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Abstract. Let F be a field of odd characteristic and G a group. In 1991
Shalev established necessary and sufficient conditions so that the unit
group of the group ring FG is metabelian when G is finite. Here, in the
modular case, we do the same without restrictions on G. In particular,
new cases emerge when G contains elements of infinite order.
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1. Introduction

Let FG be the group ring of a non-abelian group G over a field F of
characteristic p > 0. A classical problem of interest in the study of group
rings is to classify the groups G such that the unit group, U(FG), of FG
satisfies certain identities. In this direction, the conditions under which
U(FG) is solvable were determined in a series of papers over many years,
beginning with Bateman [1] (dealing with finite groups) and concluding
with A. Bovdi [2], thanks to the key contribution of Liu and Passman [9]
characterizing when U(FG) satisfies a group identity. For a discussion of
this and related results, we refer to Chapters 1 and 6 of [7].

On the assumption that U(FG) is solvable, it is natural to ask about its
derived length, dl(U(FG)), but the picture is not as clear here. Indeed, it
seems quite difficult to give a general formula, and just a few results have
been proved. Most of them concern the investigation of the structure of FG
for small values of dl(U(FG)). In this setting, one of the first results was
due to Shalev [12], who classified the finite groups G such that U(FG) is
metabelian, when p > 2. Namely he proved that this occurs if, and only
if, p = 3 and the commutator subgroup, G′, of G is central of order p.
Some years later, Catino and Spinelli [3] extended this statement to torsion
groups.

In the same paper they provided a lower bound for dl(U(FG)) in terms
of p when G is a torsion nilpotent group, and characterized those groups for
which it is attained. Very recently in [6] the same problem was investigated
when G contains elements of infinite order, but in this setting the situation
seems to be more involved and other considerations are in order (as one
can expect from the fact that the conditions for U(FG) to be solvable are
different here). More precisely, when FG is modular, that is, G has an
element of order p, the lower bound established for dl(U(FG)) is in some
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cases different from that of the torsion case. As noted again in [6], it is not
really sensible to ask the same question when FG is not modular: in fact,
we can have any derived length we want, regardless of the characteristic.

The aim of this note is to generalize Shalev’s result classifying modular
group rings whose unit group is metabelian without further restrictions on
G. This provides also the list of non-commutative group rings whose unit
group has the smallest possible derived length when p ∈ {3, 5}. We stress
that new cases emerge when G contains elements of infinite order, more
specifically when G′ = Sylp(G). In order to clarify this point, we recall that
a Sylow p-subgroup of a possibly infinite group G is defined to be a maximal
p-subgroup of G, and it is unique if G is nilpotent. In this case, let us denote
it by Sylp(G). Under the extra assumption that G is torsion, G is the direct
product of its Sylow subgroups. If G′ = Sylp(G), then all of the other Sylow
subgroups are abelian, thus Sylp(G)′ = Sylp(G). But for a nilpotent group,
this implies that Sylp(G) = {1}, so then G is abelian. The final outcome of
these deductions is that for a non-abelian nilpotent group G the condition
G′ = Sylp(G) is satisfied only if G is non-torsion. The main result we prove
is the following

Theorem 1.1. Let F be a field of characteristic p ≥ 3 and G a non-abelian
group such that FG is modular. Then U(FG) is metabelian if, and only if,
G is nilpotent of class 2 and either

(a) p = 3 and G′ has order p,
(b) p = 3 and G′ = Sylp(G) is elementary abelian of order p2, or
(c) p = 5 and G′ = Sylp(G) has order p.

2. Preliminaries

The aim of this section is to establish some notation and discuss some
results necessary for the proof of Theorem 1.1. In any group G, we let
(g, h) = g−1h−1gh. We also write γn(G) and δn(G) for the terms of the
lower central and derived series of G, respectively, and ξ(G) for its center.
If S, T are subsets of G, set (S, T ) = 〈(s, t) | s ∈ S, t ∈ T 〉 and, if n is a
positive integer, Sn = 〈sn | s ∈ S〉. Finally, let us denote by Cn the cyclic
group of order n. In any ring, let [a1, a2] = a1a2 − a2a1.

Throughout the paper, unless otherwise stated, F is a field of character-
istic p > 2 and G a group. When G is torsion, U(FG) is solvable if, and only
if, G′ is a finite p-group, provided |F | > 3 (see Theorem 6.2.8 of [7]). The
characterization for non-torsion group rings is more involved and we confine
ourselves to report here a partial result one can deduce from Lemma 6.2.11
and Theorem 6.2.13 of [7].

Lemma 2.1. Let G be a non-abelian non-torsion group. If U(FG) is solv-
able, then the p-elements of G form a (normal) subgroup P of G. Fur-
themore, if P is infinite, U(FG) is solvable if, and only if, G′ is a finite
p-group.
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The following statement forms the starting point of our investigation. It
was originally proved by Shalev for finite groups (Theorems A and B of [12]),
then extended to torsion groups in Proposition 7 of [3].

Theorem 2.2. Let G be a non-abelian torsion group. Then U(FG) is
metabelian if, and only if, p = 3 and G′ is central of order p.

We stress that, if p = 3 and G has central commutator subgroup of order
3, then U(FG) is metabelian without further restrictions on G. This is part
of the content of Corollary 2.2 of [12] (even if there the group G was assumed
to be finite, the hypothesis on the order of G did not matter for the proofs
of the results of Section 2).

Evidently, if U(FG) is metabelian, then so is U(FH) for any subgroup
H of G. Furthermore, by Lemma 2 of [8], this is still true for U(F (G/N)),
where N is any finite normal subgroup of G which is either a p-group or a
p′-group. In what follows, we shall freely use these facts and replace G with
H or G/N when this is convenient.

Assume in the sequel that U(FG) is solvable. We need to know some
computational aspects of the derived length of U(FG). In particular, in the
Introduction of [3], it was observed that

dl(U(FG)) ≥ dlog2(p+ 1)e,
provided G is a non-abelian torsion nilpotent group. The result is different
when G contains elements of infinite order, as presented in the following

Lemma 2.3. Let G be a non-abelian nilpotent group such that FG is mod-
ular. If G has an element of infinite order, then

(a) dl(U(FG)) > dlog2(p+ 1)e if G′ is not a finite p-group, and
(b) dl(U(FG)) ≥ dlog2(

2
3(p+1))e otherwise. Furthermore, dl(U(FG)) >

dlog2(
2
3(p+ 1))e if p > 3 and |G′| = pn for some n > 1.

Proof. The statement (a) is Theorem 1 of [6], whereas (b) follows com-
bining Theorems 2 and 3 of [6]. �

If N is a normal subgroup of G, let ∆(G,N) be the kernel of the natural
homomorphism FG → F (G/N), and ∆(G) = ∆(G,G). We also write
∆k(G,N) for the k-th power of ∆(G,N). When G is a finite p-group, it is
well-known (see, for instance, Lemma 1.1.1 of [7]) that ∆(G) is nilpotent
and denote its nilpotency index by t(G). Under the extra assumption that
G is also abelian, let us say G ∼= Cpn1 × Cpn2 × · · · × Cpnm , by Jennings’
theory [4] one has that

t(G) = 1 +

m∑
i=1

(pni − 1).

When necessary, we shall use this formula without further reference.
In [5], Juhász studied dl(U(FG)) for special classes of groups, in partic-

ular for those whose commutator subgroup is cyclic.

Lemma 2.4. Let G be a non-abelian nilpotent group such that G′ is a finite
abelian p-group.
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(a) If G′ is cyclic, then dl(U(FG)) ≥ dlog2(
2
3(t(G′) + 1))e;

(b) If G′ = Sylp(G) and γ3(G) ⊆ (G′)p, then dl(U(FG)) ≤ dlog2(
2
3(t(G′)+

1))e.
In particular, if G′ = Sylp(G) is cyclic, then dl(U(FG)) = dlog2(

2
3(t(G′) +

1))e.

Proof. See Lemma 5 and Theorem 1 of [5], respectively. �

Part of the proof of our main result involves group and Lie commutator
computations. We shall freely use in the sequel that, if a, b, c are elements
of a ring,

[ab, c] = a[b, c] + [a, c]b,

and, if a, b are units,

(a, b) = 1 + a−1b−1[a, b] and [a, b] = ba((a, b)− 1).

We report now a couple of technical results. The first of them holds for
arbitrary group rings. It was proved in Lemma 2 of [6].

Lemma 2.5. Let N be a normal subgroup of G. If n ∈ N , then for any
positive integer i, ni − 1 ≡ i(n− 1) (mod ∆2(G,N)).

For the second one we need a restriction on the commutator subgroup of
G (it is not necessary here to assume that U(FG) is solvable).

Lemma 2.6. Let G be a group whose commutator subgroup is abelian with
γ3(G) ⊆ (G′)p. Then

(a) [∆m(G,G′),∆k(G,G′)] ⊆ ∆m+k+1(G,G′) for all m, k ≥ 1;
(b) if a ∈ G is a p-element, then, for all b ∈ G,

[(1 + a)−1a, b]

≡ (1 + a)−pb

(
p−1∑
i=1

(−1)i+1iai

)
((a, b)− 1) (mod ∆2(G,G′)).

Proof. (a) This statement is Lemma 1 (iv) of [5].
(b) Set x = 1 + a. Evidently, x is a unit and x−1a = x−1(1 + a)− x−1 =

1− x−1. For any b ∈ G one has that

(1) [x−1a, b] = −[x−1, b] = −[x−pxp−1, b] = −x−p[xp−1, b]− [x−p, b]xp−1

and

(2) [x−p, b] = −x−p[xp, b]x−p = −x−p[ap, b]x−p = −x−pbap((ap, b)− 1)x−p.

Using the group commutator identity (uv,w) = (u,w)(u,w, v)(v, w), an easy
induction argument shows that, for any positive integer i, (ai, b) = (a, b)id
for some d ∈ γ3(G). Consequently,

(ai, b)− 1 = (a, b)id− 1 = ((a, b)i − 1)(d− 1) + ((a, b)i − 1) + (d− 1).

The fact that γ3(G) ⊆ (G′)p implies that d−1 ∈ ∆(G, (G′)p) ⊆ ∆p(G,G′) ⊆
∆2(G,G′), and from Lemma 2.5 it follows that

(3) (ai, b)− 1 ≡ (a, b)i − 1 ≡ i((a, b)− 1) (mod ∆2(G,G′)).
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In particular, (ap, b) − 1 ∈ ∆2(G,G′) so, by (2), [x−p, b] ∈ ∆2(G,G′) and,
by (1),

[x−1a, b] ≡ −x−p[xp−1, b] (mod ∆2(G,G′)).

Taking into account that
(
p−1
i

)
≡ (−1)i (mod p), we get

[x−1a, b] ≡ −x−p[(1 + a)p−1, b] ≡ −x−p
p−1∑
i=0

(−1)i[ai, b]

≡ x−pb
p−1∑
i=1

(−1)i+1ai((ai, b)− 1) (mod ∆2(G,G′)),

and, invoking (3), the desired conclusion holds. �

For any group G, let us consider the sequence of dimension subgroups of
FG, whose n-th term (which is a normal subgroup of G) is defined as

Dn(G) = {g | g ∈ G, g − 1 ∈ ∆n(G)}.
Obviously, D1(G) = G and, according to Theorem 11.1.19 of [10], recursively

(4) Dn(G) = (Dn−1(G), G) ·Di(G)p,

where i is the smallest integer satisfying ip ≥ n. This sequence has been
extensively studied in literature and we refer to Chapter 3 of [10] for a
summary of its main properties.

For our aims, we need the following result, which easily follows from
Theorem 3.3.7 and Lemma 3.3.5 of [10].

Lemma 2.7. Let G be a finite p-group, g ∈ G and m the largest integer
such that g ∈ Dm(G). Then, for any 1 ≤ α < p, one has that (g − 1)α ∈
∆αm(G) \∆αm+1(G).

3. Proof of the Main Theorem

The aim of this section is to present a proof of Theorem 1.1. As a first
step, we shall establish the necessary conditions of the statement under the
extra assumption that G is a nilpotent group.

To this end, according to Theorem 2.2 and Lemma 2.3, one has to consider
only when F has characteristic p ∈ {3, 5} and G′ is a finite p-group. To
attack the more delicate p = 3 case, we need a couple of very easy group
theoretical lemmas, which could be of independent interest.

Lemma 3.1. Let G be a nilpotent group of class 2 with G′ ∼= Cp×Cp. Then
there exist a, b, c ∈ G such that G′ = 〈(a, b), (b, c)〉.

Proof. Let s, t, w, z ∈ G such that G′ = 〈(s, t), (w, z)〉. Assume first that
(t, z) 6= 1. If (t, z) ∈ 〈(s, t)〉, then G′ = 〈(t, z), (w, z)〉 = 〈(t, z), (z, w)〉,
otherwise G′ = 〈(s, t), (t, z)〉. Obviously the same considerations apply when
(s, w) 6= 1.

Finally, suppose that (t, z) = (s, w) = 1. In this case, it is easily seen
that G′ = 〈(s, tw), (tw, z)〉. �

Lemma 3.2. Let G be a nilpotent group such that G′ ∼= C3 × C3. Then G
is 2-Engel if, and only if, G′ is central.
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Proof. Assume that G is 2-Engel and, if possible, that γ3(G) 6= 〈1〉.
Then there exist a, b, c ∈ G such that ((a, b), c) 6= 1 and G′ \ γ3(G) =
xγ3(G)∪x2γ3(G), where x = (a, b) . By [11, 12.3.6], one has that ((a, b), c) =
((c, a), b). Therefore ((c, a), b) 6= 1, and hence (c, a) ∈ G′\γ3(G). Thus (c, a)
can be written as xy or x2y for some y ∈ γ3(G) ⊆ ζ(G). If (c, a) = xy, then

1 6= ((c, a), b) = (xy, b) = (x, b) = ((a, b), b).

When (c, a) = x2y, one similarly gets that ((a, b), b)2 6= 1. But both these
conclusions contradict the hypothesis on G.

Therefore, G′ has to be central and, as the converse is trivial, the proof
is done. �

We are now in a position to establish when U(FG) is metabelian in
characteristic 3 for small values of the order of G′.

Lemma 3.3. Let p = 3, and G a non-abelian nilpotent group such that G′

is a finite 3-group with |G′| ≤ 9. If U(FG) is metabelian, then G′ is central
and either |G′| = 3, or Syl3(G) = G′ ∼= C3 × C3.

Proof. By the assumptions one has that |G′| ∈ {3, 9}. If |G′| = 3, we are
done. Hence suppose that |G′| = 9. By virtue of Lemma 2.4 (a), G′ cannot
be cyclic. Therefore G′ ∼= C3 × C3.

Assume first that G′ ⊆ ζ(G), but G′ 6= Syl3(G). Our goal is to exhibit
in this case a non-trivial element of δ2(U(FG)). According to Lemma 3.1,
we can suppose that G′ = 〈(a, b), (b, c)〉 for some a, b, c ∈ G. Set x = (a, b)
and y = (b, c).

Assume first that a ∈ Syl3(G). Then 1 + a ∈ U(FG) and

u = (1 + a, b) = 1 + (1 + a)−1b−1[a, b] = 1 + (1 + a)−1a(x− 1).

Take v = (1 + b(y − 1), c). Using the fact that y is central, one has

v =1 + (1 + b(y − 1))−1c−1[b(y − 1), c]

= 1 + (1 + b(y − 1))−1c−1[b, c](y − 1)

= 1 + (1 + b(y − 1))−1b(y − 1)2.

Since 1+b(y−1) ∈ 1+∆(G,G′), the element (1+b(y−1))−1 ∈ 1+∆(G,G′)
and, hence,

v ≡ 1 + b(y − 1)2 (mod ∆3(G,G′)).

Consequently

(u, v) = 1 + u−1v−1[u, v]

= 1 + u−1v−1[(1 + a)−1a(x− 1), b(y − 1)2 + ω],

for some ω ∈ ∆3(G,G′). From Lemma 2.6 (a) it follows that

[(1 + a)−1a(x− 1), ω] ∈ ∆5(G,G′) = {0}

and hence, as x, y ∈ ζ(G),

(u, v) = 1 + u−1v−1[(1 + a)−1a, b](x− 1)(y − 1)2.
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Furthermore Lemma 2.6 (b) yields

[(1 + a)−1a, b] ≡ (1 + a)−3b(a+ a2)(x− 1) (mod ∆2(G,G′)).

Since u and v are in 1 + ∆(G,G′), so are their inverses. Thus, using the fact
that ab ≡ ba (mod ∆(G,G′)) and again that ∆5(G,G′) = {0}, we get

(u, v) = 1 + (1 + a)−2ba(x− 1)2(y − 1)2.

As (1 + a)−2ba is a unit and (x− 1)2(y − 1)2 6= 0, one has that 1 6= (u, v) ∈
δ2(U(FG)), and the desired conclusion holds.

Therefore suppose that a cannot be chosen from Syl3(G), that is (g, b) ∈
〈y〉 for any g ∈ Syl3(G). Take f ∈ Syl3(G) \ G′ such that f3 ∈ G′. Then
w = 1 + (f − 1)2a is a unit with w−1 ≡ 1− (f − 1)2a (mod ∆(G,G′)), and

[(f − 1)2a, b] = (f − 1)2[a, b] + [(f − 1)2, b]a

= (f − 1)2ba(x− 1) + θ(y − 1)

for some θ ∈ FG. Now, since (f − 1)3 ∈ ∆(G,G′) and af ≡ fa and bf ≡ fb
(mod ∆(G,G′)),

u = (w, b) = 1 + w−1b−1[w, b] = 1 + w−1b−1[(f − 1)2a, b]

= 1 + w−1b−1(f − 1)2ba(x− 1) + θ′(y − 1)

≡ 1 + (1− (f − 1)2a)(f − 1)2a(x− 1) + θ′(y − 1)

≡ 1 + (f − 1)2a(x− 1) + θ′(y − 1) (mod ∆2(G,G′)),

(5)

for some θ′ ∈ FG. If v is as above, combining Lemma 2.6 (a) with the fact
that (y − 1)3 = 0 (and the already used arguments on u−1, v−1 and t(G′)),
one has

(u, v) = 1 + u−1v−1[(f − 1)2a(x− 1), b(y − 1)2]

= 1 + u−1v−1[(f − 1)2a, b](x− 1)(y − 1)2

= 1 + u−1v−1(f − 1)2ba(x− 1)2(y − 1)2

= 1 + (f − 1)2ba(x− 1)2(y − 1)2.

By Lemma 3.1.2 of [10], the annihilator of
∑

g∈G′ g = (x − 1)2(y − 1)2 is

∆(G,G′). But (f − 1)2ba 6∈ ∆(G,G′), thus (u, v) is a non-trivial element of
δ2(U(FG)).

It remains to deal with the case in which G′ is not central. By virtue of
Lemma 3.2, we know that G is not 2-Engel. Hence we can choose a, b ∈ G
such that t = ((a, b), b) 6= 1. Evidently, t is central and 1 + b(t− 1) is a unit
of order 3 with

(1 + b(t− 1))−1 = (1 + b(t− 1))2 = 1− b(t− 1) + b2(t− 1)2.

Set again x = (a, b), then

u = (1 + b(t− 1), a) = 1 + (1 + b(t− 1))−1a−1[b, a](t− 1)

= 1 + (1 + b(t− 1))−1b(x−1 − 1)(t− 1)

= 1 + b(x−1 − 1)(t− 1)− b2(x−1 − 1)(t− 1)2.
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Since u−1 ∈ 1 + ∆(G, 〈t〉) and ∆3(G, 〈t〉) = {0},

(u, x) = 1 + u−1x−1[u, x]

= 1 + u−1x−1[b(x−1 − 1)(t− 1)− b2(x−1 − 1)(t− 1)2, x]

= 1 + u−1x−1[b, x](x−1 − 1)(t− 1)− u−1x−1[b2, x](x−1 − 1)(t− 1)2

= 1 + u−1b(t−1 − 1)(x−1 − 1)(t− 1)

= 1 + b(t−1 − 1)(x−1 − 1)(t− 1)

is a non-trivial element of δ2(U(FG)), which concludes the proof. �

Let us show that no other cases arise in characteristic 3.

Lemma 3.4. Let p = 3 and G a nilpotent group whose commutator subgroup
has order 3n with n ≥ 3. Then U(FG) is not metabelian.

Proof. Assume, if possible, that U(FG) is metabelian. Since G is nilpo-
tent, G′ has a central element z of order 3. We factor out 〈z〉 and, replacing
G with G/〈z〉, repeat until |G′| = 27. Factorizing once more in this manner,
from Lemma 3.3 one has that (G/〈z〉)′ is isomorphic to C3×C3 and central.
Therefore, |γ3(G)| ≤ 3.

Suppose first that G′ ∼= C9 × C3. Pick elements a, b ∈ G such that
x = (a, b) has order 9 and set H = 〈a, b〉. If |H ′| = 9, then H ′ is cyclic and,
by virtue of Lemma 2.4 (a), U(FH) is not metabelian, which is not allowed.
Therefore we must have |H ′| = 27. Hence one of the commutators (x, a)
and (x, b) does not belong to 〈x〉. Assume, for instance, that y = ((a, b), b)
is a non-trivial central element of γ3(H) (analogous arguments apply in the
other case). Proceeding as in the last case of the proof of Lemma 3.3, it is
easily shown that

1 6= ((1 + b(y − 1), a), x) ∈ δ2(U(FG)).

Consequently, G′ has to be elementary abelian. Let z be a central element
of G such that G/〈z〉 has central commutator subgroup isomorphic to C3 ×
C3 (it is enough to choose a non-trivial element of G′ if this is central,
and a generator of γ3(G) otherwise). By Lemma 3.1, we can assume that
(G/〈z〉)′ = 〈(a, b)〈z〉, (b, c)〈z〉〉. That is, there exist a, b, c ∈ G such that
x = (a, b) 6∈ 〈z〉 and y = (b, c) 6∈ 〈z〉. This means that G′ = 〈x〉 × 〈y〉 × 〈z〉.
Now,

u = (1 + a(z − 1), b) = 1 + (1 + a(z − 1))−1b−1[a, b](z − 1)

= 1 + (1 + a(z − 1))−1a(x− 1)(z − 1)

≡ 1 + a(x− 1)(z − 1) (mod ∆2(G, 〈z〉))
and, similarly,

v = (1 + b(z − 1), c) ≡ 1 + b(y − 1)(z − 1) (mod ∆2(G, 〈z〉)).
From the fact that [x, b], [a, y] ∈ ∆(G, 〈z〉) it follows that

(u, v) = 1 + u−1v−1[u, v] = 1 + u−1v−1[a, b](x− 1)(y − 1)(z − 1)2

= 1 + ba(x− 1)2(y − 1)(z − 1)2

8



is a non-trivial element of δ2(U(FG)), which is still not allowed. �

We dispense now with the characteristic 5 case.

Lemma 3.5. Let p = 5, and G a non-abelian nilpotent group such that G′

is a finite 5-group. If U(FG) is metabelian, then Syl5(G) = G′ ∼= C5.

Proof. According to Lemma 2.3 (b), |G′| = 5.
Suppose that G′ 6= Syl5(G) and (Syl5(G), G) 6= 〈1〉. Then we can pick

elements a ∈ Syl5(G) \G′ and b ∈ G such that x = (a, b) has order 5. Then
1 + a is a unit and

u = (1 + a, b) = 1 + (1 + a)−1a(x− 1).

Furthermore Lemma 2.5 yields

v = (1 + b(x− 1), a) = 1 + (1 + b(x− 1))−1a−1[b, a](x− 1)

= 1 + (1 + b(x− 1))−1b(x−1 − 1)(x− 1)

≡ 1− b(x− 1)2 (mod ∆3(G,G′)).

Applying Lemma 2.6 (a) and (b), one has that

(u, v) = 1− u−1v−1[(1 + a)−1a, b](x− 1)3

= 1− (1 + a)−5b(a− 2a2 + 3a3 − 4a4)(x− 1)4,

which is different from 1, in view of Lemma 3.1.2 of [10]. Therefore in this
case U(FG) is not metabelian.

Finally, assume that G′ 6= Syl5(G) ⊆ ξ(G). Then there exists f ∈
Syl5(G) \ G′ such that f5 ∈ G′. As above, let us pick a, b ∈ G such that
x = (a, b) has order 5. Clearly, w = 1 + (f − 1)4a is a unit and w−1 ≡
1− (f − 1)4a (mod ∆(G,G′)). From computations similar to those in (5) it
follows that

t = (w, b) ≡ 1 + (f − 1)4a(x− 1) (mod ∆2(G,G′)).

If v is as before, then

(t, v) = 1 + t−1v−1[t, v] = 1− t−1v−1[(f − 1)4a(x− 1), b(x− 1)2]

= 1− t−1v−1(f − 1)4[a, b](x− 1)3 = 1− (f − 1)4ba(x− 1)4 6= 1,

and this completes the proof. �

We are now in a position to prove the main result of the paper.

Proof of Theorem 1.1. Let us start by looking at the sufficient condi-
tions. Assume that G is nilpotent with central commutator subgroup. If
|G′| = p = 3, we have already observed after Theorem 2.2 that U(FG) is
metabelian. When G is as in (b) or (c), the result is a consequence of Lemma
2.4 (b).

For the converse, let us claim that, if U(FG) is metabelian, then G is
nilpotent. To this end, assume, if possible, that G is not. By virtue of The-
orem 2.2, G contains an element of infinite order. Obviously G′ is abelian.

Suppose first that H = γ3(G) is a finite p-group. According to (4),

D1(H) = H and Dn(H) = Hpk for all positive integers k and n such
that pk−1 < n ≤ pk. We notice that there exists an integer α such that
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(Hpα , G) 6⊆ Hpα+1
. In fact, if this is not the case, then γ4(G) = (H,G) ⊆ Hp

and, inductively, γk(G) ⊆ Hpk−3
for any k ≥ 4. Since H is a finite p-group,

G should be nilpotent, which contradicts the original assumption. There-

fore, we can choose x ∈ Hpα and a ∈ G, such that (x, a) ∈ Hpα \ Hpα+1
.

Hence x− 1, (x, a)− 1 ∈ ∆pα(H) \∆pα+1(H) and

u = (1 + a(x− 1), a) = 1 + (1 + a(x− 1))−1a−1[a(x− 1), a]

= 1 + (1 + a(x− 1))−1[x, a]

= 1 + (1 + a(x− 1))−1ax((x, a)− 1)

≡ 1 + a((x, a)− 1) (mod ∆pα+1(G,H)).

Standard computations yield

(x, u) = 1 + x−1u−1[x, u] ≡ 1 + x−1u−1[x, a]((x, a)− 1)

≡ 1 + x−1u−1ax((x, a)− 1)2

≡ 1 + a((x, a)− 1)2 (mod ∆2pα+1(G,H)).

By virtue of Lemma 2.7, ((x, a) − 1)2 /∈ ∆2pα+1(H). Consequently, it does
not belong to ∆2pα+1(G,H). This means that (u, x) 6= 1, which is not
allowed.

Therefore assume that γ3(G) is not a finite p-group. From Lemma 2.1 we
know that the p-elements of G form a finite normal subgroup P of G. Clearly
there exist x ∈ G′\P and g ∈ G such that (x, g) 6∈ P (otherwise γ3(G) would
be a finite p-group). Furthermore we can pick an element h ∈ P \ 〈1〉 such
that (h, x) = 1. In fact, if G′∩P 6= 〈1〉, it is sufficient to choose an arbitrary
element of that set, otherwise (G,P ) ⊆ G′ ∩ P = 〈1〉, thus P is central and
any 1 6= h ∈ P satisfies the condition. Let i be the largest integer such that
h ∈ Di(P ). Now, 1 + (h − 1)g is a unit lying in 1 + ∆i(G,P ), and so does
its inverse. Consequently,

u = (1 + (h− 1)g, x) = 1 + (1 + (h− 1)g)−1x−1[(h− 1)g, x]

= 1 + (1 + (h− 1)g)−1x−1(h− 1)xg((g, x)− 1)

≡ 1 + (h− 1)g((g, x)− 1) (mod ∆i+1(G,P )).

Hence

(u, x) ≡ 1 + u−1x−1[(h− 1)g((g, x)− 1), x]

= 1 + u−1x−1(h− 1)[g, x]((g, x)− 1)

≡ 1 + (h− 1)g((g, x)− 1)2 (mod ∆i+1(G,P ))

is a non-trivial element of δ2(U(FG)), and this proves the claim.
Since G is nilpotent, as observed at the beginning of this section, we can

apply Theorem 2.2 and Lemma 2.3 and conclude that p ∈ {3, 5} and G′ is
a finite p-group. At this stage, the proof is done invoking Lemmas 3.3, 3.4
and 3.5. �
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