronous, that is, the scheduler
makes them move at independent arbitrary speeds, and each robot takes the next snapshot
an arbitrary amount of time after terminating each move; furthermore, they are anonymous,
in that they are indistinguishable from each other, and they all execute the same program to
compute their destination points. Notably, this program only performs arithmetic operations,
square roots, and comparisons (hence no transcendental function has to be computed by the
robots).

A TuringMobile is a powerful construct that, once deployed in a swarm of robots, can act
as a rigid leader with persistent memory, allowing the swarm to overcome many handicaps
imposed by obliviousness, limited visibility, and asynchrony. As examples we present a variety
of applications in Rm, with m ≥ 2.

First of all we show how a TuringMobile can explore and search the space. We then show
how it can be employed to solve the long-standing open problem of (Near-)Gathering with
limited visibility in spite of an asynchronous non-rigid scheduler and disagreement on the axes,
a problem still open without a TuringMobile. Interestingly, the presence of the TuringMobile
allows Gathering to be done even if the initial visibility graph is disconnected (this does not
change the fact that there are cases in which Gathering is impossible, as remarked in [4, 20]).
Finally we show how the arbitrary Pattern Formation problem can be solved under the same
conditions (asynchrony, limited visibility, possibly disconnected visibility graph, etc.).

There is a limitation to the use of a TuringMobile when deployed in a swarm of robots.
Namely, the TuringMobile must be always recognizable (e.g., by its unique shape) so that
other robots cannot interfere by moving too close to the machine, disrupting its structure.

The paper is organized as follows: In Section 2 we give formal definitions, introducing
mobile robots with or without memory as oracle semi-oblivious real RAMs. In Section 3
we illustrate our implementation of the TuringMobile. The correctness of the proposed con-
struction is proved in Section 4. In Section 5 we show how to apply the TuringMobile to
solve fundamental problems. In Section 6 we conclude with some extra remarks and open
problems.

2 Definitions and Preliminaries

2.1 Oracle Semi-Oblivious Real RAMs

Real random-access machines A real RAM, as defined by Shamos [25, 27], is a random-
access machine [3] that can operate on real numbers. That is, instead of just manipulating
and storing integers, it can handle arbitrary real numbers and do infinite-precision operations
on them. It has a finite set of internal registers and an infinite ordered sequence of memory
cells; each register and each memory cell can hold a single real number, which the machine
can modify by executing its program.1

A real RAM’s instruction set contains at least the four arithmetic operations, but it may
also contain k-th roots, trigonometric functions, exponentials, logarithms, and other analytic

1Nonetheless, the constant operands in a real RAM’s program cannot be arbitrary real numbers, but have
to be integers.

3

functions, depending on the application. The machine can also compare two real numbers
and branch depending on which one is larger.

The initial contents of the memory cells are the input of the machine (we stipulate that
only finitely many of them contain non-zero values), and their contents when the machine
halts are its output. So, each program of a real RAM can be viewed as a partial function
mapping tuples of reals into tuples of reals.

Remark 1. The real RAMs can at least compute the Turing-computable partial functions over
the integers. Indeed, it is well known that all these functions can be computed by traditional
RAMs whose programs only contain integer additions, subtractions, and comparisons. It is
obvious that a real RAM running such a program on an integer-valued input behaves exactly
as a traditional RAM, and therefore computes the same partial function.

Oracles and semi-obliviousness We introduce the oracle semi-oblivious real RAM, which
is a real RAM with an additional “ASK” instruction. Whenever this instruction is executed,
the contents of all the memory cells are replaced with new values, which are a function of the
numbers stored in the registers.

In other words, the machine can query an external oracle by putting a question in its
k registers in the form of k real numbers. The oracle then reads the question and writes
the answer in the machine’s memory cells, erasing all pre-existing data. The term “semi-
oblivious” comes from the fact that, every time the machine invokes the oracle, it “forgets”
everything it knows, except for the contents of the registers, which are preserved.2

2. SUB =5
1. ADD 1
0. LOAD 0

5. HALT
4. JGZ =0
3. ASK3

Instruction
pointer

Program

6.72Register

Memory

3.52

8.2

2.86

0

0

...

0

1

2

3

4

...

2. SUB =5
1. ADD 1
0. LOAD 0

5. HALT
4. JGZ =0
3. ASK

4

Instruction
pointer

Program

6.72Register

Memory

1.687

-7.5

0

0

0

...

0

1

2

3

4

...

oracle(6.72)

Figure 1: An oracle semi-oblivious real RAM with a single register before and after executing
an “ASK” instruction. The entire memory is overwritten by the oracle based on the number
read from the register, which remains unaltered.

In spite of their semi-obliviousness, these real RAMs with oracles are at least as powerful
as Turing Machines with oracles.

Theorem 1. Given an oracle Turing Machine, there is an oracle semi-oblivious real RAM
with one register that computes the same partial function.

Proof. Following Rogers [26], we define an oracle Turing Machine as a Turing Machine with
an additional read-only tape containing the answers to all possible oracle queries. The ith
cell of the oracle tape contains a symbol that is read by the machine whenever the head of
the oracle tape is in position i.

Given such a machine M , we construct an oracle semi-oblivious real RAM with one
register M ′ that “simulates” M step by step. As already observed, a real RAM can compute

2Observe that, in general, the machine cannot salvage its memory by encoding its contents in the registers:
since its instruction set has only analytic functions, it cannot injectively map a tuple of arbitrary real numbers
into a single real number.

4

any Turing-computable partial function, and M ′ behaves as a real RAM as long as it does
not invoke its oracle. So, M ′ can encode and decode the entire state of M , including the
contents of its non-oracle tapes and the positions of its heads on the tapes, as a single integer:
indeed, the functions that encode and decode a Turing Machine’s state are themselves Turing-
computable.

To simulate one step of M , M ′ encodes the current state of M in its register and executes
an “ASK” instruction. The oracle of M ′ reads the register, decodes the state of M , fetches
the position of the head on the oracle tape, and answers with the symbol s that M would
read on its oracle tape at that position. Next, M ′ finds s in the first cell of its own memory.
So, M ′ decodes the contents of the register to retrieve the state of M , and uses it along with
s to compute the next state of M .

2.2 Mobile Robots as Real RAMs

Mobile robots Our oracle semi-oblivious real RAM model can be reinterpreted in the
realm of mobile robots. A mobile robot is a computational entity, modeled as a geometric
point, that lives in a metric space, typically R2 or R3. It can observe its surroundings and
move within the space based on what it sees. The same space may be populated by several
mobile robots, each with its local coordinate system, and static objects.

To compute its next destination point, a mobile robot executes a real RAM program
with input a representation of its local view of the space. After moving, its entire memory
is erased, but the content of its k registers is preserved. Then it makes a new observation;
from the observation data and the contents of the registers, it computes another destination
point, and so on. If k = 0, the mobile robot is said to be oblivious. Note that robots have no
notion of time or absolute positions.

The actual movement of a mobile robot is controlled by an external scheduler. The
scheduler decides how fast the robot moves toward its destination point, and it may even
interrupt its movement before the destination point is reached. If the movement is interrupted
midway, the robot makes the next observation from there and computes a new destination
point as usual. The robot is not notified that an interruption has occurred, but it may be
able to infer it from its next observation and the contents of its registers. For fairness, the
scheduler is only allowed to interrupt a robot after it has covered a distance of at least δ in the
current movement, where δ is a positive constant unknown to the robots. This guarantees,
for example, that if a robot keeps computing the same destination point, it will reach it in a
finite number of iterations. If δ =∞, the robot always reaches its destination, and is said to
be rigid.

Mobile robots, revisited A mobile robot in Rm with k registers can be modeled as an
oracle semi-oblivious real RAM with 2m+ k + 1 registers as follows.

• m position registers hold the absolute coordinates of the robot in Rm.

• m destination registers hold the destination point of the robot, expressed in its local
coordinate system.

• 1 timestamp register contains the time of the robot’s last observation.

• k true registers correspond to the registers of the robot.

As the RAM’s execution starts, it ignores its input, erases all its registers, and executes an
“ASK” instruction. The oracle then fills the RAM’s memory with the robot’s initial position

5

p, the time t of its first observation, and a representation of the geometric entities and objects
surrounding the robot, as seen from p at time t.

The RAM first copies p and t in its position registers and timestamp register, respectively.
Then it executes the program of the mobile robot, using its true registers as the robot’s
registers and adding m+ 1 to all memory addresses. This effectively makes the RAM ignore
the values of p and t, which indeed are not supposed to be known to the mobile robot.

When the robot’s program terminates, the RAM’s memory contains the output, which is
the next destination point p′, expressed in the robot’s coordinate system. The RAM copies p′

into its destination registers, and the execution jumps back to the initial “ASK” instruction.
Now the oracle reads p, p′, and t from the RAM’s registers (it ignores the true registers),

converts p′ in absolute coordinates (knowing p and the orientation of the local coordinate
system of the robot) and replies with a new position p′′, a timestamp t′ > t, and observation
data representing a snapshot taken from p′′ at time t′. To comply with the mobile robot
model, p′′ must be on the segment pp′, such that either p′′ = p′ or pp′′ ≥ δ. The execution
then proceeds in the same fashion, indefinitely.

Note that in this setting the oracle represents the scheduler. The presence of a timestamp
in the query allows the oracle to model dynamic environments in which several independent
robots may be moving concurrently (without a timestamp, two observations from the same
point of view would always be identical). Also note that in this formulation there are no actual
robots moving through an environment in time, but only RAMs which query an oracle, which
in turn provides a “virtual” environment and timeline by writing information in their memory.

Snapshots and limited visibility In the mobile robot model we consider in this paper,
an observation is simply an instantaneous snapshot of the environment taken from the robot’s
position. In turn, each entity and object that the robot can see is modeled as a dimensionless
point in Rm. A mobile robot has a positive visibility radius V : it can see a point in Rm if
and only if it is located at distance at most V from its current position. If V =∞, the robot
is said to have unlimited visibility.

As we hinted at earlier in this section, a mobile robot has its own local reference system in
which all the coordinates of the objects in its snapshots are expressed. The origin of a robot’s
local coordinate system always coincides with the robot’s position (hence it follows the robot
as it moves), and its orientation and handedness are decided by the scheduler (and remain
fixed). Different mobile robots may have coordinate systems with a different orientation or
handedness. (However, when two robots have the same visibility radius, they also implicitly
have the same unit of distance.)

So, a snapshot is just a (finite) list of points, each of which is an m-tuple of real numbers.

Simulating memory and rigidity The main contribution of this paper, loosely speaking,
is a technique to turn non-rigid oblivious robots into rigid robots with persistent memory,
under certain conditions. More precisely, if 3m + 3k identical non-rigid oblivious robots in
Rm with a visibility radius of V + ε (for any ε > 0) are arranged in a specific pattern and
execute a specific algorithm, they can collectively act in the same way as a single rigid robot
in Rm with k > 0 persistent registers and visibility radius V would. This team of identical
robots is informally called a TuringMobile.

We stress that the robots of a TuringMobile are asynchronous, that is, the scheduler
makes them move at independent arbitrary speeds, and each robot takes the next snapshot
an arbitrary amount of time after terminating each move. The robots are also anonymous,
in that they are indistinguishable from each other, and they all execute the same program.

6

Although our technique is fairly general and has a plethora of concrete applications (some
are discussed in Section 5), a “perfect simulation” is achieved only under additional conditions
on the scheduler or on the environment. These conditions will be discussed toward the end
of Section 3.2.

3 Implementing the TuringMobile

3.1 Basic Implementation

We will first describe how to construct a basic version of the TuringMobile with just three
oblivious non-rigid robots in R2. This TuringMobile can remember a single real number
and rigidly move in the plane by fixed-length steps: its layout is sketched in Figure 2. In
Section 3.2, we will show how to combine several copies of this basic machine to obtain a
full-fledged TuringMobile.

120°120°

90° λ

µ

d

d2

C

R N

1D

2D 3D

1
′D

2
′D 3

′D

′d

Q ′Q

Figure 2: Basic TuringMobile at rest, not drawn to scale (µ and λ should be smaller)

Position at rest The elements of the basic TuringMobile are three robots: a Commander
robot, a Number robot, and a Reference robot, located in C, N , and R, respectively. These
robots have the same visibility radius of V + ε, where ε � V , and there is always a disk of
radius ε containing all three of them. When the machine is “at rest”, ∠NRC is a right angle,
the distance between C and R is some fixed value d � ε, and the distance between R and
N is approximately 2d. More precisely, N lies on a segment QQ′ of length λ, where λ � d
is some fixed value, such that Q has distance 2d− λ/2 from R and Q′ has distance 2d+ λ/2
from R.

Representing numbers The distance between the Reference robot and the Number robot
when the TuringMobile is at rest is a representation of the real number r that the machine

7

is currently storing. There are several possible ways of defining such a code: an easy one
is to encode the number r as RN = α(r) = 2d + arctan(r) · λ/π and to decode it as r =
tan

(
(RN − 2d) · π/λ

)
. A different method that does not use transcendental functions is

discussed in Section 6.

Movement directions The Commander’s role is to decide in which direction the machine
should move next, and to initiate the movement. When the machine is at rest, the Comman-
der may choose among three possible final destinations, labeled D1, D2, and D3 in Figure 2.
The segments CD1, CD2, and CD3 all have the same length µ, with λ � µ � d, and form
angles of 120◦ with one another, in such a way that D1 is collinear with R and C.

Around the center of each segment CDi there is a midway triangle τi, drawn in gray in
Figure 2. This is an isosceles triangle of height λ whose base lies on CDi and has length λ
as well. When the Commander decides that its final destination is Di, it moves along the
segment CDi, but it takes a small detour in the midway triangle τi, as we will explain shortly.

Structure of the algorithm Algorithm 1 is the program that each element of the basic
TuringMobile executes every time it computes its next destination point.

Algorithm 1 Basic TuringMobile in R2

1: Identify Commander, Number, Reference (located in C, N , R, respectively)
2: if I am Commander then
3: Compute Virtual Commander C ′ (based on R and N) and points Ai, Si, S

′
i, Bi, Di

4: if I am in C ′ then Choose final destination Di and move to Ai

5: else if ∃i ∈ {1, 2, 3} s.t. I am on segment C ′Ai but not in Ai then Move to Ai

6: else if ∃i ∈ {1, 2, 3} s.t. I am in Ai then
7: Move to point P on segment SiS

′
i such that PSi = f(NQ)

8: else if ∃i ∈ {1, 2, 3} s.t. I am in triangle AiSiS
′
i but not on segment SiS

′
i then

9: Move to the intersection of segment SiS
′
i with the extension of line AiC

10: else if ∃i ∈ {1, 2, 3} s.t. I am on SiS
′
i and NQ = CSi then Move to Bi

11: else if ∃i ∈ {1, 2, 3} s.t. I am in triangle BiSiS
′
i but not in Bi then Move to Bi

12: else if ∃i ∈ {1, 2, 3} s.t. I am on segment BiDi but not in Di then Move to Di

13: else if I am Number then
14: if CR = d+ µ or CR = d′ then
15: Compute Virtual Commander C ′ (based on C and R) and points D′i
16: if CR = d+ µ and I am not in D′1 then Move to D′1
17: else if CR = d′ and ∠NRC > 90◦ and I am not in D′2 then Move to D′2
18: else if CR = d′ and ∠NRC < 90◦ and I am not in D′3 then Move to D′3
19: else
20: Compute Virtual Commander C ′ (based on R and N) and points Si, S

′
i

21: if ∃i ∈ {1, 2, 3} s.t. C is on segment SiS
′
i then

22: Move to point P on segment QQ′ such that PQ = CSi

23: else if I am Reference then
24: if Commander and Number are not tasked with moving (based on the above rules)

then
25: γ = circle centered in C with radius d
26: γ′ = circle with diameter CN
27: Move to the intersection of γ and γ′ closest to R

Since the robots are anonymous, they first have to determine their roles, i.e., who is the

8

Commander, etc. (line 1 of the algorithm). We make the assumption that there exists a disk
of radius ε containing only the TuringMobile (close to its center) and no other robot. Using
the fact that the two closest robots must be the Commander and the Reference robot and
that the two farthest robots must be the Commander and the Number robot, it is then easy
to determine who is who (these properties will be preserved throughout the execution, as we
will see in the next section).

Once it has determined its role, each robot executes a different branch of the algorithm
(cf. lines 2, 13, and 23). The general idea is that, when the Commander realizes that the
machine is in its rest position, it decides where to move next, i.e., it chooses a final destination
Di. This choice is based on the number r stored in the machine’s “memory” (i.e., the number
encoded by RN), the relative positions of the visible robots external to the machine, and also
on the application, i.e., the specific program that the TuringMobile is executing.

When the Commander has decided its final destination Di, the entire machine moves by

the vector
−−→
CDi, and the Number robot also updates its distance from the Reference robot to

represent a different real number r′. Again, this number is computed based on the number r
the machine was previously representing, the relative positions of the visible robots external
to the machine, and the specific program: in general, the new distance between N and Q is
a function f of the old distance.

When this is done, the machine is in its rest position again, so the Commander chooses
a new destination, and so on, indefinitely.

Coordinating movements Note that it is not possible for all three robots to translate by−−→
CDi at the same time, because they are non-rigid and asynchronous. If the scheduler stops
them at arbitrary points during their movement, after the structure of the machine has been
destroyed, they will be incapable of recovering all the information they need to resume their
movement (recall that they are oblivious and they have to compute a destination point from
scratch every time).

To prevent this, the robots employ various coordination techniques. First the Commander
moves to the middle triangle τi, and precisely to its base vertex Ai, as shown in Figure 3(a)
(cf. line 5 of Algorithm 1). Then it positions itself on the altitude SiS

′
i, in such a way

as to indicate the new number r′ that the machine is supposed to represent. That is, the
Commander picks the point on SiS

′
i at distance f(NQ) from Si (lines 6 and 7). Even if it

is stopped by the scheduler before reaching such a point, it can recover its destination by
simply drawing a ray from Ai to its current position and intersecting it with SiS

′
i (lines 8

and 9).
When the Commander has reached SiS

′
i, it waits to let the Number robot adjust its

position on the segment QQ′ to match that of the Commander on SiS
′
i, as in Figure 3(b)

(lines 21 and 22). This effectively makes the Number robot represent the new number r′.
Note that the Number robot can do this even if it is stopped by the scheduler several times
during its march, because the Commander keeps reminding it of the correct value of r′: since
r′ depends on the old number r, the Number robot would be unable to re-compute r′ after
it has forgotten r.

Once the Number robot has reached the correct position on QQ′, the Commander starts
moving again (line 10) and finally reaches Di while the other robots wait, as in Figure 3(c)
(lines 11 and 12).

When the Commander has reached Di, the Number robot realizes it and makes the
corresponding move (lines 14–18) while the other two robots wait. The destination point of
the Number robot is D′i, as shown in Figure 2. Finally, when the Number robot is in D′i, the
Reference robot realizes it and makes the final move to bring the TuringMobile back into a

9

rest position (lines 23–27). Note that the number r′ stored in the machine is not erased after
these final movements, because both the Number and Reference robot move by the same
vector.

C

λ

N

λ

C

λ

N

iS

i
′S

iD
iA iB

iS

i
′S

iD
iA iB

f

N

C

)a()b()c(

iS

i
′S

iD
iA iB′C ′C ′C

Q ′Q Q ′Q Q ′Q

Figure 3: Coordinated movement of the Commander and the Number robot, to cope with
their asynchronous and non-rigid nature. (a) The Commander stops on SiS

′
i, recording the

number that the machine is going to represent next (which is a function f of the number
currently represented by the Number robot). (b) The Number robot moves within QQ′ to
match the Commander’s position in SiS

′
i. (c) Finally, the Commander reaches Di.

Computing the Virtual Commander After the Commander has left its rest position
and is on its journey to Di, the TuringMobile loses its initial shape, and identifying the Di’s
and the midway triangles becomes a non-trivial task. To simplify this task, the robots try
to guess where the Commander’s original rest position may have been by computing a point
called the Virtual Commander C ′.

Assuming that the Reference and Number robots have not moved from their rest positions,
the Virtual Commander is easily computed: draw a line ` through R perpendicular to RN ;
then, C ′ is the point on ` at distance d from R that is closest to C. Once we have C ′, we
can construct the points Di with respect to C ′ (in the same way as we did in Figure 2 with
respect to C). This technique is used by Algorithm 1 at lines 3 and 20.

In the special case where the Commander has reached its final destination Di and the
Reference robot has not moved from its rest position (but perhaps the Number robot has
moved), the Virtual Commander can also be computed. This situation is recognized because
the distance between the Commander and the Reference robot is either maximum (i.e., d+µ)
or minimum (i.e., d′ =

√
d2 + µ2 − dµ, by the law of cosines), as Figure 2 shows. If the

distance is maximum, then C must coincide with D1; otherwise, C coincides with D2 (if the
angle ∠NRC is obtuse) or D3 (if the angle ∠NRC is acute). Since we know the position of
R and one of the Di’s, it is then easy to determine the other Di’s. This technique is used at
line 15.

The Reference robot’s behavior To know when it has to start moving, the Reference
robot simply executes Algorithm 1 from the perspective of the Commander and the Number
robot: if neither of them is supposed to move, then the Reference robot starts moving (line 24).

We have seen that the Number robot can determine its destination D′i solely by looking

10

at the positions of C and R, which remain fixed as it moves. For the Reference robot the
destination point is not as easy to determine, because the distance between C and N varies
depending on what number is stored in the TuringMobile.

However, the Reference robot knows that its move must put the TuringMobile in a rest
position. The condition for this to happen is that its destination point be at distance d from
C (line 25) and form a right angle with C and N (line 26). There are exactly two such
points in the plane, but one of them has distance much greater than µ from R, and hence
the Reference robot will pick the other (line 27).

As the Reference robot moves toward such a point, all the above conditions must be
preserved, due to the asynchronous and non-rigid nature of the robots. This is not a trivial
requirement, and we will prove that it is indeed fulfilled in Section 4.

3.2 Complete Implementation

We have shown how to implement a basic component of the TuringMobile in R2 consisting
of three robots: a Commander, a Number, and a Reference. Te basic component is able to
rigidly move by a fixed distance µ in three fixed directions, 120◦ apart from one another. It
can also store and update a single real number.

Planar layout We can obtain a full-fledged TuringMobile in R2 by putting several tiny
copies of the basic component side by side as in Figure 4.

ε

ε

V
σ

Figure 4: Sketch of a complete TuringMobile, not drawn to scale (ε and σ should be smaller).
All robots are in the central disk of radius σ; the one drawn in black is the Leader

For the machine to work, we stipulate that there exists a disk of radius σ that contains

11

all the robots constituting the TuringMobile and no extraneous robot, where σ � ε. The
distance between two consecutive basic components of the TuringMobile is roughly s, where
d � s � σ. This makes it easy for the robots to tell the basic components apart and
determine the role of each robot within its basic component.

Since a basic component of the TuringMobile is a scalene triangle, which is chiral, all
its members implicitly agree on a clockwise direction even if they have different handedness.
Similarly, all robots in the TuringMobile agree on a “leftmost” basic component, whose
Commander is said to be the Leader of the whole machine.

Coordinated movements All the basic components of the TuringMobile are always sup-
posed to agree on their next move and proceed in a roughly synchronous way. To achieve
this, when all the basic components are in a rest position, the Leader decides the next di-
rection among the three possible, and executes line 4 of Algorithm 1. Then all the other
Commanders see where the Leader is going, and copy its movement.

When all the Commanders are in their respective Ai’s, they execute line 7 of the algorithm,
and so on. At any time, each robot executes a line of the algorithm only if all its homologous
robots in the other basic components of the TuringMobile are ready to execute that line or
have already executed it; otherwise, it waits.

When the last Reference robot has completed its movement, the machine is in a rest
position again, and the coordinated execution repeats with the Leader choosing another
direction, etc.

Simulating a non-oblivious rigid robot Let a program for a rigid robot R in R2 with
k persistent registers and visibility radius V be given. We want the TuringMobile described
above to act as R, even though its constituting robots are non-rigid and oblivious.

Our TuringMobile consists of 2 + k basic components, each dedicated to memorizing and
updating one real number. These 2 + k numbers are the x coordinate and the y coordinate
of the destination point of R and the contents of the k registers of R. We will call the first
two numbers the x variable and the y variable, respectively.

When the TuringMobile is in a rest position, its x and y variables represent the coor-
dinates of the destination point of R relative to the Leader of the machine. Whenever the
TuringMobile moves by µ in some direction, these values are updated by subtracting the com-
ponents of an appropriate vector of length µ from them. Of course, this update is computed
by the Commanders of the first two basic components of the machine, which communicate it
to their respective Number robots, as explained in Section 3.1.

Let P be the destination point of R. Since the TuringMobile can only move by vectors
of length µ in three possible directions, it may be unable to reach P exactly. So, the Leader
always plans the next move trying to reduce its distance from P until this distance is at most
2σ (this is possible because µ� d� σ).

When the Leader is close enough to P , it “pretends” to be in P , and the TuringMobile
executes the program of R to compute the next destination point. Recall that the visibility
radius of R is V , and that of the robots of the TuringMobile is V + ε. Since σ � ε, each
member of the TuringMobile can therefore see everything that would be visible to R if it were
in P , and compute the output of the program of R independently of the other members. The
only thing it should do when it executes the program of R is subtract the values of the x
and y variables to everything it sees in its snapshot, discard whatever has distance greater
than V from the center of the snapshot, and of course discard the robots of the TuringMobile
and replace them with a single robot in the center of the snapshot (representing the robot
itself). Then, the robots that are responsible for updating the x and y variables add the

12

relative coordinates of the new destination point of R to these variables. Similarly, the
robots responsible for updating the k registers of R do so.

Note that the above simulation works also in the special case where R is supposed to
update its registers without moving. The Leader will move by µ in any direction, followed by
the entire machine (because this is the only way the TuringMobile can update its registers),
and the x and y variables will be updated with the old position of the Leader.

Restrictions The above TuringMobile correctly simulates R under certain conditions. The
first one is that, if all robots are indistinguishable, then no robot extraneous to the Turing-
Mobile may get too close to it (say, within a distance of σ of any of its members). This
kind of restriction cannot be dispensed with: whatever strategy a team of oblivious robots
employs to simulate a single non-oblivious robot’s behavior is bound to fail if extraneous
robots join the team creating ambiguities between its members. Nevertheless, the restriction
can be removed if we stipulate that the members of a TuringMobile are distinguishable from
all other robots.

Another difficulty comes from the fact that, if the TuringMobile is made of more than one
basic component and its Commanders are all in their respective Ai’s and ready to update the
values represented by the machine, they may get their snapshots at different times, due to
asynchrony. If the environment moves in the meantime, the snapshots they get are different,
and this may cause the machine to compute an incorrect destination point or put inconsistent
values in its simulated registers.

There are several possible solutions to this problem: we will only mention two trivial ones.
We could for instance assume the Commanders to be synchronous, that is, make the scheduler
activate them in such a way that all of them take their snapshots at the same time. This
way, all Commanders get compatible snapshots and compute consistent outputs. Another
possible solution is to make the TuringMobile operate in an environment where everything
else is static, i.e., no moving entities are present other than the TuringMobile’s members.

We stress that these restrictions make sense if a perfect simulation of R is saught. As
we will see in Section 5, there are several other applications of the TuringMobile technique
where no such restrictions are required.

Higher dimensions Let us now generalize the above construction of a planar TuringMobile
to Rm, for any m ≥ 2. We start with the same TuringMobileM with 2+k basic components
laid out on a plane γ ⊂ Rm. SinceM has only two basic components for the x and y variables,
we will add m− 2 basic components to it, positioned as follows.

Let vectors v1 and v2 be two orthonormal generators of γ, and let us complete {v1, v2} to
an orthonormal basis {v1, v2, . . . , vm} of Rm. Now, for all i ∈ {3, 4, . . . ,m}, we make a copy of
the basic component ofM containing the Leader, we translate it by s ·vi · i/m, and we add it
to the TuringMobile (s is the same value used in the construction of the planar TuringMobile
at the beginning of Section 3.2). Note that the Leader of this new TuringMobile M′ is still
easy to identify, as well as the plane γ when M′ is at rest.

Clearly, m basic components allow the machine to record a destination point in Rm, as
opposed to R2. Additionally, the positions of the basic components with respect to γ give
the machine an m-dimensional sense of direction.

For instance, say that m = 3, γ is a horizontal plane, and v3 points upward. Then, when
the Leader decides to move up, it moves by µ in the direction of the basic component of the
TuringMobile not lying on γ (first stopping in a midway triangle, as per Algorithm 1). The
rest ofM′ can reconstruct the direction of v3, for instance by inspecting the relative positions
of the Reference robots, and move as required when the time comes. In the subsequent moves,

13

the Leader still retains a consistent notion of up and down, and can therefore lead M′ close
enough to the destination point.

The same restrictions that apply to the planar TuringMobile as a simulator of course
extend to its higher-dimensional versions. The next section will be devoted to proving the
following theorem, which summarizes the results obtained so far.

Theorem 2. Under the aforementioned restrictions, a rigid robot in Rm with k persistent
registers and visibility radius V can be simulated by a team of 3m + 3k non-rigid oblivious
robots in Rm with visibility radius V + ε.

4 Correctness

This section is devoted to the proof of Theorem 2. The crux of the proof is the following
lemma, which states that a single basic component of the TurnigMobile, as described in
Section 3.1, works as intended.

The fundamental lemma

Lemma 1. Let a TuringMobile in R2 consisting of a single basic component execute Al-
gorithm 1, and assume that throughout the execution no object extraneous to the machine
approaches any of its members by less than σ. If at some point in time t the TuringMobile
is in a rest position and none of its members is moving anywhere, then, at a point in time
t′ > t, the TuringMobile is in a rest position again, its Commander and Reference robot have
translated by a vector of length µ in one of three predefined directions (as in Figure 2), its
Number robot has correctly updated its distance from the Reference robot (according to some
function f of the previous distance and the TuringMobile’s surrounding environment as ob-
served by the Commander in a single snapshot taken between times t and t′), and no member
of the TuringMobile is moving anywhere.

A robot is “not moving anywhere” at time t if it has already reached the last destination
point that it has computed before time t, and it has not taken the next snapshot before time
t (although it may be taking the snapshot exactly at time t).

Note that for Lemma 1 we do not make all the restrictions of Theorem 2, because we do
not have to synchronize several basic components of the machine.

If Lemma 1 holds, then a TuringMobile in R2 with only one basic component correctly
performs a single step of the execution, rigidly moving by µ and updating the real number
that it is storing. By repeatedly applying this lemma, we have the correctness of the entire
execution of a basic component.

Proving Theorem 2 is then a simple matter, because the coordination of several basic
components in Rm for m ≥ 2 is done as described in Section 3.2, and does not pose any
problems.

Proof structure Let us prove Lemma 1. The intended behavior of the machine is for the
execution to go through the following five phases in chronological order:

1. The Commander moves to SiS
′
i (lines 4–9 of Algorithm 1);

2. The Number robot moves within QQ′ (lines 21 and 22);

3. The Commander moves to Di (lines 10–12);

4. The Number robot moves to D′i (lines 14–18);

14

5. The Reference robot moves, bringing the machine in a rest position (lines 24–27).

During each phase, only one robot is supposed to move, while the other two wait. If we can
ensure this behavior, then Lemma 1 follows.

Recall that the robots constituting the TuringMobile are asynchronous and non-rigid.
This means that we have to guarantee two things for each of the above phases:

• If a robot moves as per phase i and another robot sees it at any time before it has
finished (due to asynchrony), the second robot does not mistakingly think that the
current phase is not i, and hence it waits.

• If a robot moves as per phase i and the scheduler stops it before it has reached its des-
tination (due to non-rigidity), the robot takes another snapshot, and correctly resumes
phase i.

Phase 1 If the assumptions of Lemma 1 are satisfied, the first robot to take a snapshot
after time t (or exactly at time t) will se a TuringMobile in a rest position. As a consequence,
the Virtual Commander coincides with the Commander, and therefore only the Commander
is allowed to move toward some Ai.

While the Commander moves, its distance from the Reference robot never gets as small as
d′ or as large as d+µ (cf. Figure 2), hence the conditions of line 14 of Algorithm 1 are never
satisfied. Also, the Virtual Commander computed with respect to R and N always coincides
with the starting position C ′ of the Commander, which means that the Commander will be
seen on the segment C ′Ai, implying that only the Commander will be allowed to move.

Since the Commander approaches Ai by at least δ at every movement (cf. Section 2.2),
it eventually reaches it. When it reaches Ai, it chooses a destination point on SiS

′
i based

on a single snapshot of the environment (as required by Lemma 1): once a destination point
has been chosen, it never changes even if the Commander is stopped before reaching it, due
to lines 8 and 9. Since the Number robot and the Reference robot have not moved yet, the
number stored in the machine is still the same as it was a time t, and therefore the point on
SiS

′
i chosen by the Commander is correctly computed by applying function f to QN . Again,

only the Commander is allowed to move, and it eventually reaches SiS
′
i, for the same reasons

as before.

Phase 2 When the Commander is on SiS
′
i, it waits until the Number robot has a distance

from Q of CSi. Observe that, as the Number robot moves within QQ′, the slope of the line
RN does not change, and therefore the Virtual Commander C ′ computed with respect to R
and N is always the position that C occupied at time t. So, the point Si is always the same,
and the Number robot keeps consitently moving toward the same destination point on QQ′.

As for phase 1, CR never becomes as small as d′ or as large as d + µ, and therefore the
Number robot always executes line 21 until it reaches the correct point on QQ′.

Phase 3 When NQ = CSi, the Commander knows it has to start moving again, first to
Bi and then to Di, due to lines 10–12. Again, while this happens the Virtual Commander
computed based on R and N is always the same point C ′, so the positions of Si, Bi, Di, etc.
remain consistent, and the distance between R and C never gets as small as d′ or as large as
d + µ until the Commander has reached Di. In particular the Number robot never sees the
Commander on SiS

′
i after it has left it, and so it does not move. Eventually, the Commander

reaches Di.

15

Phase 4 When the Commander reaches Di, its distance from R finally becomes d + µ (if
i = 1) or d′ (if i = 2 or i = 3), and so the Number robot executes lines 15–18 and starts
moving. While the Number robot moves, the Commander does not: indeed, as long as the
Number robot is tasked with moving, the Reference robot never moves (cf. line 24), and
hence CR remains the same. Therefore, if the Commander computes a Virtual Commander
C̃ based on N and R, and then computes the points Di and the midway triangles τi with
respect to C̃, it will never believe to be in C̃ or in the interior of the segment C̃Di or in τi, no
matter where N is. This is because all such points have distance greater than d′ and smaller
than d+ µ from R (cf. Figure 2). So, the conditions of lines 5–12 are never satisfied.

Suppose that the Commander is in D1. This configuration is correctly identified by the
Number robot no matter how it moves, because it is the only one in which CR = d+ µ. So
the Number robot computes the point D′1 correctly (it does so only based on C and R) and
keeps moving toward D′1 until it reaches it (line 16).

Suppose now that the Commander is in D2. The Number robot recognizes this configu-
ration because CR = d + µ and ∠NRC > 90◦. Again, it correctly computes D′2 and moves
toward it (line 17). As the Number robot moves, the angle ∠NRC grows (cf. Figure 2), and
so the condition of line 17 keeps being satisfied. Eventually, the Number robot reaches D′2.

Finally, suppose that the Commander robot is in D3. Now CR = d+µ and ∠NRC < 90◦,
and so the Number robot starts moving toward D′3 (cf. Figure 2). We have to prove that, if
it stops on its way to D′3 and gets a new snapshot, the inequality ∠NRC < 90◦ keeps being
satisfied, and so the Number robot re-computes D′3 as its destination point, until it reaches
it. This is not trivial, since the angle ∠NRC grows as N approaches D′3.

60°

90°

µ

d

C

R

N

′d

′′d

′C

′N ′µ
150°

θ

′θ

d>

3
′D

Figure 5: As N moves toward D′3, we have θ > θ′, and hence ∠NRC < 90◦

The situation is illustrated in Figure 5, where C ′ represents the starting position of the
Commander and N ′ the starting position of the Number robot. Since ∠N ′RC ′ = 90◦, proving
that ∠NRC < 90◦ is equivalent to proving that θ > θ′ (where θ′ = ∠NRN ′).

16

By the law of sines applied to triangle RCC ′,

d′

sin 60◦
=

µ

sin θ
,

implying that

sin θ =

√
3µ

2d′
. (1)

Again for the law of sines applied to triangle RNN ′,

d′′

sin 150◦
=

µ′

sin θ′
,

where µ′ = N ′N . Hence

sin θ′ =
µ′

2d′′
. (2)

Observe that µ > µ′, because N lies on N ′D′3, and therefore
√

3µ > µ′ (i.e., the numerator
of (1) is greater than that of (2)). Recall that µ � d, and so d′ < d. Moreover, since
RN ′ ≥ 2d − λ/2 (cf. Figure 2) and λ � d, it follows that d < RN ′. Also observe that
RN ′ < d′′, from which we obtain that 2d′ < 2d′′ (i.e., the denominator of (1) is smaller than
that of (2)). As a consequence, sin θ > sin θ′. Since µ � d, both θ and θ′ are acute, which
means that θ > θ′ (the function sinx increases monotonically when x ∈ [0, 90◦]).

Phase 5 Since in the previous phases either the Commander or the Number robot was
always tasked with moving, the condition of line 24 was never satisfied, and hence the Refer-
ence robot never moved. Now that the Commander is in Di and the Number robot is in D′i,
they are no longer tasked with moving, and so the Reference robot executes lines 25–27.

Ideally, the Reference robot should complete the translation of the TuringMobile in order

to put it in a rest position again. This is achieved by moving by vector
−−→
C ′′C, where C ′′ is the

initial position of the Commander (i.e., its position when phase 1 starts). Instead of trying
to reconstruct C ′′, the Reference robot constructs two circumferences γ and γ′ and moves to
their nearest intersection point. Note that γ′ passes through the center of γ, and hence it
has at most two intersection points with it. At least one intersection point exists: this is the

point P = R′ +
−−→
C ′′C, where R′ is the initial position of the Reference robot (which coincides

with its position when phase 5 starts). If there is another intersection point P ′ between the
two circles, it must be symmetric to P with respect to line CN , because such line passes
through the centers of both circles (recall that the segment CN is a diameter of γ′). So,
assuming that the Commander and the Number robot do not move in this phase, P remains
the destination point of the Reference robot as long as the robot never crosses the line CN .
But this is impossible, since the segment R′P has length µ� d, and therefore it cannot cross
the line CN , whose distance from R′ is roughly 2d/

√
5� µ.

It remains to prove that, as the Reference robot moves toward P , the Commander and
the Number robot remain still. Recall that, when phase 5 starts, either CR = d + µ > d or
CR = d′ < d. As R approaches P (and C does not move), CR converges monotonically to d.
It follows that CR never becomes d+ µ or d′ again, and so the condition of line 14 is never
satisfied.

Consider now the Virtual Commander C ′ computed with respect to R and N when R
is strictly between R′ and P , and construct the three segments C ′Di and the three midway
triangles τi around C ′. If we can prove that, no matter where R is located in the interior of
the segment RN , C never lies on any of these segments and triangles, we are finished: indeed,
this would mean that the conditions of lines 5–12 and line 21 are never satisfied.

17

Suppose that the Number robot has moved to D′1 during phase 4, which means that at
the beginning of phase 5 we have CR = d + µ: this case is illustrated in Figure 6. We have
to show that C does not lie on any of the solid gray lines and triangles around the Virtual
Commander C ′. It is obvious that the lines C ′′C and RC ′ are not parallel and intersect each
other at R. Also, C ′ and N are always on opposite sides of RC ′. This already implies that
C cannot be on the segments C ′D1 and C ′D2 or on their respective midway triangles.

C

R

N

′C

1D

2D 3D′′C

3τ

µ

′R

1τ

2τ

Figure 6: Correctness of phase 5 when the Number robot has moved to D′1

To show that C does not lie on C ′D3 or τ3, consider the circle through C ′ centered at
R. Note that C is always outside the circle, because its radius is d, but d < RC < d + µ.
Since µ can be arbitrarily small compared to d, the angle between C ′′C and RC ′ can be made
arbitrarily small, as well (cf. Figure 6). If we take a small-enough µ, the segment C ′D3 is
entirely contained in the circle, and hence it cannot contain C. Moreover, since τ3 has height
λ� µ, by taking a small-enough λ we ensure that τ3 is contained in the circle, too.

Suppose now that the Number robot has moved to D′2 during phase 4: then, at the
beginning of phase 5, CR = d′ and ∠NRC > 90◦. On the other hand, when R reaches P ,
we have CR = d and ∠NRC = 90◦. It follows that, when R is strictly between R′ and
P , d′ < CR < d and ∠NRC > 90◦ (because both quantities change monotonically), as
Figure 7 shows. Since ∠NRC > 90◦, C cannot be located on C ′D1 or C ′D3 or τ3, because
all their points X satisfy ∠NRX ≤ 90◦. Also, all the points in τ1 have distance at least
d+ µ/2− λ/2 > d from R (recall that λ� µ), and so C cannot lie in τ1, because CR < d.

Let us show that C does not lie on C ′D2 or τ2. Observe that R′C ′′ = RC ′ = d, that
∠RC ′D2 = ∠R′C ′′C = 60◦, and that R′R and C ′′C are parallel (cf. Figure 7). It follows
that the line C ′′C is obtained by rotating line C ′D2 about R by some angle θ > 0. These
two lines are not parallel, and hence they intersect in a single point K. As R approaches P ,
θ tends monotonically to 0, and K approaches the foot U of the altitude from R to the line

18

C

N

R

′C

1D

2D 3D

′′C
1τ

µ

3τ

2τ

′R

Figure 7: Correctness of phase 5 when the Number robot has moved to D′2

C ′′C. So, if we take µ small enough with respect to d, we can keep K as close as we want
to U . The distance between U and C ′′ is obviously minimum when R = R′, in which case
C ′′U = d/2. It follows that, for small-enough values of µ, C ′′K is always as close as we want
to d/2. Hence we have C ′′K > µ = C ′′C, proving that C 6= K, and so C cannot be on C ′D2.
Also, since ∠NRC > 90◦, C and τ2 are always on opposite sides of C ′D2 (cf. Figure 7), and
so C cannot be in τ2.

Lastly, suppose that the Number robot has moved to D′3 during phase 4: then, at the
beginning of phase 5, CR = d′ and ∠NRC < 90◦, as shown in Figure 8. Similarly to the
previous case, we can prove that C cannot lie on C ′D3 or τ3 because the line C ′′C is obtained
by rotating line C ′D3 about R by some angle θ > 0 that can be made arbitrarily small by just
decreasing µ. Again, this implies that the intersection point between the lines C ′′C and C ′D3

can be kept at a distance from C ′′ arbitrarily close to d/2, and can therefore never coincide
with C, which is only µ away from C ′′. Also, because ∠NRC < 90◦ (∠NRC increases
monotonically and converges to 90◦ as R converges to P), C and τ3 are always on opposite
sides of C ′D3, and so C cannot be in τ3.

To conclude the proof, it suffices to show that C and R′ lie on strictly opposite sides of
line RC ′: indeed, this would imply that C is not on the segments C ′D1 and C ′D2 or in their
respective midway triangles, because these lie on the same side of RC ′ as R′ or on the line
RC ′ itself (cf. Figure 8). To prove this claim, consider a Cartesian coordinate system with

origin in R and x axis oriented as
−−−→
R′N ′. Let 0 < µ′ = R′R < µ. Since the line RR′ forms an

angle of 60◦ with the y axis, the coordinates of R′ are

R′ =

(
−
√

3µ′

2
,
µ′

2

)
.

19

R

C

N

′C

1D

2D 3D

′′C

2τ

µ
′R

1τ

3τ

′N

P

′µ

d>

Figure 8: Correctness of phase 5 when the Number robot has moved to D′3

We therefore have

C ′′ = R′ + (0, d) =

(
−
√

3µ′

2
,
µ′

2
+ d

)
and

C = C ′′ +

(√
3µ

2
, −µ

2

)
=

(√
3(µ− µ′)

2
, d− µ− µ′

2

)
.

We also have

N ′ = R′ +
(
R′N ′, 0

)
=

(
R′N ′ −

√
3µ′

2
,
µ′

2

)
and

N = N ′ +

(√
3µ

2
, −µ

2

)
=

(
R′N ′ +

√
3(µ− µ′)

2
,
µ′ − µ

2

)
.

It follows that the line RN has equation

y =
µ′ − µ

2 ·R′N ′ +
√

3(µ− µ′)
x.

Since the line RC ′ is orthogonal to RN , it has equation

y =

(
2 ·R′N ′
µ− µ′

+
√

3

)
x. (3)

Observe that RC ′ passes through the origin and its slope is positive. Hence R′ lies above this
line, because its x coordinate is negative and its y coordinate is positive.

20

Let us now plug the x coordinate of C in (3):

y =

(
2 ·R′N ′
µ− µ′

+
√

3

)
·
√

3(µ− µ′)
2

=
√

3 ·R′N ′ + 3(µ− µ′)
2

. (4)

Recall from the discussion on phase 4 that R′N ′ > d (it corresponds to RN ′ in Figure 5),
and therefore the y in (4) is abundantly greater than d. On the other hand, the y coordinate
of C is d− (µ− µ′)/2, which is smaller than d, implying that C lies below the line RC ′. We
conclude that C and R′ lie on opposite sides of RC ′.

We have just proved that the Reference robot keeps moving until it reaches P , thus
bringing the TuringMobile in a rest position again, say at time t′. We ultimately observe
that the real number stored in the machine at time t′ is the same the one the Commander
computed in phase 1 and that the Number robot copied during phase 2. This is because the
Number robot and the Reference robot, during phases 4 and 5 respectively, have moved by
µ in the same direction: so, at the end of phase 5, they have the same distance they had at
the end of phase 2.

5 Applications

In this section we discuss some applications of the TuringMobile. We also prove that the
basic TuringMobile constructed in Section 3.1 is minimal, in the sense that no smaller team
of oblivious robots can accomplish the same tasks.

5.1 Exploring the Plane

The first elementary task a basic TuringMobile in R2 can fulfill is that of exploring the
plane. The task consists in making all the robots in the TuringMobile see every point in
the plane in the course of an infinite execution. We first assume that the three members of
the TuringMobile are the only robots in the plane. Later in this section, we will extend our
technique to other types of scenarios and more complex tasks.

Theorem 3. A basic TuringMobile consisting of three robots in R2 can explore the plane.

Proof. Recall that a basic TuringMobile can store a single real number r and update it at
every move as a result of executing a real RAM program with input r. In particular, the
TuringMobile can count how many times it has moved by simply starting its execution with
r = 0 and computing r := r + 1 at each move.

Moreover, the Commander chooses the direction of the next move (in the form of a point
Di, see Figure 2) by executing another real RAM program with input r. If r is an integer,
the Commander can therefore compute any Turing-computable function on r, and so it can
decide to move to D1 the first time, then to D2 twice, then to D3 three times, to D1 four
times, and so on. This pattern of moves is illustrated in Figure 9, and of course it results in
the exploration of the plane, because the visibility radius of the robots is much greater than
the step µ.

5.2 Minimality of the Basic TuringMobile

We can use the previous result to prove indirectly that our basic TuringMobile design is
minimal, because no team of fewer than three oblivious robots in R2 can explore the plane.

21

C

µ

R N

Figure 9: Exploration of the plane by a basic TuringMobile

Theorem 4. If only one or two oblivious identical robots with limited visibility are present
in R2, they cannot explore the plane, even if the scheduler lets them move synchronously and
rigidly.

Proof. Assume that a single oblivious robot is given in R2 (hence no other entities or obstacles
are present). Since the robot always gets the same snapshot, it always computes the same
destination point in its local coordinate system, and so it always translates by the same
vector. As a consequence, it just moves along a straight ray, and therefore it cannot explore
the plane.

Let two oblivious robots be given, and suppose that their local coordinate systems are
oriented symmetrically. Whether the robots see each other or not, if they take their snapshots
simultaneously, they get identical views, and so they compute destination points that are
symmetric with respect to O. If they keep moving synchronously and rigidly, O remains
their midpoint. So, if the robots have visibility radius V , they see each other if and only if
they are in the circle γ of radius V/2 centered in O.

Let O be the midpoint of the robots’ locations, and consider a Cartesian coordinate system
with origin O. Without loss of generality, when the robots do not see each other, they move
by vectors (1, 0) and (−1, 0), respectively. Let ξ be the half-plane y ≥ V , and observe that ξ
lies completely outside γ.

It is obvious that the robots cannot explore the entire plane if neither of them ever stops
in ξ. The first time one of them stops in ξ, it takes a snapshot from there, and starts moving
parallel to the x axis, thus never seeing the other robot again, and never leaving ξ. Of course,
following a straight line through ξ is not enough to explore all of it.

5.3 Near-Gathering with Limited Visibility

The exploration technique can be applied to several more complex problems. The first we
describe is the Near-Gathering problem, in which all robots in the plane must get in the same

22

disk of a given radius ε (without colliding) and remain there forever. It does not matter if
the robots keep moving, as long as there is a disk of radius ε that contains them all.

It is clear that solving this problem from every initial configuration is not possible, and
hence some restrictive assumptions have to be made. The usual assumption is that the initial
visibility graph of the robots be connected [20, 24]. Here we make a different assumption:
there are three robots that form a basic TuringMobile somewhere in the plane, and each robot
not in the TuringMobile has distance at least ε from all other robots. (Actually we could
weaken this assumption much more, but this simple example is good enough to showcase
our technique.) Also, in the existing literature on the Near-Gathering problem it is always
assumed that the robots agree on at least one coordinate axis, but here we do not need this
assumption.

Say that all robots in the plane have a visibility radius of V � ε, and that the Turing-
Mobile moves by µ� ε at each step. The TuringMobile starts exploring the plane as above,
and it stops in a rest position as soon as it finds a robot whose distance from the Commander
is smaller than V/2 and greater than ε. On the other hand, if a robot is not part of the
TuringMobile, it waits until it sees a TuringMobile in a rest position at distance smaller than
V/2. When it does, it moves to a designated area A in the proximity of the Commander.
Such an area has distance at least 3d from the Commander, so no confusion can arise in
the identification of the members of the TuringMobile. If several robots are eligible to move
to A, only one at a time does so: note that the layout of the TuringMobile itself gives an
implicit total order to the robots around it. Observe that the robots cannot form a second
TuringMobile while they move to A: in order to do so, two of them would have to move to
A at the same time and get close enough to a third robot. Once they enter A, the robots
position themselves on a segment much shorter than d, so they cannot possibly be mistaken
for a TuringMobile.

Once the eligible robots have positioned themselves in A, the TuringMobile resumes its
exploration of the plane, and the robots in A copy all its movements. Of course, at each
step the TuringMobile waits for all the robots in A to catch up before carrying on with the
exploration. Now, if the total number of robots in the plane is known, the TuringMobile can
stop as soon as all of them have joined it. Otherwise, the machine simply keeps exploring the
plane forever, eventually collecting all robots. In both cases, the Near-Gathering problem is
solved.

5.4 Pattern Formation with Limited Visibility

Suppose n robots are tasked with forming a given pattern consisting of a multiset of n points:
this is the Pattern Formation problem, which becomes the Gathering problem in the special
case in which the points are all coincident. For this problem, it does not matter where the
pattern is formed, nor does its orientation or scale.

Again, the Pattern Formation problem is unsolvable from some initial configurations, so
we make the same assumptions as with the Near-Gathering problem. The algorithm starts
by solving the Near-Gathering problem as before. The only difference is that now there is a
second tiny area B, attached to A (and still far enough from the TuringMobile), which the
robots avoid when they join A. This is because this second area will later be used to form
the pattern.

Since n is known, the TuringMobile knows when it has to interrupt the exploration of the
plane because all robots have already been found. At this point, the robots switch algorithms:
one by one, they move to B and form the pattern. This task is made possible by the presence
of the TuringMobile, which gives an implicit order to all robots, and also unambiguously
defines an embedding of the pattern in B. So, each robot is implicitly assigned one point in

23

B, and it moves there when its turn comes.
If n = 3 or n = 4, there are uninteresting ad-hoc algorithms to do this: so, let us assume

that n ≥ 5. The first to move are the robots in A: this part is easy, because they all lie on a
small segment, which already gives them a total order, and allows them to move one by one.
The robots only have to be careful enough not to collide with other robots before reaching
their final positions. Again, this is trivial, because only one robot is allowed to move at a
time.

When this part is done, there are at least two robots in B, all of which have distance
much smaller than d from each other. Then the members of the TuringMobile join B as well,
in order from the closest to the farthest. Each of them chooses a position in B based on the
robots already there and the remnants of the TuringMobile. Moreover, the members of the
TuringMobile that have not started moving to B yet cannot be mistaken for robots in B,
because they are at a greater distance from all others (and vice versa).

Note that, when the last robot leaves the TuringMobile and joins B, it is able to find its
final location because there are already at least four robots there, which provide a reference
frame for the pattern to be formed. When this last robot has taken position in B, the pattern
is formed.

5.5 Higher Dimensions

Everything we said in this section pertained to robots in the plane. However, we can generalize
all our results to robots in Rm, for m ≥ 2. Recall that, at the end of Section 3.2, we have
described a TuringMobile for robots in Rm, which can move within a specific plane γ exactly
as a bidimensional TuringMobile, but can also move back and forth by µ in all other directions
orthogonal to γ.

Now, extending our results to Rm actually boils down to exploring the space with a
TuringMobile: once we can do this, we can easily adapt our techniques for the Near-Gathering
and the Pattern Formation problem, with negligible changes.

There are several ways a TuringMobile can explore Rm: we will only give an example.
Consider the exploration of the plane described at the beginning of this section, and let Pi be
the point reached by the Commander after its ith move along the spiral-like path depicted
in Figure 9 (P0 is the initial position of the Commander).

Our m-dimensional TuringMobile starts exploring γ as if it were R2. Whenever it visits
a Pi for the first time, it goes back to P0. From P0, it keeps making moves orthogonal to γ
until it has seen all points in Rm whose projection on γ is P0 and whose distance from P0 is at
most i. Then it goes back to P0, moves to P1, and repeats the same pattern of moves in the
section of Rm whose projection on γ is P1. It then does the same thing with P2, etc. When
it reaches Pi+1 (for the first time), it goes back to P0, and proceeds in the same fashion. By
doing so, it explores the entire space Rm.

Note that this algorithm only requires the TuringMobile to count how many moves it has
made since the beginning of the execution: thus, the machine only has to memorize a single
integer. The direction of the next move according to the above pattern is then obviously
Turing-computable given the move counter.

6 Conclusions

We have introduced the TuringMobile as a special configuration of oblivious non-rigid robots
that can simulate a rigid robot with memory. We have also applied the TuringMobile to
some typical robot problems in the context of limited visibility, showing that the assumption

24

of connectedness of the initial visibility graph can be dropped if a unique TuringMobile is
present in the system. Our results hold not only in the plane, but also in Euclidean spaces
of higher dimensions.

The simplest version of the TuringMobile (Section 3.1) consists of only three robots,
and is the smallest possible configuration with these characteristics (Theorems 3 and 4).
Our generalized TuringMobile (Section 3.2), which works in Rm and simulates k registers of
memory, consists of 3m + 3k robots (Theorem 2). We believe we can decrease this number
to m+ k+ 3 by putting all the Number robots in the same basic component and adopting a
more complicated technique to move them. However, minimizing the number of robots in a
general TuringMobile is left as an open problem.

Our basic TuringMobile design works if the robots have the same radius of visibility,
because that allows them to implicitly agree on a unit of distance. We could remove this
assumption and let each of them have a different visibility radius, but we would have to add
a fourth robot to the TuringMobile for it to work (as well as keep the TuringMobile small
compared to all these radii).

Recall that, in order to encode and decode arbitrary real numbers we used the α function
and its inverse, which in turn are computed using the arctan and the tan functions. However,
using transcendental functions is not essential: we could achieve a similar result by using
only comparisons and arithmetic operations. The only downside would be that such a real
RAM program would not run in a constant number of machine steps, but in a number of
steps proportional to the value of the number to encode or decode. With this technique, we
would be able to dispense with the trigonometric functions altogether, and have our robots
use only arithmetic operations and square roots to compute their destination points.

References

[1] C. Agathangelou, C. Georgiou, and M. Mavronicolas. A distributed algorithm for gath-
ering many fat mobile robots in the plane. In 32nd ACM Symposium on Principles of
Distributed Computing (PODC), pages 250–259, 2013.

[2] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM Journal on Computing, 36(1):56–82, 2006.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[4] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point conver-
gence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics
and Automation, 15(5):818–838, 1999.

[5] Q. Bramas and S. Tixeuil. The random bit complexity of mobile robots scattering.
International Journal of Foundations of Computer Science, 28(2):111–134, 2017.

[6] D. Canepa, X. Défago, T. Izumi, and M. Potop-Butucaru. Flocking with oblivious robots.
In 18th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), pages 94–108, 2016.

[7] S. Cicerone, G. Di Stefano, and A. Navarra. Minimum-traveled-distance gathering of
oblivious robots over given meeting points. In 10th International Symposium on Algo-
rithms and Experiments for Sensor Systems (Algosensors), pages 57–72, 2014.

25

[8] S. Cicerone, G. Di Stefano, and A. Navarra. Asynchronous pattern formation: the effects
of a rigorous approach. In arXiv:1706.02474, 2017.

[9] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by
mobile robots: Gathering. SIAM Journal on Computing, 41(2):829–879, 2012.

[10] R. Cohen and D. Peleg. Convergence properties of the gravitational algorithm in asyn-
chronous robot systems. SIAM Journal on Computing, 36(6):1516–1528, 2005.

[11] P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Impossibility of gathering, a certification.
Information Processing Letters, 115(3):447–452, 2015.

[12] P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Certified universal gathering in R2

for oblivious mobile robots. In 30th International Symposium on Distributed Computing
(DISC), pages 187–200, 2016.

[13] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Forming sequences of geometric
patterns with oblivious mobile robots. Information Processing Letters, 28(2):131–145,
2015.

[14] X. Défago, M. Gradinariu, S. Messika, P. Raipin-Parvédy, and S. Dolev. Fault-tolerant
and self-stabilizing mobile robots gathering. In 20th International Symposium on Dis-
tributed Computing (DISC), pages 46–60, 2006.

[15] B. Degener, B. Kempkes, P. Kling, and F. Meyer auf der Heide. Linear and competi-
tive strategies for continuous robot formation problems. ACM Transactions on Parallel
Computing, 2(1):2:1–2:8, 2015.

[16] B. Degener, B. Kempkes, P. Kling, F. Meyer auf der Heide, P. Pietrzyk, and R. Wat-
tenhofer. A tight runtime bound for synchronous gathering of autonomous robots with
limited visibility. In 23rd ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pages 139–148, 2011.

[17] G. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta. Turingmobile: a turing machine of
oblivious mobile robots with limited visibility and its applications. In arXiv:1709.08800,
2017.

[18] P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile
Robots. Morgan & Claypool, 2012.

[19] P. Flocchini, G. Prencipe, N. Santoro, and G. Viglietta. Distributed computing by mobile
robots: Uniform circle formation. Distributed Computing, 30(6):413–457, 2017.

[20] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous
robots with limited visibility. Theoretical Computer Science, 337(1–3):147–168, 2005.

[21] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theoretical Computer Science, 407(1–
3):412–447, 2008.

[22] N. Fujinaga, Y. Yamauchi, S. Kijima, and M. Yamahista. Pattern formation by oblivious
asynchronous mobile robots. SIAM Journal on Computing, 44(3):740–785, 2015.

[23] T. Izumi, M. Gradinariu, and S. Tixeuil. Connectivity-preserving scattering of mobile
robots with limited visibility. In 12th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), pages 319–331, 2010.

26

[24] P. Linda, G. Prencipe, and G. Viglietta. Getting close without touching: Near-gathering
for autonomous mobile robots. Distributed Computing, 28(5):333–349, 2015.

[25] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, Berlin
and New York, 1985.

[26] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
1967.

[27] M. I. Shamos. Computational Geometry. Ph.D. thesis, Department of Computer Science,
Yale University, 1978.

[28] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: formation of geo-
metric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

[29] M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science, 411(26–28):2433–2453, 2010.

[30] Y. Yamauchi, T. Uehara, S. Kijima, and M. Yamashita. Plane formation by synchronous
mobile robots in the three-dimensional euclidean space. Journal of the ACM, 64(3):16:1–
16:43, 2017.

27

	Introduction
	Definitions and Preliminaries
	Oracle Semi-Oblivious Real RAMs
	Mobile Robots as Real RAMs

	Implementing the TuringMobile
	Basic Implementation
	Complete Implementation

	Correctness
	Applications
	Exploring the Plane
	Minimality of the Basic TuringMobile
	Near-Gathering with Limited Visibility
	Pattern Formation with Limited Visibility
	Higher Dimensions

	Conclusions

