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ABSTRACT: Hexagonal boron nitride (hBN) is widely used as a protective layer for
few-atom-thick crystals and heterostructures (HSs), and it hosts quantum emitters
working up to room temperature. In both instances, strain is expected to play an
important role, either as an unavoidable presence in the HS fabrication or as a tool to
tune the quantum emitter electronic properties. Addressing the role of strain and
exploiting its tuning potentiality require the development of efficient methods to
control it and of reliable tools to quantify it. Here we present a technique based on
hydrogen irradiation to induce the formation of wrinkles and bubbles in hBN,
resulting in remarkably high strains of ∼2%. By combining infrared (IR) near-field
scanning optical microscopy and micro-Raman measurements with numerical
calculations, we characterize the response to strain for both IR-active and Raman-active modes, revealing the potential of the
vibrational properties of hBN as highly sensitive strain probes.
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I. INTRODUCTION

Hexagonal boron nitride (hBN), a wide-gap layered material,1

features a marked chemical inertness2,3 and mechanical
robustness.4 Thanks to these properties, hBN is an ideal
substrate or capping material for two-dimensional crystals,5−10

protecting them from oxidation11 and bringing about a
substantial improvement of the charge-carrier mobility and of
the light emission characteristics.7,8,12 Indeed, hBN capping is
routinely employed to fabricate high-quality heterostructures
(HSs), wherein intriguing carrier potential landscapes can be
realized.13,14 The fabrication process relies on mechanical
stacking, often leading to the emergence of strain in the
different layers and to important modifications of their
electronic states.15 hBN is also attracting increasing interest
for its intrinsic properties, sustaining the propagation of
hyperbolic phonon-polaritons (HPPs)16,17 and hosting single-
photon emitters operating at room temperature.18−22 Its
remarkable mechanical robustness (breaking strengths of
∼70 GPa and Young’s modulus of ∼800 GPa4,23,24) was
exploited for high-quality mechanical resonators25 and to
reversibly tune the emission wavelength of single-photon
emitters via stretching.26 Strained wrinkles were also found to
be ideal candidates for launching HPPs.27 It follows that in
hBN, like in other two-dimensional materials, strain plays a
relevant role.24 Different methods were employed to induce
strain in thin layers of hBN, for example, by deposition on
substrates subject to stretching,26 bending,28 or thermal
compression29 or by nanoindentation.4 Great attention was
also attracted by the formation of hBN bubbles ensuing gas

trapping,30 hydrogen-plasma exposure,31 or pressure-induced
bulging.23 Such bubbles may be the ultimate platforms for
probing the elastic/adhesive properties of two-dimensional
materials, owing to the strong interplay between these
properties and the bubble morphology.23,32−34 Although
hBN bubbles are expected to host sizable strains, as
theoretically predicted and experimentally confirmed in similar
graphene35 and transition-metal dichalcogenide (TMD)
structures,33,36−40 where total strains of 1−5% were achieved,
no clear evidence of strain has been provided so far. More
generally, the effect of strain on the vibrational properties of
thin hBN has surprisingly not received systematic attention,
with only a few Raman studies published to date, focusing on
the moderate strain regime (<0.4%).28,29,41

Here we report on a method to mechanically deform hBN
based on the low-energy hydrogen (H) or deuterium (D) ion
irradiation of multilayer flakes. Depending on the flake
thickness, H/D-ion treatments lead to the formation of
nano/micrometric bubbles or wrinkles. Unlike methods
based on the deposition of ultrathin films,30 the proposed
technique permits the formation of wrinkles and bubbles with
a high density and on flakes with virtually unrestricted size. In
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addition, we can control the thickness of the bubbles from a
few layers to tens of layers by tuning the energy or changing
the isotope of the ion beam. We employed an infrared (IR)
scanning near-field optical microscope (SNOM) to perform
nanoscale Fourier transform IR (nano-FTIR) measurements
and an optical microscope to perform micro-Raman (μ-
Raman) measurements. Across the bubble surfaces, we observe
record large shifts of both the IR-active and Raman-active
modes in excess of 50 cm−1. With the support of numerical
modeling of the strain distribution, we extract the Grüneisen
parameters of hBN and, by performing linearly polarized
Raman spectroscopy, its shear deformation potential.

II. RESULTS AND DISCUSSION

We exfoliated thick hBN flakes from commercial hBN crystals
(HQ graphene). The flakes were deposited on Si/SiO2
substrates and initially characterized by atomic force
microscopy (AFM); see the Supporting Information, Methods.
The samples were subjected to H (or D)-ion irradiation by a
Kaufman ion gun37,42 under high vacuum conditions at 150
°C, with the samples electrically grounded to avoid charging.
For details, see the Supporting Information, Methods. To
avoid the formation of defects, we employed low ion-beam
energies of <35 eV. After the treatment, optical microscope
images of the flakes may reveal a slightly nonhomogeneous
coloration related to the presence of barely visible circular or
elongated features; see Supporting Figure S1. AFM measure-
ments demonstrate the presence of bubbles, wrinkles, or both
on the flakes, as shown in Figure 1a−c and Supporting Figure
S2. A statistical AFM study (see Supporting Figure S3) allows
us to establish a correspondence between the different
morphologies and the flake thickness t: For t ≳ 10 nm, only
bubbles form (Figure 1a); for t ≃10 nm, both bubbles and
wrinkles can be observed (Figure 1b); and in thin flakes with t
≲ 10 nm, wrinkles and irregular structures predominate
(Figure 1c). In the latter case, molecular hydrogen likely forms,

accumulates, and percolates at the flake/substrate interface,
giving rise to irregular structures and wrinkles (Figure 1c); see
also Supporting Figure S3. On the contrary, the formation of
spherically shaped bubbles in thick flakes (t ≳ 10 nm) can be
attributed to the formation and trapping of molecular
hydrogen in the hBN interlayers, as observed in H-plasma-
treated hBN,31 and in TMDs.37 We thus hypothesize that
protons with kinetic energies of ∼10−30 eV penetrate through
hBN for ∼10 nm and that the formation of wrinkles or bubbles
depends on where H2 remains caged. To support this
hypothesis, we intentionally induced the explosion of some
bubbles via a high-power (some milliwatts), highly focused
laser beam and measured the height difference between the
crater of the exploded bubble and the flake surface outside the
crater by AFM. In samples irradiated with H ions (beam
energies <34 eV) (see Supporting Figure S4), we measured
thicknesses ranging from 1.8 to 12 nm (corresponding to
about 5 to 36 monolayers). To form thinner bubbles, instead,
we irradiated some samples with deuterium ions (beam
energies <25 eV), which are known to penetrate less through
hBN with respect to protons,43 and we measured bubble
thicknesses as thin as ∼0.5 nm (i.e., a couple of layers); see
Supporting Figure S4. This demonstrates the remarkable
flexibility of our method, which, unlike H-plasma-based
methods,31 enables us to obtain bubbles thinner than 10
monolayers. The long durability of the bubbles and Raman
studies of the irradiated flakes (see Supporting Figure S5)
suggest that the low-energy beams employed here do not
induce a sizable amount of defects in the crystal, unlike higher
energy heavier atom beams.44−50

We performed AFM measurements to study the morpho-
logical properties of bubbles and wrinkles and measured their
aspect ratio hm/R, where hm is the maximum height of the
object and R is its half width. (See Figure 1d,e). The results are
summarized in Figure 1f. The wrinkles feature a narrow width
distribution and aspect ratios in the 0.3 to 0.6 range. The
bubbles show a much wider size distribution and a size-

Figure 1. Formation of hydrogen-filled bubbles and of wrinkles in hBN. (a−c) AFM images of multilayer hBN flakes after H irradiation. The flakes
have thicknesses of (a) 55, (b) 10, and (c) 5 nm (thin part corresponding to the top side of the figure), and the images show the presence of only
bubbles, both bubbles and wrinkles, and only wrinkles, respectively. (d,e) 3D AFM images of half a bubble (panel d, where R = 2.06 μm and hm =
225 nm) and part of a wrinkle (panel e, where R = 144 nm and hm = 88 nm). The definitions of maximum height (hm) and footprint radius (R) are
depicted. (f) Statistical analysis of the aspect ratios (hm/R) measured in wrinkles and bubbles. The dashed lines represent the average aspect ratios
estimated for each set of data.
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independent aspect ratio, as expected based on previous
theoretical30,32,51 and experimental30−32,37,38,52 studies. For our
bubbles, we find hm/R = 0.115 ± 0.011, in agreement with that
reported for hydrocarbon-filled monolayer bubbles30 and
multilayer bubbles created by H-plasma treatments.31 The
constant aspect ratio, independent of size and thickness,
testifies that the mechanics of the bubbles is dominated by
stretching, whereas the bending contribution is negligible,32,53

at variance with other kinds of bent, yet not pressurized,
systems.54 Importantly, the strain scales as (hm/R)

2;32

therefore, a similar strain distribution is expected independent
of the bubble formation method and thickness. Next, we
address such distribution on hBN bubbles.
One of the most common means for evaluating the amount

of strain in two-dimensional materials is provided by a
quantitative analysis of the frequency of the lattice vibration
normal modes.24 Typically, lattice stretching (i.e., tensile
strain) induces a softening of the phonon modes. Furthermore,
under anisotropic strains, the double-degenerate in-plane
modes split as a result of the lowered crystal symmetry. The
shift rate and splitting rate of the vibrational modes can thus be
conveniently used to assess the strain magnitude and its
anisotropy degree in atomically thin membranes.24 This is
especially important when the actual strain differs from the
expected strain, like in many bending or stretching devices,24

or cannot be estimated theoretically. In this work, we focus on
two specific in-plane transverse modes, which are IR-active
(E1u) and Raman-active (E2g). Their lattice displacements are
sketched in Figure 2.

Figure 3a displays the AFM image of a circular hBN bubble
with diameter D = 2R = 4.54 μm and height hm = 267 nm (hm/
R = 0.117) obtained by D irradiation. The AFM profile
recorded along the cyan dashed line is shown in Figure 3b
(circles). The yellow line is the profile evaluated by finite
element method (FEM) numerical calculations; see the
Supporting Information, Methods. The latter also provides
the strain distribution,32,37 as shown on the left side of Figure
3c, where εr and εθ are the radial and circumferential in-plane
strain components in polar coordinates, respectively.32,53 The
calculated spatial distribution of the total strain εtot = εr + εθ is
displayed as a false-color image on the right side of panel c.
Strain features an anisotropic character, changing from tensile
uniaxial at its edge (r/R = 1, εr ≠ 0 and εθ = 0) to tensile equi-
biaxial at the summit of the bubble (r/R = 0, εr = εθ). On these
premises, we expect the in-plane transverse phonon frequency
ωt to undergo a decrease with respect to unstrained hBN due
to stretching, as well as a splitting in ωt

+ and ωt
−, the extent of

which depends on the position on the bubble. Thus we
introduce the average frequency

ω
ω ω

=
++ −

2t
t tav

(1)

and mode splitting

σ ω ω= −+ −
t t t (2)

The frequency variation upon strain can be quantified by the
shift rate

ω
ε

Δ = −
∂
∂

t
av

tot (3)

and splitting rate

σ
ε

Σ =
∂

∂
t

diff (4)

where εtot(r) = εr(r) + εθ(r) and εdiff(r) = εr(r) − εθ(r).
Equivalently, one can introduce dimensionless quantities,

such as the Grüneisen parameter

γ
ω

= Δ

t
0

(5)

and the shear deformation potential

β
ω

= Σ

t
0

(6)

where ωt
0 is the mode frequency in the absence of strain.

The E1u mode (see lattice displacements in Figure 2) was
studied by nano-FTIR SNOM measurements;55,56 see the
Supporting Information, Methods. This technique has been
widely employed in two-dimensional systems, for example, to
probe phonon-polaritons in hBN,27,57,58 phonons in hBN
superlattices,59 electron−phonon interactions in graphene,60

and intersubband transitions in two-dimensional quantum
wells,61 but the E1u hBN mode sensitivity to strain has not
been investigated, to our knowledge. Figure 3d shows the
normalized near-field amplitude S(ω,r), as obtained with a
spectral line scan along the gray short dashed line in Figure 3a.
The near-field signal originates from the tip−sample
interaction and provides a lateral resolution of ∼20 nm; see
the Supporting Information, Methods. The corresponding
spectra are shown in Figure 3e. The phonon peak frequency
from the bulk region outside the bubble is ω1u = 1367 cm−1, in
agreement with previous reports.62 An abrupt decrease in ω1u
is noticed when the tip approaches the bubble’s edge, where a
0.9% tensile strain is already present. (See Figure 3c.) On
moving further toward the bubble center, ω1u seamlessly
decreases, in agreement with the expected tensile strain
increase. To quantify the mode shift variation versus the
total strain εtot(r), we established a one-to-one correspondence
between the AFM-derived bubble profile (h vs r) and the
calculated strain components shown in Figure 3c. In turn, this
allowed us to establish a correspondence between each
measured ω1u and εtot(r), given that the h(r) values were
measured by the SNOM tip at the very same points where ω1u
was probed. To reduce the background signal, we collected the
near-field data at several harmonics. In Figure 3f, we show the
spatial dependence of the second and third harmonics of the
signal associated with the E1u phonon. (See the Supporting
Information, Methods and Supporting Note 1.) We reproduce
quite successfully the dependence of ω1u on r using as fitting
parameters the mode frequency at zero strain ω1u

0 = (1369.7 ±

Figure 2. Sketch of the atom displacements corresponding to the IR-
active E1u mode and to the Raman-active E2g mode. Differently
colored arrows indicate opposite atom motions.
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2.4) cm−1 and the shift rate Δ1u = (29.5 ± 1.4) cm−1/%,
resulting in a Grüneisen parameter (see eq 5) γ1u = 2.15 ±
0.10. Analogous measurements were performed on other
bubbles; see Supporting Note 1 and Table 1.
It should be noticed that the zero-strain limit ω1u

0 (∼1370
cm−1) of the bubble E1u mode is larger than that of bulk hBN
(∼1367 cm−1). This is consistent with the frequency increase
reported for the Raman-active E2g mode in the few-layer
limit.29,63,64

Let us now discuss our studies of the E2g mode. (See the
lattice displacements in Figure 2.) We performed μ-Raman
measurements of the hBN bubble (R = 1.61 μm, hm = 179 nm,
hm/R = 0.111, created by D irradiation), whose AFM image is
shown as the inset of Figure 4c. Figure 4a is the spectrally and
spatially resolved intensity map of the light scattered by the
bubble in the spectral region of the E2g mode. The map was

recorded along a diameter (see the inset of panel c), and the
corresponding spectra are shown in Figure 4b. The spot size
and spectral resolution are ∼0.5 μm and 0.7 cm−1, respectively;
see the Supporting Information, Methods. The intense peak at
1366.2 cm−1 comes from the bulk hBN flake from which the
bubble swelled. The E2g signal from the bubble is much less
intense due to the reduced thickness and exhibits a spatially
dependent and lower frequency due to strain. We notice that
unlike the IR signal, the Raman signal becomes negligibly small
as the laser approaches the edge of the bubble due to optical
interference effects.37,39 The correspondence between the
measured ω2g values and εtot(r) = εr(r) + εθ(r) is established
by evaluating the strain via FEM calculations based on the
AFM profile; see Supporting Figure S6. The spatial depend-
ence of ω2g is shown in Figure 4c, and it is best reproduced
with a shift rate Δ2g = (28.5 ± 8.4) cm−1/% and a Grüneisen

Figure 3. IR-active mode versus strain. (a) 2D AFM image of a hBN bubble exhibiting a circular symmetric shape but on its edge, where smaller
satellite bubbles nucleated. The bubble has R = 2.27 μm and hm = 267 nm (hm/R = 0.117) and was created in a deuterated sample (beam energy
equal to 6 eV) to minimize the bubble thickness. (b) Comparison between the AFM profile acquired along a diameter of the bubble (highlighted in
panel a by a cyan dashed line) and the profile obtained by FEM calculations. (c) Left: Radial dependence, obtained by FEM calculations, of the in-
plane circumferential (εθ) and radial (εr) strain components, a sketch of which is depicted as the inset. Right: Spatial distribution of the total in-
plane strain εtot = εr + εθ. (d,e) Color map of the near-field amplitude S(ω,r) (d) and corresponding spectra (e), where the IR-active mode (E1u) is
visible. The measurements were taken along the gray short dashed line shown in panel a. The second harmonic is considered here. (f) IR phonon
frequency dependence on the radial distance r, as deduced from the spectra shown in panel e and the AFM profile. The third-harmonic data are
also included here. The black solid line is a fit to the data assuming a linear dependence of the phonon frequency on εtot, provided by eqs 3 and 5.

Table 1. Effect of Strain on the Vibrational Modesa

mode ωt
0 (cm−1) Δ (cm−1/%) γt Σt (cm

−1/%) βt βt/γt

E1u (IR) 1369.9 ± 2.3 29.4 ± 1.8 2.15 ± 0.12
1369.7 ± 2.4 29.5 ± 1.4 2.15 ± 0.10
1369.0 ± 5.2 36.2 ± 3.6 2.64 ± 0.27

E2g (Raman) 1370b 24.6 ± 0.60 1.79 ± 0.04 11.2 ± 1.9 0.82 ± 0.14 0.46 ± 0.08
1370b 25.1 ± 4.5 1.83 ± 0.33
1370b 28.5 ± 8.4 2.08 ± 0.61 15.6 ± 3.8 1.14 ± 0.28 0.56 ± 0.14
1370b 33.2 ± 5.2 2.43 ± 0.40

aParameters obtained for the E1u and E2g from the nano-FTIR and Raman measurements, respectively, The frequency at zero strain (ωt ), shift rate
(Δ), Grüneisen parameter (γt ), splitting rate (Σt ), shear deformation potential (βt ), and ratio γt/βt were estimated for several bubbles. bThis value
was kept fixed because it was otherwise affected by too large uncertainties.

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.1c04197
Nano Lett. 2022, 22, 1525−1533

1528

https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.1c04197/suppl_file/nl1c04197_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.1c04197/suppl_file/nl1c04197_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.1c04197/suppl_file/nl1c04197_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04197?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04197?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04197?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04197?fig=fig3&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.1c04197?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


parameter (see eq 5) γ2g = 2.08 ± 0.61. The extrapolation
frequency at zero strain was set at 1370 cm−1, which is greater
than the corresponding bulk mode (1366.2 cm−1), like in the
case of the E1u IR-active mode and consistent with published
results.29,63,64 Similar measurements performed on different
bubbles are shown in Supporting Note 2, and the estimated
parameters are displayed in Table 1. We also performed a
statistical analysis of the shift at the bubble summit including
many other bubbles, giving average Grüneisen parameters γ2g =
2.04 ± 0.48 (Δ2g = (27.9 ± 6.6) cm−1/%); see Supporting
Note 3. Our statistical analysis also shows how E1u and E2g are
characterized by similar Grüneisen parameters.
Previous μ-Raman studies on hBN bubbles created by H-

plasma treatments31 reported only a modest shift of ∼3 cm−1

between the bubble center and the bulk hBN. Similar small
shifts (∼3 cm−1) were observed in hBN monolayers subject to
thermal compression (biaxial strain of −0.17%),29 resulting in
γ2g = 0.62. Finally, uniaxial strains of up to 0.4% were applied
to thin hBN flakes (two to four layers) using a bending
apparatus, achieving frequency softenings of <6 cm−1.
Grüneisen parameters γ2g between 1.77 and 2.07 were
estimated in this case28 and were, on average, slightly lower
than our estimates. (See Table 1.) By comparison with the
current literature, our approach permits us to achieve a much
larger total strain, on average, equal to ∼1.9%, with
unprecedented shifts in excess of 50 cm−1.
In addition to the E2g mode shift, a splitting is expected in

the bubbles due to the imbalance between εθ and εr; see
Supporting Figure S6. Figure 5a displays an intensity map
formed by polarization-dependent μ-Raman spectra recorded
on a given point of the same bubble of Figure 4. The point is
790 nm away from the center (i.e., r/R = 0.49) and is marked
by a black dot superimposed on the strain anisotropy degree
plot in Figure 5c, with the anisotropy being defined as α = (εr
− εθ)/(εr + εθ). Therein, the arrows indicate the strain
direction. The radial distance r was determined by the
relationship between ω2g and r given in Figure 4c. Each
spectrum of Figure 5a was recorded by keeping the
polarization direction of the laser fixed at an arbitrary,
unknown angle ϕ0 with respect to a reference crystal direction
(e.g., the armchair/zigzag direction). Likewise, strain is

oriented along the bubble radius, and its direction is thus
also fixed at an unknown angle θ with respect to the same
lattice reference. The angle ϕ between the polarization of the
Raman-scattered and Raman-exciting photons was then varied
from 0 to 360°. Whereas the E2g bulk mode at 1366.2 cm−1

remains constant in intensity and frequency, the strain-
softened E2g mode of the bubble in the 1320−1340 cm−1

range exhibits a marked angular dependence of its center-of-
mass frequency, pointing to a mode splitting. This is
exemplified in Figure 5b, showing two μ-Raman spectra
recorded with opposite polarizations (ϕ = 0 and 90°). Indeed,
it can be demonstrated that the intensities I2g

± of the E2g
± modes

split by uniaxial strain are given by24

ϕ ϕ θ

ϕ ϕ θ

= + +

= + +

= + =

+

−

+ −

c

c

c

I cos ( 2 )

I sin ( 2 )

I I I

2g
2 2

0

2g
2 2

0

2g 2g 2g
2

(7)

where c is a constant. By performing a line-shape fitting of the
Raman spectra (see Supporting Note 4), we extracted I2g

± as a
function of ϕ, where E2g

+ and E2g
− refer to the high- and low-

frequency components, respectively. Figure 5d shows the
resulting polar plot obtained from the data of panel a. The
reference angle (2ϕ0 + θ) is set to zero for simplicity reasons.
The two components are clearly in counter phase, as expected.
Figure 5e shows a similar set of measurements acquired on a
point of the bubble positioned symmetrically at 90° with
respect to the previous one (at r = 680 nm); see the gray dot in
panel c. In this case, the strain direction is given by θ′ = θ +
90°, and as a consequence of eq 7, the E2g

± components follow
an angular dependence that is π/2 out-of-phase with respect to
that of the previous point (Figure 5d). These results are fully
consistent with the strain field calculated numerically, whereby
the εr component dictates the strain direction. Finally, the μ-
Raman spectra recorded at the bubble center (white dot in
panel c), where the strain is equi-biaxial, show no mode
splitting; see Figure 5f. Other polarization maps were acquired
in different points of the bubble. For each point, the average
frequency ω2g

av corresponds to a given r value. (See Figure 4c.)
In turn, via numerical simulations (see Supporting Figure S6),

Figure 4. Raman-active mode versus strain. (a) False-color image of the intensity of the E2g Raman mode as a function of the position along a
diameter of a bubble. The bubble has R = 1.61 μm and hm = 179 nm (hm/R = 0.111) and was created in a deuterated sample (beam energy equal to
25 eV). (b) Raman spectra corresponding to the map of panel a. (c) E2g Raman-mode frequencies as a function of the distance from the center of
the bubble. The solid line is a linear fit to the frequency versus r behavior, with γ2g being the fitting parameter. Inset: AFM image of the investigated
structure. The dashed line indicates the diameter along which the spectra were measured.
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we obtain εshear(r) = εdiff(r) = εr(r) − εθ(r). Figure 5g shows
the dependence of the mode splitting σ2g versus εshear(r).
Considering eq 6, we estimate a splitting rate Σ2g = 15.6 ± 3.8
cm−1/% and a shear deformation potential β2g = 1.14 ± 0.28.
Thus for this bubble, we get β2g/γ2g = 0.56 ± 0.14. We
performed similar measurements on another bubble with a
lower Grüneisen parameter (see Supporting Note 4) and
found β2g = 0.82 ± 0.14 and β2g/γ2g = 0.46 ± 0.08 (see Table
1), showing how the ratio β2g/γ2g is less affected by fluctuations
than β2g and γ2g. We are aware of only one previous report of

the hBN shear potential in the few-layer limit, where the ratio
β2g/γ2g was found to vary between 0.45 and 0.52.28

III. CONCLUSIONS

We irradiated bulk hBN flakes with low-energy hydrogen or
deuterium ions. The ions penetrate through the crystal for a
few nanometers, and molecular hydrogen or deuterium forms,
inducing the blistering of a few atomic planes and hence the
formation of micro/nano-metric wrinkles or bubbles. Wrinkles
or bubbles predominate for flake thicknesses of t ≲ 10 nm or
≳10 nm, respectively. The bubbles were investigated in detail
because they exhibit tensile strains with a remarkably high
∼2% maximum value, exceeding that typically achieved for
hBN in bending/stretching devices.28,29,41 The effects of strain
on the IR-active (E1u) and Raman-active (E2g) in-plane modes
were studied over the bubble surface by spatially resolved
nano-FTIR and polarization-dependent μ-Raman, respectively.
The large amount of strain and its anisotropic character toward
the edge of the bubbles permitted to derive shift and splitting
rates on the order of 30 and 15 cm−1/%, respectively. These
values are comparable to those reported in graphene and are
about one order of magnitude larger than those found in
TMDs, InSe, and black phosphorus.24 These findings show
that the vibrational properties of hBN are extremely sensitive
probes of mechanical deformations, and thus they can be
exploited to assess the stress status of two-dimensional HSs
and hBN-based quantum emitters.
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