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Multiple-magnon excitations shape the spin spectrum of cuprate parent compounds
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Thanks to high resolution and polarization analysis, resonant inelastic x-ray scattering (RIXS) magnetic
spectra of La,CuQy, Sr,CuO,C;; and CaCuO, reveal a rich set of properties of the spin-!/2 antiferromagnetic
square lattice of cuprates. The leading single-magnon peak energy dispersion is in excellent agreement with the
corresponding inelastic neutron scattering measurements. However, the RIXS data unveil an asymmetric line
shape possibly due to odd higher order terms. Moreover, a sharp bimagnon feature emerges from the continuum
at (1/2, 0), coincident in energy with the bimagnon peak detected in optical spectroscopy. These findings show
that the inherently complex spin spectra of cuprates, an exquisite manifestation of quantum magnetism, can be
effectively explored by exploiting the richness of RIXS cross sections.
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The spin-1/2 antiferromagnetic two-dimensional (2D)
square lattice is one of the best studied quantum systems
and represents a benchmark for quantum magnetism. Notably,
it depicts the spin ground state arrangement in the CuO,
planes, common to all high-temperature superconducting lay-
ered cuprates, when no doping charge is present and the
antiferromagnetic order impedes charge transport and ener-
getic magnons dominate the spin spectra [1,2]. Upon doping,
long range antiferromagnetism is substituted by supercon-
ductivity but short range in-plane spin correlations survive,
giving rise to damped magnons of comparably high energy
[3-6]. Indeed, spin fluctuations are considered to be a main
ingredient of the Cooper pairing “glue” in these materials [7],
as suggested by the correlation between 7, and the exchange
interaction J in certain cuprate families [8—12]. The spectrum
of magnetic excitations has been extensively used to exper-
imentally determine the coupling parameters with physical
importance [1,2,10,13-20], such as J, the hopping integral ¢,
and the Coulomb repulsion U.

The magnon dispersion is traditionally measured by in-
elastic neutron scattering (INS) and reproduced, within the
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linear spin-wave theory, by an improved Heisenberg model
that includes higher order terms [2,10,21]. In the last decade
resonant inelastic x-ray scattering (RIXS) [22] has proved
to be a valid alternative to INS, in particular for cuprates
[3,5,6,23,24] and other transition metal compounds with large
superexchange coupling [25-29].

Neutrons interact only with the electrons’ spin, not with
the charge, and with the atomic nuclei, making the theoretical
treatment of the scattering cross sections rather straightfor-
ward [30]. Consequently, once the phononic background is
duly subtracted, the interpretation of the INS experimental
spectra in terms of magnetic scattering function is in principle
simple but, at the same time, it misses part of the richness
of the many-body problem. Instead RIXS allows for a wide
energy loss range measured at constant resolving power. Com-
pared with INS it can profit from much larger cross sections
and incident flux but requires a more involved theoretical
analysis [31,32], with less stringent selection rules. Therefore,
RIXS has the potential to provide more information on the
problem if one is able to disentangle the complexity of the
spectra by exploiting good energy resolution and the analysis
of the scattered x-rays’ polarization (polarimetric analysis)
[33,34].

These differences in the cross sections stimulated a close
comparison of the two techniques, and some doubts were
raised on the possibility of deriving the actual spin dynamical
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FIG. 1. (a)—(c) Single magnon dispersion determined by RIXS for the three compounds and by INS for SCOC and LCO (Refs. [2] and
[21], respectively). (d)—(f) RIXS spectra at (0.4,0) measured with 7 incident photon polarization (black circles) and their main constituents
obtained by a phenomenological fitting (red line): Gaussian elastic peak (brown), two resolution limited phonon contributions (pink), single

magnon with Fano line shape (blue), even order multimagnons (green).

structure factor S(q, ) from RIXS data. Indeed, in the very
first RIXS work Braicovich et al. [35] had already shown
that in La,CuQy the single-magnon energy dispersion in INS
and RIXS coincide almost perfectly, a fact that has been
recently confirmed more extensively [36]. However, Plumb
et al. [21] pointed out some discrepancies in the magnetic
excitation spectrum of Sr,CuO,Cj, close to q = (1/2,0) (X
point) of the two-dimensional (2D) Brillouin zone [37], where
the RIXS-derived magnon energy exceeds that of INS by
~25meV, i.e., about 10%. In this Letter, we start from this
single-magnon issue and unveil a richer scenario for the
RIXS data. We report high-resolution RIXS measurements
on a La,CuQy4 (LCO) thin film (~100 nm thick), Sr,CuO,C;,
(SCOC) crystals, and a CaCuO, (CCO) thin film, with special
emphasis on the low-energy (magnetic) portion of the spectra
and on the comparison with the most recent INS data on the
same compounds, where available. A polarimetric analysis
at selected momentum points, supplemented with theoretical
computations, allows us to constrain the symmetry of the
different contributions to the RIXS line shape.

The RIXS spectra were acquired using the ERIXS
spectrometer of the ID32 beamline [38] at the European Syn-
chrotron ESRF, which includes the polarimeter used for the
analysis of the polarization of the scattered light [33,34]. The
x-ray energy was tuned to the Cu L3 edge, at about 931 eV.
The incoming x rays were polarized either parallel () or
perpendicular (o) to the scattering plane (see Supplemental
Material (SM) Fig. S1 [39]). The total energy resolution was
~47meV for the LCO and CCO, ~32meV for the SCOC
and ~65meV for the polarimetric spectra. We mapped the
magnon dispersion for the three compounds with 7 polariza-
tion along the (1/4,1/4) — (1/2,0) — (0,0) — (1/4,1/4) path
in reciprocal space.

Figure 1 shows the low energy-loss portion of selected
spectra (see SM Fig. S2 for the complete set of data [39]).

Each spectrum has been decomposed by phenomenological
multipeak fitting into an elastic line at zero energy loss, a
phonon contribution and its overtone, a Fano line shape (com-
prising a leading single-magnon peak and a multimagnon
tail), and an additional multimagnon peak, in order of in-
creasing energy loss, as shown in panels (d)—(f) of Fig. 1.
The elastic and the multimagnon peaks were modeled using
Gaussian functions, while for the phonon peaks we employed
a Lorentzian shape convoluted with the experimental resolu-
tion. For the additional multimagnon contribution, the choice
of line shape is not crucial since the spectrum is very broad
energywise. For the single-magnon peak and its tail, we found
that the Fano asymmetric function gives the best results in
the fitting procedure, and its implications will be discussed
below. We emphasize that the peak is not resolution limited
for g > 0.35 r.l.u. along the [1,0] direction and that a Fano
line shape gives much better results across the whole Bril-
louin zone, especially on the low-energy side of the peak, as
compared to a more conventional damped oscillator function
[6,44]. The spectra close to q = (0, 0) are not shown because
the elastic component is too intense there and hinders the
determination of the loss features. All three compounds show
the same asymmetric line shape of the main peak, indicating
that this is a common feature of 2D spin-1/2 lattices and of
cuprates.

The extracted single-magnon peak positions are shown in
Figs. 1(a)-1(c) and compared to the INS results taken from
literature when available [2,21]. The LCO dispersion is almost
superimposed to the INS data over the whole Brillouin zone
in agreement with previous literature [3,24,36]. In SCOC, the
agreement is very good everywhere except close to the X
point. However, the better resolution of our RIXS data with
respect to those of Ref. [45], previously used in Ref. [21]
for the comparison, allows us to better model the line shape
and to reduced the energy difference to ~15meV. The small
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FIG. 2. Polarimetric spectra for SCOC at different q. The red and
blue solid lines are the result of a three-points-adjacent averaging
of the experimental data points (squares). 7’ and ¢’ indicate the
scattered polarizations.

difference at (!/2,0) is mainly due to the inadequacy of a
single peak to reproduce the actual spectral shape, whose
determination is more challenging for INS than RIXS in this
region of the momentum space where the scattering intensity
is particularly low. Indeed, the X point is characterized by a
series of very interesting anomalies (weakening and broaden-
ing of the leading magnon peak, emergence of high energy
tail) both in theoretical studies [46,47] and in physical real-
izations of spin-1/2 square-lattice antiferromagnetic systems
irrespective of the actual exchange energy scale [2,48,49].
We can thus conclude that no significant discrepancy between
INS and RIXS single-magnon dispersion remains if the data
are measured with adequate energy resolution and statistical
quality and are analyzed with the proper line shape.

The richness of the RIXS spectra invites one to go beyond
the traditional analysis made on INS data and to better exploit
the complexity of the RIXS cross sections. In that spirit, we
acquired RIXS spectra of SCOC with analysis of the scattered
light polarization at three different q values (Fig. 2). Mea-
surement methods, analysis and spectral assignments were
made as in Refs. [33,34]. Figure 2(a) confirms that the main
peak used to draw the single-magnon dispersion of Fig. 1
has crossed polarization character wo’ (the prime indicates
the scattered x-rays’ polarization). The rotation of the pho-
ton polarization after the scattering process, which implies a
transfer of angular momentum, is needed for an odd number
of magnons to be excited, i.e., for AS = 1 spin flip process.
Conversely the parallel polarization scattering channels must
correspond to AS = 0 spin conserving excitations, i.e., to an
even number of magnons simultaneously excited [50]. With

this in mind, the polarimetric data appear immediately of
nontrivial complexity: They disprove the simplistic assign-
ment of the high energy tail to two magnons only and they
reveal that parallel polarization spectra are different when 7
or o incident polarization is used. The latter is particularly
evident by comparing the blue curves of Fig. 2 in panels of
the same row, and is very striking at the X point. It is often as-
sumed that, in o7’ or 7o’ polarization (AS = 1 excitations),
the scattering involves a single on-site spin-flip operator S‘f,
leading to a RIXS spectrum proportional to the transverse
magnetic structure factor S*(q, w), irrespective of the relative
orientation between electric field and lattice. From theoretical
studies the latter is known to consist of a single-magnon
peak and a continuum of odd number of magnons develop-
ing above it [18,46,51,52], with the latter having maximum
relative spectral weight (40%) at (1/2, 0) [46,47] and around
21% weight on average in the whole Brillouin zone [18].
The crossed polarization line shapes at (1/4, 1/4) and (1/4, 0)
[red in Figs. 2(c)-2(f) are consistent with these predictions.
Furthermore, the o’ polarization at (1/2, 0) shows relatively
more weight in the continuum as expected from the theory.

Conversely, the ox’ polarization at (1/2,0) does not fit
this scenario. Indeed, one might expect o’ and wo’ (red
lines) to be proportional to each other and, eventually, to
S1((1/2,0), ), which is clearly not the case. This implies that
the scattering operator in RIXS, in addition to the standard
on-site spin-flip process §* (r) includes nonlocal contributions
that can be sensitive to the electric field (i.e., photon polariza-
tion) orientation. A possible explanation is a generalization of
the three spin operator proposed in Ref. [57], SfSr . SH(; with
a matrix element depending on the projection of the electric
field on the bond direction §. Interference between these two
channels allows one to rationalize the need for a Fano line
shape for the fitting, and the different spectral shapes between
RIXS and INS and between the 7o’ and o7’ configurations.
Multimagnon scattering in RIXS was discussed before [52]
as part of the standard S*(q, w). Here we propose that the
weight of these excitations can be modulated by the photon
polarization (see SM [39]).

We now turn to the AS = 0 excitations, which can be
probed in RIXS as well as Raman and infrared (IR) spec-
troscopy. In all these cases the scattering operator involves
two spin operators B = S: - S;4s. and can access excitations
with an even number of magnons. In RIXS the scattering
operator is usually derived assuming that the main effect of
the intermediate 2p°3d'° state is to transiently eliminate one
magnetic site. This local approximation [35,57] yields a polar-
ization independent line shape of the even order multimagnon
spectrum. However, also in this case, we find that the line
shape at the X point is strongly dependent on the polarization
(blue lines in Fig. 2), which again calls for nonlocal effects of
the core hole. Here the polarization effects can be incorporated
already at the leading two-spin operator channel, which facil-
itates an explicit computation of the spectral shape. Versions
of such polarization dependent operators have already been
proposed for RIXS [54,58]. We adopt the following form:
A" (q) = f(q) Y, (@& 8)(- ¢°)B%(q). Here &° are the po-
larization vectors of the incoming and outgoing photons and
B%(q) is the Fourier transform of Bﬁ with f(q) a polarization
independent form factor. The resulting line shape is closely
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FIG. 3. (a) Blue shows the IR line shape from Ref. [53] plotted
as imaginary part of the dielectric function (assuming a dielectric
constant €; = 5 and a phonon frequency shift of 0.61 meV). The
other curves are the interacting spin-wave theory with J = 0.108 eV;
see Refs. [14-16,54] for details. (b) The 7w’ experimental RIXS line
shape and the theoretical two-magnon theory with the same energy
position used to fit the IR spectra and an experimental Gaussian
broadening FWHM = 65 meV. The inset shows the multimagnon
response using exact diagonalization in the Heisenberg model in a
32 site cluster as implemented in Refs. [55,56].

related to the theory of phonon-assisted multimagnon excita-
tion, where the same associated spectral function appears but
momentum integrated with a different form factor [14-16].

Figure 3(a) shows the IR experiment [53,59] together
with an interacting spin-wave theory (ISWT) computation
restricted to two magnons [14,15]. This explains the lead-
ing peak in terms of the momentum-integrated two-magnon
response but misses substantial weight in higher order side-
bands, which was thus assigned to four-magnon and higher
multimagnon processes [14-16,53,59]. We also show the
two-magnon spectral function at specific reciprocal space
points, corresponding to the RIXS (green and pink) or Ra-
man (brown) line shape. Upon momentum integration, the IR
line shape is dominated by a two-magnon resonance dubbed
the bimagnon, which corresponds to the proposed RIXS line
shape in the wr" channel at the X point. Indeed, the theoretical
bimagnon line shape, whose energy is assigned by the IR
experiment, explains fairly well the leading observed RIXS
peak [panel (b)]. It may appear surprising that the bimagnon
has nearly the same energy as the single magnon [Fig. 2(a)].
This is explained by the attractive magnon-magnon interac-
tion and by the fact that the bimagnon has contributions from
low-energy magnons whose individual momentum is away
from the zone boundary. Strikingly, it is clear from Fig. 3 that
both RIXS and IR leave a similar fraction of spectral weight in
higher multimagnon processes, further supporting a common
explanation.

In Fig. 3(a) we show also the 0o’ RIXS two-magnon ISWT
prediction, which gives a broad and very weak peak (pink,

multiplied by 5 to make the curves visible) in agreement with
the absence of the ~0.3 eV bimagnon peak in the experimen-
tal oo’ spectrum shown in blue in Fig. 2(b). The structure
at ~0.5eV can be thus assigned to four-magnon and higher
multimagnon processes. Indeed, the inset in Fig. 3 shows that
the dramatic difference between the two polarization combi-
nations (oo’ and 7 r") is qualitatively reproduced if instead of
restricting to two magnons we perform an exact computation
in a small cluster. This treatment, however, underestimates
the relative weight of high-energy sidebands. The same prob-
lem arises for the IR line shape and was explained as due
to finite size effects and a substantial four-ring exchange
term in the Hamiltonian [16], which was omitted here for
simplicity.

The energy of the bimagnon at (1/2,0) is constrained by
the IR experiments but the dispersion is not. The energy
of the bimagnon at (1/4, 1/4) implies a smaller dispersion than
in the interacting spin-wave theory computations (SM Fig. S4)
which may also be due to extra terms in the Hamiltonian and
calls for further theoretical analysis.

Taking full advantage of the additional information con-
tained in the RIXS line shape (both in parallel and crossed
polarization channels) requires computations which include
nonlocal effects in the scattering cross section and resonant
effects in the matrix elements and selection rules, which we
hope our work will stimulate. In the future, the present find-
ings can be extended to other magnetic systems and doped
cuprate compounds. In IR experiments a remarkably different
situation was found for spin-1 2D antiferromagnetic square
lattice, where four-magnon and higher order processes remain
negligibly weak [15] and the two-magnon theory suffices to
reproduce the experimental line shape [60]. We can under-
stand this drastic difference by noting that these computations
are based on a 1/S expansion, which might pose convergence
problems for S < 1. Our results are further evidence that § =
1/2 systems belong to a different class and are characterized by
proximity to more exotic ground states [61], as also proposed
earlier by analyzing optical [62] and INS studies [2,48,49].
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