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Abstract: The paper presents a multi-fidelity extension of a local line-search-based derivative-free
algorithm for nonsmooth constrained optimization (MF-CS-DFN). The method is intended for use in
the simulation-driven design optimization (SDDO) context, where multi-fidelity computations are
used to evaluate the objective function. The proposed algorithm starts using low-fidelity evaluations
and automatically switches to higher-fidelity evaluations based on the line-search step length. The
multi-fidelity algorithm is driven by a suitably defined threshold and initialization values for the step
length, which are associated to each fidelity level. These are selected to increase the accuracy of the
objective evaluations while progressing to the optimal solution. The method is demonstrated for a
multi-fidelity SDDO benchmark, namely pertaining to the hull-form optimization of a destroyer-type
vessel, aiming at resistance minimization in calm water at fixed speed. Numerical simulations are
based on a linear potential flow solver, where seven fidelity levels are used selecting systematically
refined computational grids for the hull and the free surface. The method performance is assessed
varying the steplength threshold and initialization approach. Specifically, four MF-CS-DFN setups
are tested, and the optimization results are compared to its single-fidelity (high-fidelity-based)
counterpart (CS-DFN). The MF-CS-DFN results are promising, achieving a resistance reduction
of about 12% and showing a faster convergence than CS-DFN. Specifically, the MF extension is
between one and two orders of magnitude faster than the original single-fidelity algorithm. For low
computational budgets, MF-CS-DFN optimized designs exhibit a resistance that is about 6% lower
than that achieved by CS-DFN.

Keywords: derivative-free; line search; multi-fidelity; simulation-driven design optimization

1. Introduction

Simulation-driven design optimization (SDDO) [1] is an emerging paradigm that
offers the possibility to define innovative configurations and optimized designs of complex
engineering systems, integrating in a rigorous mathematical framework physics-based
computations with numerical optimization algorithms. In many engineering applications,
the accuracy of SDDO solutions relies on the use of high-fidelity solvers, which are often
computationally expensive. The assessment and optimization of the design performance
in realistic operating and environmental conditions, which are always permeated with
stochasticity, require computational efforts that can be unattainable for most users. To give
an example, recent research showed how an accurate Unsteady Reynolds Averaged Navier–
Stokes simulation to evaluate the statistically significant performance of ship maneuvering
in irregular waves may require up to 1M CPU hours on HPC systems [2].

In order to reduce the computational cost associated to SDDO, several methodologies
have been introduced, integrated, and succesfully applied to complex engineering problems,
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see e.g., [3]. Methods to reduce the computational cost include linear [4] and nonlinear [5]
approaches to design-space dimensionality reduction, adaptive surrogate modeling [6], ef-
ficient optimization algorithms [7], and multi-fidelity optimization approaches [8]. Namely,
multi-fidelity methods leverage on a fidelity spectrum of computational models (from low
to high fidelity), with the objective of maximizing the model accuracy while minimizing
the associated computational cost [9,10]. The fidelity spectrum may stem from using dif-
ferent physical models [11,12], spatial and/or time discretizations (e.g., grid size and time
step) [13–16], multidisciplinary coupling (e.g., one- or two-way, tight or loose coupling,
etc.) [17,18], degree of solution convergence [19,20], model dimensionality [21,22], and a
combination of experimental and numerical data [23,24].

In many (or even most) cases, multi-fidelity methods use surrogate models to fuse
information made available by multi-fidelity computations of the design performance [25].
Surrogate-based optimization methods may be classified as either global or local ap-
proaches. Global methods, such as polynomial chaos [26], Gaussian processes [27], and
radial basis functions [28], provide a global representation of design objectives (and con-
straints, if required) in the entire design space. This may be achieved by modeling suitable
bridge functions (additive, multiplicative, or hybrid additive-multiplicative) [10,29,30]
between hierarchical fidelity levels. Then, the resulting global multi-fidelity surrogate is
explored by global optimization algorithms. The design optimization and surrogate model
training may or may not be integrated using adaptive sampling procedures [31], including
resource-[32] and domain-[33] aware approaches to active learning. Local methods such
as trust region [34,35] and local surrogate [16] methods fuse multi-fidelity information
to provide accurate local approximations of design objectives/constraints (and possibly
their derivatives). Local optimization algorithms drive the search for the optimum using
the multi-fidelity local model, managing iteratively the trust region center, radius, and
model construction, until convergence is achieved [34]. An example is provided in [36],
where a unified multi-fidelity quasi-Newton approach is presented that identifies search
directions from high-fidelity data, and uses multi-fidelity local models to perform line
searches. The method is applied to analytic test problems in [36] and to aero-structural
design optimization in [37]. Surrogate-based methods are very promising and have shown
their efficiency and effectiveness. Nevertheless, in some cases their training can be costly
and their accuracy may decrease (or even drop) as objectives and constraints become noisy
or discontinuous, or the number of design variables becomes large [8].

For these reasons, surrogate-free multi-fidelity optimization methods may be used as
viable alternatives to surrogate-based methods.

In [38,39] a grid-search algorithm is applied in combination with electromagnetic
simulations using spatial grids of variable resolution. The optimization starts on the
coarsest spatial grid and is iterated over refined grids. Surrogate models are not used
until the finest grid is adopted. Surrogate-free multi-fidelity optimization methods for
engineering applications are still little discussed and are worthy of further investigation.

The objective of the present work is the extension of the local line-search-based
derivative-free algorithm for nonsmooth constrained optimization (CS-DFN) [40] to multi-
fidelity computations without involving surrogate models. The algorithm automatically
selects the fidelity to use for the objective function evaluation, based on an internal step-
length parameter. Namely, starting from the lowest fidelity, the proposed method moves to
higher fidelities as the line-search step length converges to a given threshold.

The method is assessed using an SDDO benchmark pertaining to the hull-form op-
timization of a destroyer-type vessel in calm water. The benchmark is taken from the
NATO Science and Technology Organization, Applied Vehicle Technology, Research Task
Group 331 on “Goal-Driven, Multi-Fidelity Approaches for Military Vehicle System-Level
Design” [8]. The optimization aims at reducing the ship total resistance at fixed speed and
even keel condition. Shape modifications are based on 14 design parameters, modifying
globally the hull geometry. The resistance is evaluated by a potential flow solver [41].
Seven fidelity levels are used, which are defined by seven computational grids (spatial
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discretization). Four algorithmic setups are assessed, where different setups identify differ-
ent step-length convergence thresholds and reinitialization values. Finally, the proposed
multi-fidelity method is compared to its single-fidelity counterpart.

The remainder of the paper is organized as follows. Section 2 introduces the multi-
fidelity algorithm. Section 3 describes the SDDO benchmark problem. The numerical
results are discussed in Section 4 and, finally, the conclusions are discussed in Section 5.

2. Multi-Fidelity Linesearch-Based Derivative-Free Approach for Nonsmooth
Constrained Optimization Algorithm

The proposed algorithm extends the CS-DFN algorithm [40] to the multi-fidelity
context, which is here denoted as MF-CS-DFN.

Consider the single-objective and bound-constrained minimization problem

minimize f (x)
subject to x ∈ X,

(1)

where
X = {x ∈ RN : xl ≤ x ≤ xu} (2)

is a compact set of bound constraints (the domain lower xl and upper xu bounds are both
finite) for the variables x ∈ RN , with N being the number of variables, and the objective
function f (x) being Lipschitz continuous.

The MF-CS-DFN method described in Algorithm 1 follows an iterative four-step
procedure: (1) explores the i-th coordinate direction ei with a tentative steplength α̃i,
evaluates the objective function with the r-fidelity level πr; (2) the Continuous Search (CS)
procedure (see Algorithm 2) [42,43] is used to identify a step length αi that can guarantee
a sufficient reduction of the objective function along the ei direction; (3) provided that
the actual (αi) and tentative (α̃i) step lengths are smaller than a given threshold η > 0, a
further direction d is explored through the Projected Continuous Search (PCS) procedure (see
Algorithm 3); and (4) if the step lengths in all directions are all below η and the r-fidelity is
not the highest, the fidelity is increased and the step lengths are reinitialized. The process,
starting from the lowest fidelity level, is repeated until the convergence of the algorithm is
achieved with the highest fidelity available.

2.1. Continuous Search

The CS takes as inputs the tentative step length α̃i, the current point y, and a direction
p and returns as outputs the actual step α and the computed direction pout, which is equal
to ±p. The procedure explores a direction p searching for the largest α such that sufficient
decrease is obtained at point y + αp. If direction p cannot provide a sufficient decrease,
then the opposite direction is tested before declaring a failure, thus returning the null step
α = 0. When the null step size is returned after the exploration of direction di, the method
decreases the tentative step for the next iteration, i.e., α̃i

new = θα̃i, θ ∈ (0, 1). Otherwise, the
tentative step for the next iteration is possibly augmented by setting α̃i

new = α.

2.2. Projected Continuous Search

The PCS carries out an exploration along direction p (or −p if needed). However,
since the direction p = d used by the PCS is not equal to ±ei for some i ∈ {1, . . . , N},
projections onto X must be taken to ensure feasibility of the generated points. Then, given
the current point y at step k, the procedure first evaluates the function at [y± α̃dk][xl ,xu ]. In
case a sufficient reduction of the function value is obtained, then an extrapolation along
the search direction is performed so that a suitable step length α is computed, and it is
used as a tentative step length for the next iteration, i.e., α̃new = α. On the other hand,
if at [y± α̃dk][xl ,xu ] a sufficient reduction of the function value is not obtained, then the
tentative step length at the next iteration is suitably reduced by a scale factor, i.e., α̃new = θα̃,
θ ∈ (0, 1).
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Algorithm 1 MF-CS-DFN

Input. θ ∈ (0, 1), ξ > 0, η > 0, x0 ∈ X, α̃ > 0, α̃i > 0, di = ei, for i = 1, . . . , N such that
||di|| = 1
Let π1, . . . , πr with r ≥ 1 be the precision levels, such that πi+1 < πi, i = 1, . . . , r− 1
Set ̄← 1 and x← x0

for k = 0, 1, . . . do . Start the iterations
Set y← x
for i = 1, . . . , N do

Compute α and di
new by the Continuous Search (α̃i, y, di; α, di

new) . Call CS
if (α = 0) then

Set α̃i
new = θα̃i

else
Set α̃i

new = α

Set αi ← α, di ← di
new, y← y + αdi

new

if (maxi=1,...,n{αi, α̃i} ≤ ξ) then
Compute α and d̃ by the Projected Continuous Search (α̃, y, dk; α, d̃) . Call PCS
if (α = 0) then

α̃new = θα̃
else

α̃new = α and y← [y + αd̃][xl ,xu ]

else
Set α̃new = α̃

if (maxi=1,...,n{αi, α̃i} ≤ η and ̄ < r) then
̄← ̄ + 1 . Increase the accuracy

Set α̃i ← α̃new, for i = 1, . . . , N
Find x ∈ X such that fπ ̄(x) ≤ fπ ̄(y)

Algorithm 2 Continuous Search (α̃, y, p; α, pout)

Data. γ > 0, δ ∈ (0, 1)
Step 1. Compute the largest ᾱ such that y + ᾱp ∈ X. Set α = min{ᾱ, α̃}
Step 2. If α > 0 and fπ ̄(y + αp) ≤ fπ ̄(y)− γα2 then set pout = p and go to Step 6
Step 3. Compute the largest ᾱ such that y− ᾱp ∈ X. Set α = min{ᾱ, α̃}
Step 4. If α > 0 and fπ ̄(y− αp) ≤ fπ ̄(y)− γα2 then set pout = −p and go to Step 6
Step 5. Set α = 0, return α and pout = p
Step 6. Let β = min{ᾱ, (α/δ)}
Step 7. If α = ᾱ or fπ ̄(y + βpout) > fπ ̄(y)− γβ2 return α and pout
Step 8. Set α = β and go to Step 6

Algorithm 3 Projected Continuous Search (α̃, y, p; α, pout)

Data. γ > 0, δ ∈ (0, 1)
Step 0. Set α = α̃
Step 1. If fπ ̄([y + αp][xl ,xu ]) ≤ fπ ̄(y)− γα2 then set pout = p and go to Step 4
Step 2. If fπ ̄([y− αp][xl ,xu ]) ≤ fπ ̄(y)− γα2 then set pout = −p and go to Step 4
Step 3. Set α = 0, return α and pout = p
Step 4. Let β = α/δ
Step 5. If fπ ̄([y + βpout][xl ,xu ]) > fπ ̄(y)− γβ2 return α, pout
Step 8. Set α = β and go to Step 4

3. SDDO Benchmark Problem

The SDDO benchmark pertains to the total resistance (R) reduction of a destroyer-
type vessel in calm water at fixed speed, corresponding to a Froude number (Fr) equal to
0.28. Specifically, the hull under investigation is the DTMB 5415 model, which is a vessel
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that is extensively used as a benchmark for experimental [44] and computational fluid
dynamics [45] as well as for shape optimization problems [46]. The current optimization
problem has been defined within the activities of the NATO Science and Technology
Organization, Research Task Group-Applied Vehicle Technology 331 on “Goal-Driven,
multi-fidelity approaches for military vehicle system-level design” [8], and it reads

minimize ∆R(x)/R0 with x ∈ RN

subject to Lpp(x) = Lpp0

and to ∇(x) = ∇0
|∆B(x)| ≤ 0.05B0
|∆T(x)| ≤ 0.05T0
V(x) ≥ V0
−1 ≤ xi ≤ 1 with ∀i = 1, . . . , N

(3)

where ∆R(x) = R(x) − R0, x collects the design variables, Lpp is the length between
perpendiculars, ∇ is the ship displacement (volume of water displaced), B is the overall
beam, T is the drought, and V is the volume reserved for the sonar in the bow dome.
Subscript “0” indicates parent (original) hull values. Equality and inequality constraints for
the geometry deformations are taken from [46]. Table 1 summarizes the main characteristics
of the hull and simulation conditions for the hydrodynamic solver. The latter, developed at
the CNR-INM [41], is based on the Dawson linearization [47] of the potential flow equations.
The total resistance is estimated as the sum of the wave and the frictional resistance. The
wave component is evaluated using the pressure integral over the hull surface, whereas
the frictional component is estimated using a flat-plate approximation based on the local
Reynolds number [48].

Table 1. DTMB 5415 original hull main particulars and simulation conditions.

Quantity Symbol Unit Value

Displacement ∇ m3 0.549
Length between perpendiculars Lpp m 5.720
Beam B m 0.760
Draft T m 0.248
Water density ρ kg/m3 998.5
Kinematic viscosity ν m2/s 1.09 × 106

Gravity acceleration g m/s2 9.803
Froude number Fr – 0.280

Finally, the design space is composed by N = 14 design variables, defining the shape
modifications. These are based on a linear superposition on the computational hull-surface
grid of a set of orthonormal functions, coming from a physics-informed design-space
dimensionality reduction procedure [49]. It may be noted that the design variables and the
associated shape modifications are organized in a hierarchical order, meaning that the first
variables produce larger design modifications than the last ones. For further details, the
interested reader is referred to [3].

The multi-fidelity levels are defined by the computational grid size. Specifically, the
benchmark is defined with seven grid (fidelity) levels with a refinement ratio of 20.25, as an
example the finest (G1) and coarsest (G7) grids are shown in Figure 1. Table 2 summarizes
the grid sizes, along with the associated nodes number (M), the resistance computed for
the original hull (R0), an estimate of the grid error (EG, see below), and the normalized
computation cost (NCC). The NCC is evaluated as the ratio between the CPU time needed
for a simulation with the generic j-th fidelity and the highest-fidelity. Figure 2 shows
the convergence of the resistance estimate as a function of the grid/fidelity level and the
associated computational cost. Pressure on the hull and wave elevation patterns are shown
in Figure 3. Moving from the highest (G1) to the lowest (G7) fidelity, a lower pressure
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is predicted on the hull aft and, overall, there are smaller pressure gradients along the
hull. Furthermore, the wave elevation decreases and the diverging bow waves are less
evident. The linear regression based on G1, G3, and G5 triplet (see Figure 2, left) converges
to the solution given by the Richardson extrapolation [50], which provides an order of
convergence of the numerical solver equal to pRE ≈ 2.8. All the fidelities lie close to the
regression, and the associated grid errors EG are evaluated with respect to the Richardson
extrapolation value. For the sake of simplicity, this error is considered constant within the
design space. Finally, Figure 2 (right) shows how the NCC scales near linearly with the
square of the grid size.

Figure 1. Hull (left) and free-surface (right) discretizations for the highest (G1, top) and lowest
(G7, bottom) fidelities.
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Figure 2. Total resistance convergence (left) and grids error with respect to Richardson extrapolation
(right) for the potential flow solver.

Table 2. Fidelity levels details: grid size, resistance, associated error (EG), and normalized computa-
tional cost (NCC).

Grid Hull Free-Surface Total Resistance [N] Grid Error (EG%) NCCNodes Nodes Nodes (M)

G1 150× 50 180× 50 16.5k 41.5 1.16 1.00
G2 126× 42 151× 42 11.6k 41.8 1.85 0.46
G3 106× 35 127× 35 8.2k 42.3 3.10 0.20
G4 89× 29 107× 29 5.7k 43.5 5.97 0.11
G5 76× 25 90× 25 4.2k 44.4 8.26 0.07
G6 64× 21 76× 21 2.9k 45.3 10.5 0.04
G7 54× 18 64× 18 2.1k 48.9 19.3 0.03

Note: refinement ratio equal to 20.25.

The current benchmark problem is available as open-source Fortran code at the
following GitHub repository: github.com/MAORG-CNR-INM/NATO-AVT-331-L2-Sea-
Benchmark.

github.com/MAORG-CNR-INM/NATO-AVT-331-L2-Sea-Benchmark
github.com/MAORG-CNR-INM/NATO-AVT-331-L2-Sea-Benchmark
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Figure 3. Pressure on the hull (left) and free-surface elevation (right) of the original hull varying the
grid refinement: from top to bottom highest (G1) to lowest fidelity (G7).

4. Numerical Results

In this paper, the implementation of MF-CS-DFN uses the following values for
the constants

θ = 0.5, ξ = 10−3, x0 = 0, γ = 10−4, δ = 0.5. (4)

where 0 denotes the all-zero vector with 14 components. It should be noted that the MF-
CS-DFN performance is affected by the step length α̃ and the convergence threshold η, see
Algorithm 1. Therefore, a parametric analysis is performed investigating the combination of
static/dynamic steplength threshold and reinitialization. Specifically, the use of a dynamic
approach aims at defining an adaptive setup to the specific characteristics of the problem at
hand. Four setups of the MF-CS-DFN algorithm are tested. For each setup, a combination
of the steplength convergence threshold η and its reinitialization value α̃new is defined; see
Table 3.
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The performance of MF-CS-DFN using the proposed setups is assessed and compared
to its single-fidelity counterpart (CS-DFN) that uses the highest fidelity only. The NCC is
used for the convergence analysis.

Table 3. MF-CS-DFN setups: steplength threshold and reinitialization values.

Reinitialization α̃new

Static, 1 Dynamic, 10απ̄+1

Threshold η
Static, 10 × 10−3 StSr StDr

Dynamic, EG DtSr DtDr

Figure 4 compares the optimization convergence of MF-CS-DFN and CS-DFN. The
resistance reduction is evaluated with respect to the original hull with the grid used during
the optimization segment (e.g., when the MF-CS-DFN is using G5, the resistance variation
is computed with respect to the original hull evaluated with G5). Note that the MF-CS-DFN
results start with a lower initial computational cost since the first evaluation is performed
on the lowest-fidelity (G7). The convergence of the MF-CS-DFN shows some changes
in the objective function when the algorithm switches computational grids. Specifically,
coarse grids overestimate the resistance improvement. Nevertheless, the objective function
remains consistently below 0%, meaning that the optimal designs identified with coarse
grids are found to reduce the resistance also with fine grids. Except for the use of StDr
setups, MF-CS-DFN achieves better optima (larger resistance reduction) than CS-DFN. Fur-
thermore, MF-CS-DFN achieves a larger resistance reduction with a reduced computational
cost than CS-DFN. The use of a dynamic approach (Dt setups) to manage the steplength
threshold produces better results than using a fixed one (St setups). Furthermore, the use
of a static reinitialization (Sr setups) provides better results than Dr for both approaches.
Overall, the DtSr setup achieves the best optimum.
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Figure 4. Whole optimization convergence (left) and a detail of the last iterations (right). The
resistance reduction is evaluated with respect to the original hull with the grid used during the
optimization segment.

Figure 5 shows the optimized variable values. Except for the StDr setup, MF-CS-DFN
setups provide similar variable values for x1, x2, and x4. Greater differences can be noted
when comparing the other variables. Since the first variables are those that have a more
significant effect on the shape modification, all the MF-CS-DFN setups achieve similar
optimal hull shapes. Specifically, Figure 6 shows the magnitude of the shape modification
for optimal hulls with respect to the parent one. The shape modification is distributed
between the bow, mid-length, and aft regions. Overall, the shape modifications provided
by the different setups are similar, with only local differences, especially in the aft region.
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Figure 5. Variable values of the optimized hulls.
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Figure 6. Shape modification magnitude of the optimized hulls with respect to the parent hull.

Figure 7 shows the initial and converged value of the design variables for each fidelity
level of MF-CS-DFN (DtSr) in comparison to CS-DFN. Most of the variables converge
toward the final value already with the coarser grids (lower fidelities), meaning that the
lower fidelities are in good correlation with the highest fidelity level. Overall, the design
variable values can be considered very close to convergence already with G3.

Figure 8 compares CS-DFN and MF-CS-DFN (DrSt) convergences, along with the
MF-CS-DFN (DrSt) validation (current optimal designs assessed with G1) at each grid
change, which is denoted in the plot by vertical dashed lines. Coarse grids resistance
reductions are overall in good agreement with G1-validated values, except for G5. It
may be noted that G1-validated values of resistance reductions provided by MF-CS-DFN
are always lower than those provided by CS-DFN with the same computational cost.
Namely, switching from G7 to G6, the resistance significantly reduces, and the G1-validated
value is already significantly lower than that provided by CS-DFN. In addition, validated
values for NCC > 6 show small improvements, meaning that MF-CS-DFN has already
converged to the neighborhood of the final optimum, as also shown in Figure 7. This
means that the proposed algorithm converges significantly faster than CS-DFN. Finally, it
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may be noted that MF-CS-DFN achieves a better solution than CS-DFN with the available
computational resources.
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Vertical dashed lines denote the fidelity change.

Table 4 summarizes the MF-CS-DFN results, showing the resistance and its reduction
provided by each computational grid, along with the corresponding G1-validated values
and the gain of MF-CS-DFN versus CS-DFN for the same computational cost. It may be
noted how the gain is significant (6% and above) especially for low computational budgets.

Table 4. MF-CS-DFN (DtSr) resistance and its reduction, G1 validation of the resistance reduction,
resistance improvement (gain) with respect to the CS-DFN, and cumulative normalized computational
cost for each grid.

Grid Optimized Optimized Optimized Gain of Cumulative
Rj [N] ∆Rj% ∆R1% MF-CS-DFN% NCC [-]

G7 42.1 −13.9 −11.5 6.57 6.18
G6 39.6 −12.6 −11.6 6.77 11.7
G5 38.9 −12.4 −11.2 6.27 20.5
G4 37.8 −13.0 −12.1 4.79 37.9
G3 37.1 −12.2 −12.2 1.74 69.5
G2 36.6 −12.3 −12.2 0.59 140
G1 36.3 −12.5 −12.5 0.67 628

Finally, Figure 9 shows a comparison between the original and the MF-CS-DFN (DtSr)
optimal hull. The optimal hull shows a better recovery of the pressure toward the stern
and more prominent cavities in the bow and aft regions of the hull, resulting in an overall
lower wave elevation of both bow and stern diverging waves.
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Figure 9. Pressure on hull (left) and free-surface elevation (right) of the original (top) and MF-CS-DF
(DtSr) optimum (bottom).

5. Conclusions

A multi-fidelity extension of the local line-search-based derivative-free approach for
nonsmooth constrained optimization (MF-CS-DFN) is introduced for design optimization,
which is driven by multi-fidelity computations. The proposed algorithm drives the search
for the optimum starting from the lowest fidelity level and then moving to higher fidelities
(increasing the accuracy of the numerical solution) as given convergence criteria are met,
based on the step length. A simulation-driven design optimization benchmark is used
for the algorithm assessment, pertaining to the hull-form optimization of a destroyer-type
vessel for total resistance reduction in calm water. Four MF-CS-DFN setups are tested, and
the method is compared to its single-fidelity counterpart (CS-DFN). Specifically, static and
dynamic thresholds of the step length are considered in combination with its static and
dynamic reinitialization. The dynamic threshold is set equal to the error associated to the
computational grid used for the resistance evaluation.

Three out of four MF-CS-DFN setups perform better than CS-DFN. MF-CS-DFN
converges faster to a lower resistance value (with a lower computational cost) than CS-
DFN. Specifically, MF-CS-DFN shows a convergence that is between one and two orders
of magnitude faster than the original single-fidelity algorithm. Furthermore, for low
computational budgets, the optimized designs with MF-CS-DFN exhibit a resistance that
is about 6% lower than that achieved with CS-DFN. In particular, the use of a dynamic
threshold for the step length (Dr setups) produces better results than the use of a static
threshold. This is because the algorithm efficiently stops using a given fidelity level when
this is no longer informative. Finally, the MF-CS-DFN step-length reinitialization has a little
influence on the algorithm performance, although a slightly better behavior is observed
when it is used statically.

Obviously, the efficiency and efficacy of the algorithm depend on the correlation of
the objective function evaluation between different fidelity levels. Moreover, the method
is local, providing a local solution to the design optimization problem. We may conclude
that provided that subsequent fidelity levels are reasonably correlated to each other and
a local solution to the optimization problem is sought after, the MF-CS-DFN is a viable
alternatives to surrogate-based methods for multi-fidelity optimization.
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